Efficient Consistency Proofs
on a Committed Database

Rafail Ostrovsky Charles Rackoff ~ Adam Smith
February 27, 2003

Abstract

A consistent querprotocol allows a database owner to publish a very short strimigich
commitsher to a particular databage with special consistency property (i.e., giverevery
allowable query has unique and well-defined answer with respebt)taMoreover, when a
user makes a query, any server hosting the database can answer the query, and provide a very
short proof that the answer is well-defined, unique, and consistent sWiind hence with
D). One potential application of consistent query protocols is for guaranteeing the consistency
of many replicated copies d—the owner can publish, and users can verify the consistency
of a query to some copy dD by making surer is consistent withe. This strong guarantee
holds even for owners who try to cheat, while creating

The task of consistent query protocols was originally proposethambershigueries by
Micali and Rabin[18], and subsequently and independently, by Kilian [16]. In this setting a
server can prove to a client whether or not a given key is present or not in a database, based
only on a short public commitment

We strengthen their results in several ways. For membership queries, we improve the
communication complexity; more importantly, we provide protocols for more general types of
gueries and more general relational databases. For example, we consider databases in which
entries have several keys and where we allangequeries (e.g. we allow a client to ask for
all entries within a certain age rangada certain salary range).

Towards this goal, we introduce query algorithms with certain inherent robustness properties—
calleddata-robust algorithms-and show how this robustness can be achieved. In particular,
we illustrate our general technique by constructing an efficient data-robust algorithm for prov-
ing consistency of orthogonal range queries (a particular case of a “join"query). The server’s
proof convinces the client not only that all the matching entries provided afg iout also
thatno others are presenOur guarantees hold even if the answer is the empty set. In the case
of one-dimensional range queries we also show a new data-hiding techniqgue—esalliett
hashing—which allows us to a execute consistent query protacahd at the same time pro-
tect the privacy of all other information in the databa$iciently In particular, we avoid the
N P reductions required in a generic zero-knowledge proof.

*Telcordia Technologies, Morristown, NJ, USA.
tUniversity of Toronto, Toronto, Ontario, Canada
IMIT LCS, 200 Technology Square, NE43-446, Cambridge, MA 01239, USA.

1 Introduction

MERKLE TREES Merkle [19] proposed the following protocol for committing to a listo¥alues

ay, ...,ayn: Pick a collision-resistant hash-functidit, pair up inputsa,, as), (a3, as), - .. , (an,, an)

and applyH to each pair. Now, pair up the resulting hash values and repeat this process, construct-
ing a binary tree of hash values, until you get to a single root of lehgtt the root of the tree

is published, the entire collection of values is now committed (though not necessarily hidden).
To reveal any particular valug, one can reveal a path from the rootdptogether with all the
siblings along the path. Very often, one must actually reveal a subset of the committed values
a;. The advantage of Merkle trees is that as long as the number of leaves revealed is small, the
totalcommunication complexitf revealing is proportional to the number of leaves revealed times
klog N, which in many settings is considerably smaller tdanindeed, this idea is used through-

out modern cryptography, including efficient signature schemes [19, 8], efficient zero-knowledge
arguments [15], computationally-sound proofs [17], and many other applications.

CONSISTENT QUERY PROTOCOLS One significant application of Merkle trees (with additional
machinery to enforce consistency) is to proving “consistency of queries’ to a committed database.
(The topic of commitment protocols (especially efficient ones, has received a lot of attention in the
literature, and we build upon that previous work [20, 22, 23, 15, 21, 8, 17, 18, 27, 14, 16, 6, 10, 7]).
Especially relevant to our work is the notion of “consistent query commitment” protocol, originally
proposed by Micali and Rabin [18], and, subsequently, by Kilian [L6hfembershigueries on a
single (key, value) pairs database: suppose there is a server who hosts a very large database which
is a collection of(key, value) pairs. The server produces a small commitment to that database
which is then made pubfc Any time a client asks the databassmambership queri.e. “do you

have an entry with key?”), the server returns the answer to the query along with a short proof of
consistency with the public commitment. For each key, there should be a unique answer for which
the server can provide a proof. An answer could either be “Yes, and the corresponding ydlue is

or “No, there is no entry with key”. We call a scheme for this taskansistent query protocol

for membership queries. Both [18] and [16] give efficient solutions assuming only the existence
of a collision-free hash function. Not surprisingly, the main constructions of [18, 16] are based on
Merkle trees.

MAIN PROBLEM CONSIDERED In this paper, we consider consistent query protocols for
databases in which entries have several incomparable keys (for example, “age”, “salary”, “rank”,
etc). The class of queries we consider are joins (i.e. intersections) of range queries on several
coordinates. For example, we allow a client to ask whether there is an entry in the database within

a certain age range and a certain salary range. The main result of the paper is a novel and efficient
commitment scheme that allows such efficient join queries (often caftedgonal range querigs

The scheme guarantees that the server always answers consistently with a single database. He can
prove both that all the hits he provides are in the databas®l that no others are presentWe

also provide a general framework for constructing consistent query protocols based on query algo-

rithms which are robust against corrupted data. (We remark that our technique is very general and

IRecall that a hash function familif, (-) is calledcollision-resistanif no poly-time algorithm can find a pair of
inputs that map to the same output, fosufficiently large (see Section 2).

2This might be done by having the commitment signed by a certification authority, by publishing the commitment
along with the server’s public key, or by notarizing and time-stamping the commitment.

is applicaible to more general relational databases as well.)

AN APPLICATION. One interesting use of consistent query protocols is in replication of databases.

A database owner may publish the short commitment using some reliable but expensive means. A
server hosting a copy of the database could then prove the correctness of an answer to a query. Note
that the scheme protects even against a malicious database owner—these protocols, in particular,
prevent database owners from providing different users with different answers to the same query.

PRIVACY. A natural additional requirement is the server’s privacy: informally, a query protocol
is privateif the proof of consistency reveals nothing to the client about the database, beyond what
he learns from the answers to his query (and possibly an upper bound on the size of the database).
Protecting the contents of the database could be crucial in settings where its contents are sensitive,
or where clients are charged for access on a per-query basis.

Both the protocols of Micali-Rabin and Kilian [18, 16] can ensure privacy using standard zero-
knowledge techniques. They can be made even more efficient by tailoring the cryptography to the
specifics of membership queries.

EFFICIENCY CONSIDERATIONS In the setting of committed databases, there are essentially two
important measures of efficiency: On one hand, the total communication should be low: both the
commitment and the proof of consistency should be small compared to the size of the database.
On the other hand, the server’s and verifier's computations should be efficient: ideally, they should
be on roughly the same order as the communication of the protocol. There exists a general —
but very inefficient in terms of the server’s computation — way to construct consistent query
protocols: simply have the server commit to the whole database. When a client sends a query,
the server provides the answer along with a zero-knowledge argument of knowaage) that

the answer is consistent with the commitmentZiRAK (interactively) convinces the recipient of

a statement’s truth without revealing any other information. While this scheme has theoretically
very good communication complexity (i.eoly(log V) - poly(k), whereN is the database size and

k is the security parameter), these proofs require enormous (i.e. super-limgacomputations

on the part of the server, as it must construct a so-cgitefabilistically checkable prodfL, 2]

for the language of valid consistency proofs (in which the witnesses have size aY |gasjuiring
poly(N)-time computations). To achieve practical schemes, we consider more efficient solutions,
tailored for this problem.

1.1 Our contributions

CONSISTENT QUERY PROTOCOLS We show a novel consistent query protocol scheme that
allows efficient orthogonal range queries to a database with one, two or more keys associated to
each database entry. The size of the commitment and the communication complexity of any join
qguery is much smaller than the size of the database, and for any such query the database can
answer (with a correct proof) in only one way. In particular, the server cannot omit any hits from
the answers without being detected. The challenging part is to be able to prowe tiwatts other
than those in the answer actually appear in the database. gneralizing the work of [18, 16] we show
how to do this efficiently (in particular, without having to decommit the entire database or resort
to PCP proofs on the entire database).

Our consistency proofs have siggk(m + 1)log® N), where N is the database sizé, is

the security parameter, and is the number of keys in the database satisfying the query. The
computation required of the server is low: in preprocessing, the server mustakag” N)
evaluations of a collision-resistant hash function. For each query, the server's computation is on
the same order as the communication with the cli€i(m + 1) log® N + ¢), where(is the size

of the answer to the query. For the caseasfgequeries on a single key, our construction reduces
essentially to that of [18, 16]. It produces query answers ofGiddm + 1 + log N)). However,

in general ford-dimensional queries, we obtain consistency proof of 6ige(m + 1) log? N +).

A GENERAL PARADIGM FOR CONSISTENT QUERY PROTOCOLSIn order to construct our proto-

col, we introduce the notion afata-robust algorithm¢DRA). These are search algorithms which

are robust against corruptions of the data byaliciousadversary: for any static data structure—
even adversarially corrupted—the algorithm will answer all queries consistently with one (valid)
database. Although this is trivial for data structures which incorporate no redundancy, it becomes
more challenging for more complex structures, since in general we do not want the algorithm to
have to scan the entire data structure each time it is run—ideally, we want sublinear running time.
Note thatthe error model here is adversariahlthough much work in the algorithms and math-
ematics communities has focused on protecting data against randomly placed errors (or settings
where the total number of errors introduced is bounded), the task of protecting against arbitrary
malicious inputs is much more cryptographic in flavor.

The notion of a DRA has a significant application: assuming collision-resistant hash functions,
any such algorithm can be transformed into a consistent query protocol whose (non-interactive)
consistency proofs have complexity at most proportional to the complexity of the algorithm times
the security parameter.

The consistent query protocol we give for range queries is obtained by first constructing a DRA
based on range trees, a classic data structure due to Bentley [3]. Existing algorithms do not suffice,
as inconsistencies in the data structure can lead to inconsistent query answers. Instead, we show
how local consistency checks can be used to ensure that overall, queries are answered consistently
with a single database. For two dimensional queries, the query time on correctly formed inputs is
O((m + 1) log® N), wherem is the number of hits for the query and is the number of keys in
the database.

ACHIEVING PRIVACY EFFICIENTLY. Consistent query protocols will, in general, leak information
about the database beyond the the answer to the query. As mentioned above, this problem can be
solved by using generic constructions of zero-knowledge proofs, but one can get even greater
efficiency by tailoring the protocol to the probem at hand. Given a consistent query protocol,
one can transform it to be private by replacing the proof of consistengith a zero-knowledge
proof of knowledge ofr. This adds interaction, but reduces the communication cost. For the
protocols we consider, the cost is as low g, poly(loglog N)) (sinceN is polynomial ink, this
is esentiallyO(k)). For very large databases and values of the security parameter, this yields very
low communication complexity (see the end of Section 4 for details).

