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Abstract. In this paper we define and study a generalized version of facility location problem in
which facility cost functions depend on the number of clients assigned to the facility. There is an
associated cost function for each facility that depends on the number of clients assigned to it. We
focus on the case of concave facility cost functions, and present greedy 1.94 and 1.52 approximation
algorithms for this case. We will also consider various generalizations and variants of the problem and
give an O(log n) approximation algorithm for the non-metric generalized facility location problem.

1 Introduction

The facility location problem is a central problem in operation research. In this problem, we have a set of
clients and a set of facilities, and we want to connect each client to a facility in a way that minimizes the
total cost. There are two types of costs associated with a solution: the connection costs and the facility
costs. The connection cost between each client j and facility ¢ is a number c;; that is given. We will have
to pay this amount if we want to connect client j to facility i. Each facility ¢ also has a facility cost f;, that
is the amount we have to pay if we decide to connect at least one client to it. The cost of a solution is the
summation of the connection costs and the facility costs associated with the solution. We will generally
assume that the connection costs obey the metric inequality.

The facility location problem is well-studied in the field of approximation algorithms, and a number of
different approximation algorithms have been proposed for this problem using a variety of techniques [11,
14,6,7,10,8,1-5,8,9,13].

A natural generalization of the facility location problem is to allow the facility cost of a facility to be an
arbitrary concave function of the number of cities connected to it. This question was first asked by Tom
Leighton and was motivated by its applications in placing servers on the Internet. The reason it is assumed
that the facility cost function is concave is the following principle of economics: As the number of clients
increases, the cost per client will decrease, since they share some common expenses.

The main result of this paper is a 1.94 approximation algorithm for the concave facility location problem.
Our algorithm is a natural generalization of an algorithm by Jain et al. [7]. The analysis uses the techniques
of dual-fitting and factor-revealing LPs introduced in [6]. We will also consider more general versions of
the problem by relaxing the conditions of concavity for facility costs and metricity for connection costs.

This paper is organized as follows. In section 2, we give a formal definition of the problem, and observe
that it can be reduced to the capacitated facility location problem with hard capacities. In section 3, we
present a greedy 1.94 approximation algorithm for the concave facility location problem. In section 4, we
prove the approximation factor 1.94 for our greedy algorithm. In sections 5 and 6, we study generalizations
and variants of the problem such as allowing the facility cost function to be slightly non-concave, facility
location with convex cost functions, and relaxing the metric inequality for the connection costs.

2 The problem

The generalized facility location problem is define as follows. We are given a set F of facilities (a.k.a servers);
aset D of clients (a.k.a. cities or demands); a facility cost function f; : N — N for every facility ¢ € F, which
specifies the cost of the facility as a function of the number of clients served by it; and finally connection
costs c;; between facility ¢ and client j. We generally assume that the connection costs are metric (i.e., is



symmetric and satisfies the triangle inequality), unless otherwise stated. The objective of the problem is
to find an assignment ¢ of all clients to facilities (i.e., ¥ : D — F) with minimum total cost. The total
cost is the sum of connection costs (3 ;cp cy(j),;) and facility costs (3, 7 fi([{j € D 9(j) = i}]))-

The focus of this paper is on the concave facility location problem, i.e., the generalized facility location
problem with a guarantee that all facility cost functions are concave. Recall that a function f: N — N is
called concave if and only if for each z > 1, f(x + 1) — f(z) < f(z) — f(x — 1).

We observe that the concave facility location problem can be reduced to the capacitated facility location
with hard capacities. In the capacitated facility location problem, each facility ¢ also has a capacity w;,
which is the maximum number of clients that can be served by this facility. The problem has two variants;
in the first one, the capacities are hard in that facility ¢ can be opened at most once to serve at most u;
demands; in the second variant the capacities are soft; that is, facility ¢ may be opened k times to serve up
to ku; demands at a cost of kf;. It is easy to observe that both of these problems are special cases of the
generalized facility location problem. The capacitated facility location problem with soft capacities can be
reduced to the uncapacitated facility location problem [11], and the best known approximation algorithm
for this problem [11] is obtained via this reduction. However, hard capacities are known to be problematic
for techniques that rely on linear programs (such as LP-rounding and primal-dual algorithms). The main
problem is that natural linear program has a large integrality gap for the case of hard capacities. Recently,
Pal et al. [12] used local search techniques to give the first constant factor approximation algorithm for
this problem, achieving a factor of 9 + €. However, the running time of this algorithm is prohibitive for
applications with large data sets.

