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1 Introduction

The IOA language provides notations for defining both primitive and composite I/O automata.
This note describes, both formally and with examples, the constraints on these definitions, the
composability requirements for the components of a composite automaton, and the transformation
of a composite automaton into an equivalent primitive automaton.

Section [2 introduces four examples used throughout this note to illustrate new definitions and
operations. Section [3| treats IOA programs for primitive I/O automata: it introduces notations
for describing the syntactic structures that appear in these programs, and it lists syntactic and
semantic conditions that these programs must satisfy to represent valid primitive I/O automata.
Section [4] describes how to reformulate primitive IOA programs into an equivalent but more regular
(desugared) form that is used in later definitions in this note. Section |5| treats IOA programs
for composite I/O automata: it introduces notations for describing the syntactic structures that
appear in these programs, describes resortings induced by them, and lists syntactic and semantic
conditions that these programs must satisfy to represent valid composite I/O automata. Section |§|
describes the translation of the name spaces of component automata into a unified name space
for the composite automaton. Section [7] shows how to expand an IOA program for a composite
automaton into an equivalent IOA program for a primitive automaton. The expansion is generated
by combining syntactic structures of the desugared programs for the component automata after
applying appropriate replacements of sorts and variables. Section [8| details the expansion of the
composite automaton introduced in Section [2| using the desugared forms developed throughout
Sections [4H6] and the techniques described in Section[7} Finally, Section [J] gives a precise definition
of the resortings and substitutions used to replace sorts and variables.

Nancy Lynch and Mandana Vaziri contributed to the design of the composition mechanisms
described in this note. Dilsun Kaynar suggested numerous and substantial clarifications in the
note’s presentation.






2 Illustrative examples

We use several examples of primitive and composite automata to illustrate both the notations
provided by IOA and also the formal semantics of IOA. We refer to Examples throughout

Sections Example [2.4] is relevant only to Sections

Example 2.1 Figure contains an IOA specification for a communication channel that can both
drop duplicate messages and reorder messages. Type parameters for the specification, Node and
Msg, represent the set of nodes that can be connected by channels and the set of messages that
can be transmitted. Individual parameters, i and j, represent the nodes connected by a particular
channel.

Two features of this example warrant particular attention later in this note. First, the example
uses both type and variable automaton parameters. Second, it uses the keyword const to indicate
that the parameters i and j in the action signature are terms referring to the parameters i and j
of the automaton, rather than fresh variable declarations.

automaton Channel (Node, Msg:type, i, j:Node)
signature
input send(const i, const j, m:Msg)
output receive(const i, const j, m:Msg)
states contents:Set[Msg]l := {}
transitions
input send(i, j, m)
eff contents := insert(m, contents)
output receive(i, j, m)
pre m € contents
eff contents := delete(m, contents)

Figure 2.1: Sample automaton Channel

Example 2.2 Figure contains the specification for a process that runs on a node indexed by a
natural number and that communicates with its neighbors by sending and receiving messages that
consist of natural numbers. The process records the smallest value it has received and passes on all
values that exceed the recorded value; if the set of values waiting to be passed on grows too large,
the process can also lose a nondeterministic set of those values. Interesting features of this example
include the use of terms as parameters in transition definitions and a local variable representing
an initial nondeterministic choice and temporary state local to the transition. (The keyword local,
newly added to the IOA language, replaces and extends the keyword choose formerly used to
introduce hidden parameters. See Section (3| for a fuller description of local parameters.)

Example 2.3 Figure contains the specification for another process that watches for overflow
actions and reports those that meet a simple criterion. Interesting features of this example include
more complicated uses of type parameters and where clauses, both in the action signature and to
distinguish two transition definitions for a single action.

Example 2.4 Finally, Figure[2.4] contains the specification of an automaton formed by composing
instances of these three primitive automata. This specification relies on an auxiliary specification,
shown in Figure [2.5] to define the term between(l, nProcesses).



automaton P(n:Int)
signature
input receive(const n-1, const n, x:Int)
output send(const n, const n+1, x:Int),
overflow(const n, s:Set[Int])

states
val:Int := O,
toSend:Set[Int] := {}

transitions
input receive(n-1, n, x)
eff if val = 0 then val := x
elseif x < val then
toSend := insert(val, toSend);
val := x
elseif val < x then
toSend := insert(x, toSend)
fi
output send(n, n+1, x)
pre x € toSend
eff toSend := delete(x, toSend)
output overflow(n, s:Set[Int]; local t:Set[Int])
pre s = toSend A n < size(s) At C s
eff toSend := t

Figure 2.2: Sample automaton P

automaton Watch(T:type, what:Set[T])
signature
input overflow(x:T, s:Set[T]) where x € what
output found(x:T) where x € what

states seen:Array[T,Bool] := constant(false)
transitions
input overflow(x, s U {x})
eff seen[x] := true
input overflow(x, s) where - (x € s)
eff seen[x] := false

output found (x)
pre seen [x]

Figure 2.3: Sample automaton Watch



axioms Between (Int, <)

automaton Sys(nProcesses: Int)
components C[n:Int]: Channel(Int, Int, n, n+1)
where 1 < n A n < nProcesses;
P[n:Int] where 1 < n A n < nProcesses;
W: Watch(Int, between(l, nProcesses))
hidden send(nProcesses, nProcesses+1, m)

invariant of Sys:
V m:Int V n:Int (1 <m Am < n A n < nProcesses
= P[m].val < P[n].val V P[n].val = 0)

Figure 2.4: Sample composite automaton Sys

Between (T, <:T,T—Bool): trait
includes Set (T)
introduces
_<__: T, T— Bool
between: T, T — Set[T]
asserts with x, y, z: T

x € between(y, z) & y < x A x <z

Figure 2.5: Auxiliary definition of function between






3 Definitions for primitive automata

In order to describe syntactic manipulations of IOA programs, we introduce a nomenclature for
their syntactic elements. We expose just those elements of an IOA program we use to describe the
expansion of composite automata into primitive form. Section introduces nomenclature for,
and the meaning of, syntactic structures in primitive automata. Section examines how states
are represented and referenced in primitive IOA programs. Sections and describe semantic
conditions that must hold for an IOA program to represent a valid primitive I/O automaton.

3.1 Syntax

Figure illustrates the general form of an IOA definition for a primitive I/O automaton. The
figure exposes just those elements of an IOA program we use to describe the expansion of composite
automata into primitive form. It does not expose the individual statements that appear in an eff
clause. (These are treated separately in Section@) Rather the figure simply refers to the “program”
(i.e., the complete sequence of statements) in an eff clause.

automaton A(params?)
assumes Assumptions

signature

input 7 (params’>™) where PA™
output 7 (pammsfut) where Pout

internal ﬁ(paramsﬁw ) where Pmt

states state Vars? := init Vals” initially P mzt

transitions

. A,
input (pammsmt ; local local Vars nt, ") case t; where Pmt
s
eff ngmt ensuring ensurmgmt

output 7 (pammsfutt . local local Vars®: Outt ) case t; where Poutt

pre Pre?t

out t;

. . Am
eff Progout ¢, ensuring ensuring .

A
internal 7(params

int,1;> local localVars tt ) case t; where p

mt t;

pre Pre?t

mt t;

eff Pro ensuring ensuring"
gmt,tj g 9int,t;

Figure 3.1: General form of a primitive automaton



Notations and writing conventions

In Figure params® denotes the sequence of type and variable declarations that serve as the
parameters of the automaton A. The Assumptions are LSL theories defining required properties
for these parameters. Notations pamms?’ﬂd and pammsflfdt , where kind is one of in, out, or
int, denote sequences of variables and/or terms that serve as parameters for the actlon m and

77T A ?71—
its transition definitions. The notations Pkmd, Pl Pkmdt , Prekmdt , and ensurmgkmdt denote

predicates (i.e., boolean-valued expressions). The notation init Vals? denotes the sequence of terms
or choose expressions serving as initial values for the state variables. If the definition of A does
not specify an initial value for some state variable, we treat the declaration of that state variable
as equivalent to one of the form x:T := choose t:T where true. The notation Prog,’jifd’ 4 denotes

a program. The notation localVars?Zfdt denotes a sequence of variables. In general, a notation
ending with an “s” denotes a sequence of zero or more elements.

Our conventions for decorating syntactic structures throughout this paper are as follows. Su-
perscripts refer either to automaton names or to automaton-name/action-name pairs. Automaton
names are capitalized (e.g., A, C;, P). Action names are not capitalized and are either Greek letters
(e.g., m, 1) or written in mono-spaced font (e.g., send). Subscripts refer to more specific restric-
tions such as action kind (i.e., in, out, or int), transition label (e.g., t1), or origin (e.g., desug). IOA
keywords appear in a small-bold roman font. References to other text in sample IOA programs
appear in a mono-spaced font. Syntactic structure labels and names in general IOA programs are
italicized.

Syntactic elements of primitive IOA programs

Variables in IOA programs can be declared explicitly as automaton parameters (UCM“S , Which is
a subsequence of params?), as state variables (stateVars?), or as local variables (local Vars:: i dt )i
they can also be declared implicitly as post-state variables that correspond to state varlables
post-local variables corresponding to local variables, or by their appearance in action parame-

t 4™ which i ATy or in transiti t Am  which i
ers (vars;", which appear in params;’") or in transition parameters (varsmt , which appear in

pammsﬁlt ). Variables in IOA programs can appear in parameters, terms, predicates, and pro-

grams. For simplicity, Figure [3.1] does not indicate which variables may have free occurrences in

which parameters, terms, predicates, or programs; Section [3.3] describes which can occur where.

As an illustration, variables that occur freely in Pm’7r must be in one of the sequences vars4 or
A

vars;,

Below, we define each labeled syntactic structure and then illustrate it using selections from
Examples 2.3

Parameters

e params? is the sequence of formal parameters for A, which can be either variables or type

parameters. We decompose params® into two disjoint subsequences, one (vars?) containing
variable declarations and the other (typesA) containing type parameters (identifiers qualified
by the keyword type). For example, params"at°h is (T:type, what:Set[T]), which consists
of a type parameter T followed by a variable what:Set[T]. Hence types"ateh ig (T:type) and

vars"te is (yhat:Set [T]).

. pammsﬁi’sd is the sequence of parameters for the set of actions of type kind named by =«



in A’s signature. Action parameters can be either variables or const termsﬂ For example,

Channel,send . ¢ 3 £ M
params,, is (const i, const j, m:Msg).

A . . " "

® params kifd .. is the sequence of terms serving as parameters for transition definition ¢; for
. i .

actions of type kind named by m. Whereas 7w can appear at most once as the name of an

input, output, and internal action in A’s signature, it can have more than one transition
Watch,overflow is

definition as an input, output, and internal action. For example, params;,

Watch,overflow .
is (x, s)

(x, s U {x}) and params,, ,

Variables

A A

e As noted above, vars® is the sequence of variables that are declared explicitly in params®,
that is, vars? is the sequence of identifiers in params? qualified by some sort other than
type For example, vars®Pamel ig (5 :Node, j:Node).

Arx . . . . . A
e wvars,; . is the sequence of variable declarations (i.e., non-const parameters) in params;; .

Channel,send

For example, vars,, is (m:Msg).

Channel is <

e state Vars? is the sequence of state variables of A. For example, state Vars contents:Set [Msg]).

e postVars? is the sequence of variables for post-states of A that can occur in any ensum’ng?i’;rd ‘-
sy

These variables are primed versions of variables in state Vars?. For example, postVarsP is
(val’:Int, toSend’:Set[Int] >E|

A . . . A . A
® VaTS)g 18 the sequence of variables that occur freely in params;,; djt but are not in vars”.

P

P,send . ..
) 18 <x:Int), because n is in vars® .

For example, vars,,; 3,

° localVarsﬁi’;d 4 is a sequence of additional local variables for transition definition ¢; for actions
of type kind named 7; these variables are not listed as parameters of 7 in the signature of A.
For example, localVarsE;fﬁfrﬂow is (t:Set[Int]).

e localPost Varsﬁifd 4 is the sequence of post-local variables that name the values of local vari-

A
kind,tj :

localVarsﬁJd . that appear on the left side of an assignment statement in the transition
A

ables after execution of Prog These variables are primed versions of variables in

" . A,
definition and that can occur in ensuring;;’, , .
)

"We may want to consider an alternative treatment for action parameters, similar to that for pammsfi;zi’t], that
would dispense with the keyword const and treat all action parameters as terms, rather than as a mixture of terms
and variable declarations. The current treatment allows factored notations, such as 7 (i, :Int), which introduce a list
of variables of a given sort; the alternative treatment would require unfactored notations, such as = (i:Int, j:Int), in
which a sort qualification applies only to the term it follows immediately.

2When we define a sequence by selecting some members of another sequence, we preserve order in projecting from
the defining sequence to the defined sequence. For example, if u:S precedes v:T' in params®, then u:S precedes v:T
in vars?.

3Previously, only the primed versions of state variables that appeared on the left side of an assignment statement

in the transition definition were allowed to appear in an ensuring clause. For example, we defined postVarsopditelnd

to be (toSend’:Set[Int]), which did not include the variable val’, because val does not appear on the left side
of an assignment in this transition definition. The more complicated definition was intended as a safeguard against
specifiers writing val’ in an ensuring clause when there was no way the value of val’ could differ from that of
val. However, the more complicated definition did not safeguard against all such errors, because specifiers could still
write A’ .val in an ensuring clause. Hence the simpler definition appears preferable.



Predicates

o PA™ is the where clause for the set of actions of type kind named by 7 in A’s signature. For

kind
example, PY;tCh’found is x € what. If P,ﬁ;{; is not specified explicitly, it is taken to be true.

If action 7 does not appear as a particular kind—input, output, or internal—in A’s signature,
then P,ﬁ;:i is defined to be false.

° ngm is a predicate constraining the initial values for A’s state variables. If it is not specified

explicitly, it is taken to be true.

. Pﬁ;; L is the where clause for transition definition ¢; for actions of type kind named by 7.
pgft?h’overﬂow is = (x € ). If P,i;gj’tj is not specified explicitly, it is taken
to be true. If action m does not appear as a particular kind in A’s signature, then par

kind,t;
defined to be false.

For example,

is

. Pre;ifd’ 4 is the precondition for transition definition ¢; for actions of type kind named m,

P,send

where kind is out or int. For example, Pre ;%
b

. Ax . .
is x € toSend. If Pre;;, d 18 not specified

explicitly, it is taken to be true. For every input transition, Preﬁl’:_ is defined to be true
1A

because transition definitions for input actions do not have preconditions.

° ensuringﬁiﬁd 4 is the ensuring clause in the effects clause in transition definition ¢; for actions
of type kind named . If ensurmg?i;fd .. is not specified explicitly, it is taken to be true. In
]

the examples, all ensuring clauses are true by defaultﬁ

Programs and values

° Prog?i’;;d’ L is the program in the effects clause in transition definition t; for actions of type

P,overflow

out,t; 1s toSend := t.

kind named 7. For example, Prog

e initVals? is the sequence of initial values for A’s state variables, which can be specified
as either terms or choose expressions. A state variable without an explicit initial value is
equivalent to one with an unconstrained initial value, that is, to one specified by a choose
expression constrained by the predicate true. For example, initVals® is (0, {3).

e {; is an optional identifier used to distinguish transition definitions of the same kind for the
same action 7. If there is no case clause, ¢; is taken to be an arbitrary, but unique labelﬁ

4The keyword ensuring replaces the so that keyword, which has been removed from IOA. Formerly, so that
was used to introduce three types of predicates in IOA: the initialization predicate for automaton state, the post-state
predicate for transition definitions, and the loop variable predicate in for statements. This multiple use was confusing.
Furthermore, the keyword where also introduces predicates, which led to additional confusion. In the new syntax,
automaton state predicates are introduced by initially, post-state predicates are introduced by ensuring, and all
other predicates (including for predicates) are introduced by where. The semantics of the clauses containing these
predicates has not changed.

®The case clause was introduced for use by the IOA simulator; it is not described yet in the IOA manual.

10



3.2 Aggregate sorts for state and local variables
State variables

The value (or the lvalue) of any state variable (e.g., toSend:Set[Int]) may be referenced using
that variable (e.g., toSend) as if it were a constant operator (e.g., toSend: — Set [Int])ﬁ How-
ever, in contexts that involve more than a single automaton (e.g., simulation relations or composite
automata), such variable references may be ambiguous. Hence IOA provides an equivalent, unam-
biguous notation for the values of state variables.

For each automaton A without type parameters, IOA automatically defines a sort States[A],
known as the aggregate state sort of A, as a tuple sort with a selection operator __.v:States[A] — T
for each state variable v of sort T. IOA also automatically defines variables A and A’ of sort
States[A] to represent the aggregate state and aggregate post-state of A. The terms A.v and A'.v
are equivalent to references to the state variable v and to its value v/ in a post-state. For example,
States[P] = tuple of val:Int, toSend:Set[Int], and P.val is a term of sort Int equivalent to the
state variable val.

If an automaton A has type parameters, the notation for its aggregate state sort is more
complicated, because there can be different instantiations of A with different actual types, and a
simple notation States|A] for the aggregate state sort would be ambiguous. To avoid this ambiguity,
IOA includes the type parameters of A (if any) in the notation States[A, types“] for the aggregate
state sort of A, and the aggregate state and post-state variables A have this sort States[A, types].
For example, States[Channel,Node,Msg] = tuple of contents:Set[Msg], and Channel.contents is
a term of sort Set [Msg] equivalent to the state variable contents.

As we will see in Section [5.2] including type parameters in the name of the aggregate state sort
enables us to generate distinct aggregate state sorts for each instantiation of A.

Local variables

In previous editions of the language, IOA introduced hidden action parameters with the keyword
choose appearing subsequent to the where clause. Thus, hidden or choose parameters could not
appear in the where clause. In the course of writing this document, we discovered a need for hidden
parameters in the where clauses of desugared input actions (see Section. In addition, we believed
that the ability to assign (temporary) values to hidden parameters would simplify the definitions
of expanded transition definitions of composite automatam We introduced local variables into
IOA to serve both these purposes. Local variables replace and extend choose parameters. Thus,
the keyword local replaces the keyword choose in transition definition parameter lists and local
variables are those introduced following the keyword local in these parameter lists.

In the new notation, the scope of local variables extends to the whole transition definition, not
just to the precondition and effects. In addition, local variables may be assigned values in the eff
clause. Semantically, local variables are not part of the state of the I/O automaton represented
by an IOA program. Rather, they define intermediate states that occur during the execution of
an atomic transitions, but are not visible externally. Therefore, local variables may not appear in
simulation relations or invariants.

Although local variables differ significantly from state variables in terms of semantics, their
syntactic treatment is similar. As for state variables, IOA automatically defines an aggregate local

5An unambiguous variable identifier can be used alone. If two variables defined in the same scope have the same
identifier, but different sorts, their identifier may need to be qualified by their sorts.

"In the end, our final definitions in Sections do not to use this feature. However, the ability to assign to
local variables was deemed useful and remains in the language.
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sort, together with aggregate local and post-local variables, to provide a second, equivalent notation
for references to local and post-local variables. For every transition definition ¢; for an action 7 of
type kind in automaton A, the aggregate local sort Locals[A, types?, kind, T, t;] is a tuple sort with
a selection operator __.v:States[A] — T for each local variable v of sort T'. Furthermore, aggregate
local and post-local variables, A and A’ of sort local Vars’,;li’;rd’tj7 are defined in the scope of that
transition definition. If there is only one transition definition for an action m of type kind, we omit
t; in the notation for this sort. For example, the aggregate locals sort Locals[P,out,overflow] is
tuple of t:Set[Int], and P.t is a term of sort Set[Int] equivalent to the local variable t in the
scope of overflow.

Note that the automaton name A is used as the identifier for two aggregate variables in ev-
ery transition definition: A:States[A, types?] and A:Locals[A, types?, kind, ., tj]. As specified in
Section state Vars? and localVarsfifd’tj must have no variables in common. Therefore, the
aggregate sorts have no selection operators in common and there is no ambiguity.

The initial values of local variables are constrained by the where predicate of the declaring
transition definition. In particular, a transition kind 7(...) case t; is defined only for values of its
parameters that

1. satisfy the where clause of that kind of 7 in the signature of A, and

2. together with some choice of initial values for its local variables, satisfy the where clause of
the transition definition.

A transition is enabled only for the values of its parameters and local variables for which it is
defined and for which the precondition, if any, is satisfied.