Although the asymptotics of this last scheme are good, the use of generic NP reductions
and probabilistically checkable proofs means that the advantages only appear for extremely large
datasets. We also construct tailored protocols for Merkle trees, which are simpler and more direct.

ExPLICIT-HASH MERKLE TREES The Merkle tree commitment scheme sketched above may
actually leak information about the committed values, since a collision-resistant function cannot

hide all information about its input. At first glance, this seems easy to resolve: one can either
replace the values; at the leaves of the tree with hiding commitme@ts:;), or one can build the
hiding property into the hash function itself by randomizing the hash (see, for example, the elegant
commitment scheme of Halevi-Micali [14]).

However, there is often some additional structure to the valyes, ay. For example, they
might be stored in sorted orderRevealing the path to a particular value would then reveal the
rank of a given value in the data set. The problem gets even more complex when we want to reveal
a subset of the values, as we have to hide not only whether paths go left or right at each branching
in the tree, but whether or not different paths overlap.

One nave solution to this problem is to provide a hiding commitment to the description of
each node on the path, and then use a generic zero-knowledge proof (as above) that the committed
string is consistent with the public hash value (the root of the hash tree). The main bottleneck of
that approach is that it requires proving in zero-knowledge ghat H(x), given commitments
C(z) andC(y). Itis not known how to do that without going through either general NP reductions
or oblivious circuit evaluation protocols, both of which are extremely inefficient, especially when
applied to a circuit as complex as a hash function. Indeed, at a first glance, this seems to be a
fundamental problem with privacy of Merkle-tree commitments: revealing the hash values reveals
structural information about the tree, and not revealing them and instead proving consistency using
generic ZK techniques kills efficiency.

Thus, the main challenge is to provide zero-knowledge proofs that@ set a; is a subset
of the committed values, while leaving the hash function evaluations explicit, i.e. without going
through oblivious evaluation of such complicated circuits. In this paper, we show that this is not a
problem, and show a modification of Merkle trees where one reveals all hash-function input-output
pairs explicitly, yet retains privacy. We call our constructiorEaplicit-Hash Merkle Tree

Theorem 1.1. Assuming the existence of collision-free hash families and homomorphic perfectly-
hiding commitment schemexplicit-hash Merkle treeallow proving the consistency opaths (of
lengthd = log N) usingO(d-t*-k?) bits of communication, whefeis the security parameter. The
protocol can be made zero-knowledge with 5 rounds of interaction, witness-hiding with 3 rounds
of interaction, and completely non-interactive if one assumes the availability of a random oracle.

PRIVACY FOR RANGE QUERIES As an application of explicit hash Merkle trees, we show to
how to achieve privacy more efficiently for one-dimensional range queries (thus speeding up the
protocols of Micali and Rabin [18] and Kilian [16]).

Theorem 1.2. There exists an efficiemqrivate consistent query protocol for 1-D range queries.
For the t-th query to the server, we obtain proofs of si2t + m) - s - k% - log N), wheres is

the maximum length of the keys used for the data,anslthe total number of points returned on
range queries made so far. The protocol is provably hiding with 3 rounds of interaction, and can
also be made non-interactive in the random oracle model.

More generally, we can make our higher-dimensional protocols prpétate at the cost of
a polynomial blowup of the communication complexity, assuming the existence of trapdoor per-
mutations and the availability of public randomness. Thus we obtain proofs of levigtit (m +

3Jumping ahead, we will show one application where this property is crucial.

4

1) log N), which is still far smaller thatV, the size of the database. One can gain even greater effi-
ciency and security if we allomteractiveconsistency proofs. In that case, we can use the efficient
proofs of [15] to get a private protocol with communication complekityoly(log(km) + loglog N)),
which can be a substantial improvement in settings where the database is very large compared to
the security parameter.

2 Definitions

We see say that a functiof(k) is negligiblein a parametet: if for all integersc > 0, we have
f(k) € O(%). Given a algorithmA4, we writey — A(z) to denote assigning the (possibly
randomized) output ofl on inputx to variabley.

COLLISION-RESISTANT HASH FUNCTIONS In our construction as as in those of [18, 16], the
main cryptographic tool is collision-resistant hash functions (CRHF). This is a family of input-
shrinking functions such that given a randomly chosen fundtitmom the family, it is computa-
tionally infeasible to find a collision, i.e. two inputsy such thati(z) = h(y). Such functions

can be constructed assuming the hardness of the discrete logarithm or factoring. Formally, a family
of (efficiently computable) functionéh, ;. : {0,1}* — {0,1}*} is a CRHF if the functiong, ,

can be evaluated in time polynomial in and there is a probabilistic polynomial time (PPT) key
generato®: such that for all PPT algorithrfis4, we have thaPr[s «— X(1%); (x,y) « A(1*,s) :

hs(z) = hs k(y)] is negligible ink.

For our constructions (as for those of [18, 16]), we will assume the availability of a public
collision-resistant hash function. Formally, this means we assume that some trusted third party has
chosen a hash functidr, ;, at random from the family (for some publicly agreed parame}femnd
published the description of the hash function. In practice, one sometimes also uses a fixed hash
function, such as SHA or MD5.

2.1 Consistent query protocols

To formalize the notion of consistent query protocols, we first define a query structure: this is
a triple (D, Q, Q) whereD is a set ofvalid databasesg is a set of possible queries, antis

a rule which associates an answgl, = (g, D) with every query/database pajrc Q,D €

D. For example, in the case of simple membership queries, a valid datdbizsa set of pairs
{(key,, valuey), ... , (key,, value,)} where no key appears twice. The set of possible queries is just
the set of possible keys, and the rd)¢key, D) returnsvalue; if key = key, and a distinguished
value L otherwise.

In a basic consistent query protocol, there is a server who, given a database, produces a com-
mitment which is made public. Clients then send queries to the server, who provides the query
answer along with a proof of consistency of the commitment. One can gain extra power if there is
some public randomness which is provided by a trusted third party. While we formulate our defi-
nitions in the context of such a trusted third pavig stress that in some settings our constructions

“For simplicity we state our security definitions in the uniform model, but all the definitions can be stated equally
well with respect to non-uniform adversaries

do not require the public randomnesge include it in this formulation, because in settings where
such public randomness is available, one can achieve even stronger security properties.

Definition 1. A (non-interactive)query protocolconsists of three PPT algorithms: a server setup
algorithms;,, an answering algorithm for the sen&y, and a client. In some settings, there may
also be an efficient algorithi for sampling any required public randomness.

e The setup algorithn®, takes as input a valid databask a valuel” describing the security
parameter, as well the public informatien— X(1%). It produces a commitmemt(which
is made public), as well as some internal state informagiate SubsequentlyS, may be
invoked with a query; € Q and the setup informatiostateas input. The corresponding
output is an answer/proof pdis, 7), wherea = Q(q, D).

e The clientC receives as input the unary security parameftethe public stringr, the commit-
mente, a queryg and an answer/proof paje, 7). C outputs “accept” if it accepts the proof
7w and “reject” otherwise.

Definition 2. A query protocol isconsistentf it is complete and sound:

e Completeness:For every valid database € D and query; € Q, if o « X(1%) and(c, state) «
Ss(o, D) thenC will accept (a,) output byS,(q, state with overwhelming probability.
Moreover,a = Q(q, D) with probability 1. Formally, for aly € Q and for allD € D we
have:

Prlo « X(1%); (¢, stat® « S,(o, D); (a, 7) + S,(q, state :
C(o,c,q,a,m) = “accept] > 1 — negl(k)
Prlo « X(1%); (¢, stat® « S,(o, D); (a,7) « S.(g,state : a = Q(q, D)] =1

e (Computational) Soundness:For every PPT adversang, runS on inputsl® ando «— X(1%),
and allow it to output a commitmeimtalong with a (polynomially-long irk) list of triples
(¢i,a:,m;). We sayS acts consistentlyf there existsD € D such thata; = Q(g;, D) for
all i. The protocol issoundif all PPT adversariesS act consistently with overwhelming
probability whenever thé accepts all the proofs;. Formally, we require:

Prjo « %(1%); (c, (q1,a1,71), ., (q, at,m)); by — C(o,¢,qi,a;,m;) :
b; = 1 for all i andS acts consistently< negl (k)

Although the previous definitions are stated in termsoh-interactiveconsistency proofs,
they generalize naturally to interactive proofs.

50ne could imagine protecting agairask adversaries and thus obtaining perfect soundness. We consider compu-
tational soundness since much greater efficiency is then possible.

Remark 1 (Maintaining state). In general, a malicious server may maintain some state between
various invocations of the query protocol. We stress, however, that our constructionselgue

such state; the honest server is essentially stateless (remembering only its initial setup with the
variablestatg. Furthermore, as long as the consistency proofs are non-interactive, we can even
allow multiple concurrent invocations of the server while still maintaining security.

Remark 2 (Public information). As mentioned above, the trusted third party is only used in some
of our constructions. In particular, it is really necessary only when we want to use non-interactive
zero-knowledge proofs to achieve privacy (see below). In many of our settings, the only initial
shared information information we will require is a public CRHF. As we shall geg function

can be chosen by a representative of the clieitteaeedn’t be someone trusted by both parties.
Moreover, if a certain fixed function (e.g. SHA) is “collision-resistant enough” for a given appli-
cation, then we can dispense with initial shared information entirely.

Remark 3 (Hash functions are needed).In order to construct good consistent query protocols, a
CRHF is not just helpful—it is necessary. If the size of the commitment to the database is smaller
than the database itself, it is an easy exercise to prove that the computational soundness of the
protocol implies the existence of collision-free hash functions.

2.1.1 Keyed databases

In practice, databases are often simply setske§, value) pairs, where the clients are restricted

to asking for all pairs whose keys fall within some subset of the key-space. (In the example of
membership queries, the subsets are just the singldtays.) We call such databasé®syed
databases

2.1.2 Privacy

Another property which may be useful (e.g. in settings in which query answers are sold individ-
ually, or in which the database contains personal datajivecy. Namely, the answer to a query
should reveal little or no information about possible answers to other queries. Thus the server is
not giving any information away along with his proof of consistency. In this section we define two
levels of privacy: one which hides all information about the database, and the other, specific to
keyed databases, which hides only ttaduesstored in the database, and not the associated keys.
Our definitions of privacy follow those given by Kilian [16] in the context of membership queries.