Proposition 1. Assume there is a polynomial time a-approzimation algorithm for the capacitated facility
location problem with hard capacities. Then the concave facility location problem can be approximated within
a factor of o in polynomial time.

Proof. For each facility ¢ € F, we place n copies of this facility, where the j’th copy has opening cost
fi(4) and capacity j. We use the a-approximation algorithm for the capacitated facility location problem
to solve this instance. Since the facility cost function is concave, we can assume without loss of generality
that at most one of these n copies is opened in this solution. Therefore, the solution to the capacitated
facility location instance can be easily transformed to a solution for the concave facility locatino problem
with the same total cost.

The above proposition together with the algorithm of Pal et al. [12] gives a 9 4 e-approximation algorithm
for the concave facility location problem. In the next section, we will show a greedy algorithm for this
problem achieving a factor of 1.94.

3 The Greedy Algorithm

In this section, we present the main result of this paper that is a greedy 1.94-approximation algorithm
for the concave facility location problem. The approximation factor of this algorithm is much better than
the algorithm mentioned in the proof of Theorem 1. In addition, since the previous algorithm uses the
approximation algorithm of the capacitated facility location problem with hard capacities, and the current
algorithm for this problem uses the local search method, its running time is very high, especially because
we reduce an instance of concave facility location with O(n) facilities to an instance of capacitated facility
location with O(n?) facilities. Our method is an extension of the method used by Jain et al. [7] and
Mahdian et al. [10]. First, we define stars.

Definition 1. A star consists of one facility and several clients. For star S, consisting of clients a1, az,...,ax
and facility p, cost of S, denoted by ¢(S) or cg, is defined as Ele Cp,a; + [p(k) i.e., the sum of the con-
nection costs of clients to the facility p plus the facility cost function of p for k clients.

Suppose an algorithm finds a solution of cost 8 to the concave facility location problem, and also it finds
values a; for every client j € C as the contribution of client j in the total cost. In addition, assume



E]. CQ = 0 and there is a constant v > 1 such that for every star S, Ej esnC @i < ycs. We now consider
an optimal solution OPT to the problem. Let i be a facility that is opened in OPT. For set D of clients that
are connected to facility ¢ in OPT, we can write >~ p a; < ¥(fi + X ;cp ¢ij) or 30;ep @j < ves where S
is the star consisting of 4 and D. By summing up the inequalities for every star that is picked in OPT, we
obtain 6 = Ejec @; <72 5eOPT ¢s = 7 - cost(OPT). Therefore if we can find such an algorithm with a
constant v, v is the approximation factor of the algorithm.

It is worth mentioning that this approach can also be considered using LP-duality. The problem can be
formalized by an integer linear program based on stars, and the a;’s are the variables of the dual program
in which we relax inequalities by a constant factor . The reader is referred to Jain et al. [7] to see this
method called the dual-fitting method in more details.

In the next section using the approach discussed above, we show that simple greedy Algorithm A pre-
sented below is a 1.94 approximation algorithm for the concave facility location problem. In this algorithm,
we use a notion of time (lines 1 and 6), such that every event can be associated with the time at which it
happened. Also each client j has a budget from which it can offer some money to facilities; if j is uncon-
nected and its budget is more than the cost of the connection to a facility i, it offers the extra budget to
i (line 9); and if j is connected to a facility 4', it offers to a facility ¢ the amount by which it can save by
switching its facility from ¢’ to ¢ (line 10). We note that at any time, the budget of each connected client
is equal to its current connection cost plus its total contribution toward open facilities.

