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Abstract

Efficient web browsing on mobile computers presents a
unique challenge. These machines are different from other
classes of client computers since they have relatively low-
bandwidth connections and they are battery-powered and
therefore limited by their energy consumption. However,
they tend to interact with the same servers for the delivery
of web content. This project investigates optimizing the
final critical link between a mobile client and a stationary
base station by compressing HTTP request and response
messages. Using a split proxy design, compression of in-
dividual request messages reduces bandwidth by 26% to
34% across a variety of benchmark traces, and applying
compression to response messages yields savings of 59%
to 82% of the compressible data. Higher compression rates
are achieved by using streaming compression algorithms to
compress the streams of request and response messages. In
this case, the bandwidth for requests sees an order of mag-
nitude improvement, and the response stream obtains addi-
tional savings of 7% to 25% on top of the savings achieved
with per-response compression.

1 Introduction

There is a widening gap between two classes of client
computers. At one end are stationary desktop machines
with persistent high-bandwidth connections and relatively
unconstrained energy usage. At the other end are battery-
powered mobile devices that have low-bandwidth connec-
tions, and have functionality limited by energy constraints.
Figure 1 illustrates this situation. These two client classes
clearly have different requirements; however, they tend to
interact with the same servers for access to internet content.
The servers are for the most part unaware of the needs of
the clients they interact with; this unified view is arguably
a good thing in terms of limiting system complexity. Addi-
tionally, the networks which connect these machines to-

gether look the same in terms of bandwidth and energy
constraints up until the last hop from a base station to a mo-
bile client. This project seeks to optimize the performance
of this final low-bandwidth energy-constrainedconnection.

For a mobile client, communication is very expensive.
In terms of delay, the communication bottleneck makes
computation essentially free in comparison. Additionally,
the energy cost of sending or receiving a single bit is sev-
eral orders of magnitude greater than the cost of execut-
ing an instruction. For example, [11] models an aggres-
sive radio design as dissipating 50 nJ/bit for sending or
receiving data, plus an additional 100 pJ/bit/m2 for trans-
mitting a signal over a distance. In comparison, current
low-power processor designs can operate in the range of
0.27 nJ/cycle to 1.125 nJ/cycle (derived from [5]). The gap
between communication and computation will continue to
grow as processors on mobile devices become faster and
more energy-efficient at the levels of software, architec-
ture, and hardware technology. This imbalance opens up
an opportunity, or perhaps necessity, for data compression.

Much internet content is in fact compressed, for exam-
ple, gif and jpeg images, streaming audio and video, and
vector graphics. However, a large portion of internet con-
tent is text-based, and this data is usually not compressed.
Interestingly, most current web browsers do support com-
pressed text formats, but most content providers do not
take advantage of this feature. This may be due to any one
of a myriad of reasons, but from the point of view of this
project, content servers are uncooperative and do not pro-
vide compressed data in general. However, even though
servers don’t provide compressed content, a base station
can compress data before it is sent over the final critical
hop to a mobile device. An advantage here is that coop-
eration is only required between the base station and the
mobile device, which in general can be tightly coupled.

This project focuses on using compression to minimize
the bandwidth on the communication link between a mo-
bile client and a stationary base station. To implement
this, a split proxy design is described in which proxies on
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the client machine and base station cooperate to compress
the data communicated between them. In order to obtain
higher compression rates, streaming compression is imple-
mented. In this case, compression is applied to the stream
of data communicated across the client to base link, rather
than to individual messages alone.

2 Basic Web Browsing

The Hypertext Transfer Protocol (HTTP) defines the in-
terface which enables web browsing. This study is based
on version 1.0 of this protocol [3]. The HTTP protocol
allows for simple transactions between clients and servers
using a request/response message pair. HTTP transactions
are conducted over Transmission Control Protocol (TCP)
connections; a connection is established for each transac-
tion, and closed once the transaction completes. The Hy-
pertext Markup Language (HTML) is the most common
format for web pages. HTML pages may contain embed-
ded links to other objects such as images. A web browser
fetches a web page by establishing an HTTP connection
with the appropriate server, and requesting the desired
HTML page. It then parses the HTML content, and fetches
any embedded images using additional HTTP transactions.
These fetches are typically done in parallel. This structure
is diagramed in Figure 2.

