Safe Lazy Software Upgrades in Object-Oriented
Databases

Barbara Liskov, Chuang-Hue Moh, Steven Richman,
Liuba Shrira, Yin Cheung, Chandrasekhar Boyapati
MIT Laboratory for Computer Science

{liskov,chmoh,richman,liuba,xyz,chandra}@Ilcs.mit.edu

ABSTRACT

Object-oriented databases allow objects that are ma-
nipulated by programs to be stored reliably so that they
can be used again later and shared with other programs.
Since objects in the OODB may live a long time, there
may be a need to upgrade them: to change their code
and storage representation. This paper describes a tech-
nique for upgrading objects in an OODB. The approach
preserves the database state by transforming objects to
their new classes while retaining their state and their
identity. The approach is efficient: we do not interrupt
application execution to run an upgrade, but instead
run the upgrade incrementally, one transform at a time.
Objects are transformed lazily, but just in time; applica-
tions never observe non-upgraded objects. Laziness can
sometimes lead to problems for the code that transforms
objects, however; e.g., a transform might observe broken
invariants or interfaces unknown at the time it was writ-
ten. We define precisely when these problems arise, and
we also provide mechanisms for avoiding them. Ours is
the first work to provide a full analysis of these prob-
lems and to allow safe lazy upgrades even when prob-
lems arise. We have implemented our approach on the
Thor OODB and we present performance results that
show that the overhead of our infrastructure is low.

1. INTRODUCTION

Object-oriented databases (OODBs) allow objects that
are manipulated by programs to be stored reliably so
that they can be used again later and shared with other
programs. The database acts as an extension of an
object-oriented programming language such as Java, al-
lowing programs access to long-lived objects in a man-
ner analogous to how they manipulate ordinary objects

The research was supported in part by DARPA Con-
tract F30602-98-1-0237, NSF Grant 11S-98-02066, and
NTT.

whose lifetime is determined by that of the program.

The objects stored in the database may live a long time
and as a result there may be a need to upgrade them: to
change their code and storage representation. An up-
grade can improve an object’s implementation, to make
it run faster or to correct an error; extend the object’s
interface, e.g., by providing it with additional methods;
or even change the interface in an incompatible way, so
that the object no longer behaves as it used to, e.g.,
by removing one of its methods or redefining what a
method does. Incompatible upgrades are probably not
common but they can be important in the face of chang-
ing application requirements.

This paper describes a mechanism for upgrading objects
in an OODB. The mechanism allows object state and
identity to be preserved across an upgrade. This preser-
vation is cruicial: The whole point of the database is to
store object state. When objects are upgraded, their
state must survive, albeit in a modified form as needed
in the new implementation. Furthermore, a great deal
of object state is captured in the web of object relation-
ships. This information is expressed by having objects
refer to other objects. When an object is upgraded it is
critical that it retain its identity so that all the objects
that referred to it prior to the upgrade still refer to it.

Our approach makes it relatively easy for people to
define upgrades. The upgrade mechanism is object-
oriented: an upgrade definition describes what to do
with each class that is changing, by providing a replace-
ment class and a transform function that is used to ini-
tialize the new form of the object using the object’s
current state.

Executing an upgrade requires transforming every ob-
ject belonging to a class that is being replaced, to change
it into a member of the replacement class. The key issue
in doing upgrades concerns how to carry this out. Most
previous work [21, 2] takes a stop-the-world approach:
application access to the OODB stops while the upgrade
is performed. Such an approach can make the system
unavailable to users for potentially long periods. The
unavailability may not be a serious issue if the OODB
is small, but if it is large (e.g., trillions of objects resid-
ing at thousands of servers), the time during which the



system is unavailable to applications can be very long.

We avoid delaying applications by running the upgrade
incrementally, one transform at a time. Each object is
transformed just before an application accesses it, and
therefore applications that run after the upgrade starts
never see non-upgraded objects. Thus the work of doing
the upgrade is interleaved with application accesses to
the stored objects.

This approach is very efficient. It is also correct, i.e., it
provides the desired behavior. Our approach to correct-
ness is novel, and is a major contribution of this paper.
The approach has three parts:

1. We define what behavior is expected when running
an upgrade.

2. We define program properties that can be used to
decide whether correctness problems could arise
when running the upgrade incrementally.

3. We provide mechanisms that prevent problems from
occuring when the properties don’t hold.

Our approach is highly effective. The program proper-
ties are simple and easy to understand. Furthermore,
most programs will satisfy the properties, meaning that
no special effort is necessary to achieve correctness. Also,
the mechanisms that prevent problems are lightweight.

We have implemented our approach within the Thor
object-oriented database and used the implementation
to run experiments. Our results show that our infras-
tructure has low cost, e.g., it has negligible impact on
applications that don’t use any objects requiring up-
grades, which we expect to be the common case, since
upgrades are likely to be rare (e.g., no more frequent
than once a week or once a day). The results also show
that the slowdown when upgrades are needed is small.

There has been quite a bit of earlier work on upgrades
in OODBs [4, 18, 15, 23, 22]. This work has either
avoided lazy upgrades entirely, or under much broader
conditions than are necessary; or the systems allow lazy
upgrades even when they are unsafe. We discuss related
work in more detail in Section 5.

The paper is organized as follows. Section 2 describes
our approach to defining and running upgrades; it de-
scribes how we analyze code to determine whether there
could be a safety problem, and the mechanisms that can
be used to ensure safety when problems arise. Section 3
describes how we implement upgrades in Thor. Sec-
tion 4 describes our experiments. Section 5 discusses
related work. We conclude with a summary and discus-
sion of future work.

2. UPGRADES

We assume the object-oriented database contains con-
ventional objects similar to what one might find in an

object-oriented programming language; we will use Java
in our examples. Objects can refer to one another and
can interact by calling one another’s methods. We as-
sume the fields of objects are encapsulated: the only
way for one object to access the fields of another is by
calling its methods. This constraint does not lead to
any loss of expressive power because access to a field
can always be provided via two methods, one to read
the field and the other to modify it.