Thus, the initial values of local variables are chosen nondeterministically from among the values
that meet these constraints. Local variables serve as hidden parameters with the semantics formerly
applied to choose parameters. We provide a formal treatment of the “values of its parameters”
and “some choice of values” at the end of Section [l

Example 3.1 The type declarations and variables automatically defined for the sample automata
Channel, P, and Watch are shown in Figure|3.2

type States[Channel,Node,Msg] = tuple of contents:Set[Msg]
type States[P] = tuple of val:Int, toSend:Set[Int]
type States[Watch,T] = tuple of seen:Array[T,Booll
type Locals[P,out,overflow] = tuple of t:Set[Int]

Channel: States[Channel, Node, Msg]
P: States[P]

Watch: States[Watch,T]

P: Locals[P,out,overflow]

Figure 3.2: Automatically defined types and variables for sample automata

3.3 Static semantic checks

The following conditions must be true for an IOA program to represent a valid primitive I/O au-
tomaton. These conditions, which can be checked statically, are currently performed by ioaCheck,
the IOA parser and static-semantic checker.

12



LOCATION OF TERM | VARIABLES THAT CAN OCCUR FREELY IN TERM
params™ vars®
A A A
params,,; vars®, varsy; .
Am A Am
Pra vars”, varsy;
init Vals” vars?
PA. vars?, stateVars?
A A A
paramsig vars”, varsyig o
A A A A
Pkmd@- vars”, varsygg 4 localVarskind,tj
A A Am Am A
Prekmd’tj vars”, varsying o localVarskmd’tj,state Vars
A A A A, A
ngkmd,tj vars”, varsyg ¢ localVarskind’tj, state Vars
Ar vars?, varsﬁ.’ﬂd ‘o localVarsﬁ.’ﬂd . State Vars?,
ensum’ngki’nd " | ind,t; | ind,t;
Y] T
postVars*, localPostVarskmd’tj

Table 3.1: Variables that can occur freely in terms in the definition of a primitive automaton.
Variables listed on the right may occur freely in the syntactic structure listed to their left.

v" No sort appears more than once in types”.

v

A

Each action name (e.g., ) occurs at most three times in the signature of an automaton: at
most once in a list of input actions, at most once in a list of output actions, and at most once
in a list of internal actions.

Each occurrence of an action name (e.g., 7) in the signature of an automaton, or in one of
its transition definitions, must be followed by the same number and sorts of parameters.

A

A . . . .
The sequences vars” and vars ki’;d of variables contain no duplicates; furthermore, no variable

appears in both vars? and vars,fi’;rd for any value of kind

For each transition definition ¢; for an action of type kind named 7, no variable appears more

A

than once in the combination of the sequences vars?, stateVars?, postVars?, vars’é;fd b
)L

local Vars ,’iﬁd7 - and localPost Varsfl.’;;dy -
For each transition definition ¢; for an action of type kind named 7, and for any identifier v

and sort S, the sequences state Vars? and local Vars‘,?igd 4 do not contain both of the variables
v:S and v':S. '

Any operator that occurs in a term used in the definition of an automaton must be introduced
by a type definition or axioms clause in the IOA specification that contains the automaton

SThis restriction is designed to avoid the confusion that would result if variables in vars;y™, are allowed to hide

i

or override variables with the same identifiers and sorts in vars®. A stronger restriction would prohibit an identifier
from appearing in two different variables (of different sorts) in vars® and vars,’?i;fd; this restriction would avoid the
need to pick a fresh variable when an instantiation of A causes two variables with the same identifier to clash by
mapping their sorts to a common sort. However, IOA does not make this stronger restriction.

13



definition, by a theory specified in the assumes clause of the definition, or by a built-in
datatype of IOA.

v" Any variable that occurs freely in a term used in the definition of an automaton must satisfy
the restrictions imposed by Table

3.4 Semantic proof obligations

The following conditions must also be true for an IOA program to represent a valid I/O automaton.
Except in special cases, these conditions cannot be checked automatically, because they may require
nontrivial proofs (or even be undecidable); hence static semantic checkers must translate all but the
simplest of them into proof obligations for an automated proof assistant. These proof obligations
must be discharged using the axioms provided by IOA’s built-in types, by the theories associated
with the type definitions and the axioms in the IOA specification that contains the automaton
definition, and by the theories associated with the assumes clause of that definition.

v' The sets of input, output, and internal actions in an I/O automaton must be disjoint. Thus,
for each sequence of values for the parameters of an action named 7 in the definition of an

A A A
automaton A, at most one of P;’", P, and P.:" can be true.

Special cases arise if two of the three signature where clauses for 7 are literally false or if
two of three clauses are literally true. In the former case, the check automatically succeeds;
in the latter, it automatically fails.

v" There must be a transition defined for every action specified in the signature. Thus, for
each sequence of values for the parameters of an action named 7 that make P,‘g;:i true, there

must be a transition definition t; for 7 of type kind such that P,i;; 4 is true for these values
together with some values for the local variable of that transition definition.

v' For each kind of each action 7, at most one transition definition ¢; can be defined for each

sequence of parameters values. That is, for each sequence of values, P,ﬁ;;; .. can be true for
. A
at most one value of j.

Special cases arise if all but one of the transition definition where clauses for a kind of an action
are literally false or any two are literally true. In the former case, the check automatically
succeeds; in the latter, it automatically fails.

We define these proof obligations more formally at the end of Section [
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4 Desugaring primitive automata

The syntax for [OA programs described in Section [3| allows some flexibility of expression. However,
when defining semantic checks and algorithmic manipulations (e.g., composition) of IOA programs,
it is helpful to restrict attention, without loss of generality, to IOA programs that conform to a
more limited syntax.

In this section, we describe how to transform any primitive IOA program (as in Figure
into an equivalent program (Figure written with a more limited syntax. We describe this
transformation in four stages. First, in Section we show how to desugar terms that appear as
parameters by replacing them with variables constrained by where clauses; that is, we show how
to reformulate action and transition definitions so as to eliminate the use of terms as parameters.
Second, in Section we show how to introduce canonical parameters into desugared actions and
transition definitions. A canonicalized action is parameterized by the same sequence of variables
in all appearances, both in the signature and in the transition definitions. Third, in Section
we combine all transition definitions of a single kind of an action into a single transition definition.
Fourth, in Section [4.4] we convert each reference to a state variable = to the equivalent reference
A.x defined in Section In Section [4.5], we summarize the effects of these desugarings, which are
illustrated in Figure [£.7] Finally, in Section [£.6] we use the result of the first two transformations
to formalize the semantic proof obligations introduced in Section

4.1 Desugaring terms used as parameters
Signature

We desugar const parameters for an action in A’s signature by introducing fresh variables and
modifying the action’s where clause. For each const parameter we introduce a fresh variable and
add a conjunct to the where clause that equates the new variable with the term that served as the
const parameter. For example, if £ is a term of sort T', then we desugar the action

input 7(vars:>", const t) where P{i’ﬂ

mn

as
input W(varsﬁl ,0:T) wherev =1t A P
Here, v:T is a fresh variable, that is, one that does not appear in wvars?, varsﬁl’“, state Vars?
postVarsA localVarsﬁLt , Or localPostVarsmt for any jﬂ
Let Pkm d. desug be the where predicate that results after all const parameters in pamms?i’:d have

been desugared. Let varsfifd, desug be the sequence of distinct variables that parameterize 7 after

are either in vars™>" or in
kind,desug

desugaring. Note that all variables that occur freely in ,ﬁ;;l desug

A Aaﬂ. 3 A,ﬂ‘ . . . .
vars”. In general, vars,, d.desug 1S & SUpersequence of wars;;", (in that it contains a fresh variable

. A’ﬂ' .
for each const parameter in params,; ). In the above example, a const parameter appears in

9For the purposes of this transformation, it suffices to pick some v:T" that does not appear in either vars? or

varsH™ However, by ensuring that v:T is distinct from additional variables, we avoid having to replace it by yet

m "
another fresh variable when we introduce canonical transition parameters, as described in Section .2} Furthermore,
to avoid any ambiguity that may arise when two variables share an identifier, and to avoid having to replace v:T" by
yet another fresh variable in an instantiation of A that maps T and the sort of another variable with identifier v to a
common sort it is helpful to plck v to be an identifier that does not appear in vars?, varsf:l’", stateVars®, postVars®,

localVars™™ | or localPost Vars’™ for any j.

znt’ n,t;
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automaton A(types?, vars?)

signature

input 7(vars’™, ) where P2 A vars™™, = params"
p in,desug in,desug p
output ﬂ'(’UCLTSA ) where PAT A warsT arams’r
out,desug out out,desug — =P out
A A _ A
internal 7(varsy; ;..,,) Where Pmt N VATS ) osyg = DPOTATNS 1)y

states state Vars? := init Vals” initially szt

transitions

A,
local local Vars t ,VaTS )y ) case t;

A
m,t;

input (varsA
n,t; desug’

= params

A
where Pm 't A varsmt desug

eff Pro Am ensuring ensuring:"
gin A% g gin t;

output (vars™” local local Vars®: vamfut ;) case t;

out t; desug7 out t;0

A
= params

A
A vars Out t;

where P out Jtj,desug

out t;

pre Pre?t

out t;

, . . A
eff Progout ¢, ensuring ensuring g,

local local Vars ™

varsT ) case t;
mnt,t; mnt,t; J

internal 7T(’U(17‘8A
int,t; desug’

Ax Ax
where Pmtt A vars = paramsy),

znt Jtj,desug —

pre Pre

mt t;

eff Prog’", ensuring ensuring"
9 int t; g Gint t;

Figure 4.1: Preliminary form of a desugared primitive automaton: all action parameters are vari-
ables
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A

the last position of params;’™. In general, const parameters may appear in any position. A fresh

. o A’ﬂ' o o e . N

variable appears in varsy; ; ... g 10 the same position the const parameter it replaces appears in
A

paramsy; ..

The preliminary form for desugaring an automaton signature shown in Figure F indicates

o N A’ﬂ' . N o ,7'('
that each variable in vars;,; d,desug 15 equated to the corresponding entry in params,; . (In the
A . .

figure, we use params ki’;:d to mean the sequence of terms without the const keyword.) An obvious

simplification is to omit any identity conjuncts that arise when a variable in vars‘,jifd is equated to
itself.

Transition definitions

We desugar the parameters for each transition definition for an action named 7 to eliminate pa-

rameters that are not just simple variable referencesm As shown in Figure we first replace

the transition parameters params.:™, . by references to distinct fresh variables vars‘:" that
p b kind,t; Y kind,t;,desug’

. . . A A
is, to variables that do not appear in vars?, stateVars®, postVars?, vars ki’:d +.» localVars ki’;rd 4 OF
IRl Ea)

localPostVarsfifd’ thecond, we maintain the original semantics of the transition definition by
adding conjuncts to

because transition definition parameters may introduce variables implicitly, but where clauses may
not, we introduce the previously free variables (i.e., vars?i;fd7tj) as additional local variables, letting

e where clause to equate the new variables with the old parameters. Third,

A . A A
localVarskmd’tj’desug be the concatenation of localVarskmd’tj and VarSing 4 In effect, these steps
move terms used as parameters into the where clause. For example, if ¢ is a term and v is a fresh
variable with the same sort as t, then we desugar the transition definition

input 7(t) where P"

n,t;
as
. A A
input 7(v; local ”“r‘sm,tj) where v =t N Py
Let PA™ be the where predicate that results after transition parameters have been

kind,t;,desug
desugared in this fashion. Then any variable that has a free occurrence in this predicate must be

. A A I Ve A
i vars®, varsy; g, gesugr OF l0calVarsy e
After const and transition definition terms have been desugared, the valid occurrences of free
variables in syntactic forms, shown in Table is revised by those shown in Table After
. A,ﬂ' o A,ﬂ' A,ﬂ' J— A77T
desugaring, paramsy,; ., = varsy . joe., and Paramsing o = VIS g i desug-

Example 4.1 The first step in desugaring the primitive automata defined in Figures [2.1 is
shown in Figure[4.2] For the automaton Channel, n1:Node and n2:Node are fresh variables introduced
to desugar the const parameters in the signature. Similarly, n1:Node, n2:Node, and ml:Msg are

19 As mentioned in Footnote [} we distinguish between action parameters in the signature that are terms (const
parameters) and those that are variable declarations to provide strong typing for variable declarations. Since the sorts
of params >, determine the sorts of pammsfi;zi’tj, there is no need for such a distinction in transition parameters.

11t suffices to replace just those parameters that are not simply references to variables, because the fresh variables
corresponding to such terms disappear when we substitute references to canonical variables for the parameters, as
described in the next section. However, the replacement is easier to describe if we replace all parameters.

Furthermore, as for const parameters, to avoid any ambiguity that may arise in the where clause when two
variables share an identifier, and to avoid having to replace v:T by yet another fresh variable in an instantiation of
A that maps T and the sort of another variable with identifier v to a common sort, it is helpful to pick v to be an
identifier that is not in vars®, stateVars?, postVars®, vars?i;::i’tj, localVars,ﬁZuj, or localPostVars,é’szt].
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LOCATION OF TERM | VARIABLES THAT CAN OCCUR FREELY IN TERM

PA,Tr A Am
kind,desug vars—, vars kind,desug
A A

A I Ve A
kind,t;,desug vars 7var‘9kind,tj,desug’ oca arskind,tj,desug

Table 4.1: Variables that can occur freely in terms in the definition of a desugared primitive
automaton. Variables listed on the right may occur freely in the syntactic structure listed to their
left.

Channel,send
and

fresh variables introduced to desugar transition parameters. Since both wvars;,

Channel,receive . . . . .
vars gy, contain the single variable m:Msg, we introduce m:Msg as a local variable for each
k)

transition definition. Notice that the variables introduced for each action need be fresh only with
respect to i:Node, j:Node, and m:Msg; furthermore, “freshness” need not extend across transitions
or between actions and transitions.

The automata P and Watch are desugared in a similar fashion. Since there are no const parame-
ters in the signature of Watch, that signature is unchanged. Since the parameters for the transition
definitions for the overflow action in Watch contain two free variables, x and s, the desugared tran-
sition definitions declare these variables as local. Also, in the second of the desugared transition
definitions, the desugared where clause incorporates the original where clause as a conjunct.

4.2 Introducing canonical names for parameters
Signature

IOA does not require that the sequences of variables varsA varsfut , and vars  be the same. For
example, const parameters may cause these sequences to have different lengths. However since IOA
requires pammsA , pammsfut, and pammsﬁlt

to contain the same number and sorts of elements,

A A A
the desugared versions of these sequences (i.e., vars; indesug YOS ot desug and vars int. desu g) do have
the same number and sorts of elements. We choose one of these desugared variable sequences to
be the canonical parameters for the action 7w in A. We call the canonical sequence vars™. We
replace the other two sequences of parameters for 7 in the signature of A by vars®™, and we define

. . A A : A,m A,m
substitutions o} , to replace VATS i desug with vars in Pkmd

Transition definitions

We canonicalize the parameters for each transition definition for an action named m so that the

definition also uses wvars®™ as its parameters. Specifically, we replace the references to variables
. o oL . A

that parameterize a desugared transition definition of 7 (i.e., VaTS ind 1, desug) by references to

the canonical variables (i.e., vars™™) throughout the transition definition. Therefore we define a
substitution U:’ﬂdt to perform this replacement and apply it to the whole transition definition.
As descrlbed in Sectlon 9] if the canonical variables clash with the desugared local variables (i.e.,

localVarskm d,t;,desu g), we must substitute fresh local variables for those that clash. The Varlables

A

introduced by the substitution must be be distinct and fresh with respect to vars?, vars®™, and the

12866 Section E] for a precise definition of a substitution, which maps a set of variables to a set of terms. Often we
represent the domain and range of a substitution as sequences, with the ith variable in the domain being replaced by
the ith variable or term in the range.
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automaton Channel (Node, Msg:type, i, j:Node)

signature
input send(nl, n2:Node, m:Msg) where nl = i A n2 = j
output receive(nl, n2:Node, m:Msg) where nl = i A n2 = j
states contents:Set[Msg] := {}
transitions
input send(nl, n2, ml; local m:Msg) where n1 =i A n2 =j A ml =mn
eff contents := insert(m, contents)
output receive(nl, n2, ml; local m:Msg)
where n1 = i A n2 = j A ml =mn
pre m € contents
eff contents := delete(m, contents)

automaton P(n:Int)

signature
input receive(il, i2, x:Int) where il = n-1 A i2 = n
output send(il, i2, x:Int) where il = n A i2 = n+1,
overflow(il:Int, s:Set[Int]) where i1l = n
states
val:Int := O,
toSend:Set [Int] := {}

transitions
input receive(il, i2, i3; local x:Int)

where i1 = n-1 A i2 = n A i3 = x

eff ... % effect clause unchanged from original definition of P
output send(il, i2, i3; local x:Int)

where i1 = n A 12 = n+1l A i3 = x

pre x € toSend

eff toSend := delete(x, toSend)

output overflow(il, s1; local t, s:Set[Int]) where i1l = n A sl = s
pre s = toSend A n < size(s) At C s
eff toSend := t

automaton Watch(T:type, what:Set[T])
signature
input overflow(x:T, s:Set[T]) where x € what
output found(x:T) where x € what
states seen:Array[T,Bool] := constant(false)
transitions
input overflow(til, si1; local x:T, s:Set[T])
where t1 = x A s1 = s U {x}
eff seen[x] := true
input overflow(tl, sl1; local x:T, s:Set[T])
where - (x € s) A t1l = x A s1 = s
eff seen[x] := false
output found(tl; local x:T) where t1 = x
pre seen [x]

Figure 4.2: Preliminary desugarings of the sample automata Channel, P, and Watch
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automaton A(types?, vars?)

signature

4™ where J T(pAT

in,desug

output 7(vars?™) where de?(P(ﬁ}zdesug)

. Ar pA
internal 7(vars®™) where Tint (Pint desug)

input 7(vars

states state Vars? := initVals? initially let

transitions

input W(varsA
O_A,Tr n,t; desug’

mn,t;

local localVars case t; where pA

in,t; desug) mn t] desug

P Am . A
e 70g i 1, ensuring ensuring;, .

- A -
output W(varsoutt desug’ local localVarsoutt desug) case t; where Pwtt desug
Am
Jout,tj pre Preout t;
. . Am
eff Prog Ou’tt ensuring ensuring ,,; ;. ]
A .
internal W(varsmtt desugi local localVarsmt . desug) €ase tj where Pmtt desug
Am
Tint,t; pre P Temt t;
eff Pro ensuring ensuring."
9 mt,tj g Yint,t; _

Figure 4.3: Intermediate form of a desugared primitive automaton with canonical action parameters

(cf. Figure

desugared local variables. The substitutions for canonicalization are listed in Table Variables
listed in the center column are mapped by the substitution named in the left column to those listed
in the right column.

Simplifying local variables

Finally, we simplify each desugared and canonicalized transition definition for actions named 7 by
eliminating extraneous local variables. A local variable may be eliminated if it is never an lvalue in
an assignment in the transition definition for 7 and if the where clause equates it with a canonical
variable for 7, that is, if it is used only as a constant in the transition definition and is already
named by a canonical parameter.

This simplification is accomplished in four steps.

1. Define a substitution Ulé;fd,tj, simp that maps the redundant local variables to the corresponding
canonical variables.

2. Apply U,fifdjj’ simyp O each clause in the transition definition: the where, pre, eff, and ensuring
clauses.
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SUBSTITUTION | DOMAIN RANGE
A Am A
O kind va’r‘skind,desug vars
Am A A
Ukind,tj vars kind,t;,desug vars
Am . . A Am A
T hind, 1, ,simp Redundant variables in okmd’tj(localVarskmd’tj’desug) vars
x € stateVars” A:States[A, types?).x
A 2’ € postVars? A’:States[A, types].x
o
A77r . A
x € localVars kind, A:Locals[A, types”, 7).z
/ A,m ,. A
€ localPostVarskmd?tj A’:Locals[A, types™, m].x

Table 4.2: Substitutions used in desugaring a primitive automaton. Substitutions listed on the left
map variables in the domain to their right to variables in the range their far right.

3. Delete identity conjuncts from the where clause.

4. Delete the declarations of local variables that no longer appear in the transition.

Example 4.2 The second step in desugaring the primitive automata defined in Figures is
shown in Figure The definitions in this figure are obtained from those in Figure by selecting
canonical parameters for each action.

Since each action occurs only once in the signature of the automaton Channel, selecting the
canonical variables is trivial:

h 1 3 Channel,send
o varsthannel.send dofaylts to Vars; desug = (n1:Node, n2:Node, m:Msg), and

o yarschannelreceive qofayjtg to varsgffgfsi;recelve = (nl:Node, n2:Node, m:Msg).

These selections also make canonicalizing the signature trivial, because identity substitutions suffice.
We canonicalize the transition definitions by defining two substitutions.

Channel,send Channel,send
in.ty mMaps vars;, 4 geeug = <n1:Node, n2:Node, m1:Msg>, to vars

replacing the parameter m1:Msg with the canonical parameter m:Msg. To avoid a conflict
between the local variable m:Msg and the canonical parameter m:Msg, the substitution also

replaces m:Msg by the fresh variable m2:Msg.