A web browser can be configured to use a web proxy,
as shown in Figure 3. All of the browser’s transactions
go through the proxy which can provide services such as
caching and access control. The interface provided to the
browser is mostly transparent; except, for example, it must
communicate to the proxy the name of the server that an
HTTP request should go to.

3 Split Proxy with Compression

In order to dynamically compress HTTP content, I im-
plemented a split web proxy as shown in Figure 4. In this
split proxy design, the client proxy acts as a tunnel between
the browser and the base proxy. For every new TCP con-
nection that the browser initiates, the client proxy estab-
lishes a corresponding TCP connection with the base. The
base proxy does the necessary HTTP processing to imple-
ment the standard web proxy interface. This design places
no limitations on the existence of parallel HTTP connec-
tions. The goal of the split proxy is to compress the data
on the link between the client proxy and the base proxy.

mobile
client station

base

power grid

internet

Figure 1: The constraints of a mobile client. Communication
is over a low-bandwidth wireless link, and energy is supplied by
batteries.
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Figure 2:Basic client/server web browsing.
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Figure 3:Web browsing using a proxy.
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3.1 HTTP Request Compression

HTTP requests are text messages, and therefore com-
pressible to some degree; I choose to compress all in-
coming requests. One way to implement this compression
would be for the client proxy to get the entire request from
the browser, compress it, and then send it along to the base
proxy. A disadvantage with this scheme is that it requires
the client proxy to parse the HTTP in order to determine
when an entire request has been received. Instead, the
approach taken is to compress and transmit the incoming
parcels of data as they arrive. This could be done by com-
pressing each parcel of data individually, but in this case
extra header information would have to be communicated
to the base proxy so that it could separate the incoming
data correctly before uncompressing each parcel. There-
fore, a streaming compression algorithm is used; instead
of compressing a block of data all at once, such an algo-
rithm continuously accepts a stream of bytes as input and
produced a compressed stream as output.

The base proxy uncompresses the request stream as it is
received from the client. It does the necessary HTTP pars-
ing, and forwards the request on to the appropriate server
once it is complete. If the server never responds, the con-
nection will time out, and all associated state in the base
and client will be freed.

3.2 HTTP Response Compression

Some web data is already compressed, images for ex-
ample, so compression should not be applied to all HTTP
responses. In order to determine whether a response should
be compressed, the base proxy examines the HTTP header.
If the Content-Type field is text of any sort and the
Content-Encoding field is not present, the response
is chosen for compression. In addition, compression is ap-
plied to any response for which the length of the HTTP
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Figure 4:Split proxy compression scheme.

header is more than that of the content (as determined by
the Content-Length header if present). This is be-
cause compression is applied to the header as well as the
data, so applying compression to responses that contain a
small amount of encoded data may be useful.

Once the base proxy has processed the HTTP header
and determined whether or not to compress the response, it
could begin streaming the data to the client in the same
manner as with the requests. However, the current im-
plementation actually receives the entire response before
processing it and forwarding it to the client. This design
artifact has a negative impact on the delay of getting the
response to the browser, and should be corrected in a more
optimized implementation.

In order to determine whether or not the data it re-
ceives is compressed, the client proxy checks if the ini-
tial characters in the response are “HTTP”; this string be-
gins every HTTP response, and therefore indicates uncom-
pressed data if present. At this point, the client proxy be-
gins streaming the data to the browser, uncompressing the
stream as the data arrives if necessary. The various connec-
tions are destroyed when the browser or server disconnect,
or a timeout occurs.

4 Split Proxy with Streaming Compression

Higher compression rates can be possible if the com-
pression is applied to a larger collection of data. To achieve
better compression rates, I considered compressing the
HTTP requests and responses as a continuous stream rather
than as individual objects. The difficulty in doing this is
that it is contrary to the browser’s abstraction that each
HTTP transaction is orchestrated using its own connection.