The objects in the database belong to classes, which de-
fine their representation and methods. Each class im-
plements a type. Types can be arranged in a hierarchy,
so that one type can be a subtype of another. A class
that implements a type implements all supertypes of
that type.

2.1 Defining Upgrades

Our approach to defining upgrades is object-oriented:
an upgrader defines the upgrade by describing what
should happen to the classes that need to be changed.
The information for a class that is changing is captured
in a class-upgrade. Each class-upgrade is a tuple

< old-class, new-class, TF >

The meaning of a class-upgrade is that all objects be-
longing to old-class will be transformed, through use of
the transform function, TF, into objects of new-class.
TF has the signature:

TF: old-class — new-class

i.e., it takes an old-class object as an argument and
returns an object of new-class. At some point after TF
returns (e.g., immediately) the upgrade infrastructure
causes the new object to take over the identity of the
old one, so that all objects that used to refer to the old
one now refer to the new one.

When an upgrade is executed, the old-classes of its class
upgrades disappear; they are no longer available for use
in the system and their objects all “become” objects of
the associated new-class. This means that any class that
depends on the old-class must be upgraded as well. In
particular, when there is an incompatible upgrade, the
new class will not implement the same types as the old
one. In this case, upgrades will be needed for subclasses
of the old-class. Also, classes that use a type imple-
mented by the old class but not by the new one may
need upgrades — to use the type implemented by new-
class. Such an upgrade can be avoided if the using class
only depends on behavior that is not changing, e.g., the
class only uses the size method, whose behavior is not
affected by the upgrade.

An upgrade is a set of one or more class-upgrades. It
should contain class-upgrades for all classes that need
to change due to some class-upgrade it already contains.



An upgrade that includes all such classes is called a
complete upgrade [13, 28]. Completeness can be checked
using rules analogous to type checking. An upgrade is
accepted only if it is complete. At this point we say the
upgrade is installed.

Once an upgrade has been installed, it is ready to run.
An upgrade is executed by running the transform func-
tions on all affected objects, i.e., all objects belonging
to the old classes.

For this to work correctly, TFs must be well-behaved:

A TF is well-behaved if it is a pure observer:
it does not modify any objects that existed
before it started running, including its argu-
ment object and any objects reachable from
it.

We require well-behaved transforms because the sys-
tem determines this order, and therefore, any order it
chooses must be correct. In particular, running any two
transforms must produce the same result regardless of
execution order, i.e., their executions must commute.
TF's that are well behaved commute since they cannot
affect the state of any object used by other transforms.

In addition, the TF must be correct: given any legiti-
mate object of old-class, it must produce the equivalent
object of new-class. Here of course we rely on the spec-
ifications of the two classes. By “legitimate” we mean
any old-class object that satisfies the representation in-
variant [20] of old-class.

2.2 Running an Upgrade

We assume applications access objects in the database
within atomic transactions, since this is necessary to
ensure consistency for the stored objects; in addition
transactions allow for concurrent access and they mask
failures. An application transaction consists of calls on
methods of persistent objects as well as local computa-
tion. The interface to the system can be very simple,
e.g., an application thread can simply run one trans-
action after another. A transaction terminates by ei-
ther committing or aborting. If the commit succeeds
all changes to database objects become persistent. If
instead the transaction aborts, none of its changes is
installed in the database.

One could imagine running an upgrade as a single trans-
action that ran all the transforms in some order, and in
fact this has been done in other work [2]. As mentioned,
however, this approach has a serious problem: running
such a transaction can make the system unavailable to
users for potentially long periods.

We avoid delaying application transactions by running
the upgrade incrementally and lazily. We run each trans-
form as an individual transaction; these are interleaved
with application transactions but are serialized with re-
spect to the application transactions.

Our system runs as follows. When an application trans-
action, A, is about to use an object that is due to be
upgraded, we interrupt A and run the transform at that
point. The transform runs in its own transaction T.
This transaction must be serialized before A (since A
uses the transformed object produced by T). If T re-
quires access to an old version of some object modified
by A, we provide this access, taking advantage of the
fact that A has not yet committed (and therefore the
old version still exists). As soon as T finishes executing
we commit it. Then we continue running A wunless T
modified some object that A read; this will not happen
if TF is well behaved. If we cannot continue running A,
we abort and rerun it.

While running T we might encounter an object that is
too far in the past: it has a pending transform from
an upgrade installed before T’s upgrade. In this case,
we interrupt T (just as we interrupted A) to run the
pending transform.

In spite of running transforms lazily, we want to obtain
the same behavior in a lazy system as in an eager one:

Suppose a system with lazy upgrades has
reached the point where all transforms for
upgrade m have been performed. At that
point some application transactions Al, A2,
..., Ak that are serialized after upgrade m’s
installation have also committed. The lazy
system is correct if the system state at that
point is the same as it would have been had
we run upgrade m eagerly and then run the
application transactions.

There are two problems that can arise in a lazy system
that could undermine correctness. The first is that when
a TF runs on some object x, it might attempt to use an
object y that has already been transformed by a later
upgrade; this would be a problem if that later upgrade
changed y incompatibly. We could avoid this problem
by guaranteeing that upgrade n completes before up-
grade n + 1 starts, but such a guarantee is undesirable
since it could cause the same long delay to applications
that we are trying to avoid.

The second problem is that when a TF runs on some
object x, x’s representation invariant might not hold be-
cause it concerns some subobject y that has been mod-
ified by an application that ran after the TF’s upgrade
was installed.

None of these problems can occur when objects are well-
encapsulated:

An object is well-encapsulated if there are
no direct references from code outside it to
objects it refers to.

Figure 1 shows an example of an object that is not well-



Figure 1:

An object that is not well-
encapsulated; object y is exposed.

encapsulated. We refer to the subobjects that are ac-
cessible from outside of the object as exposed subobjects.

When an object = is well-encapsulated, its subobjects
can be manipulated only by calling methods of x, which
may then call methods of the subobjects. This means
that x’s methods will be called before methods of the
subobjects. Therefore it will be transformed before any
subobjects are transformed or used by application trans-
action.

