Virtual Mobile Nodes for Mobile Ad Hoc Networks
(Extended Abstract)

Shlomi Dolev* Seth Gilbert Nancy A. Lynch' Elad Schiller*

Alex A. Shvartsman® Jennifer Welch®
February 24, 2004
Abstract

One of the most significant challenges introduced by mobile networks is the difficulty in coping with
the unpredictable movement of mobile nodes. If, instead, the mobile nodes could be programmed to
travel through the world in a predictable and useful manner, the task of designing algorithms for mobile
networks would be significantly simplified. Alas, users of mobile devices in the real world are not
amenable to following instructions as to where their devices may travel.

While real mobile nodes may be disinclined to move as desired, we propose executing algorithms
on virtual mobile nodes that move in a predetermined, predictable, manner through the real world. In
this paper, we define the Virtual Mobile Node Abstraction, and present selected algorithms that take
advantage of virtual mobile nodes to simply and efficiently perform complicated tasks in highly dynamic,
unpredictable mobile ad hoc networks.

We then present the Mobile Point Emulator, a new algorithm that implements robust virtual mobile
nodes. This algorithm replicates the virtual node at a constantly changing set of real nodes, choosing
new replicas as the real nodes move in and out of the path of the virtual node. We claim that the Mobile
Point algorithm correctly implements a virtual mobile node, and that it is robust as long as the virtual
node travels through well-populated areas of the network.

Contact Author: Seth Gilbert, 617-283-7502

Contact Address: 70 Pacific Street #666B, Cambridge, MA. 02139

Keywords: mobile networks, ad hoc networks, highly dynamic distributed algorithms, fault-tolerance, location-aware
Pages: 10 page main paper, 2 page bibliography, 4 page appendix

Students: Seth Gilbert and Elad Schiller are students.

Brief Announcement: Consider for Brief Announcement if not accepted as a regular presentation.

Program Committee: Alex A. Shvartsman is on the program committee.

*Ben-Gurion University, {dolev,schiller}@cs.bgu.ac.il

TMIT CSAIL, {sethg, lynch,alex}@theory.lcs.mit.edu

#Department of Computer Science and Engineering, University of Connecticut, aas@cse.uconn.edu

$Texas A&M University, welch@cs.tamu.edu

"This work is supported in part by NSF grant CCR-0098305 and NSF ITR Grant 0121277. Part of the work of the first author and four author
has been done during visits to MIT and Texas A&M. The first author and fourth author are partially supported by an IBM faculty award, the Israeli
ministry of defense, NSF, and the Israeli Ministry of Trade and Industry. The second and third authors are partially supported by AFOSR Contract
#F49620-00-1-0097, DARPA Contract #F33615-01-C-1896, NSF Grant 64961-CS, NTT Grant MIT9904-12. The fifth author is partially supported
by the NSF Grant 9988304, 0311368 and by the NSF CAREER Award 9984774. The sixth author is partially supported by NSF Grant 0098305 and
Texas Advanced Research Program 000512-0091-2001.

1 Introduction

Devising algorithms for highly dynamic mobile networks is hard. The resulting algorithms have complicated
specifications, are difficult to understand, and challenging to implement. It is therefore important to develop
techniques and abstractions that simplify the process of developing and implementing algorithms for mobile
networks. In this paper, we propose one such abstraction, the Virtual Mobile Node model.

Compounding the challenges of designing algorithms for typical dynamic distributed systems, highly
mobile networks introduce the difficulty of dealing with the completely unpredictable motion of the nodes.
This complication is of course unavoidable: the defining feature of a mobile network is that the nodes do, in
fact, move. Another difficulty in dynamic settings is the unpredictable availability of nodes that continually
join and leave the system, whether they do so voluntarily, or are turned on and off, or fail and recover.

The task of designing algorithms would be significantly simplified if the mobile nodes were reliable
and moved in predictable ways. The mobility of the nodes, however, also presents an opportunity: if the
mobile nodes were to move in a useful way, it would be possible to take advantage of the motion to design
algorithms that are even more efficient than those for static networks. This idea is illustrated by Hatzis et al.
in [11], which defines the notion of a compulsory protocol, one that requires a subset of the mobile nodes
to move in a specific manner. (In particular, in [11], the nodes are required to perform a random walk.)
They present an efficient compulsory protocol for leader election, demonstrating the advantages over a non-
compulsory protocol. The routing protocols of Chatzigiannakis et al. [6] and Li et al. [18] provide further
evidence that compulsory protocols are simple and efficient.

Compulsory protocols deploy dedicated nodes that are committed to certain patterns of motion, and
this may be a very strong requirement for highly dynamic asynchronous mobile settings where nodes may
fail or be diverted from the prescribed path. Thus the our objective is (a) to retain the effectiveness of the
compulsory protocols, and (b) achieve this without imposing requirements on the motion of the nodes. In
this paper we introduce an approach to building distributed applications that achieves both objectives.

Our Contributions. In this paper we introduce the Virtual Mobile Node Abstraction, and show how it
can be used to build distributed applications for dynamic ad hoc networks, thus demonstrating the utility of
our approach. We also demonstrate the feasibility of our approach by showing how to implement the Virtual
Mobile Node Abstraction.

Virtual Mobile Nodes. We propose designing distributed algorithms to run on virtual mobile nodes
(VMNys), abstract nodes that move in a predetermined, predictable manner. In this new abstraction, VMNs
are simulated by real nodes in the network. The motion of a VMN is determined in advance, and is known
to the programs executing on the VMNs. For example, a VMN may traverse the plane in a regular pattern,
or it may perform a pseudorandom walk.

To be effective, we allow the motion of the virtual nodes to be uncorrelated with the motion of the real
nodes: even if all the real nodes are going in one direction, the virtual nodes are able to travel in the opposite
direction. Consider, for example, an application to monitor traffic on a highway: even though all the cars
are moving in one direction, a VMN could move in the opposite direction, notifying oncoming cars of the
traffic ahead.