The setup for streaming compression is shown in Figure
5; it is somewhat similar to the virtual sockets described in
[12]. When the browser initiates a new connection with
the client proxy, the client proxy makes a corresponding
connection with the base proxy as before. In addition, it
sends a connection id number to the base proxy over this
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Figure 5:Split proxy with streaming compression scheme.
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connection in order to maintain a namespace for the con-
nections shared by the two proxies (this transaction is not
shown in Figure 5). In a more optimized implementation,
this could probably be done at the TCP level since the two
machines must already have a shared namespace for these
connections in order to communicate.

The client and base proxies maintain a persistent con-
nection over which to send the stream compressed data. In
order for the other side to be able to interpret the stream of
data, a header message is sent before each parcel of com-
pressed data. This header consists of the compressed size
and uncompressed size of the data parcel, and the connec-
tion id number which it is associated with. Many connec-
tions with the browser and outside web servers may be op-
erating in parallel, but all data sent over the stream com-
pression channel must be serialized. To efficiently support
this, when a connection is ready to send a data parcel over
this channel, it is stream compressed and the resulting data
and header information is placed on a queue; this queue is
processed whenever the connection can accept more data.
On the receiving side, the header information is peeled off,
and then the stated amount of data is uncompressed as it
arrives. This data parcel is then passed off to the state as-
sociated with the connection specified in the header.

As the client proxy receives blocks of HTTP request
data from the browser, it enqueues these on the stream
compression queue. It is possible that blocks of data from
various requests will be interleaved in this queue. The base
proxy uncompresses this data as it comes in, and passes it
off to the state associated with the given connection. The
HTTP request is then parsed, and forwarded to the appro-
priate server as before.

When a response arrives at the base proxy, it determines
whether or not it should be compressed as described in Sec-
tion 3.2. If the data will not be compressed, it is sent to the
client proxy over the associated connection, and everything
proceeds as before. If the response is to be compressed,
it is added to the stream compression queue. When the
client eventually receives and uncompresses the response,
it is passed to the state associated with the connection, and
then forwarded on to the browser.

An inefficiency in this design is that in many cases a
TCP connection is created between the client proxy and
base proxy, but never used because both the HTTP request
and response use the stream compression connection. A
more optimized design could only establish this connection
for the cases in which a response is not stream compressed.
Or, these connections could be eliminated all together, and
all data could be multiplexed over a single connection be-
tween the base and client; this is more similar to the ap-
proach taken in [12].

5 Implementation

The split proxy compression schemes were imple-
mented using object oriented C++ code. The compres-
sion was performed using zlib version 1.1.3 [10], which
uses an adaptive compression strategy based on LZ77 and
Huffman coding, and supports a streaming interface; level
9 compression (the highest) was used. The design made
use of the C++ asynchronous programming library and the
HTTP 1.0 parser provided by the MIT 6.894 lab [1]. The
static buffers used for receiving data were 4 kB.

The implementation was tested using both Netscape
Communicator version 4.74 and Microsoft Internet Ex-
plorer version 5.00.2013.1312. The client and server prox-
ies were run on Sun Ultra 5 workstations on different ma-
chines within a LAN. Multiple simultaneous HTTP re-
quests from different browser instances were verified to
work correctly, as well as connections prematurely termi-
nated by either the browser or the server. There are no
know bugs.

6 Results and Analysis

6.1 Test Traces

Six traces were constructed to test the performance of
the compression schemes, as shown in Table 1. The first
trace was made by following a series of links and queries
to investigate two professors at MIT. The second trace ex-
plores the CNN website by retrieving the headline page
for a sequence of news sections. The third trace visits the
same pages as the second, except images were disabled in
the web browser. The fourth trace uses the CNET site to
retrieve stock quotes and news headlines for the first ten
stocks in the Dow Jones Industrial Average. The fifth trace
visits the ten most popular websites as determined by re-
cent statistics. Finally, the sixth trace sequentially fetches
the nine pages in the online gzip documentation.

Netscape Communicator version 4.74 was used as the
browser for collecting data for all the traces. The client
and base proxies ran on the same machine, and the browser
was configured to use the client proxy. Netscape’s cache
was cleared before running each test, but caching was en-
abled during the tests. For each test, the number of HTTP
message bytes communicated across the link between the
client and base proxy was counted. It should be noted that
the actual number of bytes which are communicated be-
tween the base and client will depend on the details of the
underlying TCP implementation.