P Channel,send by

Channel,receive mans Um,SChannel,receive
out,ty p out,ts ,desug

to varsChannelreceive 1,y ronacing the parameter m1:Msg with the canonical parameter m:Msg
and the local variable m:Msg with the fresh variable m2:Msg.

e In the same way, o = (n1:Node, n2:Node, m1:Msg)

Applying these substitution to the transition definitions produces
input send(nl, n2, m; local m2:Msg) where n1 = i A n2 = j A m = m2

eff contents := insert(m2, contents)

output receive(nl, n2, m; local m2:Msg) where n1 = i A n2 = j A m = m2
pre m2 € contents
eff contents := delete(m2, contents)
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automaton Channel (Node, Msg:type, i, j:Node)

signature
input send(nl, n2:Node, m:Msg) where n1 = i A n2 = j
output receive(nl, n2:Node, m:Msg) where n1 = i A n2 = j
states contents:Set[Msg] := {}
transitions
input send(nl, n2, m) where n1 = i A n2 = j
eff contents := insert(m, contents)
output receive(nl, n2, m) where nl1 = i A n2 = j
pre m € contents
eff contents := delete(m, contents)

automaton P(n:Int)
signature
input receive(il, i2, x:Int) where il = n-1 A i2 = n
output send(il, i2, x:Int) where il = n A i2 = n+1,
overflow(il:Int, s:Set[Int]) where i1l = n
states
val:Int := O,
toSend:Set [Int] := {}
transitions
input receive(il, i2, x) where il = n-1 A i2 = n
eff if val = 0 then val := x
elseif x < val then
toSend := insert(val, toSend);
val = x
elseif val < x then
toSend := insert(x, toSend)
fi
output send(il, i2, x) where il = n A i2 = n+1
pre x € toSend
eff toSend := delete(x, toSend)
output overflow(il, s; local t:Set[Int]) where il = n
pre s = toSend A n < size(s) At C s
eff toSend := t

automaton Watch(T:type, what:Set[T])
signature
input overflow(x:T, s:Set[T]) where x € what
output found(x:T) where x € what
states seen:Array[T,Bool] := constant(false)
transitions
input overflow(x, s; local s2:Set[T]) where s = s2 U {x}

eff seen[x] := true
input overflow(x, s) where - (x € s)
eff seen[x] := false

output found (x)
pre seen[x]

Figure 4.4: Intermediate desugarings of the sample automata Channel, P, and Watch, obtained from
the preliminary desugarings in Figure by selecting canonical parameters for each action
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However, the local variable m2 is extraneous in both transition definitions, because it is equated with
m in the where clause and no value is assigned to it. Hence m2 equals m throughout the transition,
.. . . . . . channel,send .
and we can eliminate it entirely by applying a substitution (e.g., o, ty simp , which maps m2 to
m) to the where,eff and pre (in the case of receive) clauses and simplifying the result, as shown in

Figure [4.4]
As for Channel, each action occurs only once in the signature of the automaton P. Hence, it is

trivial to select varsP-receive yqpgP.send anq yqpsPoverflow 414 to canonicalize the signature.

Preceive . . . . P,receive Preceive
To map vars;, " .0 (i.e., (i1:Int, i2:Int, i3:Int)) to wvars , we define o7,

to replace i3:Int by x:Int. To avoid conflicts between the local variable x:Int and the canonical
parameter x:Int, the substitution also replaces x:Int by i4:Int. Applying this substitution to the
transition definition produces:

input receive(il, i2, x; local i4:Int) where il = n-1 A i2 = n A x = i4
eff if val = 0 then val := i4

elseif i4 < val then
toSend := insert(val, toSend);
val := i4

elseif val < i4 then
toSend := insert(i4, toSend)

fi

Since the local variable i4 equals x throughout the transition definition, we can eliminate it entirely
by defining a substitution mapping i4 to x, applying that substitution to the where and eff clauses,
and simplifying the result, as shown in Figure [4.4]

Canonicalization of the send transition follows the same pattern as the receive transition.

Application of the canonicalizing substitution aiﬁi?d yields:

output send(il, i2, x; local i4:Int) where il = n A i2 = n+1 A x = i4
pre i4 € toSend
eff toSend := delete(i4, toSend)

This definition simplifies to the one shown in Figure which does not contain a local variable.

,ﬁzf’rﬂow to the overflow transition yields:

Similarly applying the canonicalizing substitution o
output overflow(il, s; local t, s2:Set[Int]) where i1l = n A s = s2
pre s2 = toSend A n < size(s2) A t C s2
eff toSend :=t
Once again, this definition simplifies to the one shown in Figure Notice that the local variable
t cannot be eliminated because it is not equated with a canonical parameter. Further notice that,
in this case, canonicalization has eliminated all the local variables introduced in the desugaring
step.
As for Channel and P, each action occurs only once in the signature of the automaton Watch.

Hence it is trivial to select varsWatchoverflow ;.4 g qpswatch found

watch,overflow

Canonicalizing the two transition definitions for overflow proceeds by defining 0"/

and J;Laz:gch,overflow’ which happen to be the same. They map t1:T to x:T, s1:Set[T] to s:Set[T],

s:Set[T] to s2:Set[T], and x:T to t2:T. Applying these substitutions to the transition definitions
yields:
input overflow(x, s; local t2:T, s2:Set[T])
where x = t2 A s = s2 U {t2}
eff seen[t2] := true
input overflow(x, s; local t2:T, s2:Set[T])
where —(t2 € 82) A x = t2 A 8 = 82
eff seen[x] := false
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The local variable t2:T can be eliminated from both transition definitions. The local variable
s2:8et[T] can be eliminated from the second transition definition but not from the first. These
simplifications result in the transition definitions shown in Figure

Notice that after the simplification of the local variable, the semantic meaning of the parameter
s:Set[T] in the desugared and canonicalized automaton shown in Figure [4.4]is different than the
meaning of the parameter s:Set[T] in the original automaton shown in Flgure [2.3] The parameter
s:Set[T] in the original actually corresponds to the local variable s2:Set[T] in the canonicalized

version.
watch,found
wmn,ty

output found(x; local t2:T) where x = t2
pre seen[t2]
After its local variables are simplified, the transition definition shown in Figure is identical to
the one originally defined in Figure

Applying the canonicalizing substitution o to the found transition yields:

4.3 Combining transition definitions

We will see in Sections that combining multiple transition definitions for a given action into
a single transition definition is useful for composing automata. It is necessary for combining input
actions that execute atomically in the composition, and it avoids a code explosion multiplicative in
the number of input and output actions. Because this transition combining step is easy to under-
stand when applied to a single primitive automaton, we describe it here and assume all automata
hereafter have only a single transition definition per kind per action, as shown in Figure To
combine the transition definitions for a given kind of an action m, we need to combine their se-
quences of parameters, their local variables, and their where, pre, eff, and ensuring clauses into
one, semantically equivalent, transition definition.

Furthermore, as will be discussed further in Section [7] the kind of an action may be changed
by composition. Input actions may be subsumed by output actions, and output actions may be
hidden as internal actions. Thus, the expansion of a composite automaton may combine transition
definitions across kinds. To facilitate such combinations, we collect together all the local variables
for each action of an automaton A into a single sequence of variables localVars®™, which is the
concatenation (with duplicates removed) of the all sequences local Vars,fifd’ 4 Again, this variable
combining step is easy to understand when applied to a single primitive automaton, so we describe
it here and assume all automata hereafter have only one sequence of local variables per action
name.

In describing this combination, we assume that parameters of the automaton have already
been desugared and canonicalized as described in Sections and In Figure and the
discussion below, we indicate the syntactic forms that result from that desugaring by use of the
desug subscript. We rely on the key semantic condition (mentioned in Section and discussed
in Section B that exactly one transition definition be defined for each as51gnment of values to
vars®™ that satisfies le;;l That is, within an automaton, all like-named transition definitions
must have where clauses that are satisfiable only for disjoint sets of parameter valuesE

First, notice that since all the contributing transition definitions are already desugared and
canonicalized, each is is parameterized by vars®™. Hence, combining the parameters is trivial.

At first glance, combining local variables looks trickier. Each transition definition has local
scope with respect to local variables. So, there may be any amount of duplication of variables

13These semantic conditions also ensure that, in the absence of local variables, the resulting where clause can be
eliminated because it will be equivalent to true.
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automaton A(types?, vars?)
states stateVars? := initVals? initially o (PZA,,)
transitions

. A
input 7(vars®™; local localVars™™) where V; Poi desug
sbys

eff
. A A
if Pm,tj,desug then Progin,tj,desug
elseif ...
fi

ensuring /\; (PA’7T

- . A
in,t;,desug ensu”ngin,tj ,desug

output 7(vars*™; local local Vars™™) where V; pAm

out,t;,desug
A, A,m
pre \/j (Pout,tj,desug A Preout,tj,desug)

eff
if P(ﬁi:tj,desug then Progfzg,tj,desug
elseif ...
fi
ensuring /\j (P:L’thvdesug = ensum’ngfﬂ’tj’desug)

3 A77T. A,ﬂ' A77T
internal m(vars®™; local localVars™™) where \/, Pini i, desug

Analogous to output.

Figure 4.5: Intermediate form of a desugared primitive automaton, with canonical action parame-
ters and with all transition definitions for each kind of an action combined into a single transition
definition
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automaton Watch(T:type, what:Set[T])
signature
input overflow(x:T, s:Set[T]) where x € what
output found(x:T) where x € what
states seen:Array[T,Bool] := constant(false)
transitions
input overflow(x, s; local s2:Set[T]) where s = s2 U {x} V =(x € s)

eff if s = s2 U {x} then seen[x] := true
elseif —-(x € s) then seen[x] := false
fi

output found (x)
pre seen [x]

Figure 4.6: Improved intermediate desugaring of the sample automaton Watch, obtained from the
intermediate desugaring in Figure by combining the transition definitions for overflow

among the sequences localVarsﬁifdytﬁ desug” One might think that a correctly combined transition
definition might need distinct local variables to store the values of the duplicate local variable appro-
priate to each contributing transition definition. However, for each assignment of values to vars?®™
only one contributing transition definition can be defined for any assignment of values to its local
variables. Therefore, there is at most one “useful” initial value for each local variable. Similarly,
at most one contributing eff clause can make assignments to its local variables. Hence, duplicate
declarations of local variables have no effect on the combined transition definition. Accordingly, we
define localVars®™ to be the sequence of variables obtained by removing any duplicates from the
concatenation of all sequences local Varsﬁi’rfd% desug”

In combining the various clauses of the contributing transitions, we use the where clauses of
the contributing transitions as guards to select the correct case to use. The four clauses of the
combined transition are combined as follows:

e The combined where clause is the disjunction of the where clauses from all the contributing
transition definitions.

e For output and internal transition definitions, the combined pre clause checks that one set of
parameters fulfills both the where and pre clauses of some contributing transition definition.

e The combined eff clause is a single if...then. . .elseif. . .fi statement in which the contribut-
ing eff clause is guarded by the associated where clause.

e Similarly, the combined ensuring clause asserts the appropriate contributing ensuring clause

when the associated where clause is true. Note that since P,;l.;;; t: desug is defined on the initial
EAVE)

A . . .
values of localVars kifd . desug? assignments made to local variables in the eff clause have no
. .7 7 .
effect on which ensuring clause is asserted.

Example 4.3 Consider the desugared and canonicalized automaton Watch shown in Figure [4.4
The only action with multiple transition definitions is the overflow input action. Following the
above recipe, they are combined into the one equivalent action shown in Figure 4.6

4.4 Combining aggregate sorts and expanding variable references

Section [3.2] described aggregate sorts that are automatically defined for the state and local variables
of an automaton A (i.e., States[A, types?] and Locals[A, types?, kind, T, tj]). Desugaring alters the
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automaton A(types?, vars?)

states stateVars? := initVals? initially o (PA,,)
transitions

: A, A A,m
kind 7(vars®™; local localVars™™) where Pind. comb i,

A A, A
0 | Okind pre Pre;.

A . . Am
eff Prog,,  ensuring ensuring,,

Figure 4.7: Final form of a desugared primitive automaton, with canonical action parameters, with
all transition definitions for each kind of an action combined into a single transition definition, and
with all variable references expanded.

automaton A and, consequently, can alter these aggregate sorts. In particular, as discussed in
Section combining multiple transition definitions for a particular action 7 in automaton A
involves combining the local variables that appear in each transition into a single sequence. We
collect together all the local variables for each action 7 of an automaton A into a single sequence
of variables local Vars™™, which is the concatenation (with duplicates removed) of the all sequences
local Vars?ifdytj .

As a result, the aggregate sort for local variables also changes. Notationally, the kind and case
labels t; are dropped from the aggregate local sort name Locals[A, types?, kind, T, tj]. We define a
new sort Locals[A, types?, 7] for the combined transition definition to be a tuple with selection oper-
ators that are named, typed, and have values in accordance with the local variables in local Vars™™.
That is, the set of identifiers for the selection operators on the sort Locals[A, types™, 7] is the union
of the sets of identifiers for the selection operators on the sorts Locals[A, types?, kind, =, ti]. We
change the sorts of the aggregate local and post-local variables A and A’ to this new sort. This has
the effect of collapsing multiple aggregate local and post-local variables each defined in the scope
of one transition into a single local and post-local variable defined in all transitions for a given
action@.

Formally, for each transition definition ¢; for a given kind of an action m in A, we define a
resortin@ that maps the aggregate local sort Locals[A, types?, kind, T, tj] to the new aggregate local
sort Locals[A, types™, 7|, and we apply that resorting to the transition definition before performing
the combining step. As a result, each variable A:Locals[A, types?, kind, , t;] is mapped to a variable
A:Locals[A, types®, 7. Thus, local variable references using the notation A.v form remain well
defined and the resorting does not change the text of the transition definition. After combining,
the sorts Locals[A, types?, kind T, tj] may be ignored.

In addition to introducing notations for aggregate local sorts, Section also introduced no-
tations for aggregate state sorts. These notations provided an additional, and potentially less
ambiguous, way of referencing the values of local and state variables. We now desugar simple
references to local and state variables to use the notations for aggregate local and state variables.

1476 avoid complications that arise when new fields are added to an aggregate local tuple during the combining of
local variables across transitions, we should disallow use of the constructor [__,...] for aggregate local sorts.
15See Section |§| for a formal definition of resortings, which map sorts to sorts.
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Formally, we define a substitutiorm o to map state and post-state variables to terms. If z is a
state variable or a post-state variable (i.e., z € stateVars? or « € postVars?), then o4 (z)) = A.z,
where A has sort States[A, types?] and the operator __.x has signature States[A, types?] — T,
where T is the sort of z.

Similarly, for each transition definition 7 of type kind, we define a substitution al‘i;fd to map
local and post-local variables to terms. If x is a local or post-local variable (i.e., z € local Vars4™
or x € localPost Vars',ji;;g), then Ulfi;fd () = A.z, where A has sort Locals|A, types?, kind, ], and the
operator __.x has signature Locals[A4, types?, kind, 7] — T, where T is the sort of z.

Figure [£.7] shows the final form of a desugared primitive automaton with canonical action
parameters and local variables and with all transition definitions for each kind of an action combined
into a single transition definition, and with all variable references expanded. In that figure, we
indicate the syntactic forms that result from the combining step by use of the comb subscript.
Figure shows the result of applying these substitutions to the sample primitive automata.

4.5 Restrictions on the form of desugared automaton definitions

After the definition of a primitive automaton A has been desugared as described in Sections [£.1H4.4]
it has the following properties.

e No const parameters appear in the signature of A.

e Each appearance of an action 7 in the signature of A is parameterized by the canonical action
parameters vars®™ of w in A.

e Each transition definition of an action 7 is parameterized by the canonical action parameters
vars™™ of 7 in A; i.e., every parameter is a simple reference to a variable in vars®™.

e Fach action name has at most one transition definition of each kind.

e Each reference to a state variable x of A, other than in the list of state variables in the states
statement, has been replaced by the term A.z.

e Each reference to a post-state variable 2’ of A has been replaced by the term A’.z.

e Each reference to a local variable x in a transition of A, other than in the local clause of that
transition definition, has been replaced by the term A.x.

e Each reference to a post-local variable 2’ in a transition of A has been replaced by the term
Az

4.6 Semantic proof obligations, revisited

We are now ready to formalize the semantic proof obligations for primitive automata introduced
in Section 3.4l Previously, we said that for each action named 7 and each sequence of parameters
values:

1. At most one of PA™ PAT and PAT is true.

Am . A .
2. If P, is true, at least one Pkmd,tj is true.

16See Section |§| for a formal definition of substitutions, which map variables to terms.
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automaton Channel (Node, Msg:type, i, j:Node)

signature
input send(nl, n2:Node, m:Msg) where nl1 = i A n2 = j
output receive(nl, n2:Node, m:Msg) where nl = i A n2 = j
states contents:Set[Msg] := {}
transitions
input send(nl, n2, m) where nl = i A n2 = j
eff Channel.contents := insert(m, Channel.contents)
output receive(nl, n2, m) where n1 = i A n2 = j
pre m € Channel.contents
eff Channel.contents :=— delete(m, Channel.contents)

automaton P(n:Int)
signature
input receive(il, i2, x:Int) where il = n-1 A i2 = n
output send(il, i2, x:Int) where i1 = n A i2 n+1,
overflow(il:Int, s:Set[Int]) where i1l = n

states
val:Int := O,
toSend:Set[Int] := {}
transitions
input receive(il, i2, x) where il = n-1 A i2 = n
eff if P.val = 0 then P.val := x
elseif x < P.val then
P.toSend := insert(P.val, P.toSend);
P.val := x
elseif P.val < x then
P.toSend := insert(x, P.toSend)
fi
output send(il, i2, x) where il = n A i2 = n+1
pre x € P.toSend
eff P.toSend := delete(x, P.toSend)
output overflow(il, s; local t:Set[Int]) where il = n
pre s = P.toSend A n < size(s) AN P.t C s
eff P.toSend := P.t

automaton Watch(T:type, what:Set[T])
signature
input overflow(x:T, s:Set[T]) where x € what
output found(x:T) where x € what
states seen:Array[T,Bool] := constant(false)
transitions
input overflow(x, s; local s2:Set[T])
where s = Watch.s2 U {x} V —-(x € s)

eff
if s = Watch.s2 U {x} then Watch.seen[x] := true
elseif —-(x € s) then Watch.seen[x] := false
fi

output found (x)
pre Watch.seen [x]

Figure 4.8: Sample desugared automata Channel, P, and Watch, obtained from the intermediate
desugarings in Figures [4.4 and by desugaring references to state and local variables
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3. If PA o is true, at most one Pk ;’Ldt is true

We explicitly did not define the phrase “sequence of parameters values” because these predicates

may be stated in terms of different variables. In other words, varsA’7T may be different from vars™

out

and vars;‘” Similarly, fuarsf;t may be different from fuarsﬁl 1,- However, after desugaring and
canomcahzmg (but before comblnlng), we have predicates that are semantically equivalent to those
in the original automaton, but defined over a common set of free variables. That is, all the free

A A A Am A
variables of all the predicates o~ (P desug) and Ukmd,t]-(sz‘nd,tj,desug) are among vars” and
A

vars
The alert reader will realize that Tables and list localVars?i’gd ;, among the variables that

may occur freely in Pk ’7:1 4 and P,in d,t; desug and might therefore conclude that the aforementioned
predicates are not “defined over a common set of free variables”. However, as noted Section [3.2] a
transition 7 is defined only for values of its parameters that, together with some choice of initial
values for its local variables, satisfy the where clause of the transition definition. Thus, for the
purposes of formalizing the semantic proof obligations for transition definitions, local variables

should be existentially bound, not free in where clauses, that is, Pkmd & desug should be preceded

by EIlocalVarsk nd,

The semantic proof obligations we introduced in Section can be stated precisely as follows.
We require that for each action name =, all values of vars?, and all values of vars®™, the following
statements must be provable from the axioms provided by IOA’s built-in types, by the theories
associated with the type definitions and the axioms in the IOA specification that contains the
automaton definition, and by the theories associated with the assumes clause of that definition.

Voo (Jﬁtm(P;lz:Zesug) A aout out ,desug ) (41)

oo (‘7 ﬁ[ﬂ(P i:Zesug) A amt znt desug > (4.2)

O (T PAT desug) N T (P i) (4.3)

v O-l?zrzrd(Plﬁ;:;l,desug) = \/ Hlocalvarski’;d W O-/?u;rd R (Plg;;;,tj,desug)’ and (44)
J

v Glfzrj,rd (Plﬁ;:i,desug) = (45)

- (Elloca’l Va?"S?i’;;d t; Ulfzrzrd R (P/;l';zrd,tj,desug) A Jlocal Vars?i;zrd,tk Jlfzrj,rd St (‘Plﬁ;;il,tk,desug)> ’

when j # k.
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5 Definitions for composite automata

This section introduces notations and semantic checks for composite IOA automata. Section [5.1
describes the syntactic structures that may appear in an IOA description of a composite 1/O
automaton. Section describes notations for the state variables of a composite automaton.
When component automata have type parameters, the sorts of these state variables are obtained
by mapping the formal type parameters of the component automata to the actual parameters used
to instantiate those components in the composition. Finally, Sections and describe the
conditions that descriptions of composite automata must satisfy to be semantically valid.