Algorithms for Virtual Mobile Nodes. To demonstrate the utility of the new approach, we present se-
lected algorithms that use VMNSs to solve interesting problems simply and efficiently. We first consider the
problem of routing messages. We describe two schemes for reliably delivering messages: one relies on the
compulsory protocols of Chatzigiannakis et al. [6] to route messages among the real nodes; the other deliv-
ers messages only to virtual nodes. The second scenario explores the problem of collecting and evaluating
real-time data in mobile ad hoc sensor networks. In the third, we consider a number of general services,

such as group communication services (e.g., as in [10, 14, 15]) and an atomic memory service. We solve
these problems using approaches developed by Dolev et al. [9] and Dolev et al. [7].

Implementing Virtual Mobile Nodes. We present the Mobile Point algorithm, a new algorithm that imple-
ments robust virtual mobile nodes, thus demonstrating the feasibility of our approach. The main idea of the
algorithm is to allow real nodes traveling near the location of a virtual node to emulate that VMN. In order
to achieve robustness, the algorithm replicates the state of a virtual node at a number of real mobile nodes.
As the execution proceeds, the algorithm continually modifies the set of replicas for each mobile node so
that the replicas always remain near the desired path of the virtual node. We use a replicated state machine
approach, augmented to support joins, leaves, and recovery, to maintain the consistency of the replicas.

A virtual node is prone to “crash-reboot” failures. As long as the path of the virtual node travels through
dense areas of the network, the virtual node does not fail. If however, the VMN is directed to an empty spot,
a failure may occur. The Mobile Point algorithm, however, allows the VMN to recover to an initial state,
if it again reenters a dense area. In this way, the VMN abstraction takes advantage of dense regions of the
network to perform arbitrary computation.

To summarize, this paper contains three main contributions. First, we define the VMN abstraction. Second,
we present selected algorithms based on VMNs that are quite simple compared to previous algorithms.
Third, we present an algorithm to implement robust virtual mobile nodes.

Other Related Work. The Mobile Point algorithm for implementing VMNSs is similar in many ways to
the GeoQuorums algorithm [7, 8]. Dolev et al. define a Focal Point abstraction that allows mobile nodes to
use predetermined locations in the network to simulate atomic objects. The Virtual Mobile Node Abstraction
extends the Focal Point abstraction in four ways. First, in the GeoQuorums algorithm, the virtual entities
(i.e., the focal points) are static: they are limited to fixed, predetermined locations. In this paper, we extend
the abstraction technique to allow each virtual entity to move on an arbitrary, predetermined path. Second,
the Focal Point abstraction limits the virtual entities to be atomic objects. In this paper, the virtual entities
can emulate any arbitrary automaton. Third, the GeoQuorums algorithm does not allow the virtual entities
to recover, should they fail, whereas we support recovery. Fourth, the GeoQuorums algorithm inherently
depends on a GeoCast service that allows potentially more expensive long-distance communication. In this
paper, we can implement the Virtual Mobile Node Abstraction even when the available communication
services only allow local communication.

This paper also generalizes some results presented by Beal [2, 3], in which he defines a PersistentNode
abstraction. A PersistentNode is a virtual entity that travels around a static (rather than mobile) sensor
network. It can carry with it some state, but the consistency guarantees are relatively weak.

The work of Nath and Niculescu [21] also takes advantage of precalculated paths to forward messages
in dense networks. Messages are routed along trajectories, where nodes on the path forward the messages.
Similarly, prior GeoCast work (for example, [22, 5]) attempts to route data geographically. In many ways,
these strategies are ad hoc attempts to emulate some kind of traveling node. We provide a more general
framework to take advantage of dense areas of the network to perform arbitrary computation. A significant
focus of these prior papers is determining good trajectories, a problem that we do not address (but that may
be useful in determining a good path for VMNSs).

Document Structure. In the first part of the paper, we show how to use virtual mobile nodes to simplify
the design of algorithms for mobile ad hoc networks. We describe the underlying system model in Section 2,
and the Virtual Mobile Node model in Section 3. Then, in Section 4, we describe selected algorithms that
take advantage of the VMN abstraction. In the second part of the paper, we show how to implement robust
virtual mobile nodes, using the Mobile Point algorithm in Section 5. Selected algorithms are given in the
appendix.

2 Basic System Model

In this section, we present the underlying system model which consists of physical mobile nodes moving in
a bounded region of a two-dimensional plane. Each mobile node is assigned a unique identifier from a set, 1.
The mobile nodes may join and leave the system, and may fail at any time. (We treat leaves as failures.) The
real mobile nodes can move on any continuous path in the plane, with speed bounded by a constant, v,

The Geosensor is a component of the environment that maintains the current location of each mobile
node. It also maintains the current real time. The Geosensor can be implemented in real systems by a Global
Positioning System (GPS) receiver, or (for indoor usage), a Cricket [24] device.

Basic Communication Services. The mobile nodes support a basic broadcast communication service,
LocalCast, which is parameterized by a radius, R. The R-LocalCast service delivers a message to every
mobile node within a radius R of the sender. The service has the following properties: (i) Reliable Delivery:
Assume that the mobile node 7 performs a localcast(m); action. Then for every mobile node j that is within
distance R of the location of 7+ when the message is sent, and remains within distance R of that location
forever thereafter' and does not fail, a localcast-rcv(m) ;j event eventually occurs, delivering the message
to node j. (ii) Integrity: For any LocalCast message m and mobile node 4, if a localcast-rcv(m); event
occurs, then a localcast(m), event precedes it, for some mobile node £. In Section 5, we assume that every
message, that is delivered, is delivered within d time. We assume d is fixed for the rest of the paper. This
service can be implemented in real systems as long as R is not too large. Many typical wireless broadcast
protocols, augmented with error correction, should satisfy these requirements. In Section 6 we briefly
discuss some weaker alternatives that can tolerate occasionally delayed and lost messages; these alternatives
are even more realistic models of real systems.

3 Virtual Mobile Nodes

The VMN Abstraction consists of both
physical mobile nodes (PMNs, also re-
ferred to as “real nodes”) and virtual mo-
bile nodes (VMN:Ss, also referred to as “vir-
tual nodes”). Throughout this paper, the
term mobile node refers to any node in the
system, be it real or virtual. Mobile nodes
may fail and recover; when a node recov-
ers, it begins again in an initial state.

The virtual nodes are equivalent to the real
nodes, with a few exceptions. Most im-
portantly, they move in a predictable, pre-
determined path, rather than an arbitrary
path.