The results are shown in Figure 6.1. The graphs show
the number of bytes transmitted in the base case, and using
the two compression schemes. For responses, the totals are
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Trace 1
www.mit.edu
web.mit.edu/research.html
www.lcs.mit.edu
www.lcs.mit.edu/people
www.lcs.mit.edu/search/peopleresults?name=kaashoek
www.lcs.mit.edu/research/groups/group?name=pdos
www.pdos.lcs.mit.edu/
www.pdos.lcs.mit.edu/people.html
www.pdos.lcs.mit.edu/ kaashoek/
www.pdos.lcs.mit.edu/ rtm/
www.pdos.lcs.mit.edu/click/
www.nms.lcs.mit.edu/projects/ron/
www.pdos.lcs.mit.edu/grid/
www.pdos.lcs.mit.edu/ rtm/Projects.html

Trace 2, 3 (no images)
www.cnn.com
www.cnn.com/WORLD/
www.cnn.com/US/
www.cnn.com/WEATHER/
www.cnn.com/TECH/
www.cnn.com/HEALTH/
www.cnn.com/SHOWBIZ/
www.cnn.com/ALLPOLITICS/
www.cnn.com/LAW/
www.cnn.com/FOOD/
www.cnn.com/books/

Trace 4
www.cnetinvestor.com/quote-fast.asp?symbol=AA
www.cnetinvestor.com/quote-fast.asp?symbol=AXP
www.cnetinvestor.com/quote-fast.asp?symbol=T
www.cnetinvestor.com/quote-fast.asp?symbol=BA
www.cnetinvestor.com/quote-fast.asp?symbol=CAT
www.cnetinvestor.com/quote-fast.asp?symbol=C
www.cnetinvestor.com/quote-fast.asp?symbol=KO
www.cnetinvestor.com/quote-fast.asp?symbol=DD
www.cnetinvestor.com/quote-fast.asp?symbol=EK
www.cnetinvestor.com/quote-fast.asp?symbol=XOM

Trace 5
www.yahoo.com
www.microsoft.com
www.lycos.com
www.aol.com
www.altavista.com
www.egroups.com
www.cnn.com
www.excite.com
www.google.com
www.cnet.com

Trace 6
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip1.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip2.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip3.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip4.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip5.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip6.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip7.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip8.html
www.gnu.org/manual/gzip-1.2.4/htmlchapter/gzip9.html

Table 1:Test traces.

Requests Responses
Trace comp stream-comp comp stream-comp
1 30 89 62 71
2 28 90 75 79
3 26 87 78 79
4 33 90 80 82
5 27 87 74 78
6 34 86 59 69

Table 2:Total savings for HTTP request and response messages
using per-message compression (comp) and streaming compres-
sion (stream-comp). Savings are given as the percentage of total
bytes eliminated using compression. For responses, the savings
correspond only to data which was determined to be compress-
ible.

divided between the responses which were determined to
be incompressible, and those for which compression was
applied. The overhead of sending the header information
and connection id information for streaming compression
is also shown. This same data is summarized in Table 2.

The most salient feature of these results is that they are
mostly the same for the different traces, aside from the
amount of incompressible data transmitted. Table 2 shows
that HTTP requests are compressed by 26% to 34% using
per-request compression, and 86% to 90% using streaming
compression. This extreme compression is possible be-
cause the browser resends a lot of the same information
with each request, for example the content types which
it supports. The compressible HTTP responses are com-
pressed by 59% to 80% using per-response compression,
and 69% to 82% using streaming compression. Comparing
streaming compression with the per-response compression,
the additional savings obtained are 7% to 25%.