5.1 Syntax

As for primitive automata, we introduce a labeling of the syntactic elements of composite IOA
programs in order to facilitate describing their syntactic manipulation. Figure [5.1] indicates a
particular labeling of the expressions that can appear in the IOA definition of a composite I/O
automaton. Again, we have selected the granularity of this labeling to expose just those elements
of composite IOA programs that are needed in Section [7] to describe the expansion of composite
automata into primitive form.

automaton D(types”, vars?)
assumes Assumptions
components
Ci[vars? 1] : Ai(actual Types? 1, actuals? “1) where PP:C1;
Crlvars?Cn) . A, (actual Types®+C» | actuals®- ") where PP-Cn
hidden
D,7r1 DJ"Z .
mi(params,,;,,. ) where Hy .\

.y

D,m D,
Tm(params,;; " ) where Hy ;"
invariant of D : Inv?; ... Inv?

Figure 5.1: General form of a composite automaton

In Figure parameterized components named C1,...,C, are based on instantiations of au-
tomata named Ap,...,A,. The formal parameters of component C; are vars?-¢, and the ac-
tual parameters of automaton A; consist of a sequence actualTypesD G of sorts and a sequence
D:C of terms. IOA permits the specification of C; to be abbreviated by deleting the colon
and the following expression when C; and A; are named by the same identifier, actualTypes™ ¢
is empty, and actuals? % = vars?-Ci (e.g., see component P in Example . In the specification

77Tp
dep

actuals

77TF

out.t,» and we define
)

. . Dy .
of hidden actions, params,.,” is a sequence of terms, analogous to params

D . . D .
vars,.;” to be the set of variables that occur freely in params;.;” but are not in vars”. Each
hidep hidep

invariant of D is stated as a predicate Inv?.
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SYNTACTIC STRUCTURE | FREE VARIABLES

actualsD’C’i UarsD, vars?:Ci
pD.Ci varsD, varsP-Ci
D,mp D D,mp
hide, vars =, varsp;qe,
D,mp D D,mp
params ;. vars”, varsyg;
Inv?P vars?, state Vars?

Table 5.1: Variables that can occur freely in terms in the definition of a composite automaton.
Variables listed on the right may occur freely in the syntactic structure listed to their left.

Example conforms to this general form, as follows.

e The first component of Sys is named C. Its parameters, varsSys:C
on the automaton Channel, for which it supplies the actual parameters actualTypes
(Int, Int) and actuals®YSC = (n, n+1).

, are (n:Int), and it is based
Sys,C _

e The second component of Sys is named P. It has the same parameters as C. By the conventions
for abbreviating component descriptions, it is based on the automaton of the same name, for
which it supplies the actual parameters actuals®YSP = (n); in this case, actualTypesSyS’P is
empty (as required to use this abbreviated form).

e The third component of Sys, named W, has no parameters. It is based on the automaton Watch,
for which it supplies the actual parameters actualTypes>VS" = (Int) and actualsSyS"

(between(i ,nProcesses) >

e The send actions that Sys inherits from P[nProcesses] are hidden as internal actions in Sys.

S d . . .

The parameters pammshi{lsel’ send — (nProcesses,nProcesses+1,m) in the single clause in the
. . . . . Sys, d Sys, d .
hidden statement involve a single free variable in vars hgise send — (m:Int), and H, .ZS SR is

1 1aeq

true.

e The predicate
Vm:Int V n:Int (1 <m Am < n A n < nProcesses
= P[m].val < P[n].val V P[n].val = 0)

is invariant Inv?ys of Sys.

5.2 State variables of composite automata

The definition of a composite automaton in IOA does not mention the automaton’s state variables
explicitly. Rather, its components statement implicitly introduces a single state variable for each
component. We first describe the notations IOA provides for state variables associated with com-
ponent automata that have no type parameters. Then we describe how these notations extend to
state variables associated with component automata that have type parameters. Our goal is to
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provide a precise explanation of notations for state variables such as P[m].val, which appears in
the invariant for the sample composite automaton Sys.

As for primitive automata (see Section , we automatically define a sort States[D, types®]
representing the aggregate states of a composite automaton D, and we also define aggregate state
and post-state variables D and D’ of sort States[D, types”]. Furthermore, we treat the sort
States|D, types”] in the same fashion as for primitive automata, namely, as a tuple of state vari-
ables: we define the aggregate state of a composite automaton D to be a tuple containing a state
variable for each component automaton, and we use the names of the components (i.e., C1,...,Cy)
as the names of these state variables and of the corresponding selectors (i.e., __.C1,...,__.Cy) of
States|D, types?].

[ p—

State variables for components with no type parameters

Defining the sort of the state variable C; is simplest when the component C; does not have pa-
rameters and when the automaton A; on which C; is based does not have type parameters. For
each such component Cj, the state variable C; of D has sort States[A;], and the selector __.C; has
signature States[D, types”] — States[A;].

When the component C; has parameters, but A; still does not have type parameters, the
situation is slightly more complicated, because the composite automaton D may contain multiple
instances of A;. For example, the composite automaton Sys contains nProcesses instances of the
component automaton P, each with its own state variables val and toSend. These instances are
parameterized by a single integer n and are distinguished by the component names P[1], ...,
P[nProcesses].

For each parameterized component C;, the corresponding state variable C; does not refer to
the aggregate state of a single instance of A;. Rather, it refers to a map from the values of the
parameters vars?>C of C; to the aggregate states of A;. That is, the state variable C; has sort
Map [types? O, States[A;]1, where types? 'Ci is the sequence of sorts of the variables in vars? ¢ . The
selection operator __.C; has signature States|D, types”] — Map [types?>Ci, States[A;]].

For example, the state variable P of Sys has sort Map [Int,States[P]]. Hence, P[n] is a legitimate
term with sort States[P], and the term P[n] .val has sort Int. Likewise, the selection operator __.P
has signature States[Sys] — Map[Int,States[P]], and Sys.P[n].val is an alternative notation for
the state variable val that Sys inherits from component P[n].

Resortings for automata with type parameters

Defining the sort of the state variable C; is more complicated when A; has type parameters. Since
the semantics for IOA are defined using multisorted, first-order logic, we cannot quantify over sorts
or use sorts as component indices. Instead, different instances of A;, corresponding to different
actual types, must be described in separate clauses in the components statement, where they
are further distinguished by different component names. As a result, there can be only finitely
many differently typed instantiations of A;, even though altogether there may be infinitely many
instances of A; that are distinguished by the values of their non-type parameters. For example,
a composite automaton might contain channel components that transmit finitely many different
types of messages, but there may be infinitely many instances of such a component that transmits
a given type of message.

When a component C; is based on an automaton A; parameterized by the sorts types?:, we
define a resorting p; (which we write as p¥ in contexts, such as oW, where it is more convenient to
use the name of the component rather than its position in the list of all components) that maps
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Watch _ <T> Sys,W _ <

types?i to actual Types® % . For example, p" maps types to actualTypes Int),
and pC maps typesCPannel — (Node, Msg) to actualTypes Int, Int).

As described in Section[d] there is a natural way to extend the resorting p; to map arbitrary sorts
involving the formal type parameters in the defining automaton A; to sorts involving the correspond-
ing actual types that the component C; supplies for A;. For example, this extension maps the auto-
matically defined sort States[A;, types?i] for the state of A; to the sort States[A;, actualTypes” ]
for the state of the instances of A; corresponding to the component CiE]

The resorting p; also extends naturally to map operators with signatures involving the formal
type parameters in the defining automaton A; to operators with signatures involving the corre-

sponding actual types that the component C; supplies for A;. Thus, for example, p¢ maps
States [Channel,Node,Msg] = tuple of contents: Set[Msg]

Sys,C _ <

to
States [Channel,Int,Int] = tuple of contents: Set[Int]

and it maps the signature of the selection operator __.contents from States[Channel,Node,Msg] —
Set [Msg] to States[Channel,Int,Int] — Set[Int].

State variables for components with type parameters

When A; has type parameters, we employ a resorting of its aggregate state sort to define the
sort of the state variable C; of D. In the simple case when the component C; does not have any
parameters, the state variable C; has sort States[A;, actual Types® ’Ci], and the selection operator
__.C; has signature States|D, types”] — States|A;, actual Types® %]

For example, the state variable W of Sys has sort States[Watch,Int], the term W.seen has sort
Array[Int,Bool], the selection operator __.W has signature States[Sys] — States[Watch,Int],
and Sys.Watch.seen is an alternative notation for the state variable seen that Sys inherits from
component W.

In the case when the component C; has parameters (and the automaton A; has type parame-
ters), the state variable C; has sort Map [types” Ci States[A;, actual Types® ’C’i]], where types? ¢ is
the sequence of sorts of the variables in vars? ¢, and the selection operator __.C; has signature
States|D, typesP] — Map [types? i, States[A;, actual TypesP>“i]].

For example, the state variable C of Sys has sort Map[Int,States[Channel,Int,Int]], the term
CI[n] has sort States[Channel[Int,Int], the term C[n].contents has sort Set[Int], the selection
operator __.C has signature States[Sys] — Map[Int,States[Channel,Int,Int], and C[n].contents
is an alternative notation for the state variable contents that Sys inherits from component C[n].

5.3 Static semantic checks

The following must be true for an IOA program to represent a valid composite I/O automaton and
can be checked statically. These checks are currently performed by ioaCheck, the IOA parser and
static-semantic checker.

v No sort appears more than once in types®.

v Each component name (i.e., C;) occurs at most once.

D D,C;

v" The sequences vars” and vars of variables contain no duplicates; furthermore, no variable

appears in both vars? and vars? ¢ for any value of 1.

17 Although A, types?, Cs, and actualTypes? S appear as subsorts of a sort constructor States[__,...], IOA
assigns no semantics to these sorts. Syntactically, however, they are treated in the same fashion as other sorts; in
particular, the resorting p; replaces typest by actual Types? .
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v" Each component automaton is supplied with the appropriate number of actual types, that is,
actual Types® ' has the same length as types™i.

v' For every operator f in a theory specified in the assumes clause of the automaton A;, a
corresponding operator p;(f) must be introduced by a type definition or axioms clause in
the IOA specification that contains the definition of D, by a theory specified in the assumes
clause of D, or by a built-in datatype of IOA.

v' Each component automaton is supplied with the appropriate number and sorts of its other
actual parameters, that is, actuals™ ¢ has the same length as vars® and the same sorts as
A.
pi(vars?).

v" Each component automaton is supplied with actual types that do not reduce the number of
distinct state variables. That is, all selectors of States[A;, actual TypesD ’Ci] are distinct.

v" All occurrences of an action name 7 in all component automata have the same number and
sorts of parameters; that is, if 7 is an action name in both A; and A;, then vars™ has the
A and p; (vars4hT) A7y,

same length as vars has the same sort as p;(vars

v" Each action name in a hidden statement must be an action name in some component au-
tomaton.

v' All occurrences of an action name 7 in a hidden statement have the same number and sorts
of parameters as the occurrences of the action name 7 in the component automata; that is,
if 7 is an action name in some A; and ™ = 7, for the hidden clause p, then vars4™ has the

Ai,Tr)

D,m D,m
same length as params, ez , and p;(vars has the same sorts as params, e’; .

v" Any variable that occurs freely in a term used as a parameter or predicate, in the definition
of a composite automaton must satisfy the restrictions imposed by Table
5.4 Semantic proof obligations

The following must also be true for an IOA program to represent a valid I/O automaton. Except in
special cases, these conditions cannot be checked automatically, because they may require nontrivial
proofs (or even be undecidable); hence static semantic checkers must translate all but the simplest
of them into proof obligations for an automated proof assistant. ﬁ

v" Only output actions may be hidden.
v" The components of a composite automaton must have disjoint sets of output actions.

v" The set of internal actions for any component must be disjoint from the set of all actions of
every other component.

We will express these these proof obligations in first-order logic in Section using syntactic
forms we define earlier in Section [7l

18 An implementation of these checks might reduce the number of errors reported by first confirming that the
composition contains no duplicate instances of any component automaton that contains internal or output actions.
Any such duplication would necessarily cause violations of the latter two checks.
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6 Expanding component automata

Before we can describe the contribution of a component C; of a composite automaton D to the
expansion of D into a primitive automaton DFEzpanded, we must take four preparatory steps. The
result is a component that represents the instantiation of automaton A; on which C; is based using
the actual parameters supplied by the component and whose variables have been translated into a
unified name space used for DFEzpanded.

The first step is to desugar the definition of each component automaton A; as described in
Section 4} In the discussion below, we refer to this desugared version of A; as A, and assume that
it satisfies the restrictions listed in Section The second step, shown in Section [6.1} is to replace,
throughout the entire definition of the automaton A;, the formal type parameters types?i of A;
by the actual types actualTypesD G supplied by the component C;. The third step is to replace
the formal automaton (non-type) parameters vars“: by the actual parameters actuals?>% supplied
by the component C;. The fourth step is to translate the aggregate state variables, aggregate
local variables, and action parameters from the name space of A; into a unified name space for
DEzpanded. (It is not necessary to translate individual state and local variables, because references
to them have been eliminated by the desugaring described in Section [4.4]) Sections describes
how we choose canonical action parameters for the unified name space. Section describes the
substitution we use to perform both this translation and the instantiation of actual automaton
parameters for the previous step. Table summarizes the notation, figures, and examples we use
to present these stages.

Section describes the result of applying these replacements and translations to individual
component automata. It sets the stage Section [7] which describes how to combine the expanded
components into a description of DFExpanded by developing explicit representations for its signature
and transition definitions.

6.1 Resorting component automata

We produce a definition of the instances of A; whose sorts correspond to those of the component C;
by replacing the formal type parameters types?i of A; with the actual types actual Types” ¢ sup-
plied by the component C;. This replacement is accomplished by applying the resorting p;, defined
in Section [5.2|to the entire definition of the automaton A;. The precise definition of resortings and
a full description of how resortings are extended to perform this replacement throughout the entire

definition of the automaton A; are given in Section @ We denote the resulting definition by p; A;.

Example 6.1 Tables show how the resortings pC and p", induced by the components
statement of the sample automaton Sys in Example map the sorts, variables, and operators
of the component automata The resorted components pCChannel and pratch of the composite
automaton Sys are shown in Figure Since the component automaton P of Sys does not have
any type parameters, pP is the identity, and the resorted component pPP is the same as shown in

Figure [4.§|

19The table shows only the non-identity mappings of sorts, variables, and operators. Sorts, variables, and operators
that appear in the sample automata, but are not shown in the table, are mapped to themselves.
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RESORTING DOMAIN RANGE
Node Int
pC Msg Int
Set [Msg] Set [Int]
States[Channel,Node,Msg] States[Channel,Int,Int]
T Int
Set [T] Set [Int]
pw Array[T,Bool] Array[Int,Bool]
States[Watch,T] States[Watch,Int]
Locals[Watch,T,overflow] | Locals[Watch,Int,overflow]

Table 6.1: Mappings of sorts by resortings in the composite automaton Sys. Resortings listed on

the left map domain sorts to their right to the range sorts on their far right.

RESORTING | DOMAIN RANGE
i:Node i:Int
j:Node j:Int
C contents:Set [Msg] contents:Set [Int]
g nl:Node nl:Int
n2:Node n2:Int
m:Msg m:Int
what:Set [T] what:Set [Int]
seen:Array[T,Bool] | seen:Array[Int,Bool]
pw x:T x:Int
x:T x:Int
s:Set[T] s:Set [Int]
s2:Set [T] s2:Set [Int]

Table 6.2: Mappings of variables by resortings in the composite automaton Sys. Resortings listed
on the left map domain variables to their right to the range variables on their far right.
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RESORTING OPERATOR ORIGINAL AND NEW SIGNATURES

Node,Node—Bool

Int,Int—Bool

Msg,Msg—Bool

P Int,Int—Bool

—Set [Msg]

—Set [Int]

Msg,Set [Msg] —Bool

Int,Set[Int] —Bool

) Msg,Set [Msg] —Set [Msg]
insert

Int,Set[Int] —Set[Int]

Msg,Set [Msg] —Set [Msg]
delete & & &

Int,Set[Int] —Set[Int]

States[Channel,Node,Msg] —Set [Msg]
__.contents

States[Channel,Int,Int] —Set[Int]

T—Bool
[--]
Int—Bool

T—Set [T]
!

p Int—Set [Int]

Set [T],Set[T] —Bool

Set [Int],Set [Int] —Bool

T,Set[T] —Bool

Int,Set[Int] —Bool

Set[T],Set[T] —Set[T]

Set [Int],Set[Int] —Set[Int]

States[Watch,T] —Array[T,Bool]
__.seen

States[Watch,Int] —Array[Int,Bool]

9 Locals([Watch,T,overflow] —Set[T]
__.8

Locals([Watch,Int,overflow] —Set[Int]

Table 6.3: Mappings of operators by resortings in the composite automaton Sys. Resortings listed
on the left map domain operators to their right to the range operators on their far right.
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% Resorting of Channel for component C of Sys
automaton Channel (Node, Msg:type, i, j:Int)

signature
input send(nl, n2:Int, m:Int) where nl = i A n2 = j
output receive(nl, n2:Int, m:Int) where nl = i A n2 = j
states contents:Set[Int] := {}
transitions
input send(nl, n2, m) where nl = i A n2 = j
eff Channel.contents := insert(m, Channel.contents)
output receive(nl, n2, m) where nl = i A n2 = j
pre m € Channel.contents
eff Channel.contents := delete(m, Channel.contents)

% Resorting of Watch for component W of Sys
automaton Watch(T:Type, what:Set[Int])
signature
input overflow(x:Int, s:Set[Int]) where x € what
output found(x:Int) where x € what
states seen:Array[Int,Bool] := constant(false)
transitions
input overflow(x, s; local s2:Set[Int])
where s = Watch.s2 U {x} V -(x € s)

eff if s = Watch.s2 U {x} then Watch.seen[x] := true
elseif —-(x € s) then Watch.seen[x] := false
fi

output found (x)
pre Watch.seen [x]

Figure 6.1: Sample component automata Channel and Watch, obtained by resorting the desugared
automata shown in Figure [4.8
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6.2 Introducing canonical names for parameters

For each action name 7 in some component C; of D, we pick a sequence vars”>™ of variables to be
the canonical action parameters of m in D. Since the static checks ensure the number and sorts of
variables in p;(vars?*™) are the same for all components C;, we take vars”™ to be p;(vars4*™) for
the smallest 4 such that 7 is the name of an action in C; and this choice does not cause variables
to clash. In particular, no variable in vars?™ should be a parameter of D (i.e., vars? ™ and vars®?
should be disjoint) nor of any component C; (i.e., vars?™ and vars? ¢ should be disjoint)@

D™ cannot be defined in this fashion (without causing variables to clash), then we let

i be the smallest integer such that 7 is the name of an action in C;, and we take vars”™ to be
Ai,ﬂ')

If vars

pi(vars with any clashing variables replaced by fresh variables, that is, with variables not in
D,C;

U(I?”SD nor any vars—’

6.3 Substitutions

For each component C; of a composite automaton D, we define a substitution o; (which we write as

oCi in contexts, such as o, where it is more convenient to use the name of the component rather
than its position in the list of all components) to map the non-type parameters varsPidi = Di (varsA )
D,C;

of the component automaton pZAZ to the corresponding actual parameters actuals and to map
the aggregate state and post-state variables of pifli to the appropriate state components in the
composite automaton. For each action 7 of C;, we also define a substitution o; to be the same as
0y, except that it also maps the canonical action parameters vars® 4™ = p; (vars ) of pzA to the
corresponding canonical action parameters vars”™ in D, and that it maps the aggregate local and
post-local variables for transition definitions in pifll- to the appropriate local and post-local values
in the composite automaton.

These substitutionﬂ are summarized in Table and defined by rules below.

1. If z is a non-type parameter of A, (i.e., x € vars Z) then o;p;(x) is the corresponding
element of actuals? C.

2. If C; has no parameters and x is the variable A; of sort States[A;, actual Types™Ci ‘] representing

the aggregate states of p; A;, then o;(x) is the state variable for the component C; of D, which

has the same sort as A;.

3. If C; has parameters and z is the variable A; of sort States[A;, actualTypes? ], then o;(z)
is the term C;[vars” %], where C; is the state variable for the component C; of D, which has
sort Map [types™C, States[A;, actualTypesD’Ci]] .

