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1 Introduction

The IOA language provides notations for defining both primitive and composite I/O automata.
This note describes, both formally and with examples, the constraints on these definitions, the
composability requirements for the components of a composite automaton, and the transformation
of a composite automaton into an equivalent primitive automaton.

Section 2 introduces four examples used throughout this note to illustrate new definitions and
operations. Section 3 treats IOA programs for primitive I/O automata: it introduces notations
for describing the syntactic structures that appear in these programs, and it lists syntactic and
semantic conditions that these programs must satisfy to represent valid primitive I/O automata.
Section 4 describes how to reformulate primitive IOA programs into an equivalent but more regular
(desugared) form that is used in later definitions in this note. Section 5 treats IOA programs
for composite I/O automata: it introduces notations for describing the syntactic structures that
appear in these programs, describes resortings induced by them, and lists syntactic and semantic
conditions that these programs must satisfy to represent valid composite I/O automata. Section 6
describes the translation of the name spaces of component automata into a unified name space
for the composite automaton. Section 7 shows how to expand an IOA program for a composite
automaton into an equivalent IOA program for a primitive automaton. The expansion is generated
by combining syntactic structures of the desugared programs for the component automata after
applying appropriate replacements of sorts and variables. Section 8 details the expansion of the
composite automaton introduced in Section 2 using the desugared forms developed throughout
Sections 4–6 and the techniques described in Section 7. Finally, Section 9 gives a precise definition
of the resortings and substitutions used to replace sorts and variables.

Nancy Lynch and Mandana Vaziri contributed to the design of the composition mechanisms
described in this note. Dilsun Kaynar suggested numerous and substantial clarifications in the
note’s presentation.
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2 Illustrative examples

We use several examples of primitive and composite automata to illustrate both the notations
provided by IOA and also the formal semantics of IOA. We refer to Examples 2.1–2.3 throughout
Sections 3–8. Example 2.4 is relevant only to Sections 5–8.

Example 2.1 Figure 2.1 contains an IOA specification for a communication channel that can both
drop duplicate messages and reorder messages. Type parameters for the specification, Node and
Msg, represent the set of nodes that can be connected by channels and the set of messages that
can be transmitted. Individual parameters, i and j, represent the nodes connected by a particular
channel.

Two features of this example warrant particular attention later in this note. First, the example
uses both type and variable automaton parameters. Second, it uses the keyword const to indicate
that the parameters i and j in the action signature are terms referring to the parameters i and j

of the automaton, rather than fresh variable declarations.

automaton Channel(Node, Msg:type, i, j:Node)
signature

input send(const i, const j, m:Msg)
output receive(const i, const j, m:Msg)

states contents:Set[Msg] := {}
trans i t ions

input send(i, j, m)
e f f contents := insert(m, contents)

output receive(i, j, m)
pre m ∈ contents
e f f contents := delete(m, contents)

Figure 2.1: Sample automaton Channel

Example 2.2 Figure 2.2 contains the specification for a process that runs on a node indexed by a
natural number and that communicates with its neighbors by sending and receiving messages that
consist of natural numbers. The process records the smallest value it has received and passes on all
values that exceed the recorded value; if the set of values waiting to be passed on grows too large,
the process can also lose a nondeterministic set of those values. Interesting features of this example
include the use of terms as parameters in transition definitions and a local variable representing
an initial nondeterministic choice and temporary state local to the transition. (The keyword local,
newly added to the IOA language, replaces and extends the keyword choose formerly used to
introduce hidden parameters. See Section 3 for a fuller description of local parameters.)

Example 2.3 Figure 2.3 contains the specification for another process that watches for overflow

actions and reports those that meet a simple criterion. Interesting features of this example include
more complicated uses of type parameters and where clauses, both in the action signature and to
distinguish two transition definitions for a single action.

Example 2.4 Finally, Figure 2.4 contains the specification of an automaton formed by composing
instances of these three primitive automata. This specification relies on an auxiliary specification,
shown in Figure 2.5, to define the term between(1, nProcesses).

3



automaton P(n:Int)
signature

input receive(const n-1, const n, x:Int)
output send(const n, const n+1, x:Int),

overflow(const n, s:Set[Int])
states

val:Int := 0,
toSend:Set[Int] := {}

trans i t ions
input receive(n-1, n, x)

e f f i f val = 0 then val := x
e l s e i f x < val then

toSend := insert(val, toSend );
val := x

e l s e i f val < x then
toSend := insert(x, toSend)

f i
output send(n, n+1, x)

pre x ∈ toSend
e f f toSend := delete(x, toSend)

output overflow(n, s:Set[Int ]; l o ca l t:Set[Int])
pre s = toSend ∧ n < size(s) ∧ t ⊆ s
e f f toSend := t

Figure 2.2: Sample automaton P

automaton Watch(T:type, what:Set[T])
signature

input overflow(x:T, s:Set[T]) where x ∈ what
output found(x:T) where x ∈ what

states seen:Array[T,Bool ] := constant(false)
trans i t ions

input overflow(x, s ∪ {x})
e f f seen[x] := true

input overflow(x, s) where ¬(x ∈ s)
e f f seen[x] := false

output found(x)
pre seen[x]

Figure 2.3: Sample automaton Watch
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axioms Between(Int, ≤)

automaton Sys(nProcesses : Int)
components C[n:Int]: Channel(Int, Int, n, n+1)

where 1 ≤ n ∧ n < nProcesses;
P[n:Int] where 1 ≤ n ∧ n ≤ nProcesses;
W: Watch(Int, between (1, nProcesses ))

hidden send(nProcesses , nProcesses +1, m)

invariant of Sys:
∀ m:Int ∀ n:Int (1 ≤ m ∧ m < n ∧ n ≤ nProcesses

⇒ P[m].val < P[n].val ∨ P[n].val = 0)