6.2 Extended Use

In another test, I used the stream compression proxy to
do all of my web browsing over a period of about two
days, and convinced three of my colleagues to use it as
well. We all configured our browsers to use a single client
proxy. The statistics for HTTP responses collected during
this time are shown in Figure 7. Almost 3000 HTTP re-
sponses were sent, comprising a total of about 14 MB of
data. 43% of the data was determined to be compressible,
and the streaming compression reduced the size of this data
by 80%; overall, this reduced the number of bytes sent by
35%. 1.3 MB of HTTP request bytes were sent during this
test. Streaming compression was not used for requests in
the version of the proxies which were used; the savings
achieved with per-request compression were 30%.
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7 Delay and Energy Considerations

Ultimately the goal of compressing the data commu-
nicated between the mobile client and the base station is
to improve the delays associated with web browsing, and
to improve the energy efficiency of the client. However,
these metrics are very dependent on the details of the net-
work connections and machine configurations, and were
not studied in detail in this project.

For delay, the computation time for compression can
most likely be considered free compared to a relatively low
bandwidth wireless connection, as shown in studies such
as [7, 14, 17]. Thus, the most important consideration is
that the proxy system doesn’t break the streaming nature
of the HTTP connections, or inhibit connections from op-
erating in parallel. The use of streaming compression al-
gorithms enable the HTTP messages to flow through the
proxies with minimal delay impact; and, multiplexing the
data from many connections over a single TCP link allows
many connections to operate in parallel even with stream-
ing compression.

The main consideration for energy efficiency is the
amount of extra work the mobile client must do, compared
to the reduction in the number of bits which it must send
and receive. In the system presented, this extra work is
minimized by only applying compression to data which is
not already compressed. Additionally, uncompressing data
is usually much less compute intensive than compression,
so the compression of HTTP responses can be highly opti-

mized. The client can use less compute intensive compres-
sion algorithms for the compression of HTTP requests, for
example [15].

8 Related Work

Related work in HTTP compression includes [14]
which focuses on delta-encoding; the goal is to update a
cached copy of a page by only sending information about
the portions of the page which have changed. This work
ultimately advocates a combination of delta-encoding and
data compression to minimize the amount of data transmit-
ted and the response time. WebExpress [12] uses a split
proxy design to minimize the overhead of creating a new
TCP connection for each HTTP transaction. It also focuses
on reducing the excess traffic due to the repetition of header
fields in each HTTP request; to do this, WebExpress takes
a more direct approach and establishes a protocol in which
the proxies cooperate to avoid transmitting these headers.
WebSwift [2] compresses HTTP responses in an ISP or
web server when communicating with browsers that sup-
port compressed data formats.

The more recent HTTP 1.1 protocol [7, 8] provides for
persistent connections between a client and server to mini-
mize some of the overheads associated with fetching mul-
tiple objects by establishing separate connections for each
transaction. It would be interesting to evaluate the benefits
of streaming compression when used with this protocol.

At a lower level, several studies have investigated spe-
cific techniques for compressing header information [13,
6]. This compression can be complimentary to the com-
pression of HTTP messages, particularly in the case of
TCP headers. Compression has also been performed at
the lowest level in data compressing modems [16]. This
compression is generally not as effective as software based
compression schemes [7, 14], and can perform poorly
when sending compressed data formats. Nevertheless, a
more extensive comparison would be interesting, particu-
larly relating to energy efficiency.

Several studies have been performed in which the
browser itself is actually split across the client machine and
base station [4, 9, 18]. The potential for optimization in
this case is much greater since the base station can per-
form content-specific lossy compression such as scaling
and dithering of images before sending them to the mo-
bile client. The base station side of the browser can also
handle the fetching of embedded images, eliminating the
delay and data transmission overhead associated with re-
quiring the browser on a mobile client to do this. This
feature could actually be implemented in the split proxy
architecture even without modifying the browser by hav-
ing the base proxy parse HTML files and fetch embedded

7



images; then the client proxy could avoid forwarding re-
quests from the browser for any images that have already
been requested by the base proxy.

9 Summary

This project has focused on reducing the bandwidth be-
tween a mobile client computer and a base station. Mo-
bile computers are becoming increasingly powerful, yet
they are constrained by their energy consumption and com-
munication bandwidth. A split proxy design has been
described which works transparently with existing web
browsers. Compression of HTTP request and response
messages between the two proxies yields a substantial re-
duction in link bandwidth. An improved system has also
been described in which a persistent connection is main-
tained between the split proxies, and stream compression is
applied to the sequence of request and response messages.
This results in additional bandwidth savings, especially for
request messages.
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