4. If C; has no parameters and x is the variable A/ of sort States[A;, actualT ypesD Ci ‘] representing
the aggregate post-states of p;A;, then o;(z) is the post-state variable C] for the component

C; of D.

5. If C; has parameters and  is the variable A’ of sort States|[A;, actual Types?>%], then o;(z) is
the term C{[fuarsD ’Ci], where C/ is the post-state variable for the component C; of D, which
has sort Map [types?-Ci, States[A;, actualTypesD’O"]] .

20Tt is not necessary to avoid clashes with the state variables p;(state Vars”?) or post-state variables p;(post Vars™i)
of C, because desugaring has replaced references to such variables « by terms C;.x.

21See Section@lfor a precise definition of substitutions, which ensures that they do not capture local, for, choose,
or quantified variables.
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SUBSTITUTION | DOMAIN RANGE RULE
varsPiAi actuals® ¢ | rulel
oj Aj:States|A;, actualTypesD’C"’] C; rule [2
A;:States[A;, actual Types? ) Ci[varsP-%] | rule|3
varsPifi actuals?"% | rule |l
A;:States[A;, actual Types? ) C; rule 2
A;:States[A;, actual Types? ) Ci[varsP-%] | rule|3
Al:States[A;, actual Types P> C! rule |4
Al:States[A;, actual Types P> C!lvars? %] | rule|5
o varsPi AT varsP™ rule |7
A;:Locals[A;, actual Types™ 11 Ci rule |8
Al:Locals[A;, actual Types % 7] | C! rule (8
A;:Locals[A;, actual Types” ’Ci,ﬂ Ci[varsP-%] | rule|9
Al:Locals[A;, actual Types? % 7] | C![vars™ %] | rule|9

Table 6.4: Substitutions used in canonicalizing component automata. Substitutions listed on the
left map variables in the domains to their right to range variables according to the listed rules.

6. There is no rule @ [1]

7. If  is a canonical action parameter (i.e., x € varsAiT

element of vars?™.

), then o; ~pi(z) is the corresponding

8. If C; has no parameters and z is the variable A; of sort Locals[A;, actual Types™“+™] (or the
variable A’ of the same sort) representing the aggregate local (or post-local) variables for a
transition definition, then o;(z) is the local variable C; (or the post-local variable C?) for the
transition definition in D, which has the same sort as A;.

9. If C; has parameters and z is the variable A; of sort Locals[A;, actualTypes” “™] (or the
variable A’ of the same sort), then o;(z) is the term C;[vars?>%i] (or the term C![vars?-¢i]),
where C; and C! are the aggregate local and post-local variables in D, which have sort
Map [types?>Ci Locals[A“ actual Types? i 1.

6.4 Canonical component automata

For each component C; of D, we obtain a canonical automaton definition C; for that component
by applying p; and then o; to the desugared definition A; of A;. Figure shows the general form
for such canonical component automata.

In the list of parameters for Cj, the type parameters types? of D replace the type parameters
types?i of /L;, and the variables vars? and vars? i that parameterize D and its component C;
replace the individual parameters vars?i of A;. The body of the automaton definition for Cj is
obtained by applying the resorting p; to the body of the automaton definition for A, thereby
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eliminating all references to the type parameters in types , to obtain a resorted definition for an
automaton pZA and then by applying the substitution o; to this resorted definition, thereby elim-
inating all references to the individual parameters in vars?i. We do not apply o; to state Vars®4:,
because we wish to preserve the names of the state variables in state Vars?. No ambiguity arises,
because the desugaring described in Section [1.4] has replaced all references to state variables z in
the definition of A; with terms of the form A;.z. For each action m, we also apply o0; » to the where

clause P,f;n ;" for m in the signature of piA; and to the transition definition for 7 in p;A;.

Despite the absence of ambiguity, the automaton C; may not pass the static semantic require-
ments in Section that prohibit any clashes between state variables and automaton parameters.
Furthermore, if C; has non-type parameters, the aggregate state variable for the automaton is a
map as specified in Section [5.2rather than a tuple as specified for primitive automata in Section [3.2]

Table shows the steps taken to expand canonical component automata. The “Original”
column lists the names for syntactic elements of automata introduced in Section [3] The notation
given in the “Desugared” column describes the result of desugaring such automata as described in
Section[dl The elements listed in the the “Resorted” column result from the resorting of desugared
component automata that Section describes. Syntactic elements listed in the “Expanded”
column are derived in Section [6.3] from resorted automata. Finally, names that appear in the
“Component” column are just synonyms for the values in the previous column. We use these
simpler synonyms in Section [7}

automaton C;(types”, vars?, vars? )

signature

D) where o; » (Pp’A“Tr)

kind 7 (vars ind

A

states state VarsPid := o;(init Vals” /%) initially az(PZ’;;tl)

transitions

A’i’ Aiyﬂ-) PPZAZJF

where ind. b

kind 7 (vars?i“:7; local local Vars’

Y
Tin pre Prei;m;’w

A
eff Progggné’ ensuring ensurmggzné’7T

Figure 6.2: General form of the expansion of the automaton for component Cj, obtained from the
desugared definition A; of the automaton on which Cj is based

Example 6.2 We derive the component automata C, P, and W of the composite automaton Sys by
applying the substitutions shown in Tables to the resorted automata pCChannel and pWWatch
shown in Figure[6.1]and to the canonicalized automaton P shown in Figure Since the per-action
substitutions (e.g., ¢©5e"4) are always extensions of the per-component substitutions (e.g., ¢©),
these tables show only the additional mappings that distinguish the per-action substitutions from
the per-component substitutions. We also omit from these tables identity mappings. For example,
we omit from Table the identity mapping of i1:Int to itself due to rule @ in gP-overflovw Ty,
resulting component automata are shown in Figures
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automaton C(nProcesses:Int,

signature

input send(ni1, n2:Int,

output receive (ni,

states contents:Set[Int]

transitions

input send(nl, n2, m) where nl

eff C[n].contents :=
output receive(nl, n2,

pre m € C[n].contents

eff C[n].contents :=

n2:Int,

insert (m,
m) where n1 = n A n2 = n+1

delete (m,

m:Int) where n1 = n A n2 = n+1
m:Int) where nl = n A n2 = n+1

n A n2 = n+1l
C[n].contents)

C[n].contents)

Figure 6.3: Sample instantiated component automaton C, obtained by applying the substitutions
in Table [6.5] to the resorted automaton Channel in Figure [6.1

SUBSTITUTION | DOMAIN RANGE RULE
Channel:States[Channel,Int,Int] | C[n]:Map[Int,States[Channel,Int,Int]] | rule|3
oC i:Int n:Int rule [1
j:Int (n+1) : Int rule |1
gCsend No additional substitutions

UCJeceive

No additional substitutions

Table 6.5: Substitutions used to derive sample component automaton C. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.

SUBSTITUTION | DOMAIN RANGE RULE
of P:States [P] P[n] :Map[Int,States[P]] rule [3
il:Int nl:int rule (7
oFsend i2:Int n2:int rule [7
x:Int m:int rule |7
il:Int nl:int rule 7]
gPreceive i2:Int n2:int rule |7,
x:Int m:int rule 7]
gP.overflow P:Locals[P,overflow] | P[n]:Map[Int,Locals[P,overflow]] | rule|9

Table 6.6: Substitutions used to derive sample component automaton P. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.
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automaton P(nProcesses:Int, n:Int)

signature
input receive(nl, n2, m:Int) where nl1 = n-1 A n2 = n
output send(nl, n2, m:Int) where nl = n A n2 = n+1,
overflow(il:Int, s:Set[Int]) where i1l = n
states
val:Int := 0,
toSend:Set[Int] := {}
transitions
input receive(ni, n2, m) where nl = n-1 A n2 =n
eff if P[n].val = 0 then P[n].val :=m
elseif m < P[n].val then
P[n].toSend := insert(P[n].val, P[n].toSend);
Pln].val :=m
elseif P[n].val < m then
P[n].toSend := insert(m, P[n].toSend)
fi
output send(nl, n2, m) where nl = n A n2 = n+1
pre m € P[n].toSend
eff P[n].toSend := delete(m, P[n].toSend)
output overflow(il, s; local t:Set[Int]) where il = n
pre s = P[n].toSend A n < size(s) A P[n].t C s
eff P[n].toSend := P[n].t

Figure 6.4: Sample instantiated component automaton P, obtained by applying the substitutions
in Table [6.6] to the automaton P in Figure

automaton W(nProcesses:Int)

signature
input overflow(il:Int, s:Set[Int]) where il € between(l, nProcesses)
output found(il:Int) where il € between(l, nProcesses)

states seen:Array[Int,Bool] := constant(false)

transitions
input overflow(il, s; local s2:Set[Int])

where s = W.s2 U {i1} Vv —-(i1 € s)

eff if s = W.s2 U {i1} then W.seen[il] := true
elseif —-(i1l € s) then W.seen[il] := false
fi

output found (il)
pre W.seen[il]

Figure 6.5: Sample instantiated component automaton W, obtained by applying the substitutions
in Table [6.7] to the resorted automaton Watch in Figure [6.1
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SUBSTITUTION | DOMAIN RANGE RULE
W Watch:States[Watch,Int] W:States[Watch, Int] rule 2
7 what:Set [Int] between(1l, nProcesses) rule |1
W.overtlow Watch:Locals[Watch,Int,overflow] | W:Locals[Watch,Int,overflow] | rule|8
x:Int il:int rule |7}

gW-found x:Int il:Int rule |7

Table 6.7: Substitutions used to derive sample component automaton W. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.

46



Syntactic Element Original Desugared Resorted Expanded Component

Automaton _|_|_Jﬂ_ \r P.\r. S.P.Nr. C;

General form Figure 3.1 Figures 4.3, 4.5, 4.7 Figure 6.2

Automaton parameters @@mmmﬁ varsAi @@mm}, Sgﬁw} @ﬁmmb“ S:,mb“ vars? Ci

Action parameters @@SSmeM gﬁm\:h Egﬁm?h S»:Egﬁwm:n varsPm

Signature where predicates w\mww Numﬁﬂ ?ﬁmﬁﬂ SHENVMWM w\m‘ww

State variables state Vars™ pistate Vars™ state Vars

Aggregate variable name A; C;

Aggregate state sort States|A;, types?] States[A;, actual Types®+©1]

Aggregate local sort Locals[A;, types™ , kind, , tj] | Locals[A;, types4i, 7] Locals[A;, actual Types? % ]

Initial state variables values init Vals™ pitnit Vals™i oip;init Valsi init Vals©

initially predicate P P piPA oipi P po. =

Transition parameters @@SSMMNM“ 4 @@%mmfﬁ P.gﬁmx):h SEES@PH varsPm

local variables Nom@:\aﬁmMNMﬁ local a\gﬁmwmm Pi Nommi\mﬁmwmm oixpi local SNQMWNM Nonn:\@ﬁmmﬁ
L)

Transition where predicates ﬁMwM . NuMMMS P.NMWMS S.AP.NMMM: ﬁMmM:

Transition pre predicates wﬁmm&wm& wﬁmmwmm Pwﬁmm&mm Q?Ewﬁmm&mm Nuﬁm\mwm

Transition eff programs ESQMNM& ﬁﬁommw.mm Ewﬁ@\wmm Shb&wﬁommwmm %ﬁ@QMMM

Transition eff predicates m:mzﬁ.@m\mmw . m:m:l:mmwww Em@m@lzmwww Tixpi m:mzﬁ&ﬁmmﬁ mzmzz.:mm&mm
)by

Channel Figure 2.1 Figure 4.8 Figure 6.1 Figure 6.3

P Figure 2.2 Figure 4.8 Figure 6.4

Watch Figure 2.3 Figure 4.8 Figure 6.1 Figure 6.5

Table 6.8: Stages in expanding components C; of a composite automaton D.
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7 Expanding composite automata

In this section, we present the main contribution of this document. We show how to expand a com-
posite IOA program into an equivalent primitive IOA program. Section reviews our assumptions
about the form of the components of the composite automaton, and Section describes a simpli-
fication of the structure of hidden statements, obtained by combining all clauses for a single action
into a single clause.

In Section we define the expansion of the signature of a composite automaton to primitive
form. Section [7.4] gives first-order logic formulas for the semantic proof obligations we introduced in
Section These include compatibility requirements for component automata. In Section we
define the expansion of the initially predicate on states of a composite automaton. In Sections
we define the expansion of the transitions of a composite automaton.

7.1 Expansion assumptions

We expand a composite automaton D into primitive form by combining elements of its components
C1, ..., C,. We assume each component automaton A; has been desugared to satisfy the restrictions
in Sectlon resorted to produce an automaton pzA as described in Section and [6.1) and
transformed as described in Section [6.4] to produce an automaton az,olA = C;. In partmular for
each component automaton C;, we assume the following.

e No const parameters appear in the signature.

e Each appearance of an action 7 in the signature is parameterized by the canonical action
parameters vars?™.

e Each transition definition of an action 7 is parameterized by the canonical action parameters
varsP,

e Each transition definition of an action 7 is further parameterized by the canonical sequence

oixpi local Vars™™ of local variables for that component.
e Each action has at most one transition definition of each kind.

e Every state, post-state, local variable, or post-local variable reference is of the unambiguous
form Cj.z, Cl.x, C;[vars? %].z, or C”[varsD’Ci].a:.

7.2 Desugaring hidden statements of composite automata

The syntax for composite IOA programs as described in Section [5] provides programmers with flex-
ibility of expression that can complicate expansion into primitive form. Hence, as with primitive
automata, it is helpful to consider equivalent composite IOA programs that conform to a more
limited “desugared” syntax. As discussed later in this section, where clauses of composite au-
tomaton hidden statements and of component transitions are combined during expansion. Thus,
hidden statements must be desugared into a form analogous to that of a desugared transition.
In particular, we desugar composite automata with hidden statements to have the following two
properties.

e Each hidden clause for an action m is parameterized by the canonical action parameters
vars? .
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e There is at most one hidden clause for each action .

The static checks described in Section ensure that the number and sorts of terms in pammsfz de

D,mp

are the same as the number and sorts of variables in vars . If no variable in vars?™ occurs

. D,mp D, D,y s s s
freely in params,;, e (i-e., if vars™ ™ and vars,, de, are disjoint), then we can desugar the clause

Dy
Tp(params, ;i ) where Hmde

D,m P

D . . D . . : .
by replacing params;,; d” by wars®™™, reintroducing varshig;p as existentially quantified variables

in the where clause, and adding conjuncts to the where clause to equate vars”™ with the old
parameters. This results in the desugaring

D,ﬂ' D77TP D77Tp D 37T _ D
mp(vars™ ™) where 3 vars e (Hhide A vars” P pammshzde

Notice that introducing varsh:ip as existentially quantified variables is analogous to introducing

varsA 7;] as local variables when desugaring transition parameters, as described in Section
If vars? ™ and varsfi’d e’; are not disjoint, we define a substitution a;)”de that maps the intersec-
tion of these two sets to a set of fresh variables, and we desugar the hidden clause as

hide D,mp hzdeHD A ’ULLTSD Ty _ O_hzde

D, D,m
») where 3 0, vars e, ( hide, params, ;" ) .

mp(vars

We simplify each existentially qualified where clause produced by the above transformations
by dropping any existential quantifier, such as 3 i:Int in the example, that introduces a variable
equated to a term, as in i = x in the example, in the conjunction vars? ™ = agideparamsfi;e’; , and
also by dropping the equating conjunct from that conjunction. We denote the resulting simplifica-

. T
tion of the where clause by thdep,canon

Following this clause-by-clause canonicalization, we combine all clauses in the hidden statement
that apply to a single action 7 into one disjunction. This step is analogous to the combining step
for transition definitions in Section £.3] For example, if 7, = 7, = 7, then the clauses
D,ﬂ'p)

s
where H P

Tp ( vars hzdep,canon

where H

Dvﬂ—(I)
hzde ,canon

mq(vars

become the single clause

D,Tr) vV HD:T"q

D,mp
where 1, hideq,canon”

d ( vars hidep,canon

We denote this combined where clause by HP.

7.3 Expanding the signature of composite automata

In the composite automaton D, actions that are internal to some component are internal actions of
the composition, actions that are outputs of some component and are not hidden are output actions
of the composition, and actions that are inputs to some components but outputs to none are input
actions of the composition. The where clause predicates Pk n .4 express these facts in the signature
of the expanded automaton DFExzpanded. We construct these predicates by defining subformulas,

P,ﬁﬁgi’w and vakDi;Zi which describe the actions components contribute to the composition. We
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automaton D Expanded(types”, vars®)

signature

. D D,
kind 7(vars” ™) where P,

Figure 7.1: General form of the signature in the expansion of a composite automaton

combine these formulas and the where predicate from any applicable hidden clause (i.e., H?'™),
to account for the subsumption of input actions by output actions and for hiding output actions.
The final result consists of the three predicates P, ", PP and Pﬁf.

All free variables that appear in these predicates are among the composite automaton parame-
ters vars” and the canonical action parameters vars?™. Figure shows the general form of the
expanded signature. Below, we explain how to construct these predicates. (See Section for an

example application of the process to composite automaton Sys defined in Example )

Subformulas for actions contributed by a component

In order for an action kind 7(vars”™) to be defined in D, it must be defined in some component.

An action is defined in a component C; of D if, given action parameters vars?™ there are component
parameters vars?:Ci that satisfy both the component where clause PP and the action where
clause P,g;g for 7 in the signature of C;. Hence we define

D,Cim .. _ D,C; D,C; Ci,m
P 0" n= FJvars™ " (PY N P,

D™ is an action of type kind in component C; of

which is satisfied by vars® ™ if and only if 7(vars
D.

It is important to note that the type of the action m(vars in D may be different from the
type of 7 in some, or even all, the components contributing the action to the composition. Output
actions in one instance of one component may subsume inputs in another, and output actions may
be hidden as internal actions in the composition. We say that kind is the provisional kind of
7(vars?™) in D when an action of that kind is contributed to the composition by some component.

Hence we define the predicate vaz;; as follows:

D,7r)

Dm | _ D,C;,m
Provy, , = \/ P
1<i<n

Signature predicates

We account for subsumed inputs and hidden outputs in the signature of D Exzpanded by appending
special case formulas to the predicates Prokai;Zl to form the signature predicates Plg;;;. The three
cases we must consider are:

e An action 7(vars?™) is an output action of D if and only if it is an output action in some

component C; of D and is not hidden in D.
e An action 7(vars?™) is an input action of D if and only if it is an input action in some
component C; of D, but not an output action in any component of D.
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D,7r)

e An action w(vars is an internal action of D if and only if it is an internal action, or a

hidden output action, in some component C; of D.

Translating these requirements into first-order logic, we derive the following definitions for the
signature predicates of DExpanded:

D77I' Pry— D,ﬂ' D,T('
o P u= Prov,, N -H

Dmnm . D,m D,
o P, = Prov,)” N —Prov,

o PP . ProyPT v (ProvD’7r A HD”T>.

nt int out

7.4 Semantic proof obligations, revisited

We are now ready to formalize the following proof obligations on composite automata introduced
in Section (.41

v" Only output actions may be hidden.
v" The components of a composite automaton have disjoint sets of output actions.

v" The set of internal actions for any component is disjoint from the set of all actions of every
other component.

Below we give corresponding formulas in first-order logic that must be verified for a composite
IOA program to represent a valid I/O automaton. In order to express the latter two of these
obligations in first-order logic, we break each of them into two parts. First, we consider different
components from different clauses of the components statement (i.e., C; # Cj). Second, we
consider instances of the same parameterized component distinguished only by parameter values
(ie., Ci[varsP %] # Civars'® %]). We use these formulas to help construct the expansion of
transitions of composite automata in Sections

Hidden actions

The first of these obligations is just the requirement that

v HD7™ = Proy?T

out *

Output actions

For output actions, we first require that different parameterized components have disjoint sets of
output actions. Formally, we say that for all distinct components C; and C; of D, all values of the
action parameters vars?™ for 7, all values of the composite automaton parameters vars®?, and all

values of the component parameters vars? ¢ and vars? ¢ we require that
D,CZ‘JT D,G',ﬂ'
v _'Pout v _'Pout ! (71)

Second, we require that different instances of the same parameterized component have disjoint
sets of output actions. That is, for each component C; of D, all values of the action parameters

92



varsP™ for m, all values of the individual parameters vars? of the composite automaton, and all

pairs of values of the component parameters vars? ¢ and vars'? ¢ we require that
v (PD’Ci A P'D:Ci A Pocit’ﬂ P/OC;’:) = pars? % = pars'P:Ci (7.2)

where P’ f&f is Po%f evaluated on vars'P-Ci,
In Example [2.4] these requirements are satisfied trivially, because the output actions in the

different components of Sys have different labels. However, the composition
automaton BadSysli
components P1[n:Int] where 0 < n A n < 10;
P2: P(5)
would violate the first requirement, because components P1[5] and P2 share an output action, and

the composition
automaton BadSys2
components W[what:Set[Int]]: Watch(Int, what)
where what = between(1,1) V what = between (1,2)
would violate the second requirement because components W[[1]] and W[[1,2]] both have found(1)
as an output action.