Figure 2.4: Sample composite automaton Sys

Between(T, ≤:T,T→Bool ): t ra i t
includes Set(T)
introduces

__≤__: T, T → Bool
between : T, T → Set[T]

asserts with x, y, z: T
x ∈ between(y, z) ⇔ y ≤ x ∧ x ≤ z

Figure 2.5: Auxiliary definition of function between

5



6



3 Definitions for primitive automata

In order to describe syntactic manipulations of IOA programs, we introduce a nomenclature for
their syntactic elements. We expose just those elements of an IOA program we use to describe the
expansion of composite automata into primitive form. Section 3.1 introduces nomenclature for,
and the meaning of, syntactic structures in primitive automata. Section 3.2 examines how states
are represented and referenced in primitive IOA programs. Sections 3.3 and 3.4 describe semantic
conditions that must hold for an IOA program to represent a valid primitive I/O automaton.

3.1 Syntax

Figure 3.1 illustrates the general form of an IOA definition for a primitive I/O automaton. The
figure exposes just those elements of an IOA program we use to describe the expansion of composite
automata into primitive form. It does not expose the individual statements that appear in an eff
clause. (These are treated separately in Section 9.) Rather the figure simply refers to the “program”
(i.e., the complete sequence of statements) in an eff clause.

automaton A(paramsA)

assumes Assumptions

signature

. . .

input π(paramsA,π
in ) where PA,π

in

output π(paramsA,π
out ) where PA,π

out

internal π(paramsA,π
int ) where PA,π

int

. . .

states stateVarsA := initValsA initially PA
init

transitions

. . .

input π(paramsA,π
in,tj

; local localVarsA,π
in,tj

) case tj where PA,π
in,tj

eff ProgA,π
in,tj

ensuring ensuringA,π
in,tj

output π(paramsA,π
out ,tj

; local localVarsA,π
out ,tj

) case tj where PA,π
out ,tj

pre PreA,π
out ,tj

eff ProgA,π
out ,tj

ensuring ensuringA,π
out ,tj

internal π(paramsA,π
int ,tj

; local localVarsA,π
int ,tj

) case tj where PA,π
int ,tj

pre PreA,π
int ,tj

eff ProgA,π
int ,tj

ensuring ensuringA,π
int ,tj

. . .

Figure 3.1: General form of a primitive automaton
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Notations and writing conventions

In Figure 3.1, paramsA denotes the sequence of type and variable declarations that serve as the
parameters of the automaton A. The Assumptions are LSL theories defining required properties
for these parameters. Notations paramsA,π

kind and paramsA,π
kind ,tj

, where kind is one of in, out, or
int, denote sequences of variables and/or terms that serve as parameters for the action π and
its transition definitions. The notations PA,π

kind , PA
init , PA,π

kind ,tj
, PreA,π

kind ,tj
, and ensuringA,π

kind ,tj
denote

predicates (i.e., boolean-valued expressions). The notation initValsA denotes the sequence of terms
or choose expressions serving as initial values for the state variables. If the definition of A does
not specify an initial value for some state variable, we treat the declaration of that state variable
as equivalent to one of the form x:T := choose t:T where true. The notation ProgA,π

kind ,tj
denotes

a program. The notation localVarsA,π
kind ,tj

denotes a sequence of variables. In general, a notation
ending with an “s” denotes a sequence of zero or more elements.

Our conventions for decorating syntactic structures throughout this paper are as follows. Su-
perscripts refer either to automaton names or to automaton-name/action-name pairs. Automaton
names are capitalized (e.g., A, Ci, P). Action names are not capitalized and are either Greek letters
(e.g., π, π1) or written in mono-spaced font (e.g., send). Subscripts refer to more specific restric-
tions such as action kind (i.e., in, out, or int), transition label (e.g., t1), or origin (e.g., desug). IOA
keywords appear in a small-bold roman font. References to other text in sample IOA programs
appear in a mono-spaced font. Syntactic structure labels and names in general IOA programs are
italicized .

Syntactic elements of primitive IOA programs

Variables in IOA programs can be declared explicitly as automaton parameters (varsA, which is
a subsequence of paramsA), as state variables (stateVarsA), or as local variables (localVarsA,π

kind ,tj
);

they can also be declared implicitly as post-state variables that correspond to state variables,
post-local variables corresponding to local variables, or by their appearance in action parame-
ters (varsA,π

in , which appear in paramsA,π
in ) or in transition parameters (varsA,π

in,tj
, which appear in

paramsA,π
in,tj

). Variables in IOA programs can appear in parameters, terms, predicates, and pro-
grams. For simplicity, Figure 3.1 does not indicate which variables may have free occurrences in
which parameters, terms, predicates, or programs; Section 3.3 describes which can occur where.
As an illustration, variables that occur freely in PA,π

in must be in one of the sequences varsA or
varsA,π

in .
Below, we define each labeled syntactic structure and then illustrate it using selections from

Examples 2.1–2.3.

Parameters

• paramsA is the sequence of formal parameters for A, which can be either variables or type
parameters. We decompose paramsA into two disjoint subsequences, one (varsA) containing
variable declarations and the other (typesA) containing type parameters (identifiers qualified
by the keyword type). For example, paramsWatch is 〈T:type, what:Set[T]〉, which consists
of a type parameter T followed by a variable what:Set[T]. Hence typesWatch is 〈T:type〉 and
varsWatch is 〈what:Set[T]〉.

• paramsA,π
kind is the sequence of parameters for the set of actions of type kind named by π

8



in A’s signature. Action parameters can be either variables or const terms.1 For example,
paramsChannel,send

in is 〈const i, const j, m:Msg〉.