Algorithm A: greedy algorithm for concave facility location
Input: Metric connection costs c;; for each facility ¢ and client j.
Concave facility cost functions f; : N — N for each facility 3.
Output: For each client j, a facility p(j) to which j is assigned.
For each client j, contribution of client j to the total cost ().
begin
1 lett=0
2 for each facility ¢ let level, =0
3  for each client j
4 let p(j) =null
5 let budget(j) =0
6  while there is an unconnected client increase time ¢
7 for each unconnected client j let budget(j) =t
8 for each client j
9 if p(j) =null let offer(j, ) = max(budget(j) — ci;,0)
1
1

0 else let offer(j,¢) = max(c,(j); — ¢ij,0)
1 while there is a facility i and k — level; clients a1, - -, . _level, (k > level;)
which contains at least one unconnected client and E;:}evel" offer(aj, 1) = fi(k) — fi(level;)

12 let level; =k
13 for each 1 < j < k —level; let p(a;) =1
14 for each client j
15 let a(j) = budget(j), the time that j first gets connected
end

The proof of the following lemma is clear from the algorithm and the discussion above.
Lemma 1. The total cost of the solution found by Algorithm A is equal to the sum of a;’s.

The above algorithm is similar to the greedy algorithm of Jain et al. [7]. The difference is that here we
define the concept of level for facilities that is the number of clients assigned to it and the events in which
we assign clients to facilities depend on the level of vertices.

4 The approximation factor

In this section, we show that Algorithm A is indeed a 1.94-approximation algorithm for the concave
facility location problem. We prove this by showing that for each star S, the ratio of the sum of a;’s of all



clients contained in S to the total cost of S is at most v & 1.94. Analogous to the work of Jain et al. 7],
our approach is as follows. First, based on the behavior of the algorithm we obtain some linear constraints
called factor revealing-LP on «;’s and the cost of S. Next, we show that for any feasible solution of the LP
(not necessarily for the one obtained from the algorithm) our objective ratio is at most v ~ 1.94. Here,
an LP-solver helps us to guess such a ratio, and then using complicated calculations we prove this upper
bound.

To derive the factor-revealing LP, first we need some definitions and notations. Consider a star S consisting
of a facility p and k clients numbered 1 through k. Let d; denote the connection cost between facility p
and client j, and o; denote the share of j of the total expenses (see the definition of « in the algorithm).
The cost of the star is f,(k) + Zle d;. For simplicity, we set f = f,(k). Without loss of generality, we
assume a1 < ag < --- < ag. Let the critical time for a client ¢ be the time just before i gets connected for
the first time, i.e., when ¢t = a; — € where € is very small. At the critical time for client 4, each of the clients
1,2,...,0—1 m1ght be connected to a facility. For every j < 4, if client j is connected to some facility at
time t let r;; denote the connection cost between this facility and client j; otherwise, let r;; := a; (in
this case a; = ;).

First we note that since the budget of a client remains constant when it gets connected to a facility, and it
may not get connected to another facility with a higher connection cost, rj j41 > 7j 42 > -+ > k- Now
we obtain more constraints.

Lemma 2. At the critical time for a client i, for every subset S; C {1,...,i — 1} and every subset
SQ g {l:ak} (SQ 75(0):
> max(r;; — d;,0)+ Y max(e; —d;,0) < f(|S1] + |Sel)- (1)
JES1 JESa

i—1

In particular, }°; ) max(rj; —d;,0) + Z; ;max(a; —dj,0) < fo(k) = f.

Proof. The amount client j offers to facility f at time ¢ = a; —eis max(r;;—d;,0) if j < ¢, and max(¢—d;, 0)
if j > 4. By the definition of r;; this holds even if j < ¢ and a; = a;. From the algorithm, the total offer
of clients in Sy U Sy to facility p may not become larger than the cost of facility p at level |Si| + |Sa|,
since otherwise all these clients were assigned to the facility p. Thus, for all ¢, ) jes max(r;; —d;,0) +
> jes, max(a; —d;,0) < f,(|S1] + [S2]). In particular by setting S = {1,...,i — 1} and Sz = {i,..., k},

iy max(ry,; — dj, 0) + Yj_; max(a; — d;,0) < f. )

So far, we have not used the triangle inequality of connection costs and concavity of facility cost functions.
We use these assumptions in the next lemma.