Internal actions

Similarly, we break the last of these semantic proof obligations, which concerns internal actions, into
two parts. We first require that internal actions are defined in one component only for parameter
values where no action is defined in any other component. Formally, we say that for all distinct
components C; and C; of D, all values of the action parameters vars? ™ and all values of the
composite automaton non-type parameters vars? , we require that

D.C; T D,C]‘,TF
v P =P, (7.3)
Gy D,Cjx DG, D,G;,
where P % s the disjunction of P, """ P, " and P, 7",

Second, we require that internal actions of one 1nstance of a parameterized component are
defined only for parameter values where no action is defined in any other instance of that component.
That is, for each component C; of D, all values of the action parameters vars”:™
composite automaton non-type parameters vars”, and all pairs of values of component non-type
parameters varsP-Ci /D, C; , wWe require that

, all values of the

and vars

int

v (PD Gop PRGN PO A P’Zilm) = vars? % = vars' P, (7.4)

where P’ zil’ﬁ is the disjunction of P, C“W P’ g’bf, and P’ gff and where the primed form of each
predicate is the evaluation of the predlcate on vars'P:C.
Note, although allowed by obligation [7.4] the cases where PC¢™ Pc“ﬂ r PG A PO hold

int nt out

are already disallowed by semantic proof obligations [£.2] and [£.3] respectlvely

Claim 1 (Signature compatlblllty) Semantic proof obligations -—- 7.4| taken together with the
signature where predicates P n g imply that DExpanded fulfills the semantic proof obligations for

primitive automata [L.IH4-3|

In Sections we argue that remaining obligations for primitive automata (4.4 and 4.5))
are discharged by the transition where clauses of DExpanded.
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7.5 Expanding initially predicates of composite automata

In Section[5.2] we described the state variables of a composite automaton D. Corresponding to each
component C; is a state variable C; with sort States[A;, actual Types®” ’Ci] if C; has no parameters and
with sort Map [types™ i, States[A;, actual Types” ’C"]] otherwise. Here, we describe the construction
of an initially predicate that constrains the initial values of these state variables. This predicate is a
conjunction of clauses, one per unparameterized component and two per parameterized component.

If a component C; is not parameterized (i.e., the state variable C; is a tuple, not a map), then
a single clause asserts that, for all values of the component parameters for which the component
is defined (i.e., when PPC is true), each element of the tuple has an appropriate initial value.
Furthermore, the clause asserts that, when PP>C is true, the tuple as a whole satisfies the initially
predicate Pl%t of the component. In order to account for initial values specified as nondeterministic
choices, we proceed as follows. Let

e X, be the set of indices k of state variable declarations of the form

T, = choose v T}, where Pl%t,k

in the definition of the component Cj,
o ¢Vars® be a set of distinct fresh variables v}.: T}, one for each k in X,

e xinitVals® be initVals® with each of the above choose expressions replaced by the corre-
sponding v} :T}, for each k in X;, and

e «P% e PCi

P i, With vy substituted for v, when k € X; and the predicate true otherwise.

Then we formulate the clause (shown in Figure corresponding to C; in the initially predicate
of DExpanded by factoring out, and existentially qualifying, the variables (i.e., ¢Vars Ci) used to
choose nondeterministic values for the state variables of the component automaton C;.

When a component C; is parameterized (i.e., the state variable C; is a map, not a tuple), then
there are two clauses for the component. The first is analogous to the single clause for the simple
case in which the state variable is a tuple, but now it asserts that each element of each tuple in the
map has an appropriate initial value and that, when PP-% is true, the map as a whole satisfies the
initially predicate of the component. The second clause asserts that the map is defined exactly for
the values of the component parameters for which the component itself is defined (i.e., when P?>C:
is true). This second clause is also asserted automatically as an invariant of the automaton. That
is, no transition either extends or reduces the domain over which the map is defined. Figure
summarizes these two cases and the invariant.

7.6 Combining local variables of composite automata

Just as it helped to collect the local variables from all transition definitions for an action = when
desugaring a primitive automaton (see Section , it helps to collect the local variables from the
transitions definitions from different components for an action 7w when expanding the definition of
a composite automaton. Hence, we parameterize every transition definition by n per-component
aggregate local variables that are named for the components C1, ..., C}, just as the n per-component
aggregate state variables are named for those components (see Section .
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states

.oy

C: States[A;, actual Types™> ], % if vars? ¢ is empty
.
Cj: Map|vars?>C, States[A;, actual Types™> 1], % if vars® % is not empty

initially

VAN
PP:C = JcVarsY (Pi%t A Cy.stateVars = xinitVals“ A Nrex, *Pﬁ’ltk) A

VAN
Yoars?:C (PD’CJ' = ElcVarsCf(PZ%-t A Cjlvars? @].stateVars®i = xinit Vals

C.
A Niex, *Pinjit,k)> A

Voars?:G (PP0 & defined(Cj[vars? %)) A
invariant of DFExzpanded :
o

VoarsD:Ci (PD,C_,' =N defined(Cj[vaTSD’Oj])) )

Figure 7.2: General form of the states in the expansion of a composite automaton
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The sort of each per-component local variable depends on the name of the action and the param-
eterization of the component. If the component C; has no parameters, then the aggregate local vari-
able C; has sort Locals[A;, actual T} ypes? ’C",w]. On the other hand, if the component C; has param-

eters, then the aggregate local variable C; has sort Map[types” ¢, Locals[A;, actual Types®:“, 7|1,
where types” ¢ is the sequence of types of the variables in vars?:¢:.
We define localVars?™ to be the sequence of the per-component local variables C4, ..., C,. If

a transition 7 has no local variables in component C; or if 7 is not a transition in component Cj,
we omit C; from local Vars®™. We also define the sort Locals|D, types”, x| to be a tuple sort with
selection operators that are named, typed, and have values in accordance with the variables in
local Vars?™.

7.7 Expanding input transitions

Composition combines the transitions for identical input actions in different component automata
into a single atomic transition. An input transition is defined for an action 7 exactly for those
values of vars” ™ that satisfy the signature where predicate PZ-Z’W. Figure shows the general
form for the definition of a combined input transition based on this observation. Below, we discuss
the definitions of the where, eff, and ensuring clauses which appear in that figure.

Each of these clauses also appears as part of the expanded transitions for output and internal

sps D,m D, . Dm . . .
transitions, so we name them P, " . Prog; "™, and ensuring,,, respectively, and include them in

the figures for the output and internal transitions only by reference. In those transitions, Pﬁ’z

refers only to the predicate explicitly appearing in Figure That is, without the implicitly
conjoined signature predicate PZZ’W.

transitions

D,Cl',ﬂ'

input m(vars?™; local localVars”'™) where A,..., P, Y

eff

% When vars? ¢ is empty
it P2:Ci A PCT then ProgS™ fi;

% When vars?:% is not empty

. . va
for vars?-% where PP-C A P’ " do
c,
Prog,) 7
od;

: . D, Cim
ensuring A\, ensuring;,

Figure 7.3: General form of an input transition in the expansion of a composite automaton
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where clause

Since there is only one input transition for the action 7 in DFExpanded, the expanded transition
where clause trivially satisfies semantic proof obligation and its only functional role is to define
the initial values of the local variables localVars?™ that correspond to a given sequence of action
parameters vars”™. While the signature where predicate Pﬁ’ﬂ need only establish that there exists
some instance of some component that contributes an input action W(UGT’SD ™), the transition where
predicate must define local variable initial values for each contributing instance of all contributing
components.

We define the input transition where clause Pmt by constructing subformulas P,, Each
such subformula constrains the initial value of one local variable C; of contributing component Ci.
The where clause shown in Figure is then just the conjunction of these predicates PZZ g v for
all components.

The subformula P£ tC “™ is the implication that for each instance of the component that con-
tributes to the transmon the local variable C; satisfies the proper initial constraints. The initial
value of local variable C; in local Vars” "™ is properly constrained when it satisfies the where clause
P“C;L;; for the input transition definition of 7 in component C; (for the given values of the compo-
nent parameters vars? % and action parameters vars? )

C;
implication is Py "}

When the component is parameterized, the local variable C; is a map and each entry C;[vars
in that map corresponds to the aggregate local variable for one instance of the component. In this
case, the initial values for entries corresponding to all contributing instances must initialized. An
instance of component C; contributes to the transition 7T(U(17‘8D ™) when component parameters
varsP:% satisfy both the component where clause PP-¢ and the signature where clause P, G i
that component (for the given values of the action parameters vars”>™). Thus, the antecedent of
the implication is the conjunction of these two predicates. To cover all instances, the implication
is universally quantified over all values of the component parameters vars” ¢. Hence, we define

pDCum i pars? G ((PD AN PCMr) = PC“ﬂ>

in,ty wmn,ty

D CL,T(‘

. Thus, the consequent of the subformula

D,Ci]

Since component C; satisfies the semantic proof obligation there must exists a value for local
variable C; that satisfies the above consequent whenever the antecedent holds. Thus, the implication
is always true when read with the existential quantifier over the local variables local Vars”"™ that
is implicit in the transition header. Thus, DEzxpanded also (trivially) satisfies semantic proof
obligation E 4.4| for input transitions, since whenever the input action 7(vars®™) is defined in the
signature of DFExpanded, the input transition 7T(1}CLT’SD ™) is also defined.

Notice that for each distinct value of vars? ¢ the predicate szglr mentions a distinct local
variable C; or C;j[vars®%] in localVars?"™. So, the truth values of instantiations of the the impli-
cation are independent even though there is only one existential instantiation of the local variables
local Vars®™

However, the fact that the implication is always true does not mean that it is equivalent to
omit the expanded transition where clause. It is a consequence of the expanded signature where
clause PZ-Z’W that some value of vars? ¢ satisfies the above implication antecedent. In that case the
where clause asserts that the initial value of the relevant local variable must satisfy the contributing

C
component transition where predicate Pmlf

When the component is not parameterized, PZZ tc “™ reduces to P“C;Zf To see this, first, note
that the universal quantifier simplifies away for lack of variables to quantify. Second, note that

PD.Ci and Pi%"” are true whenever Pﬁ’” is true. So the implication reduces to just the consequent.
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Since the only functional role of the where clause is to define the initial values of the local
variables local Vars”"™, when there are no local variables or when no local variable appears in any
Pig"’“, the where clause can be omitted altogether.

eff clause

The eff clause performs the effects of all input transitions of each contributing instance of all
contributing components. It contains a conditional statement for each unparameterized component
C; of D and a loop statement for each parameterized component C; of D.

The predicate in the conditional statement for an unparameterized component C; (when im-
plicitly conjoined with the where clause for the entire transition and where clause for the action
in the automaton signature) is true if C; contributes an input transition for 7 to the composite
automaton D. In that case, the body of the conditional statement executes the program in the eff
clause in the transition definition for =« in Cj.

The situation is slightly more complicated when the component C; is parameterized, because the
transition must execute the effects of all instances of the component that contribute to the action.
Thus, the eff clause loops over all the different values of the component parameters vars” ¢ that
satisfy the component where clause PP-% and the signature where clause Pl%’ﬂ in that component
to execute the program in the eff clause in the transition for 7 in that instance of component Cj.
Notice that each instance of a contributing component C; (corresponding to one iteration of the
loop for C;) manipulates a distinct tuple of local variables C;[vars” Cl]@

If only one unparameterized component C; contributes to the input transition definition, the
conditional statement for that component may be replaced by the eff clause in the transition
definition for 7w in Cj itself because the guard is implied by Pl—%ﬂ.

ensuring clause

The ensuring predicate must be true if and only if the ensuring predicate from each contributing
instance of all contributing components is true. That is, given the parameters vars”™, for each
sequence of values of component parameters vars?:% of each component C; that satisfies both the
component where clause PP and the signature where clause Pzg"”” in that component, the value
of the local variable C; in local Vars®™ must also satisfy the ensuring clause ensurmgZ-Cni’7r for the
D,C;,m

input transition definition of 7 in C;. Thus, we define the predicate ensuring;,
D,C;,m
P‘ I S XA

n,ty

analogously to
the the predicate

. D,C; . ’ 5 . »
ens’urmgm’c’7r i= VY oars? ¢ ((PD’OL A Pz% W) = ensumngi Z) )

22Currently, IOA syntax permits only a single single loop variable in for statements. However, if V is a sequence
of variables v1,v2,vs, ..., then it is simple to rewrite multi-variable loops such as the ones used in Figure @

for V where p do g od

as nested single-variable loops using the inductive step

for v; where 3V'p do
for V' where p do g od
od

. . . . . .
where is the variable sequence V' = v, v3 ..., p is a predicate and g is a program.
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7.8 Expanding output transitions

We build up to the general form of expanded output transitions by first considering three spe-
cialized cases. The simplest case we consider is an output transition that appears in exactly one
unparameterized component and in no component as an input transition. Second, we consider the
expansion of an output transition when that sole contributing component is parameterized. Third,
we extend our definitions to apply output transitions contributed by multiple components. Finally,
the fully general expansion of output transitions covers the case where output actions and input
actions share a name.

Output-only transition contributed by a single unparameterized component

We begin by considering the simplest case of an output transition 7(vars?-™) that appears in exactly
one unparameterized component C; and in no component as an input transition. That is, there is
no component Cj, whose signature contains an input action 7(vars” ™). In this case, the expanded
output transition does not need to be performed atomically with any input transition.

As there is only one transition contributing to the expansion, there is only one transition for the
action 7T(1}CLT’SD ™) in DExpanded. Thus, the expanded transition where clause trivially satisfies
semantic proof obligation and its only functional role is to define the initial values of the local
variable C; that corresponds to a given sequence of parameters vars” ™. In this case, simply reusing
the component transition where clause Pocuit’; , as the expanded transition where clause gives the
correct definition. In fact, the only difference between the expanded transition and the component
transition in this simplest case is the way locals variables are declared in transition header. The
aggregate local variable of the component transition becomes the sole local variable of the expanded
transition. The resulting form is show in Figure 7.4

transitions

C,

)

output 7(local vars” %, C;:Locals[C;, actual Types”
Ci7

Poutﬁl

C;m

out

eff Prog<i™

out

where

pre Pre

Ci,m

ensuring ensuring,,;

Figure 7.4: Expanded transition for an output action with no matching input actions, derived
uniquely from a component C; with no parameters.

Output-only transition contributed by a single parameterized component

When the component C; has parameters the expansion is slightly more complicated. As in the
previous case, no like-named input transitions exist in any component and, therefore, the expanded
output transition does not need to be performed atomically with any input transition. Also like the
previous case, there is only one transition definition for m(vars?™) in the expanded automaton, so
the transition where clause trivially satisfies semantic proof obligation [4.5] and its only functional
role is to define the initial values of the local variables. Unlike the previous case, the state and
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transitions

output 7(vars?™; local vars? %, CjMap[types? C:, Locals|C;, actualTypesD’Ci,ﬂ]])

where PP:Ci A pCim A plim

out out,ts
C;,m
out

eff Prog<i™

out

pre Pre

Ci,m

ensuring ensuring,,,;

Figure 7.5: Expanded transition for an output action with no matching input actions, derived
uniquely from a parameterized component C;.

local variables C; are maps rather than simple tuples and the contributing component parameters

varsP-%i are introduced as local variables.

The initial values of vars? ¢ need to be the correct indices for the relevant entry in the state and
local variable maps. That is, C;[vars” ¢] should evaluate to the tuple derived from the aggregate
variable of the contributing instance of the component. Note, the semantic proof obligation
requires that at most one instance of a component may contribute an output action 7T(1}CLT’SD ).
In fact, proof obligation provides the formula for selecting the correct indices. The component
parameters of the sole contributing instance uniquely satisfy both the component where clause
PD.Ci and the signature where clause Pocuit’”. Thus, these two predicates appear as conjuncts in
the where clause.

Since at most one instance of component C; contributes to the expanded transition, at most
one entry in each of state and local variable maps C}, corresponding to the aggregate variable of
the contributing instance of the component, has any relevance to the transition. The other entries
are completely ignored@ The initial values for that entry C;[vars” ¢i] are those that satisfy the
component transition where clause Pocult’j; ,- Thus, this predicate forms the last conjunct in the
expanded where clause.

The fact that at most one instance of component C; contributes to the expanded transition
also means the expanded definition for the transition of an output action 7 need not use a for
statement, as does the expanded definition for the transition of an input action. Instead, the
expanded definition simply reuses the eff clause of the sole contributing component transition.
Similarly, the pre and ensuring clauses of the expanded transition are the same as those of the sole
contributing component transition, as shown in Figure

Output-only transitions contributed by multiple components

When an output action name appears in several components, it would be valid for the expanded
composite automaton to include a separate output transition derived from each contributing com-
ponent transition using the above definitions. Unfortunately, as we see below, this approach yields
a code-size explosion multiplicative in the number of like-named input and output transitions. To
avoid this code explosion, we define the expanded composite automaton to combine all like-named

23In this special case, the references to local variable maps (rather than simple tuples) introduced by substitution
oi,x rule El in Section @ are actually an unnecessary complication. However, they are required in the more general
cases discussed below.
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transitions

D,C;
)

output 7(vars?™; local vars ..., varsPCn, localVarsD’”)

where \/lﬁign (PD,CZ‘ A PCz'ﬂT A Pciﬂ'l' )

out out,ty
D,C; Ci,m Ci,m
pre V1§i§n (P N Pout A Pr@out )
eff
if ...

. D7O Ci,Tl' C7,77r
elseif P*>% A P " then Prog,,;
elseif ...
fi

C;,m

. . . A
ensuring A ., (PD’CZ AN Pyl = ensurmg()ﬂ)

Figure 7.6: Expanded transition for an output action with no matching input actions, contributed
by several components

output transitions into a single output transition, as shown in Figure An additional advantage
of combining all like-named output transitions is that, once again, the expanded transition where
clause trivially satisfies semantic proof obligation and its only functional role is to define the
initial values of the local variables.

In the expansion, we declare as local variables the parameters of each (contributing) component
and the local variable C; from each (contributing) component. As in the previous case, the semantic
proof obligations for output actions given in Section[7.4] provide the key to defining the where clause.
Obligation requires that for any value of parameters vars”>™, at most one disjunct of

\/ PD,C’mr _ \/ EUGTSD’Ci (PD,Ci A PCmr)

out out
1<i<n 1<i<n

can be true. That is, at most one component may contribute an output transition ﬂ(varsD ).
Since, all the component parameters vars?:“ appear as local variables in the expanded transition
header, these variables are implicitly existentially quantified in the where clause. Therefore, in the
expanded transition, the above obligation can be expressed simply as

\/ (PD,CQ; A PC“T(').

out
1<i<n

Similarly, obligation requires that at most one set of values for the component parameters
vars? Ci of that contributing component C; satisfies the conjunction

N

out

That is, at most one instance of that component may contribute an output transition 7(vars”™).

Notice that this conjunction appears exactly in the previous obligation. In fact, we use the conjunc-
tion of the component where clause PP-% of the contributing component and the signature where
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clause ngt’” as a “guarding conjunction” for selecting the contributing instance of the contributing

component throughout the expanded output transition.

In the where clause the guarding conjunction is paired with the corresponding component tran-
sition where clause and that triple conjunct is disjoined over all the components. Doing so has the
effect that the initial values of the relevant local variable C; (or its relevant map entry C;[vars?:%])
satisfies the component transition where clause whenever C; is the contributing component.

Notice, it is a consequence of the expanded signature where clause Pﬁ’f that some value of
vars? i satisfies the guarding conjunction. Furthermore, since component C; satisfies the semantic
proof obligation [.4] there must exists a value for local variable C; that satisfies the consequent
whenever the guarding conjunction is true. Therefore, whenever the output action 7(vars?™) is
defined in the signature of DFEzxpanded, the output transition 7T(’UG/I’SD ™) is also defined. Thus,
D Ezpanded also satisfies semantic proof obligation for output transitions.

In the precondition, the guarding conjunction is paired with the corresponding component
precondition and that triple conjunct is disjoined over all the components. Thus, the expanded
transition is enabled when there is a component for which all three of the transition precondition,
the transition where clause, and the component where clause are true for the given parameters
and initial local variable values. Checking the conjunction of all three predicates avoids enabling
the transition when the where clause is satisfied by the transition from one component while the
pre clause is satisfied by the transition of another component.

In the eff clause, the guarding conjunction selects the conditional branch containing the effects
of the single contributing output transition that is defined for the given parameters. Similarly, the
ensuring clause of the contributing output transition must be satisfied.