• paramsA,π
kind ,tj

is the sequence of terms serving as parameters for transition definition tj for
actions of type kind named by π. Whereas π can appear at most once as the name of an
input, output, and internal action in A’s signature, it can have more than one transition
definition as an input, output, and internal action. For example, paramsWatch,overflow

in,t1
is

〈x, s ∪ {x}〉 and paramsWatch,overflow
in,t2

is 〈x, s〉.

Variables

• As noted above, varsA is the sequence of variables that are declared explicitly in paramsA,
that is, varsA is the sequence of identifiers in paramsA qualified by some sort other than
type.2 For example, varsChannel is 〈i:Node, j:Node〉.

• varsA,π
kind is the sequence of variable declarations (i.e., non-const parameters) in paramsA,π

kind .
For example, varsChannel,send

in is 〈m:Msg〉.

• stateVarsA is the sequence of state variables of A. For example, stateVarsChannel is 〈contents:Set[Msg]〉.

• postVarsA is the sequence of variables for post-states of A that can occur in any ensuringA,π
kind ,tj

.

These variables are primed versions of variables in stateVarsA. For example, postVarsP is
〈val′:Int, toSend′:Set[Int]〉.3

• varsA,π
kind ,tj

is the sequence of variables that occur freely in paramsA,π
kind ,tj

, but are not in varsA.

For example, varsP,send
out ,t1

is 〈x:Int〉, because n is in varsP.

• localVarsA,π
kind ,tj

is a sequence of additional local variables for transition definition tj for actions
of type kind named π; these variables are not listed as parameters of π in the signature of A.
For example, localVarsP,overflow

out ,t1
is 〈t:Set[Int]〉.

• localPostVarsA,π
kind ,tj

is the sequence of post-local variables that name the values of local vari-

ables after execution of ProgA,π
kind ,tj

. These variables are primed versions of variables in

localVarsA,π
kind ,tj

that appear on the left side of an assignment statement in the transition

definition and that can occur in ensuringA,π
kind ,tj

.

1We may want to consider an alternative treatment for action parameters, similar to that for paramsA,π
kind,tj

, that

would dispense with the keyword const and treat all action parameters as terms, rather than as a mixture of terms
and variable declarations. The current treatment allows factored notations, such as π(i, j:Int), which introduce a list
of variables of a given sort; the alternative treatment would require unfactored notations, such as π(i:Int , j:Int), in
which a sort qualification applies only to the term it follows immediately.

2When we define a sequence by selecting some members of another sequence, we preserve order in projecting from
the defining sequence to the defined sequence. For example, if u:S precedes v:T in paramsA, then u:S precedes v:T
in varsA.

3Previously, only the primed versions of state variables that appeared on the left side of an assignment statement

in the transition definition were allowed to appear in an ensuring clause. For example, we defined postVarsP,send
out,t1

to be 〈toSend′:Set[Int]〉, which did not include the variable val′, because val does not appear on the left side
of an assignment in this transition definition. The more complicated definition was intended as a safeguard against
specifiers writing val′ in an ensuring clause when there was no way the value of val′ could differ from that of
val. However, the more complicated definition did not safeguard against all such errors, because specifiers could still
write A ′.val in an ensuring clause. Hence the simpler definition appears preferable.
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Predicates

• PA,π
kind is the where clause for the set of actions of type kind named by π in A’s signature. For

example, PWatch,found
out is x ∈ what. If PA,π

kind is not specified explicitly, it is taken to be true.
If action π does not appear as a particular kind—input, output, or internal—in A’s signature,
then PA,π

kind is defined to be false.

• PA
init is a predicate constraining the initial values for A’s state variables. If it is not specified

explicitly, it is taken to be true.

• PA,π
kind ,tj

is the where clause for transition definition tj for actions of type kind named by π.

For example, PWatch,overflow
in,t2

is ¬(x ∈ s). If PA,π
kind ,tj

is not specified explicitly, it is taken

to be true. If action π does not appear as a particular kind in A’s signature, then PA,π
kind ,tj

is
defined to be false.

• PreA,π
kind ,tj

is the precondition for transition definition tj for actions of type kind named π,

where kind is out or int. For example, PreP,send
out ,t1

is x ∈ toSend. If PreA,π
kind ,tj

is not specified

explicitly, it is taken to be true. For every input transition, PreA,π
in,tj

is defined to be true
because transition definitions for input actions do not have preconditions.

• ensuringA,π
kind ,tj

is the ensuring clause in the effects clause in transition definition tj for actions

of type kind named π. If ensuringA,π
kind ,tj

is not specified explicitly, it is taken to be true. In
the examples, all ensuring clauses are true by default.4

Programs and values

• ProgA,π
kind ,tj

is the program in the effects clause in transition definition tj for actions of type

kind named π. For example, ProgP,overflow
out ,t1

is toSend := t.

• initValsA is the sequence of initial values for A’s state variables, which can be specified
as either terms or choose expressions. A state variable without an explicit initial value is
equivalent to one with an unconstrained initial value, that is, to one specified by a choose
expression constrained by the predicate true. For example, initValsP is 〈0, {}〉.

• tj is an optional identifier used to distinguish transition definitions of the same kind for the
same action π. If there is no case clause, tj is taken to be an arbitrary, but unique label.5

4The keyword ensuring replaces the so that keyword, which has been removed from IOA. Formerly, so that
was used to introduce three types of predicates in IOA: the initialization predicate for automaton state, the post-state
predicate for transition definitions, and the loop variable predicate in for statements. This multiple use was confusing.
Furthermore, the keyword where also introduces predicates, which led to additional confusion. In the new syntax,
automaton state predicates are introduced by initially, post-state predicates are introduced by ensuring, and all
other predicates (including for predicates) are introduced by where. The semantics of the clauses containing these
predicates has not changed.