TOTAL PRIVACY. Intuitively, a protocol is private if it reveals no information about queries other
than those already asked by a client.

A simple way to formulate this is: suppose we have two databRsebd-, and a set of queries
{q1, ... ,qn} such that)(q;, D1) = Q(q;, D2) foralli € {1,... ,m}. Then the distributions on
the tuple(c, S(¢1), ... ,S(gm)), given that either (a) the server was initialized with databiase
or (b) the server was initialized with databaBe, should becomputationally indistinguishable
(a more proper formalization of security allows the adversatgptiveaccess t& as an oracle).
Unfortunately, achieving such a strong notion of privacy is problematic, because it is difficult not
to reveal any information about tise&zeof the database. What is meant by size can vary depending

on the context: in general, it is simply the amount of space required to store the databasge Thus

require that the indistinguishability condition above hold only for databases of the same size.
Formally, consider an adversafyvho interacts with a server hosting either one of two databases

Dy, Dy € D. We sa)C is (D1, Ds)-limited if C only asks queriegsuch that)(q, D1) = Q(q, Ds).

We denote by’S:(state<0 ¢) the result of the interaction betweérand the server with setup

informationstate

Definition 3 (Computational privacy). We say that a consistent query proto¢dl S;, S, C) for
(D, Q,Q) is~ private if for every two databas€3,, D, € D of the same size, and for all PPT
adversarie§ which are(D,, D,)-limited, we have:

’ Pr [0« 2(1%); (¢, state — S(o, Dy) : ésﬂ(g"’State(a, c) = 1]
— Pr [0« X(1%); (c, state — S,(0, D») : éSa(”"’State(a,) =1] ’ < negl(k)

The foregoing definition is stated in terms edmputationalprivacy. By removing the re-
striction thatC be polynomial time, we obtain statistical security; by further requiring that the
probabilities of producing 1 o®; or D, be equal, we obtain a definition of perfect privacy.

Note that for keyed databases, a natural definition of “size” is the number of keys present in
the database. The protocols we present in Section 5 can be made private with respect to this latter
notion of size: for any two databases with the same number of keys, queries which return the same
answer give no information on which of the two databases is actually being hosted by the server.

VALUE PRIVACY. In the context of keyed databases, some applications may not require the
secrecy of the keys contained in the database, but only of the values associated to various keys.
Specifically, a consistent query protocoliue-privaté if the proofs associated to queries whose
answers don’t contain the kégy, reveal no information about the corresponding datae;. What

is meant by “no information” depends on whether we want computational, statistical or perfect
secrecy: the distributions on conversations corresponding to different valwekig@fshould be
perfectly (resp. statistically or computationally) indistinguishable, so long as thé&pwirvalue;)

never appears as answer to a query.

One can formalize this as in Definition 3 above by restrictihngand D, to be databases with
the same keys present, that is we allbwand D, to differ only in the stored values which are not
requested by the client.

As is pointed out in [18, 16], it is easy to se that value-privacy is easy to attain. If the values
in the database are replacedryn-interactive commitments those values, then any consistent
guery protocol easily becomes value-private: run the usual protocol, and when a key appears in
the answer to a query, simply accompany the query answer with the appropriate de-commitment
string. The resulting protocol is private because until he makes a query which resyynthe
client will only ever see the commitment talue;. The strength of privacy obtained depends
on the type of commitment used. However, statistical value-privacy is easy to obtain, and very
efficient: assuming the availability of a public collision-resistant hash function with output length
k, one can construct a statistically-hiding, non-interactive commitment scheme (Halevi and Micali,

®This is calledD[t] privacy in [16].

[14]) with commitment lengtit and decommitments of lengtht 7k, where/l is the length of the
message being revealed.

INTERACTIVE PROOFS One can extend the definition of consistency to a model where the proof
may be interactive, and this will be very useful when we want to achieve privacy without trusting
a third party to provide public random strings.

3 Data-robust algorithms and consistent query protocols

In this section, we describe a general framework for obtaining secure consistent query proto-
cols, based on designing efficient algorithms which are “data-robust”. That is for any static data
structure—even adversarially corrupted—the algorithm will answer all queries consistently with
one (valid) databage This task is most interesting for structures which replicate information in
order to allow more efficient queries.

Assuming the availability of a collision-resistant hash function, we show in Section 3.2 that any
such algorithm which accesses its input by “following” pointers can be transformed into a consis-
tent query protocol whose (non-interactive) consistency proofs have complexity at most propor-
tional to the complexity of the algorithm (in fact, the transformation works for arbitrary algorithms
at an additional multiplicative cost ddg N, whereN is the size of the database).

We observe that several of the protocols of [18, 16] can be viewed in this light. We further il-
lustrate the paradigm by constructing a consistent query protoctdviedimensional orthogonal
range queriesIn this model the keys in the database consist of several compongnts. (, z,).

The goal is to find all entries whose keys simultaneously satisfy a range constraint on each com-
ponent, i.e. queries are rectangles of the féamb,| x --- x [a,, b,]. We first modify a classic

data structure due to Bentley [3] to make it data-robust. We then use it to get a consistent query
protocol with commitment siz& and proof size) (k(m + 1) log? N).8

In the next section, we formally define consistent query protocols and data-robust algorithms.
We then describe a generic method for constructing consistent query protocols from DRAS. Fi-
nally, we describe the specific construction for range queries.

3.1 Data-robust algorithms

When considering consistency of queries, a natural problem is that of desgiaigobust al-
gorithms Consider the setting where a programmer records a database on disk in some kind of
static data structure which allows efficient queries. Such data structures are often augmented with
redundant information, for example to allow searching on two different fields. If the data structure
later becomes corrupted, then it could be that subsequent queries to the structure would be mutu-
ally inconsistent: for example, if entries are sorted on two fields, some entry might appear in one
of the two structures but not the other.

To formalize the notion of data-robust algorithms, we first define a query structure: this is a
triple (D, Q, Q) whereD is a set ofvalid databases is a set of possible queries, a@ds a rule

"Note that despite the algorithmic flavor of the question, the error model is indeed cryptographic (i.e. adversarial).
8Note that the most efficient normal algorithm for range queries has compt@kity. + 1) log? ' N) [13]. We
do not know how to make it data-robust, however, without increasing the complexity by a fatigrof

which associates an answegr, = Q(q, D) with every query/database paie Q, D € D. °

Suppose we have a query struct(fg Q,). A data-robust algorithm (DRA) for these con-
sists of two polynomial-tim¥ algorithms(7’, A): First, a setup transformatich : D — {0,1}"
which takes a databade and makes it into a static data structure (i.e. a bit strisigy 7'(D)
which is maintained in memory. Second, a query algoritinvhich takes a query € Q and an
arbitrary “structure”S € {0,1}* and returns an answer. Note that the strucfireedn’t be the
output of 7" for any valid databas®.

Definition 4. The algorithmg7’, A) form adata-robust algorithnfor (D, Q, Q) if:

e Termination A terminates in polynomial time aall input pairs(¢, S), even whenS is not an
output fromT'.

e SoundnessThere exists a functiofi™ : {0,1}" — D such that for all (adversarially chosen)
structuresS, the databas® = 7™(S) satisfiesA(q, S) = Q(q, D) for all queries;.

(Note that there is no need to give an algorithmfor we only need it to be well-defined.)

e CompletenessFor all D € D, we havel™*(T'(D)) = D.
(Thatis, on inpu andS = T'(D), the algorithmA returns the correct answéx(q, D).)

Note that we only allowA read access to the data structure (although the algorithm may use
separate space of it's own). Moreovdrjs statelessit shouldn’t have to remember any informa-
tion between invocations.

THE RUNNING TIME OF A. Note that there is a naive solution to the problem of designing a
DRA: A could simply scan the corrupted structufén its entirety, decide which databaskthis
corresponds to, and answer queries with respebx tdhe problem, of course, is that this requires

at least linear timen every queryrecall thatA is stateless). Hence the task of designing robust
algorithms is most interesting when there are natural algorithms which guerinearamounts

of memory; the goal is then to maintain that efficiency while also achieving robustness. Note thatin
this setting, efficiency means the running-time of the algorithon correctinputst. On incorrect
inputs, an adversarially-chosen structure could, in general, rAakaste time proportional to

the size of the structur§; the termination condition above restricts the adversary from doing
significantly worse (such as setting up an infinite loop, etc).

ERROR MODEL Although the design of DRAs seems to be an algorithmic question, the error
model—that ofadversariallyplaced errors—is a cryptographic one. Much work has been done
on constructing codes and data-structures which do well againgomlyplaced errors, or errors
which are limited in rate (witness the entire fields of error-correcting codes, fault-tolerant com-
putation and fault-tolerant data structures). However, in this setting, there are no such limitations
on how the adversary can corrupt the data structure. We only require that the algorithm answer
consistently for any given input structure.

9For example, in the case of simple membership queries, a valid database a set of pairs
{(keyq,valuey), ..., (key,, value,)} where no key appears twice. The set of possible queries is just the set of possible
keys, and the rul€)(key, D) returnsvalue; if key = key, and a distinguished value otherwise.

0We assume for simplicity that the algorithms are deterministic, though this is not strictly necessary.

we assume either a RAM or a pointer-based memory model here; sublinear time is not very powerful when access
to memory is sequential.

10

3.2 Constructing consistent query protocols from DRA's

Given a DRA which works in a pointer-based memory model, we can obtain a cryptographically
secure consistent query protocol of similar efficiency. Informally, a DRA is pointer-based if it
operates by following pointer in a directed acyclic graph. Most common search algorithms fit into
this model. Essentially, we obtain a consistent query protocol by creating a Merkle tree (or graph)
which mimics the structure of the DRA's data structure.

Proposition 3.1. Let (7, A) be a DRA for query structuréD, Q,) which fits into the pointer-
based framework described above. Suppose that on inpatsl 7'(D) (correctly formed), the
algorithm A examine$(q, D) memory blocks and a total 6fq, D) bits of memory, using(q, D)

time steps. Assuming the availability of a public collision-resistant hash function, there exists a
consistent query protocol fgD, Q, Q) which has proof lengtk(q, D) + kb(q, D) on queryg. The
server’'s computation on each queryi$s(q, D) + t(q, D) + kb(q, D)).

The details of this statement and its proof form the remainder of this section.