Lemma 3. At the critical time for a client i, for all clients j such that 1 < j < i,
a; < aj +71j; +di +dj. (2)

Proof. Let p' be the facility that j is connected to at time ¢ = «; — €. By the triangle inequality and
the definition of r;;, the connection cost c,; between client i and facility p’ is at most ¢, ; + d; + d;. It
is not hard to see that by the definition of r;;, we have c¢p; < r;;. Thus these two inequalities imply
cpi <1y +di +dj.

Furthermore, if the level of p’ is equal to ! when client j gets connected to it, ¢; can not be less than
t+ fpr(14+1) — fr (1), since otherwise the client 7 should be connected to the facility p’ at a time earlier than
t, which is a contradiction. This shows that: a; —e =t < ¢y + fr ({ + 1) — fpr (1). From the last inequality
and this one, o; < 7;; +d; +dj + fpr (I +1) — fr (1). From the fact that f, is a concave function, it turns

out that for all ¢ < I, fp(I+1)— f(l) < %{J;’”(Q). Now consider the time «; at which j gets connected
to facility p’. Let ¢ be the level of p' before time «; and at this time | — ¢ new clients, by, bs,...,b_4 are
assigned to facility p’. At time a; the total amount of these | — g clients’ offer to p' is equal to fir (1) — f (q).
The amount of b;’s offer to facility p' is equal to either a; — ¢y, OF €, p — b,y depends on the situation



of client b; at time o; (whether it was assigned to a facility p” or not). In either case, b;’s offer is less than
or equal to a; — ¢p;p, thus

—q
fo (@) Zoffer ; l_qajiwfaj

Combining all these inequalities together, we get the following inequality. For every 1 < j < i < k,
aigrj,i+di+dj+aj. 0O

The following optimization program, called the factor-revealing LP, can be obtained from the above in-
equalities. We note that by scaling f + Zz 1 di =1 and introducing new variables and new constraints for
function max we can obtain a linear program.

k
maximize Zi;tal (3)
f+Z'i=1d
subject to V1<i<k: a; < a1
Vi<j<i<k: Tj,izrj,i—l—l
Vi<ji<i<k: ;<aj+rj;+d;+d;
VI<i<kS C{1,...,i—1},8 C{i,...,k}: > max(r;; —d;,0)
JES1
+ Y max(a; —d;,0) < f,(|S1] +S2])
JjES2
V1SJSZSI€ Oéj;dj;f,Tj,iZO

The size of the above program is large (exponential) because of the forth set of inequalities and it is hard
to find out the solution of the problem for large k’s. In order to solve this problem, we observed that using
Lemma 2, we can relax the forth set of inequalities and still get the approximation factor 1.94.

L @
f+Yi,d

subject to V1<i<k: a; < a1

Vi<ji<i<k:rj;>rjim

Vi<j<i<k: ;<aj+rj;+di+d;

maximize

i-1 k
Vi<i<k: Zmax(rjﬂ- —d;,0) +Zmax(ai —-d;,0)< f
= —
VlSJSsz ajadjafarj,izo

After this relaxation, the number of inequalities in the optimization program is polynomial.

Theorem 1. Let v be sup,{zi}, where z, is the solution of the factor-revealing LP. Then Algorithm A
gives a y-approrimation algorithm for the concave facility location problem.

Proof. Since the values a;, dj, f and rj; obtained from Algorithm A satisfy all inequalities in the LP,
the values of the objective function for them is at most z;. It implies for each star S consisting of one
facility and k clients iy, - -, g, 2521 a;; is at most zixcs. The proof of the lemma follows from this fact
and Lemma 1. O

In the next step, we use an LP-solver like CPLEX to obtain the optimum solution of the factor revealing
LP for fixed k. The results are shown in Table 1.



k maX;<k Zi
10 |1.83517
20 |1.88389
50 [1.91573
100{1.92652
200|1.93193

Table 1. Solutions of the factor-revealing LP

Using these experimental results one can observe that v & 1.94; however all of them are just lower bounds
for the LP. To obtain the desired approximation ratio, we need to prove an upper bound 1.94 on the
maximum solution of the LP. The proof needs so much calculations, and thus it is presented in Appendix
A. Tt is worth mentioning Mahdian et al. [7,11] also use these kinds of tedious calculations for the facility
location problem; however since our LP is different from theirs, the calculations are different. Finally we
have the following theorem:

Theorem 2. Algorithm A is a 1.9/-approzimation algorithm with running time O(n*) for the concave
facility location problem, where n = max(ng,nc).