5The case clause was introduced for use by the IOA simulator; it is not described yet in the IOA manual.
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3.2 Aggregate sorts for state and local variables

State variables

The value (or the lvalue) of any state variable (e.g., toSend:Set[Int]) may be referenced using
that variable (e.g., toSend) as if it were a constant operator (e.g., toSend: → Set[Int]).6 How-
ever, in contexts that involve more than a single automaton (e.g., simulation relations or composite
automata), such variable references may be ambiguous. Hence IOA provides an equivalent, unam-
biguous notation for the values of state variables.

For each automaton A without type parameters, IOA automatically defines a sort States[A],
known as the aggregate state sort of A, as a tuple sort with a selection operator __.v:States[A] → T
for each state variable v of sort T . IOA also automatically defines variables A and A′ of sort
States[A] to represent the aggregate state and aggregate post-state of A. The terms A.v and A′.v
are equivalent to references to the state variable v and to its value v′ in a post-state. For example,
States[P] = tuple of val:Int, toSend:Set[Int], and P.val is a term of sort Int equivalent to the
state variable val.

If an automaton A has type parameters, the notation for its aggregate state sort is more
complicated, because there can be different instantiations of A with different actual types, and a
simple notation States[A] for the aggregate state sort would be ambiguous. To avoid this ambiguity,
IOA includes the type parameters of A (if any) in the notation States[A, typesA] for the aggregate
state sort of A, and the aggregate state and post-state variables A have this sort States[A, typesA].
For example, States[Channel,Node,Msg] = tuple of contents:Set[Msg], and Channel.contents is
a term of sort Set[Msg] equivalent to the state variable contents.

As we will see in Section 5.2, including type parameters in the name of the aggregate state sort
enables us to generate distinct aggregate state sorts for each instantiation of A.

Local variables

In previous editions of the language, IOA introduced hidden action parameters with the keyword
choose appearing subsequent to the where clause. Thus, hidden or choose parameters could not
appear in the where clause. In the course of writing this document, we discovered a need for hidden
parameters in the where clauses of desugared input actions (see Section 4). In addition, we believed
that the ability to assign (temporary) values to hidden parameters would simplify the definitions
of expanded transition definitions of composite automata.7 We introduced local variables into
IOA to serve both these purposes. Local variables replace and extend choose parameters. Thus,
the keyword local replaces the keyword choose in transition definition parameter lists and local
variables are those introduced following the keyword local in these parameter lists.

In the new notation, the scope of local variables extends to the whole transition definition, not
just to the precondition and effects. In addition, local variables may be assigned values in the eff
clause. Semantically, local variables are not part of the state of the I/O automaton represented
by an IOA program. Rather, they define intermediate states that occur during the execution of
an atomic transitions, but are not visible externally. Therefore, local variables may not appear in
simulation relations or invariants.

Although local variables differ significantly from state variables in terms of semantics, their
syntactic treatment is similar. As for state variables, IOA automatically defines an aggregate local

6An unambiguous variable identifier can be used alone. If two variables defined in the same scope have the same
identifier, but different sorts, their identifier may need to be qualified by their sorts.

7In the end, our final definitions in Sections 7.6–7.9 do not to use this feature. However, the ability to assign to
local variables was deemed useful and remains in the language.
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sort, together with aggregate local and post-local variables, to provide a second, equivalent notation
for references to local and post-local variables. For every transition definition tj for an action π of
type kind in automaton A, the aggregate local sort Locals[A, typesA, kind , π, tj ] is a tuple sort with
a selection operator __.v:States[A] → T for each local variable v of sort T . Furthermore, aggregate
local and post-local variables, A and A′ of sort localVarsA,π

kind ,tj
, are defined in the scope of that

transition definition. If there is only one transition definition for an action π of type kind, we omit
tj in the notation for this sort. For example, the aggregate locals sort Locals[P,out,overflow] is
tuple of t:Set[Int], and P.t is a term of sort Set[Int] equivalent to the local variable t in the
scope of overflow.

Note that the automaton name A is used as the identifier for two aggregate variables in ev-
ery transition definition: A:States[A, typesA] and A:Locals[A, typesA, kind , π, tj ]. As specified in
Section 3.3, stateVarsA and localVarsA,π

kind ,tj
must have no variables in common. Therefore, the

aggregate sorts have no selection operators in common and there is no ambiguity.
The initial values of local variables are constrained by the where predicate of the declaring

transition definition. In particular, a transition kind π(. . . ) case tj is defined only for values of its
parameters that

1. satisfy the where clause of that kind of π in the signature of A, and

2. together with some choice of initial values for its local variables, satisfy the where clause of
the transition definition.

A transition is enabled only for the values of its parameters and local variables for which it is
defined and for which the precondition, if any, is satisfied.

Thus, the initial values of local variables are chosen nondeterministically from among the values
that meet these constraints. Local variables serve as hidden parameters with the semantics formerly
applied to choose parameters. We provide a formal treatment of the “values of its parameters”
and “some choice of values” at the end of Section 4.