Each virtual node is designed to execute a regular I/O automaton® [19]. The VMN System Model
supports the LocalCast service, with the same basic specifications as the underlying system model. In this
case, the broadcast service does not distinguish between virtual and real nodes, delivering messages to all
mobile nodes within the specified vicinity. The LocalCast supported by the VMN model, however, may
delay messages from being sent or received, and may repeat and reorder messages (even if the underlying
LocalCast service does not).

LocalCast Service

localcasl—rcvl localcast]oca]casl—rc\i localcast Iocalcasl—rcvi localcast lccalcﬂsl—rc\i localcast

Client ;

Physical Node i

Virtual Node j

geo—update

M ‘geo-update

Figure 1: VMN System Model, representing a virtual node and a

real node sending messages to each other via LocalCast service.

' As soon as the message is delivered, the receiver can move away. If the broadcast latency is bounded, this is effectively a bound
on the speed of the mobile nodes.
2We expect that it is a simple extension to support timed and hybrid virtual nodes, instead of just regular I/O automata.

(a) (b) ()
S D

C0aD

M

A A A A
v U Uy

Figure 2: The diagrams represent one or more VMNSs traveling in the plane. The arrows indicate the direction
of motion. (a) A single virtual mobile node scans an area. (b) Multiple virtual mobile nodes cooperate to
scan an area. Neighboring VMNs move counterclockwise, meeting once per cycle to exchange messages.
(c) Messenger VMN M ferries messages from source VMN S to destination VMN D.

Since the automaton being executed is running on a (virtual) mobile node, we allow it to commu-
nicate only by sending and receiving messages, and by receiving updates from the Geosensor. That is,
we limit the input and output actions of virtual node h to localcast-rcv(msg)y,, localcast(msg),, and
geo-update(time, loc)y,.

As before, the LocalCast service is parameterized by a radius, R. In order to implement the VMN Ab-
straction with an R-LocalCast communication service, we assume throughout this paper that the underlying
model supports 2 R-LocalCast.

4 Solving Problems with Virtual Mobile Nodes

In this section we discuss some scenarios in which virtual nodes facilitate the design of algorithms, and
discuss simple algorithms that address these situations. All the algorithms in this section depend only on the
LocalCast service, although some may be simplified using a GeoCast service (as in [22, 5]), which delivers
messages to a specific location (and any nodes that happen to be there).

Routing. We first consider the problem of routing messages. Neither the LocalCast service nor the
GeoCast service delivers messages to specified nodes; both propagate messages to the mobile nodes in a
well-defined region. Most algorithms that allow a client to explicitly specify a destination node (such as
DSR [12, 13] and AODV [23]) are forced to either track the location of every mobile node, or flood the
entire network with messages. Both approaches can be quite expensive, and optimizations are difficult.

The PMN Routing Scheme is based on the compulsory protocol of Chatzigiannakis [6]. In its simplest
version, a single VMN travels through the network, collecting and delivering messages, as in Figure 2.a.
(Pseudocode for such an algorithm is presented in Appendix A.) In order to send a message, a real node, ¢,
examines its current location and calculates the current location of the virtual node that is carrying out the
protocol. Node 7 then waits until the virtual node is nearby and sends it the message using the LocalCast
service. The virtual node collects messages that it has received. Nodes that want to receive messages
perform a similar protocol: if some real node, 7, discovers that the VMN is nearby, it sends it a request for
messages; if the VMN has any messages destined for j, it uses the LocalCast service to send them.

As presented, the algorithm has a low cost, where each message resides at only a single VMN; however
a message might take a long time to be delivered. Using more VMNs may shorten the average message
latency, while increasing the cost. For example, the VMNs might move as described in Figure 2.b. Whenever
two VMNss pass each other, they send each other their stores of messages. In this way, all the messages
spread to all the VMNSs. A more space efficient algorithm might use the scheme developed in [6], where the
VMNs form a snake, winding through the network in a pseudorandom path, thus regularly visiting every
populated region of the network and delivering messages to the resident nodes.

Compared to typical routing schemes (such as DSR and AODV), these algorithms are easier to tune, in
terms of space versus latency trade-offs: by increasing the number of VMNSs, and thus the space, messages

4

are more rapidly delivered. Unlike DSR and AODYV, the cost (in terms of message latency and space usage)
of these algorithms scales with the number of VMNs and the size of the region being covered, rather than
the number of nodes.

Notice that the scheme described in Figure 2.b could also be used to implement a general GeoCast
service using LocalCast. In this case, instead of each message eventually propagating to every VMN, a
message only propagates to the VMN that travels along the horizontal coordinate specified in the message.
Augmenting the system with vertical-traveling VMNSs further increases the efficiency.

Since the motion of VMNs is known in advance, we can devise even more efficient algorithms for
routing messages only among virtual nodes. The VMN Routing Scheme allows any VMN to send a message
to any other VMN. (Pseudocode for such an algorithm is presented in Appendix A.) Consider sending
a message, m, from the virtual node, S, to the virtual node, D. This task is performed by an additional
messenger VMN, M. The node M ferries messages from source S to destination D (see Figure 2.c, where
the solid lines represent the paths of the virtual nodes). When the node S is near M, it sends message m to
M. When M is near D, it relays message m to D. (This is similar to a scheme presented in [4], that uses
“buses” to carry data securely through a network.)

Although the paths intersect, we must ensure that the messenger actually meets nodes .S and D. There-
fore we choose the path of M such that the nodes meet periodically (for example, every time M intersect
the path of S or D, it pauses until the expected node arrives).

The reliability of communication depends on the reliability of the messenger VMN. Moreover, since the
paths of S, D, and M are predetermined, the message latency can be predicted.

Data Collection Algorithm. A common use of mobile ad hoc networks is to monitor environmental
sensors. For example, one might wish to evaluate the average temperature, the average remaining battery
charge, or the number of nodes in various regions of the network. (The latter application might be used to
track animals or cars, or to determine the density of mobile nodes for other uses.)