The following improvement for the concave facility location problem has been suggested by one of the
referees of SODA 2003. It is worth mentioning, still we use Algorithm A for more general connection
costs in Section 6.

Theorem 3. There exists a 1.52-approximation algorithm for the concave facility location problem.

Proof. The main idea is that in our problem any concave function f(z) can be represented by ming{(f(k)—
flE=1)z+kf(k—1)—(k=1)f(k)}, 1 < k < n. Now, we take each facility ¢ with concave cost function f;,
and replace it by multiple facilities i1, 2, - - - , 45, such that facility 5 has opening cost k f;(k—1)—(k—1) f;(k).
In addition, each unit of demand routed to this location costs f;(k) — f;(k — 1) extra at the facility. This
cost fi(k) — fi(k — 1) can be added to the distance metric. For this facility location problem, Mahdian et
al. [11] have a 1.52 approximation.

5 Generalizations

In this section, we consider more general variants of the problem such as the problem with relaxed metric
inequality.

5.1 Other facility cost functions

So far, we have shown approximation algorithms for the concave facility location problem. In this section,
we consider the generalized facility location problem with more general facility cost functions. First, we
give a polynomial time algorithm for the generalized facility location problem with convex facility cost
functions. Recall that a function f is called convez if for every x > 1, f(z + 1) — f(z) > f(z) — f(z — 1).

Theorem 4. The generalized facility location problem with convex facility cost functions can be solved in
polynomial time.

Proof. First we reduce the problem to the capacitated facility location problem with unit hard capacities.
Next, we show how this problem can be solved in polynomial time. For each facility ¢ € F, we place n
copies of unit-capacity facilities where f}, the opening cost of the jth facility of the ones corresponding
to facility i € F, is fi(j + 1) — fi(4), 0 < j < n — 1. The correctness of the reduction follows from the

fact that if we use a facility fij , we should use all facilities f¥, k < j, since function f; is convex. We now



solve the problem by minimum weighted matching on bipartite graphs. We construct a bipartite graph
G = (X UY, E) as follows. For each client j, we place a vertex in the set X, for each facility i, we place a
vertex in the set Y, and finally we place an edge {j,i} in E between a client j and a facility ¢ with weight
¢ij + fi. We can easily observe by solving minimum weighted matching [15] for G, one can find an optimum
assignment for the original problem. O

The problem of finding a constant factor approximation algorithm for general facility cost functions is
open. Here, we observe that Algorithm A can be used to find constant factor approximation algorithms
for cost functions that are close to concave functions.

Definition 2. A function f : N — N is a c-close concave function if there exists a concave function g
such that Vx € N : @ < f(z) < g(x). The function f : N — N is c-concave if and only if for all l and q
such that ¢ <1, we have f(I+1) — f(I) < c%{'}f@.

In the case of c¢-close concave functions, we have the following simple theorem.

Theorem 5. There is a constant factor approzimation algorithm of factor 1.94c for the generalized facility
location problem with cost functions that are c-close to concave functions.

Proof. Consider a function g; such that £ < f; < g;. We use Algorithm A to solve the problem for facility
cost functions g;’s. We know that the cost of this solution is at most 1.94 times the optimal solution for
facility cost functions g;’s. Using the inequality £ < f; < g;, the optimal solution for g;’s is at most c
times the optimal solution for f;’s. Thus, the approximation factor is 1.94c.

For c-concave functions, one can observe that by a similar proof of Lemma 3, we can prove that if f;’s
are c-concave, then for all 1 < j < i <k, o5 < caj + rj; + d; + dj. Therefore, using Algorithm A
for functions f;’s, the approximation factor of the algorithm is the optimal solution of the same factor
revealing LP except the third set of inequalities which are replaced by a; < caj + rj; + d; + d;. Table 2
shows a summary of the results obtained by solving the factor-revealing LP using CPLEX for k& = 100.
From the experimental results, it turns out that zj; depends on ¢ by an asymptotically linear function and
the approximation factor is again a constant.