Example 3.1 The type declarations and variables automatically defined for the sample automata
Channel, P, and Watch are shown in Figure 3.2.

type States[Channel,Node,Msg] = tuple of contents:Set[Msg]
type States[P] = tuple of val:Int, toSend:Set[Int]
type States[Watch,T] = tuple of seen:Array[T,Bool]
type Locals[P,out,overflow ] = tuple of t:Set[Int]

Channel : States[Channel , Node, Msg]
P: States[P]
Watch: States[Watch,T]
P: Locals[P,out,overflow]

Figure 3.2: Automatically defined types and variables for sample automata

3.3 Static semantic checks

The following conditions must be true for an IOA program to represent a valid primitive I/O au-
tomaton. These conditions, which can be checked statically, are currently performed by ioaCheck,
the IOA parser and static-semantic checker.
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location of term variables that can occur freely in term

paramsA varsA

paramsA,π
kind varsA, varsA,π

kind

PA,π
kind varsA, varsA,π

kind

initValsA varsA

PA
init varsA, stateVarsA

paramsA,π
kind ,tj

varsA, varsA,π
kind ,tj

PA,π
kind ,tj

varsA, varsA,π
kind ,tj

, localVarsA,π
kind ,tj

PreA,π
kind ,tj

varsA, varsA,π
kind ,tj

, localVarsA,π
kind ,tj

, stateVarsA

ProgA,π
kind ,tj

varsA, varsA,π
kind ,tj

, localVarsA,π
kind ,tj

, stateVarsA

ensuringA,π
kind ,tj

varsA, varsA,π
kind ,tj

, localVarsA,π
kind ,tj

, stateVarsA,

postVarsA, localPostVarsA,π
kind ,tj

Table 3.1: Variables that can occur freely in terms in the definition of a primitive automaton.
Variables listed on the right may occur freely in the syntactic structure listed to their left.

X No sort appears more than once in typesA.

X Each action name (e.g., π) occurs at most three times in the signature of an automaton: at
most once in a list of input actions, at most once in a list of output actions, and at most once
in a list of internal actions.

X Each occurrence of an action name (e.g., π) in the signature of an automaton, or in one of
its transition definitions, must be followed by the same number and sorts of parameters.

X The sequences varsA and varsA,π
kind of variables contain no duplicates; furthermore, no variable

appears in both varsA and varsA,π
kind for any value of kind.8

X For each transition definition tj for an action of type kind named π, no variable appears more
than once in the combination of the sequences varsA, stateVarsA, postVarsA, varsA,π

kind ,tj
,

localVarsA,π
kind ,tj

, and localPostVarsA,π
kind ,tj

.

X For each transition definition tj for an action of type kind named π, and for any identifier v

and sort S, the sequences stateVarsA and localVarsA,π
kind ,tj

do not contain both of the variables
v:S and v′:S.

X Any operator that occurs in a term used in the definition of an automaton must be introduced
by a type definition or axioms clause in the IOA specification that contains the automaton

8This restriction is designed to avoid the confusion that would result if variables in varsA,π
kind are allowed to hide

or override variables with the same identifiers and sorts in varsA. A stronger restriction would prohibit an identifier
from appearing in two different variables (of different sorts) in varsA and varsA,π

kind ; this restriction would avoid the
need to pick a fresh variable when an instantiation of A causes two variables with the same identifier to clash by
mapping their sorts to a common sort. However, IOA does not make this stronger restriction.
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definition, by a theory specified in the assumes clause of the definition, or by a built-in
datatype of IOA.

X Any variable that occurs freely in a term used in the definition of an automaton must satisfy
the restrictions imposed by Table 3.1.

3.4 Semantic proof obligations

The following conditions must also be true for an IOA program to represent a valid I/O automaton.
Except in special cases, these conditions cannot be checked automatically, because they may require
nontrivial proofs (or even be undecidable); hence static semantic checkers must translate all but the
simplest of them into proof obligations for an automated proof assistant. These proof obligations
must be discharged using the axioms provided by IOA’s built-in types, by the theories associated
with the type definitions and the axioms in the IOA specification that contains the automaton
definition, and by the theories associated with the assumes clause of that definition.

X The sets of input, output, and internal actions in an I/O automaton must be disjoint. Thus,
for each sequence of values for the parameters of an action named π in the definition of an
automaton A, at most one of PA,π

in , PA,π
out , and PA,π

int can be true.

Special cases arise if two of the three signature where clauses for π are literally false or if
two of three clauses are literally true. In the former case, the check automatically succeeds;
in the latter, it automatically fails.

X There must be a transition defined for every action specified in the signature. Thus, for
each sequence of values for the parameters of an action named π that make PA,π

kind true, there
must be a transition definition tj for π of type kind such that PA,π

kind ,tj
is true for these values

together with some values for the local variable of that transition definition.

X For each kind of each action π, at most one transition definition tj can be defined for each
sequence of parameters values. That is, for each sequence of values, PA,π

kind ,tj
can be true for

at most one value of j.

Special cases arise if all but one of the transition definition where clauses for a kind of an action
are literally false or any two are literally true. In the former case, the check automatically
succeeds; in the latter, it automatically fails.

We define these proof obligations more formally at the end of Section 4.

14



4 Desugaring primitive automata

The syntax for IOA programs described in Section 3 allows some flexibility of expression. However,
when defining semantic checks and algorithmic manipulations (e.g., composition) of IOA programs,
it is helpful to restrict attention, without loss of generality, to IOA programs that conform to a
more limited syntax.

In this section, we describe how to transform any primitive IOA program (as in Figure 3.1)
into an equivalent program (Figure 4.7) written with a more limited syntax. We describe this
transformation in four stages. First, in Section 4.1, we show how to desugar terms that appear as
parameters by replacing them with variables constrained by where clauses; that is, we show how
to reformulate action and transition definitions so as to eliminate the use of terms as parameters.
Second, in Section 4.2, we show how to introduce canonical parameters into desugared actions and
transition definitions. A canonicalized action is parameterized by the same sequence of variables
in all appearances, both in the signature and in the transition definitions. Third, in Section 4.3,
we combine all transition definitions of a single kind of an action into a single transition definition.
Fourth, in Section 4.4, we convert each reference to a state variable x to the equivalent reference
A.x defined in Section 3.2. In Section 4.5, we summarize the effects of these desugarings, which are
illustrated in Figure 4.7. Finally, in Section 4.6, we use the result of the first two transformations
to formalize the semantic proof obligations introduced in Section 3.