3.2.1 Pointer-based algorithms

Given a DRA which works in a pointer-based memory model (to be specified below), we show
how to transform it into a cryptographically secure consistent query protocol. In section Section 4,
we show how to extend this protocol to gain greater efficiency, as well as privacy.

Specifically, we say a pair of algorithnig', A) is pointer-basedf

1. Aexpects its input data structufe= 7'(D) to be arooteddirected graph of memory blocks.
That is, the output of the setup algorithifiis always the binary representation of a directed
graph. Each node in the graph has a list of outgoing edges as well as some associated data.

2. A accesses its input and uses node names in a limited way:

e A can get the contents of a noden the graph by issuing the instructigat(u). This
returns the associated daiteta,, as well as a list of outgoing edges,, v2.u, - - - , Un, u-

e A always starts out by getting the contents of the root of the graph by issuing the
instructiongetroot().

e The only operations! performs on node names are (a) getting the contents of a node,
and (b) comparing two node names for equality.

e The only node names whicA uses are those obtained from the outgoing edge lists
returned by calls tgetroot() andget(-).

For example,S could be a sequence of blocks separated by a distinguished chafacter,
b1# ... #b,. Each blockb; would consist of some data (an arbitrary string) and “pointers”, each
of which is the index (in the string) of the start of another blodk. The root of the graph could
simply be the first block by conventiof?

Finally, we need some simple robustness properties of this graph representation (which can be
satisfied by the example representation above). We assume:

121t should be stressed that many common search algorithms can be cast in this pointer-based framework. For
example, the algorithm for searching in a binary tree takes as input a tree, which it explores from the root by following

11

3. The binary representation of the graph is such that whenfed an improperly formed input
S (i.e. one which is not an output @), then the behaviour gfet(-) andgetroot is not “too
bad”:

e Whenget(u) or getroot() is called, if the corresponding part of the input string is not
well-formed (i.e. is not a tuple of the forfdata,, vy 4, V24, - - - , Un,), then the call
will return a distinguished value .

e Bothget(-) andgetroot() always terminate in time linear in the length of the corrupted

structures.

3.2.2 A general construction

Let (7', A) be a DRA for query structuréD, Q, Q) which fits into the pointer-based framework
described above. Moreover, suppose that a correctly formed structure (i.e. an oufjutevier
contains a pointer cycle (that is, the resulting graph is acy¢élic)

Proposition 3.2 (same as Proposition 3.1)Suppose that on inpugsand7'(D) (correctly formed),

the algorithm A examines(q, D) memory blocks and a total &fq, D) bits of memory, using

t(q, D) time steps. Assuming the availability of a public collision-resistant hash function, there ex-
ists a consistent query protocol f¢P, Q,) which has proof length(q, D) + kb(q, D) on query

q. The server's computation on each querpis(q, D) + t(q, D) + kb(q, D)).

Proof. The idea is to construct a “hash graph” which mimicks the data stru@tuf®, replacing pointers

with hash values from the CRHF. Léf be a publicly available, randomly chosen member of a CRHF
with security parametet. Depending on the setting, we can either assumefihet common knowledge

(in which case there is no need for public randomness), or ask explicitly that a trusted third party output a
description off (in which case the distributioR (1¥) is simply the key generator for the CRHF).

SETUP ALGORITHM. The server setup algorithi# is as follows: on inputD, runT to getS = T'(D).

View S as a directed graph, with memory blocks as nodes and pointers as edges. This graph can be topo-
logically sorted (by assumption: no pointer cycles). There is a single source, the query algorithm’s starting
memory block (i.e. the root of the grapgh) Now proceed from sinks to the source by adding a hash value
(calledh,) at each node: For a sink, simply attach the hash of its binary representation; this is basically

h, = H(data,). Whenu is an internal node, replace each of its pointers by the hash values of the

nodes they point to and then det to be the hash of the binary representation of the transformed block

hy = H(datay, hy; s .- 5 R). Atthe end, one obtains a hakh,,; for the source. The server publishes

) 9Unq,u

the commitment = h,.,:, and stores and the associated hash values as the internal vagtdike

QUERY ALGORITHM. Given a queryg and the setup informatiostate the serverS, runs the robust
algorithm A on the data structur§, and keeps track of all the memory blocks (i.e. nodes) which are

pointers to right and left children of successive nodes. Indeed, almost all search algorithms for basic dynamic data
types can be viewed in this way. Moreover, any algorithm designed for a RAM machine can also be cast in this
framework at an additional logarithmic cost: if the total memory spacé,isimply build a balanced tree of pointers
of heightlog N, where the-th leaf contains the data stored at location memory.

13This restriction is not necessary. One can handle general graphs at an additional logarithmic cost by superimposing
a tree on the memory structure

Y“There could in principle be other sources, but by assumption onsoperates it will never access them,So
can safely ignore them.

12

accessed by the algorithm (by looking at calls toghe) instruction). Denote the set of accessed nodes by
Sq. The answer is the output of4; the proof of consistency is the concatenation of the “transformed”
binary representationiglata,, ., ,, . .. , hs,,) Of all the nodes: € S;,as well as a description ¢f, and

where to find each node in the string

CONSISTENCY CHECK On inputse, ¢, a, m (wherer consists of a the description of a set of nodegsas
well as their transformed representations), the cliewdll verify the answer by runningl, using the proof
7 to construct the necessary partssof
The first step is to reconstruct the subgraph of memory blocks corresponding to the set of accessed nodes
Sy The clientC checks that :

e 7 is indeed a sequence of correctly formed “transformed” binary representations of memory blocks
and along with associated hash values.

o S, forms a subgraph entirely reachable from the root (siiatarts from the root and follows point-
ers, this will be the case when the server is honest).

¢ the hash values present are consistent: for each apded for each neighbar; ,, of u which is in
Sy, check that the valuk,, , attached ta: is the hash of the transformed representation; of

e the valueh,...; constructed from the input is indeed equal to the public commitment

Next, C runs A on this reconstructes,. It checks that all the nodes requesteddsgre inS, and thatd
returns the correct value

Since the hash function is collision-resistant, there is only one such subgjyagtich can be revealed
by the server. More precisely, there is one overall graph—the committed data structure—such that the
server can reveal (reachable) parts of the gfaphhus the server is committed to a data structtisghich
is bounded in size by the server's memory. By the properties of the data-robust algorithm, an honest server
will always be able to answer a query and provide a valid proof of correctness, whereas a malicious server
can (at most) answer queries with respect to the databss®). O

4 Achieving privacy for the general construction

For a formal definition of privacy for consistent query protocols, see Section 2.1.2. Informally, we
are interested in two kinds of privactotal privacy, in which the client cannot distinguish between
commitments to two different datbases without asking a question which distinguishes the two, and
value privacy in which we only wish that the data associated to the keys in the database remain
secure. This latter notion is in fact quite easy to obtain, as we describe at the end of this section.
We can also extend the consistent query protocols of the previous section to piatalde
privacy, i.e. to protect against any extra information about the database leaking out through the
proof of consistency. Instead of sending the consistency prptie server provides a witness-
hiding proof of knowledge ofr: this convinces the client both that suchr @&xistsand that the
server knows itInterestingly, a simple proof of membership of the existence @dbesn't suffice:
because the protocols in question are only computationally sound, it may be that consistency proofs

15The proof of this is standard: suppose that the server can produce two graphs consistent with the hash of the root
¢ = h.o0t. By induction on the distance from the root at which the two graphs differ, one can find a pair of strings
which hash to the same value

13

existfor all sorts of invalid query answers; we can only rely on the assumption that for all but one
answer, those proofs are (computationally) difficult to find.

Note that this solution is @astimprovement over the generic solution (described in the intro-
duction). Whereas in the generic case the server must prove statements whose length is at least
that of thewholedatabase, here it must only prove a statement roughly as long as (the verification
circuit for) the consistency proaf. In the case of the protocols of Section 5, this is a quasi-
exponential improvement in efficiency, since the resulting proofs are poly-logarithmic in the size
of the database.

Let (X4, Ss, Sq,C) be a consistent query protocol for some query structireQ, @), such
that the client (i.e. verification algorithnd) is deterministic We assume that the commitment
to the database is shorter than the database itself, and thus that a collision-free hash function is
available, either as common knowledge to all parties or explicitly as part of the public information
output byZdb.

Let C,,,, be the commitment function for the protocol of Halevi and Micali [14], i@,
takes a message to commit and outputs the commitment along with the random coins used for
commitment. If the message has lengtthe scheme us&4 random bits. Note that this protocol
requires a publicly available hash function. However, in all constructions of consistent query
protocols where the commitment is smaller than the database, a CRHF must already exist, so there
is no need here to provide it explicitly. Also note that the decommitment information from this
protocol is simply the committed message and the random coins used to commit; the verification
consists of ensuring that running the commitment algorithm on the given coins and message does
indeed yield the commitment.

LetP(-,-) be the (deterministic) polynomial-time relation given by

P((ow, ¢, q,a), (r,c,w)) =1 iff ¢ = Ciom(c,w)andC((og,c,q,a,m) = “accept”
The corresponding languadse is the set of tuples for which there exists a proof of consistency:

Lp = {(odb,c,q,a) : I P((adb,c, q,a),w) = 1}

Let (X.x, P,V) be anadaptive, multiple-theorem, non-interactive, witness-indistinguishable
proof of knowledge syste(NIZKPK) for the relationP. See [9] for a definition of this primitive.
Note that in our setting, we don’t require that the public randomness used by the NIZKPK be
uniform on all strings of a given length. Thus, such a system can be constructed based on the
existence of any trapdoor permutation family. Of course, having the public randomness be simple
coins is handy, and such proof systems exist as long as there edstsa cryptosysteff].

Consider a modified consistent query protocdl, S, S!,C’) which uses the NIZKPK to pre-
vent partial leakage of information:

e The public coin generation algorithEl (1%) returns(X4,(1%), $.:(1%)).

e The setup algorithn’(o 4, 0., D) computesgc, state «— Sg(oa, D), and(c’, w) = Ceom(c).
The setup returns as the public commitment arsflaté = (¢, ¢, w, state.

e The server’s query algorithi, (o, 0.1, ¢, Staté) first computega, 7) < S, (o, g, State.

14

Next, it runs the NIZKPK provéf P: IT « P (o, (o4, ¢, ¢, a), (T, c,w)). It sends to the
client the pair(a, I1).

e TheclientC' (o4, 0.1, ¢, q, a, I1) simply verifies the NIZKPKC' accepts iffV (0.4, (0w, ¢, ¢, a),II)
accepts.