Madden et al. [20] design a query language for sensor networks that specifies when, where, and how
often data is sampled. They implement TinyDB, a sensor application that supports these queries. We
propose a quite simple algorithm for addressing similar queries in mobile (rather than static) networks. Our
algorithm also has the advantage of being easy to implement, with the potential to scale well. As in the
case of routing, we direct the virtual nodes to systematically explore the region in question, collecting and
aggregating data. This might use, for example, the pattern of motion described in Figure 2.b. A different
topology might lead to different patterns of motion; for example, if the idea is to collect data about the goose
population on the Charles River (a river separating Cambridge from Boston), the VMNs might be directed
to all start at the west end of the river and sweep in a synchronized fashion to the east, ensuring that all the
geese are discovered.

The primary difference from the routing algorithm is that the data may be aggregated, both regionally
and temporally, as it is being collected. The client specifies in the query what sort of data the sensors should
produce, and how the “network™ should aggregate that data. The VMNs only return the necessary data to
the clients. We present a simple version of this algorithm in Appendix C. (This version uses only a single
VMN as in the case of routing, multiple VMNs can improve the performance.)

Other Services. Many other basic services can be implemented using the VMN abstraction. For ex-
ample, by extending the GeoQuorums algorithm [7], we can implement Afomic Read/Write Memory. The
GeoQuorums algorithm depends on focal points, fixed, densely populated regions, to implement atomic ob-
jects that maintain replicas of the data. Instead, we suggest using VMNSs to maintain the replicas. If certain
areas of the network are known to be empty at certain times, then the replicas can be programmed to stay
away from the dead spots. (For example, an office building may be empty at night; the replicas can be pro-
grammed to move in the evening to a nearby bar.) If areas of the network tend to issue many operations at

certain times, the replicas can be programmed to move to these areas at these times, improving performance.

In the GeoQuorums algorithm, a GeoCast service is used to contact the replicas; in this case, the routing
schemes discussed earlier in this section may be used. As in the GeoQuorums algorithm, the performance
depends significantly on the distance of the replicas from the client and the efficiency of the GeoCast service
that sends requests to the replicas. The VMN version should therefore be at least as efficient as the prior
version; if the VMNs replicas are engineered to travel near the regions where most of the clients issue
requests, it may be even more efficient.

Another example of a useful basic service is Group Communication. Dolev et al. [9] show how to im-
plement group communication services (and resource allocation) using a single mobile agent that performs
a random walk of a mobile ad hoc network. Unfortunately, this agent is a single point of failure. Us-
ing a reliable VMN to perform the data collection and propagation improves robustness. Also, by using a
deterministic traversal, the VMN can visit the network more rapidly, thus improving performance.

S Mobile Point Implementation of the VMN Abstraction

In this section, we present the Mobile Point algorithm, a robust implementation of the Virtual Mobile Node
Abstraction. We first briefly consider a simple implementation that is not robust. We then discuss how the
Mobile Point algorithm uses the LocalCast service to process messages in a consistent order, and finally
present the Mobile Point Emulator, a robust implementation of the VMN abstraction. All the line numbers
in this section refer to Figure 6.

Simple VMN Implementation. The Agent Emulator is a simple algorithm to implement fault-prone
VMNs using agents. An agent is a dynamic process that jumps from one real node to another, moving in
the direction specified by the VMN path. An agent “hitches a ride” with a host that is near to the specified
location of the VMN. This strategy has been used in the past to implement various services, such as group
communication (see [9]). It can be generalized to support arbitrary I/O automata. (We present code for the
Agent Emulator in Appendix D.)

This simple algorithm meets one of the two goals of a VMN implementation: the movement of the
virtual node is predictable. However, the host of the agent is a single point of failure, and therefore the
VMN is not robust. For some applications, such as simple routing, this may be sufficient (as a higher level
protocol can retry when messages are lost). For many applications, however, this lack of robustness is
undesirable. We solve this problem through replication.

Mobile Points and Consistent Replication. We define a mobile point to be a circular region, of radius
R, that moves along the same path as the virtual node: the center of the mobile point at time ¢ is exactly
the location of the virtual node at time ¢. At any given time, every node that resides within a mobile point
replicates the virtual node.

Since the state of the virtual node is replicated at multiple nodes, the mobile point algorithm must
maintain consistency among the replicas. We therefore use the LocalCast communication service and the
synchronized clocks to implement a totally-ordered broadcast service within the region defined by a mobile
point. We use a standard technique (derived from [16]) to ensure that each mobile node processes the
messages in the same order: a timestamp is affixed to each message, defining a total order; before processing
a message, the mobile node waits until at least time d has elapsed since the message was sent, ensuring that
all earlier messages are received first. (See, for example, line 26.) The correctness of this scheme depends
on reliable and timely message delivery. In Section 6, we discuss alternative algorithms for totally-ordered
broadcast in which only liveness, and not correctness, depends on the underlying broadcast service.

The Mobile Point Emulator. We now present the [gignature:
Mobile Point Emulator algorithm. The algorithm is based Input:
on a replicated state machine technique (originally pre- localcast-rev(m)y, ;, m € M
sented in [16]), augmented to support joins, leaves, and localcast-rev({type, param, oid, (t,j)))n.i
. geo-update(/,), ;. I €L, t € R>°
recovery. It uses the total ordering of messages to ensure
that the replicas are updated consistently. The signature | Output:
d f the aleorith . in Fi 3 and 4 localcast(m)y, ;. m € M
and state of the algorithm are given in Figures 3 and 4, localcast((iype. param, oid. {t.)))n.
and the algorithm itself is in Figure 6. All the code is

presented using I/O Automata. See Lynch [19] for a full I“tejg'i‘;‘;;h 4
description of the IOA formalism. Ieave()’;,i
Each real node executes one instance of the Mobile reset()n,i

imulate-acti i '
Point Emulator (MPE) for every VMN. The goal of the zimﬁlitg_gzc',?ﬂéﬁg(’) hi.ct € is(r)

MPE is to replicate the state of the VMN at every node process-join()p, i
C. . ., . process-joinack()s i
within the mobile point’s region. process-reset().;

The status of the Mobile Point Emulator can be one
of four states: idle, indicating that the physical node is not
within the area specified by the mobile point, joining or
listening, indicating that the physical node is in the pro-
cess of joining the mobile point, or active, indicating that
the physical node is actively participating in the mobile point emulation.