4.1 Desugaring terms used as parameters

Signature

We desugar const parameters for an action in A’s signature by introducing fresh variables and
modifying the action’s where clause. For each const parameter we introduce a fresh variable and
add a conjunct to the where clause that equates the new variable with the term that served as the
const parameter. For example, if t is a term of sort T , then we desugar the action

input π(varsA,π
in , const t) where PA,π

in

as

input π(varsA,π
in , v:T ) where v = t ∧ PA,π

in

Here, v:T is a fresh variable, that is, one that does not appear in varsA, varsA,π
in , stateVarsA,

postVarsA, localVarsA,π
in,tj

, or localPostVarsA,π
in,tj

for any j.9

Let PA,π
kind ,desug be the where predicate that results after all const parameters in paramsA,π

kind have

been desugared. Let varsA,π
kind ,desug be the sequence of distinct variables that parameterize π after

desugaring. Note that all variables that occur freely in PA,π
kind ,desug are either in varsA,π

kind ,desug or in

varsA. In general, varsA,π
kind ,desug is a supersequence of varsA,π

kind (in that it contains a fresh variable

for each const parameter in paramsA,π
kind ). In the above example, a const parameter appears in

9For the purposes of this transformation, it suffices to pick some v:T that does not appear in either varsA or
varsA,π

in . However, by ensuring that v:T is distinct from additional variables, we avoid having to replace it by yet
another fresh variable when we introduce canonical transition parameters, as described in Section 4.2. Furthermore,
to avoid any ambiguity that may arise when two variables share an identifier, and to avoid having to replace v:T by
yet another fresh variable in an instantiation of A that maps T and the sort of another variable with identifier v to a
common sort, it is helpful to pick v to be an identifier that does not appear in varsA, varsA,π

in , stateVarsA, postVarsA,
localVarsA,π

in,tj
, or localPostVarsA,π

in,tj
for any j.
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automaton A(typesA, varsA)

signature

. . .

input π(varsA,π
in,desug) where PA,π

in ∧ varsA,π
in,desug = paramsA,π

in

output π(varsA,π
out ,desug) where PA,π

out ∧ varsA,π
out ,desug = paramsA,π

out

internal π(varsA,π
int ,desug) where PA,π

int ∧ varsA,π
int ,desug = paramsA,π

int

. . .

states stateVarsA := initValsA initially PA
init

transitions

. . .

input π(varsA,π
in,tj ,desug ; local localVarsA,π

in,tj
, varsA,π

in,tj
) case tj

where PA,π
in,tj

∧ varsA,π
in,tj ,desug

= paramsA,π
in,tj

eff ProgA,π
in,tj

ensuring ensuringA,π
in,tj

output π(varsA,π
out ,tj ,desug

; local localVarsA,π
out ,tj

, varsA,π
out ,tj

) case tj

where PA,π
out ,tj

∧ varsA,π
out ,tj ,desug = paramsA,π

out ,tj

pre PreA,π
out ,tj

eff ProgA,π
out ,tj

ensuring ensuringA,π
out ,tj

internal π(varsA,π
int ,tj ,desug

; local localVarsA,π
int ,tj

, varsA,π
int ,tj

) case tj

where PA,π
int ,tj

∧ varsA,π
int ,tj ,desug

= paramsA,π
int ,tj

pre PreA,π
int ,tj

eff ProgA,π
int ,tj

ensuring ensuringA,π
int ,tj

. . .

Figure 4.1: Preliminary form of a desugared primitive automaton: all action parameters are vari-
ables
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the last position of paramsA,π
in . In general, const parameters may appear in any position. A fresh

variable appears in varsA,π
kind ,desug in the same position the const parameter it replaces appears in

paramsA,π
kind .

The preliminary form for desugaring an automaton signature shown in Figure 4.1 indicates
that each variable in varsA,π

kind ,desug is equated to the corresponding entry in paramsA,π
kind . (In the

figure, we use paramsA,π
kind to mean the sequence of terms without the const keyword.) An obvious

simplification is to omit any identity conjuncts that arise when a variable in varsA,π
kind is equated to

itself.

Transition definitions

We desugar the parameters for each transition definition for an action named π to eliminate pa-
rameters that are not just simple variable references.10 As shown in Figure 4.1, we first replace
the transition parameters paramsA,π

kind ,tj
by references to distinct fresh variables varsA,π

kind ,tj ,desug , that

is, to variables that do not appear in varsA, stateVarsA, postVarsA, varsA,π
kind ,tj

, localVarsA,π
kind ,tj

, or

localPostVarsA,π
kind ,tj

.11 Second, we maintain the original semantics of the transition definition by
adding conjuncts to the where clause to equate the new variables with the old parameters. Third,
because transition definition parameters may introduce variables implicitly, but where clauses may
not, we introduce the previously free variables (i.e., varsA,π

kind ,tj
) as additional local variables, letting

localVarsA,π
kind ,tj ,desug be the concatenation of localVarsA,π

kind ,tj
and varsA,π

kind ,tj
. In effect, these steps

move terms used as parameters into the where clause. For example, if t is a term and v is a fresh
variable with the same sort as t, then we desugar the transition definition

input π(t) where PA,π
in,tj

as

input π(v; local varsA,π
in,tj

) where v = t ∧ PA,π
in,tj

Let PA,π
kind ,tj ,desug be the where predicate that results after transition parameters have been

desugared in this fashion. Then any variable that has a free occurrence in this predicate must be
in varsA, varsA,π

kind ,tj ,desug
, or localVarsA,π

kind ,tj ,desug .
After const and transition definition terms have been desugared, the valid occurrences of free

variables in syntactic forms, shown in Table 3.1, is revised by those shown in Table 4.1. After
desugaring, paramsA,π

kind = varsA,π
kind ,desug and paramsA,π

kind ,tj
= varsA,π

kind ,tj ,desug .