Therefore problems can arise only when an object has
exposed subobjects. But even then there isn’t a prob-
lem unless in addition that object is being transformed
by a TF that uses the exposed objects, i.e., calls their
methods, because it doesn’t matter whether the exposed
object is transformed or modified before the TF runs on
the containing object if the TF of the containing object
won’t observe the change.

Even when these conditions hold, however, there may
not be a real problem. In the case where the TF encoun-
ters an object that has been transformed as part of a
later upgrade, there is a problem only when that trans-
form changed the object in an incompatible way and
this affects the TF, i.e., methods it uses have changed
their interface or behavior. In the case of an application
modification, there is a problem only when the modifi-
cation violates the representation invariant of the object
being transformed.

For example, consider the situation in Figure 1. If z.TF
only calls the size method on y, and this method has the
same interface and meaning in the new class as in the
old class, there is no problem even though other things
have changed; however if z.TF calls the insert method
on y, and this method no longer exists, there is a prob-
lem. Also, if the representation invariant of x assumes
that y is non-empty, and an application transaction has
modified y to become empty, there is a problem; how-
ever, there wouldn’t be a problem if the representation
invariant of z made no assumption about the size of y.

So to summarize, a problem really exists when

e An object has exposed subobjects that are used

Figure 2: A containing object.

by its TF, and

— A subobject has been upgraded incompatibly
and TF uses methods of that subobject that
have disappeared or changed their behavior,
or

— A TF’s object’s representation invariant no
longer holds.

2.2.1 The Solution

‘We assume that a potential problem can be detected by
static analysis, e.g., [26, 11, 5, 6, 24, 12]. The analysis
might be overly conservative: it might detect a problem
when there isn’t one, e.g., by not being able to figure out
that the object used by the TF isn’t the exposed one.
But we can rely on the analysis to bring the potential
problem to the attention of the upgrader, who can then
decide whether it is really a problem, and if so, how to
avoid it.

If there is really a problem, there are two ways to fix
it. The first (preferred) approach can be used when the
encapsulation problem is “contained” as illustrated in
Figure 2. This figure shows a well-encapsulated object
z that contains both x and its exposed subobject y. In
such a case we can take advantage of the containing
object to control the transform order explicitly: the up-
grader adds a trigger to z’s class, C., indicating that
when a C', object is used, x should be transformed be-
fore the C, method starts to run. Containment might
be more complex than what is shown in the figure. For
example, C, objects might share C, objects in some
arbitrary pattern so that no single C, object contains
both x and y; however if as a group the C, objects con-
tain all C; objects and their exposed objects, we can
still use this approach.

If there is no containing object (or objects), we fall back
on the second method of providing versions for Cy ob-
jects: we make a snapshot of the object when it is trans-
formed, or the first time it is modified after an upgrade
is installed.

When there is an incompatible upgrade for Cy, the class
of the exposed objects, the class upgrades for C, and
C, might be in the same upgrade; in this case, the user



Figure 3: Shared subobjects.

decides as part of defining that upgrade whether there
is a problem and if there is, how to fix it (via a trigger
or a version). Or, C; can be in an earlier upgrade than
Cy. In this case, there is no problem when the upgrade
for C, is defined, but there might be one later, if an in-
compatible upgrade for Cy is defined in a later upgrade.
Therefore we carry the information forward and bring it
to the attention of the upgrader should an incompatible
upgrade for Cy be defined. At that point the upgrader
decides what to do. In either of these two cases, if the
upgrader decides to handle the problem (using either
a trigger or a version), we no longer have to consider
Cz’s TF in future upgrades, e.g., if D, is upgraded to
incompatible E,. Otherwise, we continue to carry the
information forward to future upgrades.

When there is a violated representation invariant, the
situation is similar. For example, consider the situation
in Figure 2. Suppose that z ensures some property of
y that = depends on, e.g., y is a set, but x assumes
y is non-empty. Now suppose C, is upgraded to no
longer make this assumption, and C, is upgraded to
not support it; in this case C, and C, are in the same
upgrade. Or, C, might be changed in upgrade n and
C. changed later in upgrade m; in this case we note
the problem when upgrade n is defined, but only do
something about it later, when upgrade m is defined.

2.2.2 Nested Versions

Some care is needed in making versions. For example
consider the situation illustrated in Figure 3. Here the
old and new versions of y share w.

Sharing between versions is a problem if methods of
Ynew modify the shared object in a way that causes the
representation invariant for y,;q to no longer hold. E.g.,
perhaps yo14 stores the size of w and its implementation
depends on the size being accurate. If a method on ynew
adds an element to w, the invariant of y,;4 will no longer
hold. Now suppose a TF from an early upgrade runs
and calls a method on y; this call goes to Y14, and the
method call fails because the representation invariant
doesn’t hold.

To avoid this problem, we make a version for the sub-
object (and its mutable subobjects) as part of making
the version for the containing object. This is done only
if the upgrader tells us to, i.e., there really is a problem.

2.2.3 Correctness

Our system provides correct executions in the presence
of lazy transforms provided the user has used triggers
and versions as needed to avoid problems. In this case,
TFs will only transform objects whose representation
invariant holds, and they will never encounter objects
with incompatible interfaces. These conditions mean
the TFs will always be able to transform their object
properly — assuming they are correct.

Of course, in a lazy system a TF can encounter an ob-
ject that has already been modified by an application
transaction A. But this is acceptable assuming the TF
itself is implemented correctly. A correct TF produces
the object of new-class that corresponds to its input. It
doesn’t matter what the state of its input object is when
it does this, i.e., the effect will be the same regardless
of whether we run the TF followed by A, or we run A
followed by the TF.

Correctness depends on the upgrader making the right
decisions once informed about a potential problem. We
believe it is appropriate to rely on the upgrader to do
this work; after all, we rely on the upgrader to define the
transform function and the new class correctly! Note
also that the upgrader can always fall back on requiring
versions; this will always be correct, albeit at the cost
of reduced performance.

2.3 Transform Functions and Triggers

In this section we briefly discuss transform functions
and triggers.