C maxisk 23 A maxisk 23
0.2{1.6579 0.2]1.3348
0.5(1.75595 0.5/1.6102
1 (1.92652 2 |2.4456
2 12.29422 10 |4.4621
10 {5.98046 50 {5.0569

Table 2. Approximation factor for c-concave functions and A-parameterized metric(k = 100)

5.2 More general connection costs

Tt is easy to see that the facility location problem (and therefore the generalized faciltiy location problem)
is NP-hard to approximate within a factor less than O(Inn) if the connection costs are not metric. Also,
it is not difficult to see that the classical set cover algorithm can approximate the non-metric concave
facility location problem within a factor of O(lnn). However, one can observe that Algorithm A works
very well when the metric inequality is somewhat relaxed. In this case, instead of the triangle inequality
(AC < AB+BC) a parameterized triangle inequality (AC' < A(AB+ B()) is satisfied. It is straightforward
to restate the proof of Lemma 3 and prove that for all 1 < j < i < k, a; < A(rji +d; +d;) + .
Therefore, we have the same factor-revealing LP except the third set of inequalities which are replaced by
a; < Xrj; +d; +d;) + o;. Using CPLEX, we obtained the optimum solution of this factor-revealing LP for
k = 100. Table 2 shows the empirical results for different values of A. These results show that Algorithm
A works well when the metric inequality is somewhat relaxed.



6 General connection costs

Tt is easy to see that the facility location problem (and therefore the generalized faciltiy location problem)
is NP-hard to approximate within a factor less than O(Inn) if the connection costs are not metric. Also, it
is not difficult to see that the classical set cover algorithm can approximate the non-metric concave facility
location problem within a factor of O(lnn). However, this reduction does not work for the non-metric
generalized facility location problem. For this case, we can prove that Algorithm A has an approximation
factor of Inn, where n is the number of clients.

Theorem 6. Algorithm A achieves an approximation factor of Inn for the generalized facility location
problem when the connection cost is non-metric.

Proof. Recall the definitions of a;, d;, and f in Section 4. By Lemma 2, we have Ef:i(ai —d;) < f (Notice
that the concavity assumption was not used in the proof of Lemma, 2). Thus,

k k
1 1
D . — AR — ).
o S U ) S U )

It follows that .

k k 1 k
;a" < ;m(“;dﬂ = Hy(f +)_d;) < (lnn)cs.

=1

The above theorem implies that the capacitated facility location problem can be approximated by a factor
of Inn. To the best of our knowledge, this is the first approximation algorithm for the (hard) capacitated
facility location problem when the connection cost is non-metric. Also, it is not difficult to observe that
if instead of the metric inequality, connection costs satisfy a relaxed version of the metric inequality, then
by proving a relaxed version of the inequality in Lemma 3 and solving the corresponding factor-revealing
LP, one can obtain the approximation factor of the algorithm.

Acknowledgments. We would like to thank Tom Leighton, Rajmohan Rajaraman and Ravi Sundaram
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A  Proof of Theorem 3

In order to prove this upper bound, first we prove the following lemma which allows us to prove the theorem
on the case of sufficiently large k. The proof of the following lemma, is the same as the proof of Lemma, 14
in [7] and hence omitted.

Lemma 4. If zp denotes the solution to the factor-revealing LP, then for every k, z < zof.-

Now, in order to prove the approximation factor, the objective is to combine the inequalities of the Program
4 to derive an inequality of the form 33 . a; < 4(f + 32, d;). Such a ~ will be an upper bound on the
solution of the Program 4.

We start by relaxing the forth inequality of the Program 4 to the following inequality

l; 1—1
D (ei —dj) + > max(rj; — d;,0) < f, (5)
=i =1

where as in [6] we define [; as follows

ek ifi <pik
l’_{k it 0> pik (6)

Here p; and p, are constants with 0 < p; < ps < 1 which will be fixed later in the proof.
Inequality 5 implies

I; i—1
1 :
aiﬁm f‘f‘;dj_jzzlmax(ﬁ,i—djao) - (7

We multiply both sides of the above inequality by a constant #; that will be fixed later, and add the
resulting inequalities. This will imply the following inequality.

k k 0, / L i1 \
Oia; < . + ) dj— ax(rj,i— dj,0) (8)
Yoo gy S - St

Let ¢ and A; be defined as follows.