Example 4.1 The first step in desugaring the primitive automata defined in Figures 2.1–2.3 is
shown in Figure 4.2. For the automaton Channel, n1:Node and n2:Node are fresh variables introduced
to desugar the const parameters in the signature. Similarly, n1:Node, n2:Node, and m1:Msg are

10As mentioned in Footnote 1, we distinguish between action parameters in the signature that are terms (const
parameters) and those that are variable declarations to provide strong typing for variable declarations. Since the sorts
of paramsA,π

kind determine the sorts of paramsA,π
kind,tj

, there is no need for such a distinction in transition parameters.
11It suffices to replace just those parameters that are not simply references to variables, because the fresh variables

corresponding to such terms disappear when we substitute references to canonical variables for the parameters, as
described in the next section. However, the replacement is easier to describe if we replace all parameters.

Furthermore, as for const parameters, to avoid any ambiguity that may arise in the where clause when two
variables share an identifier, and to avoid having to replace v:T by yet another fresh variable in an instantiation of
A that maps T and the sort of another variable with identifier v to a common sort, it is helpful to pick v to be an
identifier that is not in varsA, stateVarsA, postVarsA, varsA,π

kind,tj
, localVarsA,π

kind,tj
, or localPostVarsA,π

kind,tj
.
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location of term variables that can occur freely in term

PA,π
kind ,desug varsA, varsA,π

kind ,desug

PA,π
kind ,tj ,desug varsA, varsA,π

kind ,tj ,desug , localVarsA,π
kind ,tj ,desug

Table 4.1: Variables that can occur freely in terms in the definition of a desugared primitive
automaton. Variables listed on the right may occur freely in the syntactic structure listed to their
left.

fresh variables introduced to desugar transition parameters. Since both varsChannel,send
in,t1

and

varsChannel,receive
out ,t1

contain the single variable m:Msg, we introduce m:Msg as a local variable for each
transition definition. Notice that the variables introduced for each action need be fresh only with
respect to i:Node, j:Node, and m:Msg; furthermore, “freshness” need not extend across transitions
or between actions and transitions.

The automata P and Watch are desugared in a similar fashion. Since there are no const parame-
ters in the signature of Watch, that signature is unchanged. Since the parameters for the transition
definitions for the overflow action in Watch contain two free variables, x and s, the desugared tran-
sition definitions declare these variables as local. Also, in the second of the desugared transition
definitions, the desugared where clause incorporates the original where clause as a conjunct.

4.2 Introducing canonical names for parameters

Signature

IOA does not require that the sequences of variables varsA,π
in , varsA,π

out , and varsA,π
int be the same. For

example, const parameters may cause these sequences to have different lengths. However, since IOA
requires paramsA,π

in , paramsA,π
out , and paramsA,π

int to contain the same number and sorts of elements,
the desugared versions of these sequences (i.e., varsA,π

in,desug , varsA,π
out ,desug , and varsA,π

int ,desug) do have
the same number and sorts of elements. We choose one of these desugared variable sequences to
be the canonical parameters for the action π in A. We call the canonical sequence varsA,π. We
replace the other two sequences of parameters for π in the signature of A by varsA,π, and we define
substitutions σA,π

kind to replace varsA,π
kind ,desug with varsA,π in PA,π

kind .12

Transition definitions

We canonicalize the parameters for each transition definition for an action named π so that the
definition also uses varsA,π as its parameters. Specifically, we replace the references to variables
that parameterize a desugared transition definition of π (i.e., varsA,π

kind ,tj ,desug) by references to
the canonical variables (i.e., varsA,π) throughout the transition definition. Therefore we define a
substitution σA,π

kind ,tj
to perform this replacement and apply it to the whole transition definition.

As described in Section 9, if the canonical variables clash with the desugared local variables (i.e.,
localVarsA,π

kind ,tj ,desug
), we must substitute fresh local variables for those that clash. The variables

introduced by the substitution must be be distinct and fresh with respect to varsA, varsA,π, and the

12See Section 9 for a precise definition of a substitution, which maps a set of variables to a set of terms. Often we
represent the domain and range of a substitution as sequences, with the ith variable in the domain being replaced by
the ith variable or term in the range.
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automaton Channel(Node, Msg:type, i, j:Node)
signature

input send(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j
output receive(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

states contents:Set[Msg] := {}
trans i t ions

input send(n1, n2, m1; l o ca l m:Msg) where n1 = i ∧ n2 = j ∧ m1 = m
e f f contents := insert(m, contents)

output receive(n1, n2, m1; l o ca l m:Msg)
where n1 = i ∧ n2 = j ∧ m1 = m

pre m ∈ contents
e f f contents := delete(m, contents)

automaton P(n:Int)
signature

input receive(i1, i2, x:Int) where i1 = n-1 ∧ i2 = n
output send(i1, i2, x:Int) where i1 = n ∧ i2 = n+1,

overflow(i1:Int, s:Set[Int ]) where i1 = n
states

val:Int := 0,
toSend:Set[Int] := {}

trans i t ions
input receive(i1, i2, i3; l o ca l x:Int)

where i1 = n-1 ∧ i2 = n ∧ i3 = x
e f f ... % effect clause unchanged from original definition of P

output send(i1, i2, i3; l o ca l x:Int)
where i1 = n ∧ i2 = n+1 ∧ i3 = x
pre x ∈ toSend
e f f toSend := delete(x, toSend)

output overflow(i1, s1; l o ca l t, s:Set[Int ]) where i1 = n ∧ s1 = s
pre s = toSend ∧ n < size(s) ∧ t ⊆ s
e f f toSend := t

automaton Watch(T:type, what:Set[T])
signature

input overflow(x:T, s:Set[T]) where x ∈ what
output found(x:T) where x ∈ what

states seen:Array[T,Bool ] := constant(false)
trans i t ions

input overflow(t1, s1; l o ca l x:T, s:Set[T])
where t1 = x ∧ s1 = s ∪ {x}

e f f seen[x] := true
input overflow(t1, s1; l o ca l x:T, s:Set[T])

where ¬(x ∈ s) ∧ t1 = x ∧ s1 = s
e f f seen[x] := false

output found(t1; l o ca l x:T) where t1 = x
pre seen[x]