When a node is active in the mobile point, it maintains a replicated copy of the state of the virtual
node, val. This replicated state is modified only when the physical node receives a message indicating
that a particular action should be performed. Since we ensure that all mobile nodes process the LocalCast
messages in the same order, all nodes active in the emulation maintain consistent replicas. If the virtual node
performs a localcast(m) action, then the real node itself sends m.

There are two scenarios that lead to the VMN taking a step of its computation, both of which begin with
an active physical node sending a LocalCast message to the other replicas specifying the desired action. In
the first scenario, an active node receives a message from a client to the VMN (lines 1-4). The physical node
sends a LocalCast message to all the replicas, ensuring that all have received this message. Each replica,
on receiving the rebroadcast (lines 20-35), updates the replicated state as if the VMN had performed a
localcast-rcv action (lines 33-34).

In the second scenario, an active node may examine the current state of the VMN (i.e., val) and discover
that some action is enabled, that is, ready to be performed (lines 12—-18). The replica then sends a broadcast
to all the other replicas instructing them to take a step of the computation. When an active node receives

Figure 3: MPE Signature for Node ¢ and VMN h
for I/O automaton 7 = (sig, states, start,J)

State:
status € {idle,joining,listening,active}, initially active if node is in mp-location and idle otherwise
val € states(7), holds current state of the simulated I/O automaton, initially start(r)
msg-queue, a queue of messages to be sent by the communication service, initially 0
anwered-join-reqs, set of ids of join requests that have already been answered, initially
Jjoin-id € T, unique id for current join request, initially (0, ig)
pending-actions, set of messages waiting to be processed, initially
completed-actions, queue of actions that have been simulated, initially ()
mp-location € L, continuous, location defining the center of the mobile point under consideration
clock € RZ9, the current time, initially 0, continuously updated by the Geosensor
location € L, the current physical location, continuously updated by the Geosensor

Figure 4: MPE State for Node ¢ and VMN # for I/O automaton 7 = (sig, states, start,)

such an instruction, it performs the step of the computation, if the action is still valid (lines 20-35).

Joining a Mobile Point. Whenever a physical node is within the perimeter defined by the mobile point, it
initiates a join protocol (lines 65—72); whenever a physical node is outside of a mobile point, it executes the
leave protocol, which reinitializes its states and sets its status to idle (lines 100—112). The maximum speed
of the mobile point is determined by the latency of the join protocol and the speed of the real physical nodes:
the mobile point must move slowly enough so that new nodes can enter and join the mobile point before the
old nodes leave.

Assume that node 4 is attempting to join. The join protocol begins when ¢ broadcasts a join-req to all
the replicas requesting a copy of the current state. When node ¢ receives its own join request, it enters the
listening state (lines 81-82). This indicates that it can begin to monitor the messages in the system. In
particular, it saves any LocalCast messages that temporally follow its join request in pending-actions.

When some other active node, j, receives the join request, it sends a join acknowledgment, join-ack.
This acknowledgment includes a copy of its replica of the virtual node, val;. When ¢ receives the acknowl-
edgment, it makes a copy of the replicated state, and begins to process its pending-actions (lines 87-98).
Notice that by the time 7 receives the copy of the replicated state, the copy may be out of date. Fortunately,
the messages stored in pending-actions are sufficient to bring val; up to date.

Recovery. A mobile point may fail when it reaches a depopulated area of the network. As soon as all the
nodes leave the mobile point, it loses its state. The Mobile Point Emulator contains a recovery mechanism
that allows the virtual node to be restarted in this case. When a real node enters the mobile point and
cannot communicate with any other active nodes, it can broadcast a reset message (lines 43—47); every node
receiving a recover message reinitializes its state (lines 49—63). If multiple nodes try to initiate a recovery
at the same time, the last node to send the recover messages begins the recovery.

Correctness. We claim that the Mobile Point Emulator correctly implements the Virtual Mobile Node
Abstraction, in that any service built on the VMN abstraction runs correctly on the Mobile Point Emulator:

Theorem 5.1 Let A be a system consisting of client automata and a virtual node, where all localcast and
localcast-rev actions are hidden. Let S be a system consisting of client automata composed with the Mobile
Point Emulator, which implements the virtual node. Again, hide the localcast and localcast-rcv actions in S.
Then traces(S) C traces(A).

VMN Liveness. The Mobile Point algorithm ensures that the VMN fails only when it enters a depopulated
region of the network. Therefore, while we make no assumptions about the motion of the real mobile nodes,
we do assume that certain (time varying) regions are usually “populated” by real nodes. That is, we assume
that at all times, at least one node resides in the region defined by a ball of radius R around the location
of the virtual node: there is always at least one real node in the mobile point. Further, we assume that real
nodes entering and leaving the mobile point overlap in time for “sufficiently long”, i.e., enough time for the
departing real nodes to transmit the state to the entering nodes.

If the mobile point becomes depopulated at any point, the virtual node fails. If it becomes repopulated
at a later point, however, it can be restored, beginning again in its initial state.

We claim that, in the real world, this density assumption is reasonable. There often exist regions that
are almost always populated — such as highways, office buildings, and shopping malls. Furthermore, these
areas tend to have predictable patterns of density. For example, a mobile point that spends its days exploring
the highways may move to a more populated area at night.

6 Discussion and Concluding Remarks

The VMN framework, and the algorithms presented in this paper, introduce new horizons for further re-
search. One significant path of investigation is to devise further applications for the new robust primitive

presented in this paper: the algorithms given in Section 4 only begin to examine the possible uses of this
abstraction. And it will be quite interesting to experiment with a real implementation of VMNSs, to determine
if the real utility of VMNs outweighs the overhead of implementing them. We focus in this section on a
second area of ongoing investigation: alternate implementations of virtual mobile nodes. We consider four
improvements: (i) more dynamic VMNS, (ii) self-stabilizing VMN implementations, (iii) a VMN implemen-
tation for a more asynchronous environment, and (iv) combining the Mobile Point and Agent algorithms to
implement an even more efficient VMN.