0;
=2 T (9)

=1



j 0 e
; = if j <pok
Aj = { =1 limitl ? (10)

P2 0; e
i=p1k+1 l;—i+1 lf] >p2k

Therefore, Inequality 8 can be written as follows.

Zﬁa,<g‘f+2)\d Zl_l+12maxr]7 d;,0) (11)

In the above inequality, some 6;’s are greater than 1 and others are less than or equal to 1. The next step
is to use the inequality a; < a; + rj; + d; + d; to make the coefficient of all a;’s on the left-hand side of
the inequality equal to 1. We assume 6;’s are chosen in a way that

Also, we assume there is a constant ps such that
Vi< psk, 6; >1 and Vi > psk, 60; <1 (13)

We will make sure that 6;’s satisfy the above constraints when we fix their values later in the proof. Now
consider the inequality o; < aj + rj; +d; + d; for ¢ > psk and j < p3k. Multiply both sides of this

inequality by a constant w; ; > 0, and add up all these inequalities with Inequality 11.
If we choose w;;’s in such a way that

Y wig=6;-1 Vj<pk and > wij=1-0;  Vi>psk (14)
i>psk Jj<psk

we will get the following inequality:

k i—1
Za,<§f+2)\ +|1—0|d+z war], Zzl_z+1max(r], —d;,0) (15)
i>psk j<psk i=1 j=1

Now, we define ps < p; so that we only use triangle inequalities o; < rj;+a;+d;+d; for i > pok and psk <
j < psk or for psk < i < pak and j < psk. From this definition of p4, first we need that

p2k pak
dooa-6)<>6;,-1) (16)
Jj=psk+1 j=1

and also we choose w;;’s such that 0 < ps < p; and
wij 0= (i > pok and psk < j < psk) or (psk < i < pok and j < pak) (17)

Now, using the fact that j; > rj;1+1, we can write Inequality 15 as follows:

k k k p3k p2k
Zai—Cf SZ()\iHl—eiDdi"‘ Z Z Wi,j Tt Z Z Wi, T3, z Z I; _Z+1max(7‘], —d;,0)
i=1 i=1 i=p2k+1 j=pak+1 i=p3k+1 j<psk j=1li=j+1
k psk k pak p2k p3k
< Z()\i+|1_9i|)di+' Z Tj,pzk(' Z wi,j)‘*‘zrj,psk(' Z Wi,;j) Z Z l,—z—i—lmax(r“ d;,0)
=1 j=pak+1 i=pak+1 Jj=1 i=psk+1 j=1i=j+1

Using Equations 14 and 17, it turns out that )
for psk < j < p3k. Thus,

w;; =6;—1for j <pskandy wi; =0;—1

i>pak p3k<i<p2k

10



k p3k pak

> a Cf<2 i =6di+ Y k(6 +Zm3k

i=1 j=pak+1
pak psk
- Z Z max(r;; — d;,0 Z Z max(r;; — d;,0)
Li—i+1 + 1 l;—1 + Li—i+1
Jj=1li=j+1 Jj=pak+1i=j+1

Notice that for ¢ > pok, 15, < rjp.r and for ¢ > psk , 7j; < 1) pek- After substitution of these values in the
above inequality, we get the following:

k p3k pak
S ai- f<2 i H1=0:di+ D k(05— 1)+ D ripk(6; — 1)
i=1 j=pak+1 Jj=1
pak p3k p3k p2k
5 3 DELENONNEFARED DD D SN
j=11i=j+1 j=pak+1i=j+1
p3k k psk p2k
<Z +26—1))d,~+.z (/\Z-+1—0,»)d,~+'z 7. pok (0 1—Zl_l+1)
i=psk+1 Jj=pak+1 i=j7+1
pak p3k
+Z7‘j,psk(9j - L—itl —z+1
j=1 i=j+1
Now, if 6;’s satisfy
k e
zpi i+1 77 —z+1 20— 1 if j <pak (18)
i= J+1l71+1 >0; — 1 if pik < j < psk
This implies
p3k k
Za,<gf+ZA +200; —1))di+ D> (Ni+1-6:)d; (19)
i=p3k+1

Now, if we set the coefficients of d;’s in the right-hand side of the above inequality to 7, we will get the
following recurrence for 6;:

)\i+2(6i—1):’y 1fz§p3k

Ni+1—-60;=~v ifi>psk (20)

Notice that A;’s can be written as a function of 6;’s (i < j) from Equation 10, thus the above equations
are recurrence relations for 6;.