Lemma 4.1. The query protoco(¥’, S/, S!,C’) from the construction above is a consistent query
protocol (Definition 2) which is private (definition Definition 3). The resulting protocol has com-
munication complexity polynomial in the complexity of the original protocol.

Proof. For brevity, we omit the details, as the properties of the protocol follow in a fairly straightforward
manner from the properties of the NIZKPK system. There are some subtleties worth noting: (a) proofs of
knowledge truly are necessary, since the statistically binding protcol of Halevi-Micali makes the language
Lp basically trivial; (b) an adaptive mutliple-theorem NIZKPK is needed since an adversarial client may
tailor his queries to the consistency proofs he has received in the past; (c) we need that the length of the
proofs7 from the original protocol reveal nothing beyond the length of the database. For protocols with an
easy-to-calculate upper bound on the proof length over all databases of a given size, this can be accomplished
by padding the proofr out to the appropriate length. The protocols constructed in this paper satisfy this
property. O

The protocols of the previous section do indeed have deterministic verifiers, and so we can
apply the construction above. LER, A) be a DRA for query structuréD, Q, Q) which fits into
the pointer-based framework of Section 3.2.1. Moreover, suppose that a correctly formed structure
(i.e. an output ofl") never contains a pointer cycle.

Proposition 4.2. Suppose that on inpugsandT'(D) (correctly formed), the algorithm examines

b(q, D) memory blocks and a total efg, D) bits of memory, using(q, D) time steps. Assuming

the availability of a public collision-resistant hash function, and the existence of trapdoor permu-
tations, there exists a non-interactiva,vate consistent query protocol fdiD, Q, ()) which has
proof lengthpoly(s(q, D) + kb(gq, D)) on queryq. The server’s computation on each query is
poly(s(q, D) + t(g, D) + kb(g, D)).

Note that when the original protocol yields proofs polylogarithmic in the size of the database,
then so does the modified, private protocol.

EFFICIENT INTERACTIVE PROOFS More generally, using the efficieakpPk’s of [15], one can

prove statements of lengthwith communicatiorO(k log® n), for some constant, assuming the
availability of a collision-resistant hash function. The server-side computation is polynomial in
n. Thus our consistent query protocol can be made private, and the resulting communication is
O (klog® (s(¢q, D) + kb(q, D))). The drawback to this approach is that the proof of consistency
becomes interactive.

VALUE PRIVACY. As mentioned in Section 2.1.2, achieving the more limitatlie privacy(in
the case of keyed databases) is potentially more efficient: using the commitment scheme of Halevi
and Micali [14], we can get statistical value-privacy at an additional cost of Onhlyjts pervalue

18|n fact, the proofr must be padded out so that all consistency proofs have the same length—this way no informa-
tion is revealed beyond the size of the database.

15

which must be revealed. Thus the total communication is bounded aboxe,ldy) + 8kb(q, D).

Using the Halevi-Micali scheme in this context has several advantages: it requires no additional
information or infrastructure, since the hash function is required for the basic protocol. Moreover,
the resulting protocol is also computation-efficient: the computation required for the commitment
is two evalutions of the hash function. To decommit, one simply needs to reveal the message the
random coins used in the commitment.

5 Orthogonal Range Queries

In the case of join queries, a databd3es a set of key/value pairs (entries) where each key is a
point in RY, and each query is a rectandle, b;] x --- x [aq, bs]. Note that these are also often
called(orthogonal) range queriesand we shall adopt this terminology here for consistency with
the computational geometry literature. For concreteness, we consider the two-dimensional case;
our construction naturally extends to higher dimensions (Section 5.2). In two dimensions, each
queryq is a rectangléa,, b1] x [az, bo]. The query answeR(q, D) is a list of all the entries irD
whose key(xkey, ykey) lies ing.

In this section we give a simple, efficient DRA for range queries and show how to modify it to
make an efficient consistent query protocol.

5.1 A data-robust algorithm for range queries

Various data structures for efficient orthogonal range queries exist (see [13] for a survey). The most
efficient (non-robust) solutions have query ti@¢(m + 1) log” ' N) for d-dimensional queries.

In this section we recall the construction miulti-dimensional range tree&lue to Bentley [3]),

and show how they can be queried robustly. The query time of the robust algorithfris+

1)log? N). Itis an interesting open question to find a robust algorithm which does as well as the
best non-robust algorithms.

5.1.1 One-dimensional range trees

Multidimensional range trees are built recursively from one-dimensional range trees (dénoted
DRT), which were (essentially) one of the structures used by [18, 16] for membership queries. In
al1-DRT, (key, value) pairs are stored in sorted order as the leaves of a (minimum-height) binary
tree. An internal node stores the minimum (denoteg) and maximum (denotefg,) keys which
appear in the subtree rootedratFor a leafl, we takes; = b, to be the value of thkey, key stored

at/. Additionally, leaves store the valwelue; associated tey;.

SETUP. Given a databas® = {(key,,value;),... , (keyy,valuey)}, the setup transformation
TiprT CONstructs a minimum-height tree based on the sorted keys. All the intéryabs| can be
computed using a single post-order traversal.

ROBUST QUERIES It is an easy exercise to show thal @&©RT allows efficient range queries
when it is correctly formetl. However, in our setting we must also ensure that the queries return

17Given the root: of a tree and a target intervial, b], descend recursively to those children whose intervals overlap
with [a, b].

16

Algorithm 1. A;prt([a,b], n,)
Input: a target rangf, b], a noden in a (possibly misformed}-DRT.
Output: a set ofkey, value) pairs.

1. if nis not properly formed (i.e. does not contain the correct number of fields)
then return()

2. if nis aleaf:

e if a, = b, = key,, andkey,, € [a, b], then return{(key,,, value,)}
e elsereturn()

3. if nis an internal node:

o | «— left,, r «— right,
o f a, =a; < bl <a, < br = bn then rethnAlDRT([a, b], l) U AlDRT([a, b], T)
e elsereturn()

Figure 1. Data-robust algorithmd;prt for querying one-dimensional range trees

consistent answers even when the data structure is corrupted. The data structure we will use is
exactly the one above. To ensure robustness we will modify the querying algorithm to check for
inconsistencies.

Assume that we are giverraotedgraph where all nodeshave an associated interya),, b,,],
and all nodes have outdegree either O or 2.le&f [is any node with outdegree 0. A leaf is
additionally assumed to have to extra fiekdg;, andvalue;. Consider the following definitions:

Definition 5. A noden is consistentf its interval agrees with those of its children. That is, if the
children arel andr respectively, then the node is consistentjf= a; < b, < a, < b, = b,.
Moreover, we should hawe, = b,, for a node if and only if it is a leaf.

A path from the root to a node monsistenif n is consistent and all nodes on the path to the
root are also consistent.

Definition 6. A leaf/ in a1-DRT isvalid if there is a consistent path from the root/to

In order to query a (possibly misforme@)DRT in a robust manner, we will ensure that the
query algorithmA returnsexactlythe set of valid leaves whose keys lie in the target range. In
a “normal” (i.e. correctly formedl-DRT, every leaf is valid, and so the algorithm will return
the correct answer. In a corrupted structure, the algorithm will always answer consistently with
the database consisting of the set of points appearing at valid leaves. Thus for any sthieg
databasé™(S) consists of the data at all the valid leaves one finds wiés considered as the
binary encoding of a graph.

17

The algorithmA;prt (Algorithm 1, Figure 1) will query d-DRT robustly. When it is first
called, the argument will be the root of the graph. Essentiallyl;prt runs the ordinary (non-
robust) search algorithm, checking all nodes it passes to ensure that they are consistent (Defini-
tion 5). It also checks that it never visits the same node twice (in such a case, there must be that
the graph the algorithm receives as input is not a tree).

Note that in fact, the algorithmprt Operates in the “pointer-based” model of Section 3.2.1.
Thus the first node on which the algorithm is called is obtained through a cadtteot(). The
neighbours of an internal nodeare its two childreneft,, andright,,. For clarity of the algorithm,
we have not explicitly included calls tgt(-) in the description of the algorithm.

The following lemma essentially proves that one-dimensional range trees, along with the algo-
rithm A;prt, form a DRA for range queries.

Lemma 5.1. The algorithmA;prt Will return exactly the set of valid leaves whose keys are in the
target range. In the worst case, the adversary can force the queries to takéfimevheres is

the total size of the data structure. Conversely, given a collectiov eftries there is a tree such
that the running time of the algorithm 3((m + 1) log V), wherem is the number of points in the
target range. This tree can be computed in tineV log V) and takes)(N) space to store.

Proof. On one hand, the algorithm is complete, since in a correctly formed tree every node will pass the
consistency checks, and so the algorithm will return exactly the set of leaves whose keys are in the target
range.

Before proving robustness, it is important to note that there are some kinds of misformed data we don’t
have to worry about. First, we can assume that all nodes are correctly formed (i.e. have the correct number
of fields and the correct types of data) since incorrectly formed nodes will be ignored by the algorithm.
Thus we can assume that the algorithm is indeed given some kind of graph with as input, although it isn’t
necessarily a tree. Moreover, we can assume all nodes in the graph have outdegree either 2 or 0.

The proof of robustness follows from the properties of consistent nodes, which in turn follow from the
definitions. For any node which is on a consistent path from the root:

1. The consistent path from the root is unique.
2. No valid leavesn n's subtree have keysutsiden's interval.

3. If another node’ is on a consistent path from the root, dag , b,/] N [an, by] # 0, thenn’ is either
an ancestor or a descendant:athus one of the two intervals includes the other).

A corollary of these properties is thab node will be visited twice by the algorithffhis is because the
algorithm expects intervals to shrink at each recurisve step, and so it will never follow a link which leads to
a node earlier on in the current recursion stack. Moreover, there can never be two distinct paths by which the
algorithm arrives at a node: because the algorithm is always checking for consistency, the two ancestors
n’ andn” of n would have to be consistent nodes with overlapping intervals, contradicting the properties
above.

Hence, the algorithm will visit valid leaves at most once, and never visit invalid leaves. Moreover, it will
visit all the valid leaves in the target interval (by inspection). Thus rundifngsT on a stringS procudes

answers consistent withiyr1(5), the set of data points stored at valid leaves in the graph represented by
S. O

18

Algorithm 2. Axprr([0, ™)) x [a®), 6@)], n)
Input: a target rang®, b@)] x [a®,b¥)], a noden in a2-DRT.
Output: a set ofxkey, ykey, value) triples.