Dynamic Virtual Mobile Nodes. 1In this paper we have assumed that the path of a VMN is fixed in
advance, and the set of VMNs is fixed in advance. In many cases, this is not only sufficient, but in fact
advantageous, as the location of a VMN can be known a priori. However, for some applications it would be
useful if the path of the VMN could be determined on-the-fly. For example, one can imagine using a VMN
to follow a user, either performing a service for that user, or tracking the location of the user. In addition, the
dynamic path could actively avoid unpopulated areas of the network, thus improving robustness. Similarly,
it may be useful to generate virtual nodes dynamically. Consider, for example, the security example where
anew VMN is generated to track every intruder that enters a certain area.

Self-Stabilizing Mobile Points. Long-term robustness of the VMN abstraction can be improved if the
virtual nodes were self-stabilizing. We believe that with a few modifications, the Mobile Point algorithm
can be made self-stabilizing.

Broadcast in the Partially Synchronous Model. The correctness of the Mobile Point Emulator depends
on the reliable and timely delivery of broadcast messages. There are a number of algorithms, however,
for performing totally-ordered broadcast in partially synchronous environments (for example, [17]). In
these algorithms, correctness does not depend on any timing assumptions; instead, the eventual delivery
of messages depends on eventually timely broadcast. We believe it possible to implement a VMN using
such an algorithm (in particular, a variant of an algorithm presented in [1]). Alternatively, there may be
other practical ways to implement a sufficient broadcast service. (One other option is discussed in [7], for
example.)

Mobile Points and Agents. Finally, we observe that it may improve performance to execute the Mobile
Point Emulator on virtual nodes implemented by unreliable agents, rather than on real nodes directly. The
agents are quite simple and efficient, but unreliable; the mobile point emulator is reliable, but not as efficient.
By combining the two algorithms, we can improve the efficiency without sacrificing the reliability.

Conclusions In this paper, we have presented a new technique for implementing algorithms in mobile
ad hoc networks. In general, it is quite difficult to devise algorithms for such a chaotic, unpredictable envi-
ronment. In the VMN Abstraction, however, there exist reliable (virtual) nodes that move in a predictable
manner. Algorithms running on virtual nodes can worry less about fault-tolerance, and more about solving
the task at hand. And algorithms running on virtual nodes can be assured that the virtual node will not be
confined to undesirable parts of the network. Using only local communication, a VMN is able to partici-
pate in global network affairs. We have presented the Mobile Point Emulator, a new algorithm that takes
advantage of location information and dense areas of the network to implement reliable virtual nodes. We
believe that this abstraction, and algorithms in the paradigm of the Mobile Point Emulator, will significantly
simplify the development of algorithms for mobile networks.

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

Input localcast-rev(m)y, ;
Effect:
if (m ¢ pending-actions U completed-actions) then
Enqueue(msg-queue, (simulate, (rcv, m), L))

Input localcast-rev((type, param, oid, (t, j))) 1
Effect:
if ((type, param, oid, (t, j)) ¢ pending-actions) N\
((type, param, oid, (t, j)) ¢ completed-actions)) then
pending -actions <— pending-actions U {(type, param, oid, (t, j))}

Internal init-action(act), ;
Precondition:
status = active
d(act) # L
Effect:
oid < (time, i)
Enqueue(msg-queue, (simulate, act, oid))

Internal simulate-action(act)y, ;
Precondition:
status # listening
(simulate, act, oid, (1, j)) € pending-actions
Y(x, %, %, (f',])) € pending-actions:
<)V ((=1)A({<i))
t+d > time
Effect:
if (starus = active) then
if (8(val, act) # L)then
val < d(val, act)
completed -actions <— completed-actions U
{(simulate, act, oid, {1, j)) }
if (act = (send, m)) then
Enqueue(msg-queue, m)
pending-actions < pending-actions \ {(simulate, act, oid, {t, j))}

Internal simulate-geo-update()y, ;
Precondition:

None.
Effect:

val < §(val, (geo-update, clock, mp-location))

Internal reset();, ;
Precondition:
status = listening
Effect:
Enqueue(msg-queue, (reset, L, 1))

Internal simulate-reset(), ;
Precondition:
(reset, , , (t, j)) € pending-actions
Y{x, =, *, (f',]')) € pending-actions:
(1<)V ((t=1) A (i <))
t+d > time
Effect:
status <— active
val < start(T)
Join-id < (0, ip)
answered-join-reqs < ()
pending-actions < ()
completed-actions < ()
Ibcast-queue < ()
geocast-queue <— 0

Internal join() ;
Precondition:
| location -mp-location| <R
status = idle
Effect:
Join-id < {clock, i)
status < joining
Enqueue(msg-queue, (join-req, L, join-id))

Internal process-join(), ;
Precondition:
(join-req, *, jid, (1, j)) € pending-actions
Y(x, =, *, (f',]')) € pending-actions:
(1< OV ((=1) NG <))
t+d > time
Effect:
if ((starus = joining) A (jid = join-id)) then
status < listening
if ((starus = active) A (jid & answered-join-reqs)) then
Enqueue(msg-queue, (join-ack, jid, val))
pending-actions <— pending-actions \ {{join-req, L, jid, (t,j))}

Internal process-joinack()y, ;
Precondition:
(join-req, v, jid, (t, j)) € pending-actions
Y(join-req, , x, (', j')) € pending-actions:
(<) V((=1")AG<T))
t+d > time
Effect:
answered-join-reqs < answered-join-reqs U {jid}
if ((sratus = listening) A (jid = join-id)) then
status < active
val v
pending-actions < pending-actions \ {(join-act, v, jid, (z, j))}

Internal leave(), ;
Precondition:
| location -mp-location| > R
status # idle
Effect:
status <+ idle
Join-id < (0, ip)
val < start(T)
answered-join-reqs < ()
pending-actions < ()
completed-actions <)
Ibcast-queue <+
geocast-queue <— 0

Output localcast(m)y, ;

Precondition:
Peek(msg-queue) = m

Effect:
Dequeue(msg-queue)

Output localcast((type, param, oid, (t,i)))p.;
Precondition:

Peek(msg-queue) = (type, param, oid)

t = time
Effect:

Dequeue(msg-queue)

Input geo-update(/, 1), ;
Effect:

location <+ 1

clock <t

Figure 6: Mobile Point that implements VMN £ executing I/O automaton 7 = (sig, states, start, §)

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BAR-JOSEPH, Z., KEIDAR, I., AND LYNCH, N. A. Early-delivery dynamic atomic broadcast. In
Proceedings of the 16th International Symposium on DIStributed Computing (2002), pp. 1-16.