Output transitions subsuming input transitions (general case)

When both input and output transitions are defined and (the output transition is) enabled, the
output transition subsumes the input transitions. That is, the input actions execute atomically
with the output action. Just as we cannot statically decide that two input actions will never
be simultaneously executed, we cannot, in general, statically decide that an input transition can
never be subsumed by a like-named output transition. Therefore, each expanded output transition
must include the effects of all like-named input transitions (appropriately guarded). (It is this fact
that would cause the code-size explosion mentioned in the previous section were we to include a
separate output transition derived from each contributing component transition.) Figure shows
the general form for expanding output transitions of composite automata.

In the cases where the output transition subsumes one or more input transition, the local
variables from the instance(s) of the component(s) contributing the input transition(s) must be
initialized by the expanded transition where clause. On the other hand, the where clause must
still always be satisfiable when an output action is defined. As we argue in Section the
expanded input transition where predicate Pﬁlﬂ does exactly these two things. First, it requires
the local variables derived from contributing input transitions to satisfy the where clauses of those

transitions. Second, an)?] is satisfiable by some choice of values for localVars” ™. Thus, we simply

conjoin PZL,ZZ to the where clause developed in the previous case.

The eff clause selects the effects of the single contributing output transition that is defined
for the given parameters and then performs all the effects of the subsumed input transitions by
executing Proggfr. Each effect in P?"oggl’7r is already guarded so as to occur only when the source
transition contributes. Therefore, we simply append Progl-[:;7r to the eff clause from the previous

case. Similarly, the ensuring clause ensuring%7r can also be simply conjoined with the the ensuring

62



transitions
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eff
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elseif ...

fi;
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C;,m
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. . . A . D
ensuring /\19.91 (pD,Cz A P = ensumng@?) A ensurmgmm

Figure 7.7: General form of an output transition in the expansion of a composite automaton

clause from the previous case.

Note that, Progf:fr may, in fact, amount to a no-op in all executions. However, in general,
this cannot be statically decided. Also note that the order of execution of the subsumed input
transitions with respect to each other or to the enabled output transition does not matter. The
semantic checks require that each conditional branch or for body executed in either the subsumed
input transition or the remainder of the clause must be derived from distinct automata. These
effects can alter only the value of state, local, or choose variables derived from the automaton
contributing that effect. Furthermore, the effects can depend only on those same set of state, local,
and choose variables or on the parameters of the transition. No effect can change a parameter
value.

We define Prog?u’zT to be the program in the eff clause that combines the effects of output
transitions and subsumed input transitions. Similarly, we define ensuring?d? to be the predicate
that appears in the ensuring clause.

7.9 Expanding internal transitions

The basic form of expanded internal transitions is analogous to that of output actions. The most
significant difference is that the internal transition expansion must account for output actions that
are (potentially) hidden. So before we consider the general expansion for internal transitions, we
build on the discussion of the expansion of output transitions above to consider the the simpler case
of expanding transitions for internal actions when there are no hidden clauses for those actions.
We then discuss how to generalize this construction to account for hidden output transitions.

Internal-only transitions

The expanded form of the transition for an internal action when there is no hidden clause for that
action follows a pattern similar to that of output transitions when there are no like-named input

63



transitions
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Figure 7.8: Expanded transition for an internal action with no matching hidden clause

transitions. In that expansion, shown in Figure|7.8] we introduce local variables for the parameters
of each contributing automaton as well as all the local variables from all the contributing transitions.
Following reasoning analogous to the output case, we use the conjunction of the component where
clause PP-% of the contributing component and the signature where clause Pig"t’w as the guarding
conjunction for selecting the contributing instance of the contributing component throughout the
expanded internal transition.

In the where clause, the guarding conjunction is paired with the component where clause
for the contributing transition Pi’tgl to initialize the local variable values. In the precondition,
the guarding conjunction is paired with the pre predicate of the contributing transition. In the
eff clause, the guarding conjunction selects the conditional branch containing the effects of the
single contributing transition that is defined for the given parameters. In, the ensuring clause, the

contributing transition ensuring clause must be satisfied when the guarding conjunction holds.

Internal transitions with hiding (general case)

The most important difference between the expansion for internal transitions and that for output
transitions is that the internal transition expansions must account for output actions that are
(potentially) hidden. We cannot, in general, statically decide whether the hidden predicate HP:™

covers the output signature predicate Pﬁf. Nor can we, in general, statically decide whether
Ci,m
out,ty

action 7(vars mentioned by a hidden clause must be incorporated into the expanded composite
automaton twice, once in an output transition and once in an internal transition.

One way to do this, would be to include two internal transitions for each transition 7 (vars
The first transition would be derived as in the previous section, ignoring any hidden output actions.
The second transition would be a second copy of the expanded output transition m(vars?™). This
transition would be identical to the general case output transition expansion except it would be
labeled internal.

HP™ covers the where clause for any contributing transition P
D,7r)

. Thus, each transition for each

D,Tl').
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An alternative expansion is shown in Figure[7.9] This expansion follows the pattern of including
just one transition of each kind. An advantage of having just one transition is that the expanded
transition where clause trivially satisfies semantic proof obligation [4.5] and its only functional role
is to define the initial values of the local variables.

Proof obligations [7.3] and imply that, over all components, at most one of the conjunctions
pb.Gi A PZ%’” and PP:Ci A ngf can be true. So these conjunctions are used as the guard-
ing conjunctions for the expanded transition. The former guards elements derived from internal
component transitions. The latter guards elements derived from output component transitions.

In the where clause, each guarding conjunction is paired with the component where clause for
the contributing transition P,g;’ztl of matching kind to initialize the local variable values. Since a
hidden output transition might also subsume a like-named input action, the where predicate also

asserts Pﬁ’” In the precondition, the guarding conjunction selects the appropriate component
C;,m

o . o . CiJr
transition precondition Pre, ;" or Pre,;

to satisfy. These latter disjuncts are abbreviated by
referencing the expanded output pre predicate Preflzf. The eff clause selects the effects of the
single contributing internal or output transition that is defined for the given parameters and then
performs all the effects of the subsumed input transitions. The conditional selecting the effects of
an internal action is shown in the figure. Effects derived from hidden output and hidden subsumed
inputs are executed in the appended program Progjoju’;T . Similarly, the ensuring clause from the
previous case can be simply conjoined with expanded output transition ensuring clause ensm"mgjoju’;T

Notice, it is a consequence of the expanded signature where clause Pﬁf that some value of
vars? Ci satisfies one of the guarding conjunctions. Furthermore, since component C; satisfies
the semantic proof obligation [£.4] there must exists a value for local variable C; that satisfies
the consequent whenever a guarding conjunction is true. Therefore, whenever the internal action
n(vars? ™) is defined in the signature of DExpanded, the internal transition m(vars”™) is also

defined. Thus, D Exzpanded also satisfies semantic proof obligation for internal transitions.

Ky

24We cannot simply conjoin P(ﬁ)f to the transition where clause because PZZ’ would not distribute correctly.

65



transitions

D.Cr o warsPCn, localVarsD”T)

) v (PD’CZ' N POET

internal 7(vars”™; local vars

where V., ((PD’Ci A PEET A

int

P'C"Hﬂ-

wnt,ty out

pre

\/1§i§n (PD’Ci
eff

if ...

elseif PD:Ci p plim

nt

nt int out

A PO A Pre-Cm) v PrelT

Ci,m
int

A then Prog
elseif ...

fi;

D,
out

ensuring A\, ., <PD’CZ' A P

Prog

Ci,m
nt,t;

P

in,ty

A PO

out,ty )) A

A D
= ensuring;’, ) A ensuring gy

Figure 7.9: General form of an internal transition in the expansion of a composite automaton
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8 Expansion of an example composite automaton

In this section, we detail the expansion the composite automaton introduced in Example In this
expansion, we apply the techniques described in Section [7| to the composite automaton Sys shown
in Figure and to the canonical versions of its component automata shown in Figures [6.3
In Section [8.2] we derive the signature of SysExpanded in three stages. In Section [8.3] we describe
the state of the expanded automaton, including its initial values, and an invariant about the scope
of definition for its state variables.

Where convenient, we recapitulate definitions developed in previous sections in summary tables
to save the reader (and the authors!) from having to flip back to look up definitions.

8.1 Desugared hidden statement of Sys

Following the procedure described in Section we eliminate terms other than variable references

from the parameters of the hidden statement of automaton Sys by replacing pammsiiydse;se?d =
(nProcesses, nProcesses+1, x:Int) with varsSys.send — (n1:Int,n2:Int,m:Int), defining o} to

map m:Int to a fresh variable i:Int, and rewriting the where clause in the hidden statement to

produce
hidden send(nl, n2, m)
where 4 i:Int (i = m A nl = nProcesses A n2 = nProcesses+1)
which simplifies to
hidden send(nl1, n2, m) where n1 = nProcesses A n2 = nProcesses+1

Thus, we define HSYys:send 4 he nt = nProcesses A n2 = nProcesses+1.

8.2 Signature of SysExpanded

To expand the signature of composite automaton Sys as described in Section we first calculate
C;,m

the per-kind, per-action, per-component predicates Pksizz’ . Then we combine these by compo-

nent to form the provisional kind predicates Provimzm. Finally, we combine these predicates with
the hidden statement predicate to derive the signature predicates Piys’ﬁ, Pfgts’ﬁ, and Pigs’w.

In computing these predicates it is helpful to remember the component predicates and canonical
variables of the sample composite automaton Sys. Table collects the former from Example
Table recalls the latter as they were defined in Example The local variables shown are

derived from Example [6.2] as described in Section

PREDICATE | VALUE

PpSys.C j =1i+1 A1 < i A i < nProcesses
pSysP 1 < n A n < nProcesses

pSysW true

Table 8.1: Component predicates of the sample composite automaton Sys

Actions per component

First, we define predicates for each kind of each action for each component. Sys has three compo-
nents and four action names, each of up to three kinds. Thus, there are thirty-six possible per-kind,
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CANONICAL SEQUENCE | VARIABLES

varsSys nProcesses:Int

varsc n:Int

ULLTSP n:Int

varSSys,send nl:Int, n2:Int, m:Int

varsSys,receive nl:Int, n2:Int, m:Int

varsSys.overflow il:Int, s:Set[Int]

varsSys-found i1:Int

local VaTsSys,overflow P:Map[Int, Locals[P, overflow]],
W:Locals[Watch, Int, overflow]

Table 8.2: Canonical variables used to expand the sample composite automaton Sys

per-action, per-component predicates P;ZZ’C“W. Table shows the seven of these predicates that
are not trivially false. All the existential quantifiers have been eliminated from the predicates shown
in the table.

We can simplify such a predicate by dropping existential quantifiers and conjuncts that are
superfluous. A quantifier is superfluous if the predicate equates the quantified variable directly
with a term not involving a quantified variable. The conjunct that equates the quantified variable
to a defining term is also superfluous. The simplification proceeds in four steps:

1. Define a substitution that maps any superfluous existential variables to the corresponding
term.

2. Apply the substitution to the predicate.
3. Delete identity conjuncts from the where clause.

4. Delete the existential quantifiers for variables that no longer appear in the predicate.

For example, by the definition given in Section

PSys,C,send n=  FyarsSysC (PSys,C A Picn,send)

wm
= dn:Int (1 < n A n < nProcesses A nl = n A n2 = n+1)

We simplify this predicate by defining and applying a substitution that maps n:Int to ni:Int,
delete the resulting identity conjunct, the quantified variable, and the quantifier, resulting in the
predicate shown in Table

Provisional action kinds

Since no two components of Sys share the same kind of any action, it is simple to define the

,TT

Seven of the twelve possible predicates are not trivially

false. Each of these has exactly one nontrivial disjunct—the corresponding predicate PkSiZ:’G"’ﬁ, as

shown in Table

. . . . Sys
provisional kind predicates Prov,> "
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PREDICATE VALUE

PiSnys,C,send (1 < n1 A nl < nProcesses) A (n2 = ni+1)
PE&S’P’Send (1 < n1 A nl < nProcesses) A (n2 = nil+1)
Pi?;s,c,receive (1 < n1 A nl < nProcesses) A (n2 = nil+l)
PSys,P,receive (1 < n2 A n2 < nProcesses) A (nl = n2-1)

n

Sys,P,overflow
Pout

Sys, W, fl .
PRy nOVEIEtON 44 ¢ petween(1, nmProcesses)
PSys ,W,found

out

1 < i1l A i1 < nProcesses

il € between(l, nProcesses)

Table 8.3: Simplified predicates defining contributions to the signature of Sys

PREDICATE VALUE
Prov?gs,send PiSys ,C,send
Sys,send Sys,P,send
Provout Pout
Sys,receive Sys,C,receive
Provaut Pout
Prov?gs,receive PiSys ,P,receive
Sys,overflow Sys,P,overflow
Provout Pout
vai;ys,overflow Piiys ,Woverflow
Sys,found Sys,W,found
P U out Pout

Table 8.4: Provisional where predicates for the signature of Sys
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Signature predicates

We now compute the nontrivial signature predicates Pisnys’w, Poszfs’w, and PZ-Sn}t’SJr for the four action

labels send, receive, overflow, and found of automaton SysExpanded.

Output actions We compute the signature predicate for output action send, by applying the
formula

PSys,send _ PmUSys,P,send A — jySys,send

out out

Using the desugared form of the hidden predicate shown in Example we find that Piﬁs’send

1S
1 < n1 AN nl < nProcesses A n2 = nl+1

A —(nl = nProcesses A n2 = nProcesses+1)
Computing the predicates for output actions receive, found, and overflow is simple because

there is no hidden clause applying to them (i.e., H Sysm ig false) and the action predicate is, in
fact, just the provisional kind predicate, as shown in Figure (8.1

Input actions We compute the signature predicate for input action send by applying the formula

PSys,send _ PTOUZ_Snys,send

m

Sys,send

out

A = Prov

Thus, pSys.send evaluates to

n
1 < nl1 AN nl < nProcesses A n2 = nl+l1 A
-((1 < n1 A n1 < nProcesses) A (n2 = n1+1))
The signature predicates for input actions receive, and overflow are computed similarly and

appear in Figure 8.1

Internal actions In Example the component automata have no internal actions. Therefore,

the only internal action in Sys is the hidden action send. Thus, the predicate pSysssend

it is equivalent
to

vaSys,send A HSys, send’

out

which evaluates to
1 < nl A nl < nProcesses A n2 = nl+l A nl=nProcesses A n2=nProcesses+1

The complete expanded signature of automaton Sys is given in Figure 8.1}

8.3 States and initially predicates of SysExpanded

The complete expanded state of automaton Sys is given in Figure Since each component of the
desugared composite automaton has non-type parameters, all three state variables are maps. Three
of the initially subclauses (and the subsequent invariant) assert the well-formedness requirement
that each map is defined only for values of the component parameters on which the component itself
is defined. The other three initially subclauses assert that the contents of each channel is initially
empty, the watch process is looking for values between 1 and nProcesses and that each process P
initially has value 0 and nothing to send. The type declaration appearing at the beginning of the
figure is the automatically generated sort for the state of the composite automaton.
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type States[Sys] = tuple of C:Map[Int, States[Channel,Int,Int]],
P:Map[Int, States[P]],
W:States[Watch, Int]

automaton SysExpanded (nProcesses:Int)

signature
output send(nl, n2, m:Int)
where 1 < n1 A nl < nProcesses A n2 = nil+1
A —-(n1l = nProcesses A n2 = nProcesses+1),
receive(nl, n2, m:Int)
where 1 < n1 A nl < nProcesses A n2 = nil+1,

overflow(il:Int, s:Set[Int]) where 1 < i1 A il < nProcesses,
found(il:Int) where i1l € between (1, nProcesses)
input send(nil, n2, m:Int)
where 1 < n1 A nl < nProcesses A n2 = nil+1
A =(1 < nl A nl < nProcesses A n2 = nl+1),
receive(nl, n2, m:Int)
where 1 < n2 A n2 < nProcesses A nl = n2-1
A —=(1 < nl A nl < nProcesses A n2 = nl+1),
overflow(il:Int, s:Set[Int])
where i1 € between(l, nProcesses)
A —(1 < i1 A i1l < nProcesses)
internal send(nl, n2, m:Int)
where 1 < n1 A nl < nProcesses A n2 = nil+1
A nl = nProcesses A n2 = nProcesses+1
states C:Map[Int, States[Channel, Int, Int]],
P:Map[Int, States[P]],
W:States [Watch, Int]
initially

V n:Int ((1 < n A n < nProcesses) = C[n].contents = {})
AY n:Int ((1 < n A n < nProcesses) < defined(C, n))
AY n:Int ((1 < n A n < nProcesses) = P[n].val = 0 A P[n].toSend = {})
AY n:Int ((1 < n A n < nProcesses) < defined(P, n))
A W.seen = constant(false)

invariant of SysExpanded:
V n:Int (1 < n A n < nProcesses < defined(C[n]));
V n:Int (1 < n A n < nProcesses < defined(P[n]))

Figure 8.1: Expanded signature and states of the sample composite automaton Sys
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8.4 Input Transition Definitions of SysExpanded

We compute the input transitions of SysExpanded by following the pattern of Figure for each of
the input actions in its signature (receive, send, and overflow) and simplifying. Figure shows
the three resulting forms.

In that figure, each input transition is formed from only a single contributing component.
Thus, the conjunctions in the where over the contributing components in Figure [7.3| each resolves
to a single term. Furthermore, we omit the where clauses for the receive and send transitions
because the transition definitions have no local variables. In each of the three transitions, we
omit the ensuring predicate altogether because the sole contributing predicate for each transition
(ensurmggl’recelve, ensum'ngg;send, and ensurmg&overﬂow) is trivially true. The eff clause of each
transition resolves to a single for loop or conditional. In the overflow transition, the conditional is
replaced by its body because there is only a single contributing transition.

Figure [8.3| shows the final text of the expanded input transitions. In that figure, we omit
the local variable P:Map[Int, Locals[P, overflow]] from the overflow transition because it does

not appear in the transition precondition or effects. The where clause predicate Pliytsl W,overflow
reduces to the implication shown in Table because varsSYSW is empty and PSYSV ig trivially
true.

The for loops in the receive and send transitions have been eliminated by the following simpli-
fication. Filling in the specified variables from Tables predicates from Tables [8.1] and [8.5 and

statements from Example in the receive transition for loop yields the loop

for n:Int where (1 < n A n < nProcesses A nl = n-1 A n2 = n) do
if P[n].val = 0 then P[n].val :=m
elseif m < P[n2].val then
P[n].toSend := insert(P[n].val, P[n].toSend);
P[n].val :=m
elseif P[n].val < m then
P[n].toSend := insert(m, P[n].toSend)
fi
od.

Since the last conjunct of the loop where clause limits the loop variable to a single value, the
transition parameter n2, we can eliminate the loop altogether. Thus, in Figure [8.3] we replace the
loop with its body after applying to the body a substitution that maps the loop variable n to its
value n2. Similarly, the for loop in the send transition is eliminated using a substitution that maps
its loop variable n to the transition parameter ni.

8.5 Output Transition Definitions of SysExpanded

We compute the output transitions of SysExpanded by following the pattern of Figure[7.7] for each of
the output actions in its signature (receive, send, overflow, and found) and simplifying. Figure[8.4]
shows the four resulting forms.

Notice that only one component contributes an output transition to each expanded output tran-
sition. Therefore, only syntactic elements from the sole contributing component and the correspond-
ing expanded input action appear in each transition. Each local variable list contains of the compo-
nent variables for that contributing component. Since, local VarsSYSTeCe1Ve 1501 VarsSyssend 4nq
local VarsSYStoUnd are empty, they are omitted from their respective transitions. Since component
W is unparameterized, the found transition has no local variables at all.