1. if nis not properly formed (i.e. does not contain the correct number of fields),

then return(.

2. Check for consistency (if check fails, retuii

3.

e if nis aleafthen checka, = b, = key,,

e if nis aninternal nodehen checka,, = ajes,, < bieft, < aright, < bright, = bn

(@) if [an, b,] N [a®@,b®)] = () then returnf)
(b) if [an, b,] C [a®,b®)] then
e B« Aprr([a™,bW)], tree,)
e Remove elements db for whichxkey ¢ [a,, b,]

e if nis an internal node:

For each poinp in B, check thap is 2-valid in eithereft,, orright,,.
If the check fails, remove from B.

e ReturnB
(c) Otherwise

B Agorr(([, 5] s, bis,]) % [a?, 0], left,)

U A2DRT< ([, 6] N [aright, » brighe,) x [a¥), 9], rightn)
e Remove elements db which are not valid leaves afee,,.
e ReturnB

Figure 2: Data-robust algorithm,prt for querying two-dimensional range trees

19

5.1.2 Two-dimensional range trees

SETUP. Here, the database is a collection of triplesy, ykey, value), where the pairéxkey, ykey)

are all distinct (they need not differ in both components). The data structure, a two-dimensional
range tree (denote2tDRT), is an augmented version of the one above. The skeletot-BRT

(called theprimary tree), which is constructed using tkieey’s of the data as its key values. Each
node in the primary tree has an attaclieBRT called itssecondarytree:

e Each leafl of the primary tree (which corresponds to a singiey valuea;, = b;) stores all
entries with thakkey value. They are stored in tHeDRT tree; which is constructed using
ykey's as its key values.

e Each internal node (which corresponds to an intervgl,, b,| of xkey’s) stores al-DRT
tree,, containing all entries witlkey’s in [a,, b,]. Again, this “secondary” tree is organized
by ykey’s. Note that it needhot store thevalue associated to afxkey, ykey) pair.

The setup algorithri,prt creates -DRT given a database by first sorting the data on the key
xkey, creating gprimary tree for those keys, and creating a secondary tree based gkethtor
each of nodes in the primary tree. [2&DRT, each point is stored times, wherel is its depth in
the primary tree. Hence, the total storage can be nmigdélog) by choosing minimum-height
trees.

SEARCHING IN A 2-DRT. The natural recursive algorithm for range queries in this structure takes
time O(log® N) [13]: Given a target rangl®, b(*)] x [a®*), b®)] and an internal node, there are
three cases: ifa™, 6@ N [a,,b,] = 0, then there is nothing to do; &™), b(*)] D [a,, b,], then
perform a search on the second-level tree attachediging the target range™, b)]; otherwise,
recursively explore’s two children.

Based on the natural query algorithm, we can construct a BRA+ by adding the following
checks:

e All queries made to the 1-D trees (both primary and secondary) are made robustly following
algorithm 1 (A;prT), i.€. checking consistency of each explored node.

e Additionally, for every point which is retrieved in the query, make sure it is present and valid
in all the secondary 1-D trees which are on the path to the root (in the primary tree).

The following definition captures the notion of valiity which is enforced by these checks:
Definition 7. A pointp = (xkey, ykey, value) in a (possibly corrupted}-DRT is 2-valid if

1. p appears at a valid leaf in the secondarpRT tree; belonging to deaf [of the primary
tree with key valuekey = a; = b;.

2. For every (primary) node on the path td from the root of the primary tree, is consistent
andp is a valid leaf in the (one-dimensional) traee,.

20

Now given a (possibly corrupted-DRT and a pointp = (xkey, ykey, value), it is easy to
check whether or nat is 2-valid: one first searches for a Idafiith key xkey in the primary tree,
exploring only consistent nodes. Then, for each ned& the path froni to the root (including
and the root), one checks to ensure thappears as a valid leaf in these,,.

For robust range queries, the algorittdpprt We obtain is described in Figure 2. As before,
the idea is to return only those points which are 2-valid. Thus, for an arbitrary si’rmge
induced databas&;r+(5) is the collection of all 2-valid points in the graph representedSby
The following lemma shows that the algorithif%prt, A2prt) form a DRA for two-dimensional
range queries with query complexi@y((m + 1) log® N) (wherem is the number of points in the
target range).

Lemma 5.2. Algorithm 2 (A,prt) Will return exactly the set of 2-valid points which are in the
target range. On arbitrary inputs4d,prt terminates in worst-case tim@(L), whereL is the total
size of the data structure.

Conversely, given a collection éf entries there is a tree such that the running time of the
algorithm A,prt is O((m 4 1) log? N), wherem is the number of points in the target range. This
tree can be computed in tin@(N log® N) and takesD (N log N) space to store.

Proof. (sketch) As in the one-dimensional case, the algorithm will never explore the same node twice, and
so we may think of the corrupted input to the algorithm as a tree. Moreover, since the algorithm is checking
for proper formatiing of nodes, we can assume that this graph consists of a number of “primary” nodes with
secondary trees dangling off them. Finding the running time of the algorithm on well-constructed inputs is
a straightforward exercise.

On one hand, one can see by inspection that any 2-valid point in the target range will be output by the
algorithm, since all the checks will be passed. Moreover, no valid point outside the target range will be
output.

On the other hand, consider any point that is output by the algorithm. It must have appeared in the set
B at stage 3(b) of the algorithm for some nodeThus it is a valid leaf intree,,. Moreover, it must be valid
in eitherleft,, or right,,, because of the checks made at step 3(b). This means there is/avieiah is a
descendant of such thap is a valid point intree; and in all the trees of the nodes on the path froho /.

Finally, as the recursion exits (in step 3(c)), the algorithm will verify thappears at a valid leaf in all the
nodes on the path from the root.#0 Thusp must be a 2-valid point. O

Remark 4. As mentioned above, more efficient data structures and algorithms for planar orthog-
onal queries exist [13], but it is not clear how to make them robust without raising the query time
back toO((m + 1) log® N). This is an interesting open question.

HIGHER DIMENSIONS One can use similar ideas to make robust range queriésianensional
keys, whered > 2. The structure is built recursively, just as in the 2-D case. Although the
algorithm is polylogarithmic for any fixed dimension, the exponent increases:

Lemma 5.3. There exists a DRA fof dimensional range queries such that queries run in time
O((m+1)log? N), and the data structure requir€(N log” N') preprocessing an@ (N log? ' N)
storage.

21

5.2 Efficient query protocol

Given this algorithm, the (non-private) query protocol can be constructed as in Section 3.2: the
server creates a tree as in the previous section. For each key/value pair, he computes a hash value
hiey. He now works his way up through the various levels of the tree, computing the hash values

of nodes as the hash of the tuple (min, max, left child’s hash value, right child’s hash value). Note
that a given key will appear roughlgg N times in the tree; the same vallg., should be used

each time.

To answer a range query, the server runs the algorithm of the previous section. Note that
he need only send the hash values and intervals of nodes on the “boundary” of the subgraph (in
memory) which was explored, i.e. the leaves and the siblings of the nodes on their paths to the
root (the information corresponding to the interior nodes can be reconstructed from the boundary
nodes). This yields the following:

Theorem 5.4 (Two dimensions).Assuming the existence of collision-resistant hash functions, there
is a consistent query protocol for two-dimensional range queries with commitmehitaizenon-
interactive consistency proofs of length at m&$k(m + 1) log® N), wherem is the number of

keys in the query range, aridis the security parameter (output size of the hash function).

The protocol can be made statistically value-private by at an increased c@éthofbits of
communication. The protocol can be made perfectly private. If non-interactive proofs are desired,
then we obtain proofs of lengglaly(k(m+1) log N), at the cost of requiring public randomness. If
we allow interactive proofs, then the resulting communicatian(iglog®(k(m+1))+k log®log V)
for some constant

For higher dimensions, our construction yields proofs of lemth(m + 1) log? N).

6 Explicit-hash Merkle trees

As mentioned above, Merkle trees allow one to commit to a large number of values via a short
commitment, and to reveal some suhset.., a; of those values very efficienty, by showing a path
from the root to that particular value. The goal is to modify that scheme to hide the remaining
committed values, while leaving the hash function evaluations explicit, i.e. without going through
oblivious evaluation of such complicated circuits. In this section we describe the construction of
explicit-hash, private Merkle trees.

Server storage Let C(-) be a non-interactive commitment scheme to messages of arbitrary
length. It will be convenient to assume that-) is homomorphic, that is given commitments
to m; andms it is possible to produce a commitmentitg + m, (*8). Such schemes exist based
on a number of assumptions, such as the hardness of discrete logarithm extraction (e.g. Pedersen’s
scheme [25]). LeH be selected from a collision-resistant hash function family.

We will build a hash tree based on commitments to nodes, that is the server will actually commit
to commitments of the nodes in the tree. Moreover, rather than store explicit hash values in the

18n fact, we only need to be able to prove the equality of two committed strings without revealing them.

22

tree we will store commitments to those values. Specifically, for each nadi¢he tree, we will
define three values:

e The basic string representatian; is the information stored at the node

¢ A hash pre-image fon: ¢, is a particular commitment to the valug via the commitment
shceme’ ().

e The corresponding hash valug, = H(c,) is the hash value for which we will store at
the parent of..

For a leafl, we haver; = «;, and¢, is a commitmeniC(q;). For an internal node, we
havex, = (H(Ce,), H(crgnt,)), andc, is a component-wise commitment tp usingC'(-), i.e.
¢ — (C(H(Cetr,)), C(H (Cright,)))-

The public commitment is the valug,,, = H(x.,,,,)-

Definition 8. For two stringst andy, we sayy < x if y is the hash of some valid commitment to
z, i.e. if there are random coinssuch thaty = H(C(x;w).

Protocol outline Suppose the server now wants to reveallues from the tree. Let= log N be
the depth of the tree. For each lé&d be revealed, the server finds the correspondingmpath, ngy
wheren; is the root andh, is [. He sends to the client the data plus fresh commitments to the
valuesz,,, andy,.. He then proves that these form a consistent path in two stages.

1. For each of the paths, Server sends = C(zy,), ..., uqg = C(z,,) andv; = C(yn,), ..., va =
C(Yny)-

2. The server proves that each of the paifs); is a commitment to a pait;, y; such thaty; <z;.

3. The server proves that the committed nodes actually form a path, that is forieverythe
server shows that one of thegappears as one of the components of;.