BEAL, J. Persistent nodes for reliable memory in geographically local networks. Tech. Rep. AIM-
2003-11, MIT, 2003.

BEAL, J. A robust amorphous hierarchy from persistent nodes. In Proceedings of the International
Conference on Communication Systems and Networks (2003).

BEIMEL, A., AND DOLEV, S. Buses for anonymous message delivery. Journal of Cryptology 16, 1
(2003), 25-29.

CaMmp, T., AND LIU, Y. An adaptive mesh-based protocol for geocast routing. Journal of Parallel and
Distributed Computing: Special Issue on Mobile Ad-hoc Networking and Computing (2002), 196-213.

CHATZIGIANNAKIS, 1., NIKOLETSEAS, S., AND SPIRAKIS, P. An efficient communication strategy
for ad-hoc mobile networks. In Proc. 15th International Symposium on Distributed Computing (2001),
pp- 320 — 322.

DOLEV, S., GILBERT, S., LYNCH, N. A., SHVARTSMAN, A. A., AND WELCH, J. Geoquorums:
Implementing atomic memory in mobile ad hoc networks. In Proceeding of the 17th International
Conference on Distributed Computing (October 2003).

DOLEV, S., GILBERT, S., LYNCH, N. A., SHVARTSMAN, A. A., AND WELCH, J. L. Geoquorums:
Implementing atomic memory in ad hoc networks. Tech. Rep. LCS-TR-900, MIT, 2003.

DOLEYV, S., SCHILLER, E., AND WELCH, J. Random walk for self-stabilizing group communication
in ad-hoc networks. In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems
(2002), pp. 70-79.

Communications of the ACM, Special section on Group Communication Systems (1996), vol. 39(4).

HATzIis, K. P., PENTARIS, G. P., SPIRAKIS, P. G., TAMPAKAS, V. T., AND TAN, R. B. Fundamental
control algorithms in mobile networks. In Proc. of the 1th ACM symposium on Parallel Algorithms
and Architectures archive (Saint Malo, France, 1999), pp. 251 — 260.

JOHNSON, D. B., AND MALTZ, D. A. Dynamic source routing in ad hoc wireless networks. In Mobile
Computing, T. Imielinski and H. Korth, Eds. Kluwer Academic Publishers, 1996, ch. 5, pp. 153-181.

JOHNSON, D. B., MALTZ, D. A., AND BROCH, J. DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networks. Ad Hoc Networking (2001), 139-172.

KEIDAR, I. A highly available paradigm for consistent object replication. Master’s thesis, Hebrew
University, Jerusalem, 1994. URL: http://www.cs.huji.ac.il/simtransis/publications.html.

KEIDAR, I., AND DOLEV, D. Efficient message ordering in dynamic networks. In Proceedings of the
fifteenth annual ACM symposium on Principles of distributed computing (1996), ACM Press, pp. 68—
76.

11

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Communications of
the ACM 21,7 (july 1978), 558-565.

LAMPORT, L. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (1998),
133-169.

L1, Q., AND RUS, D. Sending messages to mobile users in disconnected ad-hoc wireless networks. In
Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing (2000).

LYNCH, N. A. Distributed Algorithms. Morgan Kaufman, 1996.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. The design of an acquisi-
tional query processor for sensor networks. In SIGMOD Conference (2003), pp. 491 — 502.

NATH, B., AND NICULESCU, D. Routing on a curve. ACM SIGCOMM Computer Communication
Review 33, 1 (January 2003), 150 — 160.

NAvaAsS, J. C., AND IMIELINSKI, T. Geocast — geographic addressing and routing. In ACM/IEEE Intl.
Conference on Mobile Computing and Networking (1997), pp. 66-76.

PERKINS, C., AND ROYER, E. M. Ad-hoc on-demand distance vector (AODV) routing. In Proceed-
ings of IEEE WMCSA (1999), pp. 90-100.

PRIYANTHA, N. B., CHAKRABORTY, A., AND BALAKRISHNAN, H. The cricket location-support
system. In Proc. of the 6th ACM MOBICOM (August 2000), pp. 32-43.

12

A Physical Mobile Node Routing Scheme

State:
id, constant, physical mobile node identifier
time, continuously changing, the current time
location, continuously changing, the current location of VMN ¢
messenger-location, continuously changing, the current location of the messenger VMN
local-messages, a set of messages to be forwarded, initially .
delivered, a set of messages to deliver, initially ()

Input send(m);; Output localcast(nbr, i, 7, £);
Effect: Precondition:
local-messages < local-messages U (ij,m) | messenger-location — location| < R
t = time
Output rcv(m); ; £= location
Precondition: Effect:
m € delivered None.
Effect:
delivered < delivered \ {m} Input localcast-rcv(message, (src.destm));
Effect:
Output localcast(message, m); if (dest = i) then
Precondition: delivered < delivered U {m}

m € local-messages

| messenger-location — location| < R
Effect:

local-messages < local-messages \ {m}

IOA code for running on PMN i that wants to send and receive messages. The input send and the
output rcv are the external interface to the routing service. The PMN notifies the messenger VMN
of itself with a nbr message, and sends it messages to deliver.

State:
id, constant, physical mobile node identifier
timeout, constant, frequency with which broadcasts occur
time, the current real time, as of the last Geosensor update
location, the current location, as of the last Geosensor update
nbr-loc, set of neighbors, tuples of the form (id, time, location), initially ()
local-messages, a set of messages to be forwarded, initially .
delivered, a set of messages to deliver, initially ()

Input localcast-rcv(message, m);,; Output localcast(message, (src, dest, m));,
Effect: Precondition:
local-messages < local-messages U m (]', t, K)E nbr-loc
(R — | location — £])> (Vmag | time — t|)
Input localcast-rev(nbr, id, time, location) ; J =dest
Effect: (sre, dest, m) € local-messages
nbr-loc < nbr-loc U (id, time, location) Effect:

local-messages < local-messages \ (src, dest, m)

IOA code for running on messenger VMN ¢. The VMN listens for nearby nodes (i.e., nbr messages),
and delivers messages.