Transform functions can be thought of as constructors
of the new class:

Cnew TF (Cold x) { ... }

The one thing that is different about them is that they
may need to do type-incorrect assignments. For exam-
ple, consider the situation in Figure 1, and suppose that
after the upgrade the new version of x is supposed to
refer to the new version of y. Then in the transform
function for x, we would like to assign a pointer to y
to a field of the new object. However, the type of that
field is Dy, whereas the object obtained from x is of type
Cy. Our approach is to allow such assignments only in
a special part of the TF definition; a pre-processor can
check whether the assignments are type-correct given
the upgrade. For example, we might have:

Dx TF (Cx x) { ... } [els: x.els]

Here els has type Dy and z.els has type Cy; the as-
signment is type correct given the upgrade because the
object referred to by els will become a Dy object before
it is used.

It may seem that there is a better way to handle this
problem: convert x.els immediately. But this can lead



to a problem when there is a cycle [16], e.g., if y points
to x. In this case if we try to transform y before the
transform of x terminates, we may encounter a similar
assignment in g’s transform. At this point we would be
stuck: we can’t finish y’s transform until z’s tranform
completes, and so on.

Triggers are functions that produce objects needing up-
grades. For example, consider the situation in Figure 2
and suppose we want to attach a trigger to z. This can
be written as:

Cx trigger(Cz z) { return z.myX; }

Note that the trigger is written in terms of the current
class of z. Effectively it is an extra method of C, defined
as part of the upgrade. (A trigger can return an array
if it needs to return more than one object.)

When an object with an attached trigger is encountered,
we run the trigger immediately and keep track of its
result. Then we transform the object if necessary. The
trigger and the transform run as a single transaction.

After this transaction commits we transform each ob-
ject identified by the trigger, but only if the pending
transform is “current” with respect to the trigger: the
pending transform comes from an upgrade no later than
the upgrade that caused the running of the trigger. The
objects are transformed in trigger order (i.e., in the or-
der they are placed in the array).

Triggers are also supposed to be well-behaved: they
should be pure observers.

3. IMPLEMENTATION

This section describes how we implement upgrades within
the Thor object-oriented database. More information
about Thor and its implementation can be found in [19,
10, 1, 7].

Thor is a client-server system. Persistent objects reside
at servers; each persistent object resides at a particular
server. Application transactions run at client machines
on cached copies of the persistent objects.

Thor uses optimistic concurrency control [1]. Client ma-
chines fetch objects into the cache as needed. They
track all objects used and modified by a transaction.
When the transaction attempts to commit, the client
machine sends a commit request containing information
about used objects and states of new and modified ob-
jects to one of the servers. The server decides whether
that transaction can commit (using two-phase commit
if the transaction used objects at more than one server)
and informs the client machine of its decision.

3.1 Basic Strategy
Our base approach is to interrupt application transac-
tions and transform transactions when we encounter ob-

jects due to be upgraded and also when we encounter
objects with triggers attached.

1. Each time an application transaction, AT, or a
transform transaction, T'T, uses an object, we check
whether that object needs to be transformed or
has an attached trigger. If so, we interrupt AT
or TT and start a transaction to run the code on
that object.

2. We run transaction T. Note that T must be serial-
ized before all the interrupted transactions. There-
fore as it runs we check whether it is using objects
already modified by an interrupted transaction;
any such object is reverted to its prior state.

3. When T is ready to commit, we check whether it
modified any objects already used by interrupted
transactions. If there are such object, we abort all
the interrupted transactions including AT. Then
we commit T and any other TTs that have already
completed. Then we run the AT over again. Note
that we will never need to abort if the transform
(and triggers) are well-behaved.

4. If T is a transform we create a version for it if that
is indicated.

5. If T has triggered some other transforms we run
them provided they are defined by upgrades no
later than the upgrade that causes T to run. Note
that T is finished executing at this point, i.e., we
don’t interrupt it to run these additional trans-
forms.

6. When there are no triggered transforms left to run,
we continue running the AT or TT that was inter-
rupted to run T.

7. When the AT is ready to commit, we commit it
along with all the T'Ts that ran on account of it.
If this fails, we commit as many of the TTs as
possible; we abort the rest and then rerun the AT.

The key to making all of this run efficiently is imple-
menting step 1 properly, since this test is required on
every method call. Our approach is described below; it
is based on the assumption that most objects used by
application transactions are not due to be upgraded and
do not have attached triggers.

3.2 Some Details

Here we describe a few details of our implementation;
more information is contained in [27] and the appendix.

Objects in Thor refer to one another using orefs [10].
These are references particular to one of the servers:
they identify a page at that server and an object number
within that page.

Since these references would be expensive to use when
running transactions, Thor client machines swizzle point-
ers when they are first used, so that they can be followed



efficiently to locate the object being referred to in the
client cache. Swizzling is done using an indirection ta-
ble called the ROT (resident object table). A swizzled
pointer points to an entry in the ROT. That entry either
points to the object in the client cache, or it is empty.

We get an efficient test for whether an object is due to
be upgraded or has an attached trigger by maintaining
the following invariant while an application transaction
is running;:

While an application transaction is running,
all non-empty entries in the ROT are for up-
to-date objects without attached triggers.

This invariant means that while we are running the ap-
plication transaction, we discover upgrades and triggers
when we fill ROT entries. ROT entries are filled less
often than they are used; therefore we avoid the need
to test for upgrades and triggers in the normal case of
running method calls on objects that are entered in the
ROT.

The invariant is not useful while running transforms,
however, because objects in the ROT may be too re-
cent for the transform (i.e., already transformed due
to a later upgrade) and if the object is versioned the
transform needs to find the appropriate earlier version
to use. Therefore, we need to test on every method call
whether we are running an application transaction or a
transform transaction. This test is very fast: it involves
looking at a boolean variable that, because it is used so
frequently, ends up in a register or the fastest hardware
cache.

When a client machine learns of an upgrade, it clears
all ROT entries for objects of old-classes of the upgrade
and also aborts its currently running transaction if it
used any objects of these classes. This ensures that
the ROT invariant holds. Processing a new upgrade at
a client machine is relatively expensive. However, we
believe that upgrades are not installed very often, e.g.,
no more than once a week or once a day. Therefore it
is not worthwhile to optimize this processing.