Solving this recurrence, we get

W2 - i< pk

9, = { Opuky /1 — £22% if pik < i < psk on
(3 - 29p3k)kkfjk if psk < i < pak
0 if pk<i<k

If we can set the constants pi, pa, p3, ps in such a way that 6;’s satisfy the Conditions 12, 13, 16, and 18
then Inequality 19 shows that the solution of the factor-revealing LP is at most max((, ).

It’s not hard to see that 6;’s are decreasing from 0 to psk and increasing from psk + 1 to pak, thus in order
to satisfy Conditions 13, it is sufficient to have:

Hpsk 2 1 and szk S 1 (22)

11



In order to write Conditions 12 and 16, we compute the sum of 8;’s for different intervals separately.

p3k p3k

ij:(7+2)p3k—220j and

Psk p3k j p3k psk p3k

(psk —i +1)8;
Z’\ _Z;l,—z+1 ZZl —2+1 ; Li—i+1
p3k P1k p3k
_ — p2)kb; (ps — 1)kb;
29’+Z I D Dl s
i=p1k+1
p3k
=D _0i + (s = P2)kApu + (3 = Db (Apk = Apu)
i=1
p3k k
=D _0i=3((y+2)ps + (02 = DApix + (1= p5) Apyr)
i=1
and also
pak (1—p3)k—1 1
Y. 6i=3B-20,)(1-p)k Y =
i=p3k+1 i=(1—p2)k
1—
= (3= 2056)(1 = po)k(ln T—2> + 0(1))
o

From these two equations, we can write equation 12 as follows:

1—ps3
— P2

2 1-—
1_’Y+ P2y P2y

3 b3 — 3 prk — T p3k — (3 - 2011316)(1 _p3) In <0

In order to write 16 we need the following:

pak pak

Z)\j = (’y+2)p4k—229j and
= =

pak pak j pak pak
Z’\ _;;l,—wl_zzl —z+1

i(pw—wle ”fa,+"§(p4—p2)kei
N L—i+l T it

pak

= ZGi = g((’y +2)ps + (P2 — Pa) Apsk)

Therefore, Condition 16 can be written as

1- +2 p2—D
(pz—ps)—<3—29p3k)(1—p3)1n1_§j+o<1)s”3 Pi + g Nk — pa

For j < pyk, Condition 18 can be written in terms of p;’s and ~y as follows:

psk J

- -1 -Ai>0-1=>
Zl—l+1 zzllz_z_}_l :>)‘p3k j =Y

12



0; > 20, —1  Vj<psk

In the last inequality, we substituted A; in terms of 8;’s using Equation 20. Thus, it is sufficient to have:

Opke > 205, — 1

Furthermore, for psk < j < p3k

p2k J

0;
izzlli—i+1_

0,- + szk > 2 Vpsk < j < psk.

l'—ii—}-l >0, —1=2Xp—X; 260, -1=>

i=1 "

Again, in the last step we used the Equation 20. Thus, it is sufficient to have:
epsk + 0?2/6 >2

The last observation here is that

b;

k
Opok 1= (=3 7 = Ak =7 = 1+ 0k <
i=1 "

(25)

(26)

Thus, from Inequality 22, we get { < <y and it is sufficient to minimize v instead of max(¢,~y). Now, we need
to find ps < p1 < p3 < po such that Inequalities 22, 23, 24, 25 and 26 are all satisfied and v is minimum.
Notice that all these recent inequalities are in terms of p;’s and « (because 6;’s have been written in terms
of them as well as A;’s). Now we can observe that by setting p; = 0.327, po = 0.737, p3 = 0.539, and

ps = 0.327, all inequalities are satisfied and v < 1.939 < 1.94 as desired.
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