B Virtual Mobile Node Routing Scheme

State:
id, constant, physical mobile node identifier
location, continuously changing, the current location of VMN ¢
vmn-location (), continuously changing, the current location of VMN £
local-messages, a set of messages to be forwarded, initially 0.
delivered, a set of messages to deliver, initially ()

Input send(m);;
Effect:
local-messages < local-messages U (i,j,m)

Output rcv(m); ;
Precondition:
m € delivered
Effect:
delivered < delivered \ {m}

Output localcast(message, m);
Precondition:

m € local-messages

(, dest, y=m

£= next-hop(i, dest)

| vmn-location(£) — location} < R
Effect:

local-messages < local-messages \ {m}

Input localcast-rcv(message, (src.dest,m))j
Effect:
if (dest = i) then
delivered < delivered U {m}
else
local-messages < local-messages U {(src, dest, m)}

IOA code for running on VMN that wants to send and deliver messages. The next-hop function
determines the next hop in the routing path, determined by running a time-dependent shortest-path
algorithm on the motion paths of the VMNs. Each VMN calculates the next hop, and waits until it
is near the desired VMN. At this point, it passes the message to that virtual node.

il

Simple Data Collection Scheme

State:

id, constant, physical mobile node identifier

result-set, current set of results, initially @

data-set, current raw data set, initially)

outgoing, set of outgoing messages, initially ()

g, a query structure, with the following subfields:
area, the geographic area in which the query should be evaluated
freq, the frequency with which the data should be sampled
duration, the duration with which the data should be sampled
eval(), an evaluation procedure for the query
comb(. . .), procedure that combines two data sets

Input localcast-rev(query, new-query); ; Output localcast(query, g);, ;
Effect: Precondition:
new-query < q None.
Effect:
Input localcast-rcv(data, new-data); ; None.
Effect:
If data, location, and time meet the requirements of the query, then: Output Iocalcast(m) g
data-set < q.comb(data-set, new-data) Precondition:
m € outgoing
Input localcast-rcv(request-data) ; ; Effect:
Effect: outgoing < outgoing \ {m}

outgoing <+ outgoing U {(output-data, dara-set)}
Internal aggregate();
Precondition:
None.
Effect:
result-set < q.eval(data-ser)

IOA code for running on VMNSs collecting and processing sensor data. The VMN spreads the query to all
the PMNs, and collects and aggregates data from the PMNs. When it receives a request for data, it sends
it out.

State:
id, constant, physical mobile node identifier
sensor-data, continously updated sensor data
VMN-locations (), continuously updated, the locatino of VMN £
data-set, current accumulated data, initially @
outgoing, a set of outgoing localcast messages, initially ()
virtual-nodes, set of virtual nodes collecting data, initially 0
¢, a query structure, with subfields as above

Input initiate-query(new-query) Output localcast(request-data)
Effect: Precondition:

outgoing < outgoing U {(query, new-query)} Node 7 wants data

Effect:

Input localcast-rcv(query, new-query); ; None.
Effect:

q < new-query Output localcast(m); ;

virtual-nodes < virtual-nodes U {j} Precondition:

m € outgoing

Input localcast-rev(output-data, new-data-ser) | VMN-locations(j) — location| < R
Effect: Effect:

Send data to requester outgoing < outgoing \ {m}
Output localcast(data, data-set); ; Internal store-data();
Precondition: Precondition:

J € virtual-nodes location is consistent with q.area

| VMN-locations(j) — location| < R time is consistent with g.freq and ¢.duration
Effect: Effect:

None. data-set < q.comb(data-set, sensor-data)

IOA code for running on sensor PMNs. When the sensor PMN wants to initiate a new query, it sends
the query to the nearest VMN. The VMN then propagates the query to all the sensors. Each sensor then
stores and aggregates the data, and sends it on to a passing VMN.

D Agent Emulator Implementation

Signature:

Input:
rev(m)p, ;,m € M
rev((neighbor-update, nbr-loc, src));, nbr-loc € RZ%x R20
rev((agent, v, dest));, v € states(T), dest € I
geo-update(/,)op;,;, [€ L, t € R>O

Internal:
simulate-action(), ;
simulate-geo-update()y, ;

State:

nbr-set, location information on neighbors, initially ()

Output:

send(m)p, ;,m € M

send((neighbor-update, nbr-loc));, nbr-loc € RZ0x RZ0
send((agent, v, dest));, v € states(T), dest € I

agent-location € L, continuous, the location of the VMN at the current time

clock € R29, the current time, initially 0, continuously updated by the geosensor
location € L, the current physical location, continuously updated by the geosensor
msg-queue, a queue of messages to be sent by the communication service, initially 0

status € {active, idle}, indicates whether the host is emulating the VMN
val € states(T), holds current state of the simulated I/O automaton, initially start()

Transitions:

Input rev(m)p, ;
Effect:
if (status = active)
val < §(val, (rcv, m))

Input rcv((neighbor-update, nbr-loc, src));
Effect:
nbr-set <— nbr-set U { (src, nbr-loc, clock) }

Input rcv((agent, v, dest));
Effect:
if (dest = i) then
val v

Input geo-update(/, 1), ;
Effect:

location <+ 1

clock <t

Internal simulate-action(), ;
Precondition:

status = active

d(val, act) # L

act # (send, m)
Effect:

val < é(val, act)

Output send(m)y, ;
Precondition:

status = active

d(val, (send, m)) # L
Effect:

val < d(val, (send, m))

Output send((neighbor-update, nbr-loc, src));
Precondition:

nbr-loc = location

src =1
Effect:

None.

Output send({(agent, v, dest});
Precondition:

status = active

(dest, £, ty € nbr-set

R — |location — €] > Vmaz - |clock — t]

R — |agent-location — £] > V - |clock — t|
Effect:

status <— idle

Internal simulate-geo-update(), ;
Precondition:
None.
Effect:
val < &(val, (geo-update, clock, agent-location))

Agent Emulator Implementation for Node i and VMN & for I/O automaton 7 = (sig, states, start, d)

v