4. The server proves that the first node is indeed the root by opening the commitment
reveal the public commitment string,.;.

The first proof is the trickiest, since we wish to use only explicit hash function evaluation (never
oblivious) but also not reveal any information on possible relations between the various paths.

The specification and analysis of the protocol, which essentially proves Theorem 1.1, is con-
tained in Appendix A.

6.1 Achieving Privacy More Efficiently

Given the efficient consistent query protocols for join queries described in Section 3 and Sec-
tion 5, privacy can be achieved by applying generic witness-hiding or zero-knowledge proofs of
knowledge, as described in Section 4. However, even for our efficient protocols these will be very
complex, as they will require as the least oblivious evaluation of the circuit for hash furi¢tion

23

Instead, we present efficient, private consistent query protocols for 1-D range queries, based on
the explicit-hash technique of Section 6. The main drawback is that our protocol is not memoryless:
the server must remember what queries have been made so far in order to ensure that no information
is leaked from a proof.

The main tool used in the construction is a sub-protocol which, given commitments to values
C'(a) andC'(b), allows the server to prove that< b. The protocol is specified in Appendix B.

References

[1] S. Arora and M. Safra. Probabilistic Checking of Proofs: A New Characterization of NP.
Journal of ACM, 45(1):70-122, 1998.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and Hardness
of Approximation Problems. Journal of ACM, 45(3):501-555, 1998.

[3] J. L. Bentley. Multidimensional divide-and-conqu@omm. ACM23:214-229, 1980.

[4] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited (prelim-
inary version). InProceedings of STOC 1998p. 209-218.

[5] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against Cho-
sen Ciphertext Attack. CRYPTO '98.

[6] G.DiCrescenzo, Y. Ishai, and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment.
STOC '98.

[7] G.DiCrescenzo, J. Katz, R. Ostrovsky, A. Smith: Efficient and Non-interactive Non-malleable
Commitment. EUROCRYPT 2001: pp. 40-59

[8] I. B. Damcard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. In D. R. Stinson, edittmances in
Cryptology—CRYPTO '93volume 773 ofLecture Notes in Computer Sciengages 250—
265. Springer-Verlag, 22-26 Aug. 1993.

[9] A. De Santis and G. Persiano Zero-Knowledge Proofs of Knowledge Without Interaction
(Extended Abstract). IRroc. of FOCS 1992pp. 427-436.

[10] M. Fischlin and R. Fischlin. Efficient Non-Malleable Commitment Schemes. CRYPTO 2000.

[11] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof-
Systems (Extended Abstract). Rroc. of STOC 1985p. 291-304.

[12] O. Goldreich and S. Micali and A. Wigderson. Proofs that Yield Nothing But their Validity
or All Languages in NP Have Zero-Knowledge Proof Systed@®CM, 38 (1), pp. 691-729,
1991.

[13] J. Goodman and J. O’'Rourke, editordandbook of Discrete and Computational Geometry
CRC Press, 1997.

24

[14] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-
free hashing. In N. Koblitz, editoAdvances in Cryptology—CRYPTO ;9%%lume 1109 of
Lecture Notes in Computer Scienpages 201-215. Springer-Verlag, 18—-22 Aug. 1996.

[15] J. Kilian. A note on efficient zero-knowledge proofs and argument$rdceedings of the
Twenty-Fourth Annual ACM Symposium on the Theory of Computtagges 723—-732, Victoria,
British Columbia, Canada, 4—6 May 1992.

[16] J. Kilian. Efficiently committing to databases. Technical report, NEC Research Institute,
February 1998.

[17] S. Micali. CS proofs (extended abstract). 36th Annual Symposium on Foundations of
Computer Scienggages 436—-453, Santa Fe, New Mexico, 20—-22 Nov. 1994. |IEEE.

[18] S. Micali and M. Rabin. Accessing personal data while preserving privacy. Talk announce-
ment (1997), and personal communication with M. Rabin (1999).

[19] R. Merkle A digital signature based on a conventional encryption function. In C. Pomerance,
editor, Advances in Cryptology — CRYPTO ;8/lume 293 ofLecture Notes in Computer
Sciencepages 369-378, 16—20 August 1987. Springer-Verlag, 1988.

[20] M. Naor. Bit commitment using pseudo-randomness (extended abstract). In G. Brassard,
editor, Advances in Cryptology—CRYPTO ;8®lume 435 ofLecture Notes in Computer
Sciencepages 128-136. Springer-Verlag, 1990, 20—-24 Aug. 1989.

[21] M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung: Perfect Zero-Knowledge Arguments for
NP Can Be Based on General Complexity Assumptions (Extended Abstract). CRYPTO 1992:
196-214

[22] R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful adversary.
Sequences 91 workshop. (see addS DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Scien¢é/ol. 13 Distributed Computing and Cryptographdin-Yi Cai, editor,
pp. 155-169. AMS, 1993.)

[23] R. Ostrovsky, R. Venkatesan, and M. Yung. Secure Commitment Against Powerful Adver-
sary: A Security Primitive based on Averag e Intractability. In Proceedings of 9th Symposium
on Theoretical Aspects of Computer Science (STACS-92) (LNCS 577 Springer Verlag Ed. A.
Finkel and M. Jantzen) pp. 439-448 February 13-15 1992, Paris, France.

[24] R. Ostrovsky, R. Venkatesan, and M. Yung. Interactive hashing simplifies zero-knowledge
protocol design. IrAdvances in Cryptology - EUROCRYPT ,;93%cture Notes in Computer
Science. Springer-Verlag, 1993.

[25] T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
CRYPTO "91.

[26] J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures. STOC
'90.

25

[27] A. Russell. Necessary and Sufficient Conditions for Collision-Free Hashing. J. Crypto. 8(2):
87-100, 1995.

Appendix

A The Explicit Hashing Protocol

This section fleshes out the outline from Section 6.

Proving that y; <z; There are paths of lengthl for which this must simultaneousely be proven.

At the very least, the server will have to reveal the hash pre-images for all the nodes in those

t paths. However, depending on how the paths overlap, there may be far feweriteaoh

nodes (and hence hash pre-images), and any repetitions will be easy to detect. Thus, the server
will additionally send enough “dummy pre-images” so that the total number of committed nodes
claimed to be in the hash tree is exactty The dummy values are just other hash pre-images

present in the a§h tree. Formally: . _
1. (a) Let {n™, ... n® 1 be the union of the nodes on alpaths ¢ < td). We pad this set

with td — s other nodesi,. 1, ..., nyy (arbitrary nodes will work) to get a set of nodes.
LetcD), ..., ¢ be the corresponding pre-images, €. = c,).
(b) Server send$c), ..., ("} to the client in random order.

2. Repeat the following cut-and-choose prototdimes:

(a) Server chooses a permutationr— Sy;, and sends fresh commitments,) = C(z,u))
to all td nodesn'?), as well as commitments(y,,;)) to the hash valueg,;, = H(cV)).
These commitments are permuted according before sending.

(b) Client answers with a challenge bit— {0, 1}.
(c) If b =0, the server:

i. Sendsr proves that for each of thiel nodesn”), ¢/, andc\) are commitments
to the same value.
(This is easy since the commitment scheme is homomorphic.)

ii. opens all commitments tg, (client verifiesy, ;, = H(cW)).
If b =1, the server:

i. Shows that each of the commitmenitsis equivalent to one of the commitments
c (; and that the commitment is equivalent to the corresponding committed hash
valueC'(y,,t))-

At the end of this proof, the client should be convinced that each of the commitment pairs
(u;,v;) corresponds to one of the valugd, and that the underlying pait, y; satisfiesy; < z;.

26

Proving that the path is consistent We now have pairs of commitmenis, v; which hide valid
pairsz,,, y,,, wherey,. = H(C(z,,)) for some valid commitment of, .. We can easily prove
thatuy, v; corresponds to the root by openingand checking it is equal to the public commitment

Yroot+
The server must now prove that for each d, either:

e 1,y is the left child ofn;, which means thaty,,,,, = Y,), OF:
e n;. is the right child ofn;, which means thaty,,,,, = yrignt,)-

To prove this, one uses a classic cut-and-choose proof: the server commits to a permutation of
Yiefr,, aNdyrighe, - Depending on the client’s challenge, the server either proves that the two values
were a correct permutation of the real values (this requires only showing equality, which is easy
with homomorphic commitments), or proves that one of the valugs is. Repeating thig times
will lower the soundness error of the proofao*.

A.1 Complexity of the proofs

One can see by inspection that the communication complexity of this proof is dominated by the
proofs thaty; < x;. Each phase of the cut-and-choose protocol requires transnittitaty) bits,
and so the overall communication complexityét>dk?) bits.

ROUND COMPLEXITY. The protocol consists of a number kfround cut-and-choose proofs.
Because these proofs are not interdependent, we can run them all in parallel without losing zero-
knowledgé?®, so long as we use the same random coins for each of the proofs (i.e. at each round
the client sends only a single challenge bit, which is used in all the proofs). Thus, we easily obtain
a k-round protocol.

This can actually be improved substantially. First of all, in our setting we do not need the full
power of zero-knowledge, but require only that our proof leak nothing about the other data values
contained in the hash tree. Since our commitment schemes are information-theoretically hiding,
there exists a witness for every possible setting of the other values and thus, we need only that the
proofs have witness-hiding proofs. This in fact allows us to collapse the protocol to a 3 rounds,
witness-hiding proof of knowledge.

Finally, one can use standard folklore techniques to transform the 3-round witness-hiding proof
of knowledge into a ZK proof of knowledge is simulatability is truly desired. This increases the
complexity to 5 rounds, and requires the additional assumption of perfectly hiding trapdoor com-
mitment schemes (which exists based on the discrete log assumption and the hardness of factoring).
In the first round, the server sends the parameters for a perfectly-hiding trapdoor commitment
scheme. The client responds with a commitment to the challenges he will use in the protocol.
They then run the 3-round protocol, using the committed challenges. Along with his response to
the challenges, the server sends the trapdoor information for the commitment scheme.

Note that it isnot sufficient to transform our protocol to obtain a zero-knowledge proof of the
existence of a withess—since the commitments involved are only computationally sound, a proof
of knowledge is necessary. Note that if a random oracle is available, then we can in fact use the

19This is not true of ZK proofs in general, but it is true for our protocol.