3.2.1 \Versions

When a transform transaction commits, the system de-
termines whether a version is needed. If not, it stores
the new object in the storage of the old one if there is
room. The new object can actually be larger than the
old one; all that is required is room in the object’s page,
because orefs are logical, not physical, and because the
ROT allows the client machine to move objects around
in the cache. If the new version is too big, the original
object is changed to a surrogate that points to the new
object; the structure is illustrated in Figure 4a. If a ver-
sion is needed, the original object is changed to a proxy
object that points to both the old and new versions, as
illustrated in Figure 4b; the new version is placed in the
object’s page if possible.

b.

Figure 4: Surrogates and proxy objects.

a

3.2.2 Committing

When an application transaction commits, we need to
send the servers information about all objects that were
transformed during its processing. In the case where
no version was needed and the new object fit in the
page, we just send the new state of the transformed
object. If a surrogate is needed, we send two objects
(the surrogate and the new object); if a proxy object is
needed, we send a special proxy-record containing the
orefs of the old and new versions, and the new version.
(Only the versions are sent and not their containing
pages because Thor uses object-shipping [10]).

4. PERFORMANCE

To evaluate the performance of our techniques we ex-
tended Thor to support upgrades. The main goal of our
performance study is to evaluate the impact of upgrade
system infrastructure on application performance.

Before presenting our results we describe our experi-
mental setup. We use two systems in our experiments:
ThorOld is the Thor system without support for up-
grades; ThorUp is Thor extended to support lazy up-
grades. The prototype includes the components of the
system required to evaluate the upgrade system’s im-
pact on the performance of an application running on a
client but does not include upgrade installation at the
server and subsequent notification to the client. Instead,
we configure the client with a pre-canned sequence of
“dormant” upgrades and activate upgrades while run-
ning applications.

Our application workloads are based on the single-user
OO7 Benchmark [9]; this benchmark is intended to cap-
ture the characteristics of many different CAD applica-
tions, but does not model any specific application. We
use OO7 because it is a standard benchmark for mea-
suring object storage system performance. The OO7
database contains a tree of assembly objects with leaves
pointing to three composite parts chosen randomly from
among 500 such objects. Each composite part contains
a graph of atomic parts linked by bidirectional connec-
tion objects, reachable from a single root atomic part;
each atomic part has three connections. We use the
small OO7 Benchmark database configuration, where
each composite part contains 20 atomic parts.

We consider both read-only and read-write transaction
workloads in our analysis, since upgrades have a differ-



ent commit cost in workloads with and without modifi-
cations. We use the read-only T1 dense traversal, which
performs a depth-first traversal of the entire composite
part graph (touching every atomic part); we run read-
write traversals T2a, T2b, and T2c, which perform a
T1 traversal, with T2b modifying all atomic parts, T2a
modifying only root atomic parts and T2c modifying
each atomic part four times.

We run a single client and a single server, running on
the same machine. The test machine has a 600MHz
Intel Pentium III processor and 512MB of memory, and
runs Linux 2.2.16.

Our experiments focus on showing the impact of the
upgrade infrastructure. Section 4.1 shows the overhead
of the infrastructure on application transactions that do
not require upgrades. Section 4.2 shows the infrastruc-
ture cost when transforms must be performed.

4.1 Baseline Experiments

In this section we consider the performance cost im-
posed by the upgrade infrastructure when the system
does not encounter any objects that need to be up-
graded. Since we assume that upgrades are rare, our
design tries to optimize this baseline case.

Our baseline experiments evaluate two types of applica-
tion accesses: fast access to an object already installed
in the ROT and the slower access to an object that
needs to be installed in the ROT. Our upgrade infras-
tructure introduces an extra cost, PenaltyResident, for
an access of an object resident in the ROT, which in-
cludes a check of the global flag that indicates whether
the current transaction is an application or transform
transaction. For an access of an object that isn’t resi-
dent in the ROT, our upgrade code introduces an extra
cost, PenaltyNonresident, which includes the expense of
checking if a trigger or transform needs to be run for the
object.

To evaluate PenaltyResident, we compare application
execution times for ThorOld and ThorUp with a fully-
populated ROT. To evaluate PenaltyNonresident, we re-
peat the experiment, but with an initially empty ROT.

Figure 5 shows the execution times for these experi-
ments. All experiments use a hot cache, since otherwise
the cost of fetching objects into the cache would domi-
nate execution time.

The full ROT comparison is the expected case for most
application executions. Conversely, the empty ROT
comparison represents a worst-case for baseline perfor-
mance in ThorUp: the maximum amount of work must
be performed for each nonresident object access. This
is a case that we would not expect to occur normally, as
typically only a few empty ROT entrees are encountered
when a transaction runs. Both in empty ROT execu-
tion, and execution with ROT installation, our upgrade
infrastructure introduces an overhead below 1%.

3 ThorUp No Upgrade
m ThorUp Upgrade

Figure 6: Upgrade traversal cost. 9,880 objects
are transformed.

4.2 Upgrade Experiments

Next we measure the cost of executing upgrades and
running transforms. We install a schema upgrade and
run a database traversal that encounters old objects
that need to be transformed.

The schema change we use in these experiments up-
grades the atomic part class. Because our goal is to
measure the basic upgrade processing overhead in our
infrastructure, we use a null upgrade that minimizes
application-specific costs (like running transforms de-
fined by programmers). The upgraded atomic part class
has the same methods and fields as the old class, and
the transform function just copies the fields from the
old object to the new. As before, all our experiments
use a hot cache.

Figure 6 compares the traversal execution times of Tho-
rUp without any upgrades and ThorUp with an atomic
part upgrade installed just before the traversal. The
extra cost in each upgrade experiment is proportional
to the number of distinct atomic parts visited by the
traversal. All traversals visit each atomic part multiple
times; the version check and transform cost is only in-
curred on the first visit. Note that these experiments
are an atypically bad case for ThorUp, since a single ap-
plication transaction visits all objects that need to be
upgraded. In the expected case, each application trans-
action would encounter few or no objects that need to
be upgraded, so the total upgrade cost presented here
would be amortized over many application transactions.