The where clause of each transition resolves to a single term rather than being a disjunction
over the contributing components. Furthermore, we omit the where clauses for the receive, send,
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PREDICATE VALUE

P,receive
Pm
PC,send

m

nil = n-1 An2 =n

nl = n A n2 = n+l

len,overflow il € between(1l, nProcesses)

W,overflow
n,ty
Sys,W,overflow
wn,ty

s = W.s2 U {i1l} Vv =(@i1 € s)

il € between(1l, nProcesses) = (s = W.s2 U {i1l} V —(@i1 € s))

Table 8.5: Nontrivial predicates used in expanding input transition definitions of the sample com-
posite automaton Sys derived from Figures and

input receive( UarsSys,recelve)

Sys,P PSyS’P A an,receive P,receiveod

do Prog;

m

eff for vars where

input send(varsSYyS-Send)

Sys.C where PSYS:C A Picn’send do ng(},send od

m

eff for vars

. fl
input overflow(varsSyS:0VeTElov. 1ocal local VarsSYSOVertlow) where pysiW.overtlou

n,tg
off Progyﬁoverflow

Figure 8.2: Form of input transitions of SysExpanded

input receive(ni, n2, m)

eff if P[n2].val = 0 then P[n2].val :=m
elseif m < P[n2].val then
P[n2].toSend := insert(P[n2].val, P[n2].toSend);
P[n2].val :=m
elseif P[n2].val < m then
P[n2].toSend := insert(m, P[n2].toSend)
fi

input send(nl, n2, m)
eff C[n1l].contents := insert(m, C[nl].contents)

input overflow(i,s; locals W:Locals[W,int,overflow])
where i1l € between (1, nProcesses) = (s = W.s2 U {il1} VvV —-(i1 € s))

eff if s = W.s2 U {il1} then W.seenl[il] := true
elseif —(i1 € s) then W.seen[il] := false
fi

Figure 8.3: Input transition definitions of SysExpanded
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PREDICATE VALUE

C,receive
Pout

nl = n A n2 = n+l

PC,receive

out,t; nl = n A n2 = ntl

P S&I;eceive m € C[n].contents
Pi,;end nl = n A n2 = n+l
Pi’;iﬂd nl = n A n2 = n+l
Prel;’ﬁend m € P[n].toSend
P(I;,L?verflow i1 =1
PP,overflow i1 =1

out,ty

Prel;ﬁverflow s = P[n].toSend A n < size(s) A P[n]l.t C s
Py&found il € between(l, nProcesses)
Pre‘gﬁ ound W.seen[i1]

Table 8.6: Nontrivial predicates used in expanding output transition definitions of the sample
composite automaton Sys derived from Figures and

and found transitions because the transition definitions have no local variables. Similarly, the en-
suring clause is only a single conjunction. In each of the four transitions, we omit the ensuring

predicate altogether because the consequent for each transition (ensum’ngc’recelve P,send

out out ’
ensum’nggﬁverﬂow, and ensuring‘gftound) is trivially true. Furthermore, the conditional and guard-

ing conjunction can be omitted from the eff clause because only one output contributes. So each
effect is just the effect of the contributing output transition followed by the effect of the corre-
sponding expanded input transition. Since the output transition definition for the found action in
component W has no effect and there is no found input action, the expanded found transition has
no effect either.

Filling in the specified variables from Tables predicates from Tables [8.1] and [8.6) and state-
ments from Example [6.2] and Figure yields the complete the complete text of the expanded
output transitions shown in Figure We simplify the transition definitions using two techniques.

First, we eliminating unneeded local variables. Second, we use the fact that the signature where
Sys,receive
out

, Ensuring

predicate for an action (e.g., P ) is implicitly conjoined to the corresponding transition

where predicate (e.g., Pfgf’st’lrecelve) and precondition (Prefzts’recelve) to eliminate redundant
assertions in the transition where predicate and precondition. The resulting final form of output

transitions is shown in Figure

To eliminate unneeded local variables, we follow the four step process to eliminate unneeded
local variables described in Section For example, we note that the where clause of the receive
transiting equates n with parameter n1. Furthermore, there is no assignment to n in the effects of
that transition. Thus, the local variable n is extraneous. So, we define a substitution that maps
the local variable n to the parameter n1 and apply it to the where, pre, and eff clauses. We then
delete the resulting identity conjunct from the where clause and the declaration of the local variable
n. Similarly simplifications eliminate the local variable n from the send and overflow transition
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output receive(varsSYSTeCe1ve: Jocal yarsSYSC)
Sys,C C,receive C,receive Sys,receive
where P>Y5> A P2 N Poit, A P
pre pSys,C A qu,jecelve A PreC,recelve

out
C,receive
eff Prog., ;

Sys,receive
Pro lg ’

output send(varssysvsend; local UarsSySP)

where PSyS’P A Piﬁend A PP,send A PSys,send

out,t; in,t
pre PSYSP A P};’;end A Prel;’ftend
eff Progl;’ftend;

ngzSgs,send

Sys,overflow; local Sys,C

,varsSYSP local Vars
where PSYS’P A PP,overflow A PP,overflow A PSys,overflow

output overflow(vars

vars Sys,overtf 1ow)

out out,t; in,ty
pre PSyS’P A Pfql?verflow A Prelz&czverflow

eﬁ-ngP,overflow‘

out ’

ngSys,overflow

n

output found(varssysvfound)
pre pSysW A PW,found A Prew’found

out out

Figure 8.4: Form of output transitions of SysExpanded

definitions. Since the resulting receive and send transitions no longer have any local variables, we
omit their where clauses altogether.
After this simplification, the precondition for the receive transition is
pre 1 < nl A nl < nProcesses A n2 = nl+l A m € C[nl].contents
However, the first three conjuncts are also asserted by the the signature where clause for the receive
output action Pif’ts’recelve and, therefore, are redundant. Similarly simplifications to the where
and pre clauses of the other transitions result in the final text of the expanded output transitions

shown in Figure

8.6 Internal Transition Definitions of SysExpanded

Since no component has any internal transitions, the only internal transitions in SysExpanded is the
hidden output send transitions. In the case where no component contributes an internal transition,
the form in Figure reduces exactly that in Figure That is, the internal send transition
definition is identical to the output transition definition except for its label. The two actions are
distinguished exactly by the assertion or negation of H5YS:S€0d ip the signature of SysExpanded.
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output receive(nl, n2, m; local n:Int)

where 1 < n1 A nl < nProcesses A nl = n A n2 = nl+1
pre 1 < n A nl < nProcesses A nl = n A n2 = n+l
A m € C[n].contents
eff
C[n].contents := delete(m, C[n].contents)
if P[n2].val = 0 then P[n2].val :=m
elseif m < P[n2].val then
P[n2].toSend := insert(P[n2].val, P[n2].toSend);
P[n2].val :=m
elseif P[n2].val < m then
P[n2].toSend := insert(m, P[n2].toSend)
fi

output send(nl, n2, m; local n:Int)
where 1 < n A n < nProcesses A nl = n A n2 = n+1
A nl =n A n2 = n+1
pre 1 < n A n < nProcesses A nl = n A n2 = n+l A m € P[n].toSend
eff
P[n].toSend := delete(m, P[n].toSend)
C[nl].contents := insert(m, C[nl].contents)

output overflow(il, s; local n:Int,
P:Map[Int, Locals[P, overflow]],
W:Locals[Watch, Int, overflow])

where 1 < n A n < nProcesses A il = n A
il € between(1l, nProcesses) = (s = W.s2 U {i1} Vv —=(i1 € s))

pre 1 < n AN n < nProcesses A i1l = n A

s = P[n].toSend A n < size(s) A P[n]l.t C s
eff P[n].toSend := P[n].t

if s = W.s2 U {i1} then W.seen[il] := true

elseif —(i1 € s) then W.seen[il] := false

fi

output found(il)
pre il € between(l, nProcesses) A W.seen[il]

Figure 8.5: Output transition definitions of SysExpanded
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output receive(nl, n2, m)
pre m € C[nl].contents

eff
C[n1].contents := delete(m, C[ni1].contents)
if P[n2].val = 0 then P[n2].val m
elseif m < P[n2].val then
P[n2].toSend := insert(P[n2].val, P[n2].toSend);

P[n2].val :=m
elseif P[n2].val < m then

P[n2].toSend insert(m, P[n2].toSend)
fi

output send(nl, n2, m)
pre m € P[n1].toSend

eff
P[n1].toSend := delete(m, P[nl1].toSend)
C[nl].contents := insert(m, C[nl].contents)

output overflow(il, s; local P:Map[Int, Locals[P,

W:Locals[Watch, Int,
where s = W.s2 U {i1} Vv —(il1l € s)

overflow],
overflow])

pre s = P[il].toSend A il < size(s) A P[i1l]l.t C s

eff P[i1].toSend := P[il].t
if s = W.s2 U {i1} then W.seen[il] := true
elseif —-(i1l € s) then W.seen[il] := false
fi

output found(il)
pre W.seen[il]

Figure 8.6: Simplified output transition definitions of SysExpanded
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internal send(n1, n2, m)
pre m € P[n1].toSend

eff
P[nl1].toSend := delete(m,
C[nl].contents := insert (m,

P[n1].toSend)
C[ni1].contents)

Figure 8.7: Internal transition definitions of SysExpanded

The final transition of SysExpanded is shown in Figure [3.7]
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9 Renamings, Resortings, and Substitutions

In this section, we give formal definitions for resortings and variable substitutions in TOA.

9.1 Sort renamings

A sort renaming or resorting is a map from simple sorts to sorts{f] Any resorting p extends
naturally to a map p defined for all simple sorts by letting p be the identity on elements not in the
domain of p. In turn, p extends further to a map p from sorts to sorts by the following recursive
definition:

5(u) p(T) if u is a simple sort 7', and
u) =
P Tp(Th),...,p(T,)] if uis a compound sort T[T1,...,T,].

Let ps— denote a resorting that maps the sort S to sort T and is otherwise the same as p
(even if S is already in the domain of p).

9.2 Variable renamings

A wariable renaming pq is an extension of a resorting p that maps variables in a sequence ¢ to
distinct variables. If v is a variable ¢:T" in ¢, then p4(v) is defined to be j:4(T") where j is an
identifier (7 itself, if possible) such that j:p(T) # p,(v') for all variables v’ that precede v in g. We
say that p, is a variable renaming with respect to precedence sequence q.

If p, is a variable renaming where r = ¢||p then we say p, is an extension of p, with respect to
precedence sequence p and we write that p,. = pg = p.

9.3 Operator renamings

An operator renaming w is a map from operators to operators that preserves signatures. Any
operator renaming w extends naturally to a map w defined for all operators by letting w map each
operator not in the domain of w to itself.

We extend any operator renaming w further to a map @ on some syntactic elements of an IOA
automaton (terms to terms, statements to statements, etc.) We now define & for each type of IOA
syntax to which it may apply.

Terms and sequences of terms
If u is a term, then w(u) is
e v, if u is a variable v,
o W(f)(&(ur),...,o(up)), if uis aterm f(uy,...,u,) for some operator f and terms uq, ..., U,
o Vuo(u), if uis a term Vo (u’) for some variable v and term ', and
o Jv(u), if uis a term Jv (u’) for some variable v and term v’

If ¢ is a sequence of terms {u1,ug, ..., uy}, then &(q) is {O(u1),O(ug),...,w(u,)}.

25In IOA, sorts are divided into simple or primitive sorts, such as Int and T, and compound or constructed sorts,
such as Set [T] and WeightedGraph[Node,Nat].
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Values
If [ is a value, then w(l) is
o ((t),if lis a term ¢

e choose v where &(p), if [ is a choice choose v where p for some variable v and predicate p.

Statements and programs
If s is a statement, then &(s) is
e (O(lhs) := w(rhs), if s is an assignment lhs := rhs for some lvalue lhs and some value rhs,

o if W(p1) then &(s;) elseif W(p2) then...else &(sy,) fi, if s is a conditional statement
if p1 then s; elseif p, . ..else s, fi for some predicates p1, ..., p,_1 and statements s, ..., s,
and

e for v where &(p) do &(g) od, if s is a loop statement for v where p do ¢g od for some
variable v, predicate p, and program g.

If g is a program si;s2;. .., then w(g) is ©(s1);0(s2);. ...

Shorthand tuple sort declarations

If w is an operator renaming and d; and dy are two shorthand tuple sort declarations:

dy == T tuple of i1:T1,i2:T5,...,and
dy = T tuple of j1:11,j2:T5, ...,
where i1, i2,..., and j1, j2,..., are identifiers and T, T7, T, ..., are sorts then we write wq, .4, Or

WT {i1,i2,... }—{j1,j2,... } for the operator renaming that maps
1. tuple selection operators __.ip: T — T} to __.jg: T — T}, and

2. tuple set operators set_ig: T, Ty, — T to set_jp: T, T, — T.

9.4 Renamings for automata

In Sectionwe defined resortings that map types® to actual Types”* for some desugared automaton
A with formal type parameters types? instantiated with actual type parameters actualTypes” A

Let p be such a resorting and ¢ be the variable renaming pg;. We extend ¢ to a map ¢ on
some syntactic elements of an IOA automaton (terms to terms, statements to statements, etc.) by
defining ¢ for each type of IOA syntax to which it may apply.

Automata

If A is desugared primitive automaton with syntax as given in Section [4] and shown in Figure
then o(A) i

268trictly speaking, the definition of the automaton 6(A) is not a legal definition of a primitive IOA automaton. Its
type parameters, shown as types”, should really consist of the non-built-in types that appear in sorts in Q'(typesA).
Furthermore, the declared state variables may not match the aggregate state variable selectors that appear in terms
in signature where clauses, in the initially clause, or in transition definitions.
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automaton A(g4(vars?); types?)

signature

kind 7 (47 (vars®™)) where Q'A’F(Pli;;ri)

states p(stateVars?) := ¢4 (initVals™) initially ¢4 (PZ.,)

transitions

. A, A, A,m
kind 7(vars®™; local localVarskmd) where Pkind,tz
A A
Okind t; pre Pre..

eff Prog’”™, . ensuring ensuring’>"
9 kind, t, g 9 kind, t;

where

1. ¢% is a variable renaming ¢ - ({A, A:States[A, types?]}|| vars?|| state Vars?|| postVars?)

A, A

2. ¢ is a variable renaming ¢4 F vars

3. g,fifd ¢, is a variable renaming
04" = ({A, A':Locals| A, types?, kind, «]}| localVarsﬁide localPostVars?ifd)

Transition definitions

Let t be a transition definition in automaton A as given above. That is, ¢ is

kind 7(vars?™; local local Vars,fi’?fd) case ¢ where p;
pre p>
eff g ensuring p3

. . A . ) . .
AT i3 a sequence of variables, local Vars ki;;rd = {i1:T1,i9:T>, ..., } is a sequence of vari-

ables, p1, p2, and p3 are predicates, and g is a program. Let S be the aggregate local sort
Locals[A, typesA,kind,W] of t, and ¢ be the variable renaming Q';i.’:d ¢, given above. That is, ¢

where vars

is an extension of p with respect to the precedence sequence {A, A’:States[A, types?]}|| vars4||
stateVars™ || postVars™ | vars® ™| { A, A’: Locals| A, types®, kind, ] }|| local Varsfi’:dH localPostVarsﬁifd.

2"Even though variables in state Vars® and postVars? do not appear in any terms in a desugared automaton
definition, we include those variables in the precedence sequence to ensure that selectors for local variables do not
clash with selectors for state variables in transition definitions (see below).

28Like state variables, variables in localVars,?ifd and localPostVars?ifd do not appear in any terms in a desugared
automaton definition. We include those variables in the precedence sequence only to ensure that selectors for local

variables do not clash with each other. (see below).
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We define ¢(¢) to be

kind 7(o(vars®™); @(localVars,’ifd)) case c where (,(5) (i, i2,... )= {j1 ja,... } (0(P1))
Pre Wy(s) {i1,i2,... }—{j1,j2... }(@(Zb))
eff Gp(9).fir.i2.. )= (i da....} (0(9)) ensuring &) iy ia... 3~ (1 ...} (0(P3)).

where Q(localVars,‘?i;fd) is a variable sequence {j1:p(T1), j2:p(T2), ..., }. Note that if localVarséf;d =
) A . . . .
o(localVars;; 1), then wp(s) (i1 i2,... }—={j1,ju.... } 1S the identity operator renaming.

Statements and programs

If s is a statement and p is some variable renaming, then g(s) is
o o(lhs) := o(rhs), if s is an assignment lhs := rhs for lvalue lhs and value rhs,
o if o(p1) then o(s;) elseif o(p2) then...else o(s,) fi, if s is a conditional statement
if p1 then s; elseif p,...else s, fi for some predicates p1, ..., p,_1and statements s1, . .., Sy,

and

e for ¢'(v) where ¢'(p)do ¢'(g) od, if s is a loop for v where p do g od for some variable v,
predicate p, and program g, where ¢’ = o F {v}.

If g is a program si;s9;. .., then 9(g) is 0(s1); 0(s2); - - .-

Values

If [ is a value and p is some variable renaming, then ¢(I) is
e o(t), if [ is a term ¢, and

e choose ¢'(v) where ¢'(p), if [ is a choice choose v where p for some variable v and predicate
p, where ¢’ = o F {v}.

Terms and sequences of terms

If u is a term and p is some variable renaming, then g(u) is
e o(v), if u is a variable v,
o f(o(ur),...,0(uy)), if uis a term f(uy,...,u,) for some operator f and terms uq, ..., uy,,
o Vo' (v) o'(u)), if u is a term Vo (u’) for some variable v and term u’, where ¢’ = o F {v}, and
e Jo'(v) ¢'(u)), if u is a term Jv (u’) for some variable v and term u', where o' = o - {v}.

If ¢ is a sequence of terms {u,ua, ..., u,}, then 9(q) is {o(u1), 0(uz2), ..., 0(un)}-
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9.5 Substitutions

A substitution is a map from variables to terms such that the image of any variable has the same
sort as the variable. Any substitution o extends naturally to a map ¢ defined for all variables by
letting ¢ map each variable not in the domain of ¢ to a term that is a simple reference to the
variable itself.

Let 0,_.+ denote a substitution that maps the variable v to the term ¢ and is otherwise the same
as o (even if v is already in the domain of o). We extend any substitution o further to a map &
on some syntactic elements of an IOA automaton (terms to terms, statements to statements, etc.).
We now define & for each type of IOA syntax to which it may apply.

Terms and sequences of terms

If w is a term, then &(u) is
e &(v), if u is a variable v,
o f(6(u1),...,5(up)), if uis a term f(uq,...,u,) for some operator f and terms ui, ..., uy,

o Vw Gy_y(u'), if u is a term Vo (u’) for some variable v and term u’, where w is a variable (v
itself, if possible) with the same sort as v, where w ¢ FV(G(v")) for all variables v' € FV(u),
and

e Jw Gy_y(u'), if u is a term Jv (u') for some variable v and term ', where w is as above.

If ¢ is a sequence of terms {uj,ug, ..., u,}, then 5(q) is {6(u1),5(ug),...,5(uy)}.

Values

If [ is a value, then &(1) is
e 5(t),if l is a term ¢

e choose w where G, (p), if [ is a choice choose v where p for some variable v and
predicate p, where w is a variable (v itself, if possible) with the same sort as v, and where
w & FV(G(v")) for all variables v' € FV(I).

Statements and programs

If s is a statement, then &(s) is
o 5(lhs) := &(rhs), if s is an assignment lhs := rhs for some lvalue lhs and some value rhs,

o if 5(p1) then 6(s;) elseif G(p2) then...else (s,) fi, if s is a conditional statement
if p1 then s; elseif p, . ..else s, fi for some predicates p1, ..., p,_1 and statements s, ..., sy,

e for w where 6,_.,(p) do &,,(g) od, if s is a loop statement for v where p do g od for
some variable v, predicate p, and program g, where w is a variable (v itself, if possible) with
the same sort as v, where w & FV(5(v")) for all variables v’ € FV(s).

If g is a program $1; s9;. .., then 6(g) is &(s1);5(s2);. ...
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Transition definitions

If, in automaton A parameterized by type parameters types?, t is a transition definition

kind 7(params™; local vy, ve,...) case c where p;
pre p2

eff g ensuring p3

where params™ is a sequence of terms, vy, v, ... is a sequences of variables i1:17,42:15, ..., p1, P2,
and p3 are predicates, g is a program, and S is the aggregate local sort of ¢, then G(t) is

kind 7(5 (4, v,... ) fwr,ws,... } (Params™); local wy, wy, . . .)
case c where (g (5, 2.}~ {j1.jo. } (F{o1 09,0} fwr w2, } (P1)))
pre (s (iy i2,... ) {1.gan. } (O for,0m,n. J— fwr wn,... } (P2)))
eff Wg (i 2, 3= 1o } (T for0m, Y= {wiwe,... 1 (9)))

ensuring g i, 2. }—{j1,jo,... } (G {o1,09,... ) fwr ws,... } (P3)))
where
1. wy is a variable ji:T) (vg itself, if possible), and

2. wy, & FV(5(v')), for all variables v’ € {A, A’:States[A, types?]} U stateVars? U post Vars? U
vars U FV(params™) U {A, A':Locals[A, types?, kind, m, c]} U {v, v, |l < k}.

Note that if iy = ji for all k, then wg ;) i2 . }—{j1 j....} IS the identity operator renaming.

9250
Hidden clauses
If ¢ is a clause in a hidden statement
m(params™) where p
where params™ is a sequence of terms and p is a predicate, then (c) is
T(G (w1 0m,... }—{wr wa,... } (Params™) ... where Gy, v, .} {wi wa,...} (P)
where
1. v is a variable iy: T}, € FV(params™)
2. wy is a variable (v itself, if possible) with sort T}

3. wg & FV(5(v')) for all variables v' € FV(params™) U FV(p) U{v |l # k}.

9.6 Notation

Except in definitions such as these, we do not employ separate notations for the extensions p, g,
Puw, Pg, and ¢ of a resorting p. In particular, when applying a resorting p to an IOA automaton A,
we write p for ¢. Similarly, we do not distinguish ¢ and & from a substitution ¢ and we write o for
g.
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