27

Fiat-Shamir technique to remove interaction completely without losing zero-knowledge (since our
underlyingproofs are require only public coins). Formally:

Theorem A.1. The explicit-hash Merkle tree above allows proving the consistencyaths of
lengthd usingO(d - t* - k*) bits of communication, whefeis the security parameter. The protocol

can be made provably zero-knowledge with 5 rounds of interaction, witness-hiding with 3 rounds
of interaction, and completely non-interactive if one assumes the availability of a random oracle.

B Achieving Privacy More Efficiently

Given the efficient consistent query protocols for join queries described in Section 3 and Sec-
tion 5, privacy can be achieved by applying generic witness-hiding or zero-knowledge proofs of
knowledge, as described in Section 4. However, even for our efficient protocols these will be very
complex, as they will require as the least oblivious evaluation of the circuit for hash furi¢tion
Instead, we present efficient, private consistent query protocols for 1-D range queries, based on
the explicit-hash technique of Section 6. The main drawback is that our protocol is not memoryless:
the server must remember what queries have been made so far in order to ensure that no information
is leaked from a proof.
The first step is to modify the range tree so thlitconsistency proofs have length exactly
d = [log N'|. Subsequently, we show how to achieve privacy efficently for membership queries,
and finally for range querires.

MODIFIED RANGE TREE We start from the basic consistent query protocol for membership and
range queries, based on range trees. First we modify the data structure slightly so that the length
of a proof of consistency can be calculated exactly from the number of data points returned on a
given query. Specifically, we ensure tadlt consistency proofs have length exactly= [log N1,

and that the ranges of the children of a nedierm a partition offa,,, b,,| about the splitting point

split,,.

¢ Instead of storing at each internal nodehe minimum and maximum keys which appear
in the subtree rooted at that node, we store an intéayab,, | such that all keysey in the
subtree satisfy,, < key < b,,.

At each branching we require that the children’s intervals partition that of their parent, and
the point at which they cut the parent’s interval is stored at the parent and depbigd
Thus, the consistency check of Algorithm 1 becomes: b, = split, = a, < b,. If niisa

leaf, the consistency check becomags< key,, < b,,.

e For simplicity, we assume that keys are all integers in a known intéival., 2° — 2}. The
values), 2° — 1 are set aside as special values, deneted andoo, respectively.

e In order to ensure that it is always possible to split intervals sodhat key, < b, at the
leaves, we can require that all keys be even numbers (this at most increases the size bound
by 1).

e In every tree, we insert the valuesx = 0 andoo — 1 = B — 2, so that the range stored at
the root is always in fadt—oco, oo].

28

e We assume that the number of leaves in the tree is a power of 2 so that all leaves are at the
same depth. This means = 2¢ — 2 for some integed. This at most doubles the number of
points we must store in the database.

The consistency proof for a membership query in this new structure will always consist of
exactlyd nodes (wheréV = 2¢ — 2), even for queries which return “key not present”. Consistency
proofs for range queries comprise+ 2d nodes, wheren is the number of data points in the range.

Privacy for membership queries We first describe how to achieve privacy for membership
queries, and then explain how to generalize the technique for range queries.

The protocol outline is the same as for explicit hashing, except that additional range information
is stored at the internal nodes. However, in the case of range trees the proof that the path is
consistent is considerably more complex, since it involves proving statements of the fofm

SERVER STORAGE This is the same as in the explicit hashing protocol, except that the string
contains additional information: for internal nodes it contains,, andsplit,. For leaves, we add
the rangeu,,, b, plus the valuegey,, andvalue,, (note that for efficiencyalue,, can simply be the
hash of the value stored at the leaf).

Moreover, all the range bounds are committedbiteby-bit instead of as a monolithic string.
This will be necessary to get fast consistency checks. If all keys are integers legs, tiiem each
number will requiresk bits to be committed.

PROVING y; < x;. As before, the server commits to nodes and their hash valuespaasu;, v;.

The goal is to prove that these correspond to pairg; wherey; < x;. This is where the protocol
requires the server to have memory. As before, the server will send a set of possible hash pre-
images for the nodes in the path, and prove that each node in the path corresponds to at least one
of these hash pre-images. The problem lies in choosing that set of possible hash pre-images. If the
server reveals only those necessary for this path, then two different queries will reveal a lot about
how the two different paths overlap. Instead, the server will always send all of the pre-images sent
on the previous query, plusnew pre-images (regardless of how many new pre-images are really
necessary). Thus, on tiieh query, the server sendg possible pre-images, and runs the same
cut-and-choose protocol to show that the coomitted pairs sagistyr;.

PROVING THAT THE PATH IS CONSISTENT We now have pairs of commitments, v; which
hide valid pairsr,,,, y,,. We can easily prove that;, v; correspond to the root by openingand
checking it is equal to the public commitment,;. The basic check which must be performed
are essentially the same as in Section 6, except that now we must add checks of the<fdrm
We will show how to prove such statemtents below. First, we give the outline of the consistency
checks.

Suppose that we have a subprotocol for proving that b or a < b given two commitments
C(a) andC'(b). Then the server can prove that the path consistent as follows:

e For each < d, we haveu,, < split,, < by,,.
e For each < d, either:

— n;41 Is the left child ofn;, which means thata,,,,, = a,,) and(b
(ym+1 = yleftni), or:

= split,,) and

Nit1

29

— n;41 IS the right child ofn;, which means thaf
(yni+1 = yrightni)-

= split,,,) and(b,,,, = b,,) and

Mi+1 Ti+1

This can done via a cut-and-choose protocol as in Section 6. To prove this, one uses a
classic cut-and-choose proof: the server commits to a permutatiom, okplit,,, y.eftni)

and (split,,, by, Yright,). Depending on the client’s challenge, the server either proves the
two triples were a correct permutation of the real values (this requires only showing equality,
which is easy with homomorphic commitments), or proves that one of the two triples is equal

to (ani+17 bnz‘+17 ym+1)'
Repeating thig times will lower the soundness error of the prooftd.

e Forthe leafl = n,, we haven; < key; < by.

e Forthe leafl = ny, the revealed query answer is correct. If the query was for Valyieve
must check that, < key < b; and eithetkey = key, or key # key,, depending on whether
the query answer was positive or negative.

Thus, we need only show how to prove that b, a < b ora # b) for two committed values
C(a),C(b).
PROVING a < b, a < b, a # b. Suppose we havé€'(a),C(b) for two integersa,b €
{0, ..., B —1}. The server wishes to prove to the client thak. b. A proof of the statement
a < b would proceed similarly. The proof that# b is in fact much easier and we leave it as an
easy exercise.

1. Let a4, ..., a, be the binary representation efand b, ..., b, be the binary representation
of b. Because we asked that the server commit bit-by-bit, we l&ve), ..., C(as) and
C(by), ..., C(bs).

2. Let C’() be a commitment scheme which allows one to commit to one of three values
{0, 1, *}. We only require that it be easy to prove that two commitments are efjual.

Suppose that the firstmost significant bits of andb are equal. Then the server sends fresh
commitments to the bits af andb, except that for the first bits of each he commits te
instead.

The problem of verifying that < b can now be reduced to one of local pattern checking.
There are four sequences of committed bits. It must bestappear in the two last se-
guences only when the bits af b are equal, and in all other positions the bits are copied
faithfully. Moreover, it must be that the first position whets do not appear hag = 0 and

b; = 1. This means we must che@k patterns, each on four positions.

However, pattern chekcing can be done with a cut-and-choose protocol: the server commits
to a permutation of all the possible patterns which apply to a given subset of bits (in our
setting, there are always less than 20 patterns). Then he either opens all the patterns, or
shows that one of them matches the positions he is checking. Repeas for soundness
error2=*,

20This can be implemented by having each commitment be a pair of bit commitments, where a commitimént to
represents the bjt and a commitment to, 5 always represents

30

Achieving privacy for range queries In order to achieve privacy for range queries, we build on

the protocol above for membership queries. For each point in the range of the query, the server
gives a proof of membership as above. For the two endpoints, the server gives an almost-complete
proof of membership: he gives a path to the unique leaf which contains that endpoint, but does

not prove any relation between the endpoint and the key at that leaf. Instead, he proves that the
answers he has given cover the entire range:

1. The leaves in the range should be contiguous. This can be proven easily by grovinag
for adjacent leaves !'.

2. The endpoints should be proven correct. Suppose the query intefwal]isLet be the leaf
corresponding to the left endpoimt Let !’ be the leaf corresponding to the leftmost point in
the range. The left endpoint is correct if either

® a; = ay andal <a< keyl, or
e b =ay andkeyl <a<b

This can be proven by a cut-and-choose as before.
The proof of correctness of the right endpoint is similar.

Note that one can save some of the complexity of the membership proofs by running all the
proofs that the various paths are in the hash tree together (see below).

B.1 Complexity of the consistency proofs

The communication complexity of the proof of membership can be seen by inspectio®{o be
d - s - k%), wheret is the number of queries so fat,is the depth of the hash tree- (log N), s
is the bound on the length of the keys, ahds the security parameter. Note that in fact both
Micali-Rabin and Kilian [18, 16] gave protocols for private membership queries which were more
efficient. However, their techngiuel® not generalize to range queries
As for range queries, the complexity of the proofs can be ndafle + m) - d - s - k?), wheret
is the number of queries so far andis the total number of points returned from all queries so far.
As for explicit-hash Merkle trees, because we are using perfectly-hiding commitments, we
only need witness-indistinguishability and so we can reduce the protocol to 3 rounds. As before,
we can obtain a truly zero-knowledge protocol by increasing to 5 rounds, and we can remove all
interactivity if we asusume a random oracle.

31

Contents

1

Introduction 1
1.1 Ourcontributions 2
Definitions 5
2.1 Consistentquery protocols 5
211 Keyeddatabases 7.
2.1.2 Privacy e 7
Data-robust algorithms and consistent query protocols 9
3.1 Data-robustalgorithms 9
3.2 Constructing consistent query protocols fromDRAs 11
3.2.1 Pointer-based algorithms 11
3.2.2 Ageneralconstruction 12
Achieving privacy for the general construction 13
Orthogonal Range Queries 16
5.1 Adata-robust algorithm forrange queries 16.
5.1.1 One-dimensional rangetrees 16.
5.1.2 Two-dimensionalrangetrees, 20
5.2 Efficientquery protocol e 22
Explicit-hash Merkle trees 22
6.1 Achieving Privacy More Efficiently 23
The Explicit Hashing Protocol 26
A.1 Complexity oftheproofs, 27
Achieving Privacy More Efficiently 28
B.1 Complexity of the consistency proofs 31

32