By counting the number of objects transformed in these
traversals, we are able to compute the average cost of
running a transform; this is 38.7 microseconds. Note
that this is an overly conservative estimate, because it
includes the cost of running the TF as part of the in-
frastructure overhead.

The data in Figure 6 does not include the cost of com-
mitting the transaction. When a transaction that caused
transforms commits there is an additional cost propor-
tional to the number of objects that were transformed
but not modified by that transaction, since each such



=23 ThorOld Full ROT
mm ThorUp Full ROT

. ThorOld Empty ROT
== ThorUp Empty ROT

Figure 5: Baseline (no-upgrade) traversal times.

3 ThorUp No Upgrade
m ThorUp Upgrade

Figure 7: Upgrade commit costs for Traversal 1.
9,880 objects are transformed.

transformed object must be sent to the server. Figure 7
compares the commit times for T1 in ThorUp with and
without upgrades. The per object local commit cost for
an upgraded object is 13.1 microseconds. In the up-
grade case, each of the 9,880 transformed atomic parts
must be sent to the server.

If an application transaction that triggers a transform
subsequently modifies that object, there is no additional
commit cost (assuming the new object fits and does not
require a version), since the application’s modifications
would have to be shipped to the server anyway. T2b, for
instance, has identical commit costs with and without
upgrades.

The atomic part upgrade in our experiments doesn’t
require versioning, and a transformed object is the same
size as its old object (and can therefore overwrite the
old object). If we needed a version or if a new object
didn’t fit on the page of its old object, we would have
to commit two objects instead of one, roughly doubling
the commit cost per such object.

5. RELATED WORK

The two different approaches to modifying the concep-
tual structure of an object database, broadly catego-
rized, following [14], are schema evolution and schema
(or class) versioning. In the evolution approach, the
database has one logical schema to which modifications
of class definitions are applied. Instances are converted
(eagerly or lazily, but once and forever) to conform to
the latest schema. In the schema or class versioning

approach, multiple versions of a schema or class can co-
exist. Instances can be represented as if they belong to
a specific version of their class, but how this is done (e.g.
by creating a separate image of instance or by keeping
one version-specific copy and dynamically converting it
as needed) depends on the concrete system.

Our discussion focusses on the schema evolution ap-
proach because it is most relevant to our work; a prob-
lem with the versioning approach is the huge amount
of storage it requires. The scheme evolution approach
is used in the commercial systems O2 [15, 3], Gem-
Stone [23, 8], Objectivity/DB [22], and Versant [25],
and in the research systems Orion [4], OTGen [18] and
PJama [2, 14], and is the only approach available in
commercial RDBMS. Very few of these systems sup-
port general transforms and lazy conversion: Gemstone
and Orion do not support user-defined or complex trans-
form functions; ObjectStore supports a limited form of
eager conversion and no lazy conversion; Versant sup-
ports lazy conversion for default transforms but user-
defined and complex transforms require eager conver-
sion; PJama supports eager conversion for user-defined
and complex transforms but has no support for lazy con-
version. (A complez transform is one that calls methods
of subobjects.)

The OTgen [18] system supports lazy conversion for a
restricted form of complex transform that copies data
and object references from the old object version to the
new one but does not run arbitrary methods; this avoids
the reordering problem caused by deferred execution of
general complex transforms.

The Objectivity /DB [22] system supports complex trans-
forms and provides lazy, eager, and on-demand conver-
sion that can trigger previously defined lazy conversions
to happen eagerly on selected subsets of evolving ob-
jects. Lazy conversion with complex transforms is not
supported or is at least discouraged. The supported lazy
conversion is restricted to setting only primitive object
fields in transforms; this avoids the problem discussed
in Section 2.2.2 of versions sharing mutable subobjects.

The O2 [15] system supports lazy conversion and com-
plex transforms. This work introduces the upgrade cor-
rectness condition based on the equivalence of lazy and
eager conversion, and is the first to identify problems



posed by deferred complex transforms and incompatible
upgrades [16]. Like our system, it requires well-behaved
transforms. O2 insures type safety for deferred com-
plex transforms using a ”screening” approach similar to
versioning. It retains all versions of transformed objects
and performs method dependability analysis to avoid re-
taining fields inaccessible to deferred transforms. Unlike
our approach, however, O2 analysis [16] does not take
encapsulation into account. Whenever an incompatible
upgrade occurs after a complex transform is installed, it
either activates stop-the-world conversion, or runs with
all versions. This approach is unnecesarily conservative
(e.g., the switch to eager transforms occurs even when
the complex transform doesn’t use the class with the in-
compatible upgrade). Also, O2 does not deal with the
problem of deferred access to objects modified by appli-
cations, which is unsafe as discussed in Section 2.2.

Detailed information about implementations for com-
mercial systems supporting lazy conversion with com-
plex transforms is generally not available. We found
limited information for O2 [15], e.g., we found no infor-
mation about the mechanisms supporting the atomic-
ity of individual transforms, or about the performance
impact of upgrade support on normal case operation.
The O2 screening approach co-locates the versions of
upgraded objects physically near the new version of
the object [15]. This requires database reorganization
when versions are created. In contrast, our system does
not require co-location of object versions; this allows us
to preserve clustering of non-upgraded objects without
database reorganization and furthermore, we are often
able to preserve clustering for upgraded objects as well.
Preserving clustering is very important for system per-
formance because of its impact on disk access [17].

Some of the implementation issues caused by complex
user-defined transforms that need to be addressed by
lazy conversion system arise also in the implementa-
tion of eager conversion. E.g., an eager system has to
support arbitrary order of transforms and access to po-
tentially incompatible transformed objects. The Pjama
eager conversion system [2, 14] keeps old and new ver-
sions to solve this problem. To support large databases,
it performs incremental partitioned conversion that cre-
ates partitions with old and new versions, and at the
end of conversion deletes the old copies by copying the
converted partitions. It uses write-ahead logging to to
support atomicity and recoverability.

6. CONCLUSIONS

This paper has described a technique for upgrading ob-
jects in an OODB. The approach preserves the database
state by transforming objects to their new classes while
retaining their state and their identity. The approach
is also efficient: we do not interrupt application trans-
actions to run an upgrade, but instead run the upgrade
incrementally, one transform at a time. Objects are
transformed lazily, but just in time; application transac-
tions never observe non-upgraded objects. Laziness can
sometimes lead to problems, e.g., a transform function

10

might observe broken invariants or interfaces unknown
at the time it was written. We define precisely when
these problems arise, and we also provide mechanisms
for avoiding them (triggers and versions). Ours is the
first work to provide a full analysis of these problems
and to allow safe lazy transforms even when problems
arise.

We have implemented our approach on the Thor OODB
and we present performance results that show that the
overhead of our infrastructure is low. These results are
especially interesting because the Thor implementation
was developed without considering upgrades.

We rely on a combination of static analysis and help
from the upgrader; we notify the upgrader of potential
problems and expect him or her to do the semantic anal-
ysis to determine whether there really is a problem and
if so how to solve it. We believe it is appropriate to rely
on the upgrader to do this work; after all, we rely on
the upgrader to define the transform function and the
new class correctly!

There are several interesting directions for future work.
One is garbage collecting old versions; we want to get rid
of them once we are sure they will never again be needed
to run a transform. Another is doing upgrades eagerly,
e.g., upgrading all objects on a page while garbage col-
lecting the page, without violating the ordering imposed
by triggers.

7. APPENDIX

This appendix contains more details about how the im-
plementation works.

7.1 Installing Upgrades

An upgrade consists of a set of class-upgrades and a
set of class-triggers. Class-upgrades have the following
form:

< old-class, new-class, TF,
version-flag, trigger >

Here the version-flag is on if versions are required for
this upgrade, and the trigger is a (possibly empty) pointer
to the trigger function that should run when an object of
old-class is encountered. Class-triggers are used when a
class has an attached trigger but is not being upgraded;
they have the form:

< old-class, trigger >

There is no more than one entry in the upgrade for any
old-class.

When an upgrade is completely defined (and is com-
plete!) its description is entered at the upgrade server;
this is one of the Thor servers that is designated to do
this work. At this point the upgrade is serialized with



respect to any other upgrade installations, and it is as-
signed an upgrade number that is one greater than that
of the previous most recent upgrade.

Objects in Thor point to their class object. Upgrades
are processed by modifying class objects of the old-
classes, and creating class objects for the new-classes.
A class object contains a pointer to the dispatch vector,
a unique name for the class, and an upgrade number,
plus some additional fields as discussed below.

The server processes the installation as follows. In the
case of an class-upgrade, it creates a class-object for
new-class; this class-object contains a pointer to the dis-
patch vector for the class, the unique name for the class,
and the upgrade number assigned to this upgrade. The
server also modifies the class-object of old-class: the
class-object points to the class-object for new-class, it
points to the TF, it contains the version flag, it points
to the trigger function, and it contains a work-needed
flag, which is set to on.

Thus our class objects contain some extra fields, to store
the additional information. But since they are shared
by many objects, this doesn’t impose much storage over-
head.

In the case of a class-trigger, the server also creates a
new class object; this object has the upgrade number of
the current upgrade, but the same class id and dispatch
vector as the old class. Then it modifies the class-object
of the old-class: the class-objects points to the new class
and to the trigger function, and its work-needed flag is
on; its other fields are null.

The server maintains an upgrade number U, which is al-
ways set to the number of the highest installed upgrade.
When the processing of the upgrade definition is com-
plete, the server sets U to the new upgrade number. U
is sent on every communication to client machines (and
to other servers); in this way the client machines learn
about new upgrades.

Class definitions can be added to the system between
upgrades; these class objects are assigned the current
upgrade number, U.

7.2 Running Transactions

While an application transaction is running, the trans-
form flag will always be off. However, before filling
a null ROT entry, the client machine will check the
class-object of the object. If the work-needed field of
the class-object is on, this means a transform or trig-
ger must be performed. Note that this test is also
lightweight (especially compared to other work that goes
on at this point, including sometimes having to fetch a
page into the cache).

The client machine maintains information about the
currently running transaction in the form of a ROS
(the set of objects used by the transaction), MOS (the

11

set of objects modified by the transaction), UNDO (an
undo-log storing the pre-states of all modified objects),
UNUM (the number of the upgrade currently in force —
this will be the one greater than the highest numbered
upgrade in the case of an application transaction), and
TRIG (the list of objects identified by running the trig-

ger).

When an object’s class has the work-needed flag on, the
current transaction will be interrupted to run it if the
UNUM in its new-class is less than that of the current
UNUM. This test will always hold when the application
transaction is running, but may fail when a transform
transaction is running because the pending transform
is in the future relative to the transform transaction
running at this point.

When the transaction is interrupted, its ROS, MOS,
UNDO, and TRIG are saved, and a new transaction
starts with an empty ROS, MOS, UNDO, and TRIG.
Its UNUM is the number stored in the object’s class.
Also the transform bit is turned on.

Now the transform transaction T runs. First the trigger
function (if any) is executed and its result is stored in
TRIG. Then the TF runs.

Because the transform bit is set, entries in the ROT are
examined before they are used and if an entry points to
a proxy object the code will follow the pointers to find
the right version. It is able to figure out what the right
version is because of the version numbers in the class
objects, together with the UNUM: the version whose
class object has the highest number that is less than
UNUM is the correct one. While T is executing, the
system checks whether objects it uses have been mod-
ified by interrupted transactions, and if so it uses the
UNDO list of the transaction that modified the object
to revert the object to its previous state. When T com-
pletes, the system compares its MOS with the ROS’s
of interrupted transactions to see whether these need to
be aborted because of a conflict.

If the current transaction can commit, and if it con-
tained a transform, the system stores the new version
as discussed in Section 3.2.1, and it sends the new infor-
mation to the servers when it commits the application
transaction as discussed in Section 3.2.2. Objects that
ran triggers and that weren’t transformed are also mod-
ified, to contain a pointer to their new class, and they
are also sent to the servers in the commit request.

After T commits we run upgrades for the objects in its
TRIG; if TRIG is an array, we process the objects in
the array order. An object x in TRIG is upgraded if it
has a pending upgrade and the UNUM of its new class
is less than or equal to the current UNUM.

When all this work is over, we restore the ROS, MOS,
UNDO, TRIG, and UNUM for the interrupted transac-
tion and continue running it.



8.
1]

(10]

(11]

REFERENCES

A. Adya, R. Gruber, B. Liskov, and

U. Maheshwari. Efficient Optimistic Concurrency
Control using Loosely Synchronized Clocks. In
Proceedings of ACM SIGMOD, 1995.

M. P. Atkinson, M. Dmitriev, C. Hamilton, and
T. Printezis. Scalable and Recoverable
Implementation of Object Evolution for the
PJama 1 Platform. In Proceedings of the 9th
International Workshop on Persistent Object
System, 2000.

F. Bancilhon, C. Delobel, and P. Kanellakis,
editors. Building an Object-Oriented Database
System - The Story of O2. Morgan Kaufmann
Publishers, 1992.

J. Banerjee, H. Chou, H. Kim, and H. Korth.
Semantics and implementation of schema
evolution in object-oriented databases, 1987.

B. Blanchet. Escape Analysis for Object-Oriented
Languages. Application to Java. In Proceedings of
the 14th ACM Conference on Object-Oriented
Programming, Systems, Languages, and
Applications (OOPSLA), 1999.

J. Bogda and U. Holzle. Removing Unnecessary
Synchronization in Java. In Proceedings of the
14th ACM Conference on Object-Oriented
Programming, Systems, Languages, and
Applications (OOPSLA), 1999.

C. Boyapati. JPS: A Distributed Persistent Java
System. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, September 1998.

R. Bretl, D. Maier, A. Otis, D. J. Penney,

B. Schuchardt, J. Stein, E. H. Williams, and

M. Williams. The GemStone Data Management
System. In Object-Oriented Concepts, Databases,
and Applications, pages 283-308. ACM Press and
Addison-Wesley, 1989.

M. J. Carey, D.J. Dewitt, C. Kant, and J. F.
Naughton. A Status Report on the OO7
OODBMS Benchmarking Effort. In Proceedings of
the 9th ACM Conference on Object-Oriented
Programming, Systems, Languages and
Applications (OOPSLA), 1994.

M. Castro, A. Adya, B. Liskov, and A. C. Myers.
HAC: Hybrid Adaptive Caching for Distributed
Storage Systems. In Proceedings of the 16th ACM

Symposium on Operating System Principles
(SOSP), 1997.

J.-D. Choi, M. Gupta, M. J. Serrano, V. C.
Sreedhar, and S. P. Midkiff. Escape Analysis for
Java. In Proceedings of the 14th ACM Conference
on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages
1-19, 1999.

12

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

22]

23]

D. G. Clarke, J. M. Potter, and J. Noble.
Ownership Types for Flexible Alias Protection. In
Proceedings of the 13th ACM Conference on
Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1998.

C. Delcourt and R. Zicari. The design of an
integrity consistency checker (ICC) for an
object-oriented database system. In Proceedings of
the European Conference on Object-Oriented
Programming (ECOOP), 1991.

M. Dmitriev. Safe Class and Data Evolution in
Large and Long-Lived Java Applications.
Technical Report TR-2001-98, Sun Microsystems,
2001. http://research.sun.com/techrep/2001/-
smli_tr-2001-98.pdf.

F. Ferrandina and G. Ferran. Schema and
database evolution in the O2 Object Database
System. In Proceedings of the 21st International
Conference on Very Large Data Bases (VLDB),
1995.

F. Ferrandina, T. Meyer, and R. Zicari.
Correctness of Lazy Database Updates for Object
Database Systems. In Proceedings of the 6th
International Workshop on Persistent Object
Systems, 1994.

F. Ferrandina, T. Meyer, and R. Zicari.
Measuring the Performance of Immediate and
Deferred Updates in Object Database Systems. In
Proceedings of the OOPSLA Workshop on Object
Database Behavior, Benchmarks and
Performance, 1995.

B. S. Lerner and A. N. Habermann. Beyond
Schema Evolution to Database Reorganization. In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and
Applications (OOPSLA), 1990.

B. Liskov, M. Castro, L. Shrira, and A. Adya.
Providing Persistent Objects in Distributed

Systems. In Proceedings of the 13th FEuropean
Conference for Object-Oriented Programming

(ECOOP), 1999.

B. Liskov and J. Guttag. Program Development in
Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley, 2001.

Object Design Inc. ObjectStore Advanced C++
API User Guide Release 5.1, 1997.

http://support.odi.com/i/documentation/doc/-
objectstore/r51/ostore/doc/refcoll/index1.htm.

Objectivity Inc. Objectivity Technical Overview,
Version 6.0, 2001.
http://www.objectivity.com/DevCentral /-
Products/TechDocs/pdfs/techOverview6.pdf.

D.J. Penny and J. Stein. Class Modification in the
GemStone Object-Oriented DBMS. In Proceedings



(24]

(25]

[26]

27]

(28]

of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and
Applications (OOPSLA), 1987.

A. Salcianu and M. Rinard. Pointer and Escape
Analysis for Multithreaded Programs. In
Proceedings of the 8th ACM Symposium on
Principles and Practice of Parallel Programming
(PPOPP), 2001.

Versant Object Technology, Menlo Park, CA.
Versant User Manual, 1992.
http://www.versant.com/products/vds/.

J. Whaley and M. Rinard. Compositional pointer
and escape analysis for Java programs. In
Proceedings of the 14th ACM Conference on
Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1999.

Y. Zhang. Lazy Schema Evolution in
Object-Oriented Databases. Master’s thesis,
Massachusetts Institute of Technology,
Cambridge, September 2001.

R. Zicari. A framework for schema updates in an
object-oriented database system. In Proceedings of
the 7th International Conference on Data
Engineering (ICDE), 1991.

13