Figure 4.2: Preliminary desugarings of the sample automata Channel, P, and Watch
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automaton A(typesA, varsA)

signature

. . .

input π(varsA,π) where σA,π
in (PA,π

in,desug)

output π(varsA,π) where σA,π
out (PA,π

out ,desug)

internal π(varsA,π) where σA,π
int (PA,π

int ,desug)

. . .

states stateVarsA := initValsA initially PA
init

transitions

σA,π
in,tj

 input π(varsA,π
in,tj ,desug

; local localVarsA,π
in,tj ,desug) case tj where PA,π

in,tj ,desug

eff ProgA,π
in,tj

ensuring ensuringA,π
in,tj


σA,π

out ,tj


output π(varsA,π

out ,tj ,desug
; local localVarsA,π

out ,tj ,desug) case tj where PA,π
out ,tj ,desug

pre PreA,π
out ,tj

eff ProgA,π
out ,tj

ensuring ensuringA,π
out ,tj



σA,π
int ,tj


internal π(varsA,π

int ,tj ,desug ; local localVarsA,π
int ,tj ,desug) case tj where PA,π

int ,tj ,desug

pre PreA,π
int ,tj

eff ProgA,π
int ,tj

ensuring ensuringA,π
int ,tj


. . .

Figure 4.3: Intermediate form of a desugared primitive automaton with canonical action parameters
(cf. Figure 4.1)

desugared local variables. The substitutions for canonicalization are listed in Table 4.2. Variables
listed in the center column are mapped by the substitution named in the left column to those listed
in the right column.

Simplifying local variables

Finally, we simplify each desugared and canonicalized transition definition for actions named π by
eliminating extraneous local variables. A local variable may be eliminated if it is never an lvalue in
an assignment in the transition definition for π and if the where clause equates it with a canonical
variable for π, that is, if it is used only as a constant in the transition definition and is already
named by a canonical parameter.

This simplification is accomplished in four steps.

1. Define a substitution σA,π
kind ,tj ,simp that maps the redundant local variables to the corresponding

canonical variables.

2. Apply σA,π
kind ,tj ,simp to each clause in the transition definition: the where, pre, eff, and ensuring

clauses.

20



substitution domain range

σA,π
kind varsA,π

kind ,desug varsA,π

σA,π
kind ,tj

varsA,π
kind ,tj ,desug

varsA,π

σA,π
kind ,tj ,simp Redundant variables in σA,π

kind ,tj
(localVarsA,π

kind ,tj ,desug) varsA,π

σA

x ∈ stateVarsA A:States[A, typesA].x

x′ ∈ postVarsA A′:States[A, typesA].x

x ∈ localVarsA,π
kind ,tj

A:Locals[A, typesA, π].x

x′ ∈ localPostVarsA,π
kind ,tj

A′:Locals[A, typesA, π].x

Table 4.2: Substitutions used in desugaring a primitive automaton. Substitutions listed on the left
map variables in the domain to their right to variables in the range their far right.

3. Delete identity conjuncts from the where clause.

4. Delete the declarations of local variables that no longer appear in the transition.

Example 4.2 The second step in desugaring the primitive automata defined in Figures 2.1–2.3 is
shown in Figure 4.4. The definitions in this figure are obtained from those in Figure 4.2 by selecting
canonical parameters for each action.

Since each action occurs only once in the signature of the automaton Channel, selecting the
canonical variables is trivial:

• varsChannel,send defaults to varsChannel,send
in,desug = 〈n1:Node, n2:Node, m:Msg〉, and

• varsChannel,receive defaults to varsChannel,receive
out ,desug = 〈n1:Node, n2:Node, m:Msg〉.

These selections also make canonicalizing the signature trivial, because identity substitutions suffice.
We canonicalize the transition definitions by defining two substitutions.

• σChannel,send
in,t1

maps varsChannel,send
in,t1 ,desug = 〈n1:Node, n2:Node, m1:Msg〉, to varsChannel,send by

replacing the parameter m1:Msg with the canonical parameter m:Msg. To avoid a conflict
between the local variable m:Msg and the canonical parameter m:Msg, the substitution also
replaces m:Msg by the fresh variable m2:Msg.

• In the same way, σChannel,receive
out ,t1

maps varsChannel,receive
out ,t1 ,desug = 〈n1:Node, n2:Node, m1:Msg〉

to varsChannel,receive by replacing the parameter m1:Msg with the canonical parameter m:Msg
and the local variable m:Msg with the fresh variable m2:Msg.

Applying these substitution to the transition definitions produces
input send(n1, n2, m; l o ca l m2:Msg) where n1 = i ∧ n2 = j ∧ m = m2

e f f contents := insert(m2, contents)
output receive(n1, n2, m; l o ca l m2:Msg) where n1 = i ∧ n2 = j ∧ m = m2

pre m2 ∈ contents
e f f contents := delete(m2, contents)
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automaton Channel(Node, Msg:type, i, j:Node)
signature

input send(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j
output receive(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

states contents:Set[Msg] := {}
trans i t ions

input send(n1, n2, m) where n1 = i ∧ n2 = j
e f f contents := insert(m, contents)

output receive(n1, n2, m) where n1 = i ∧ n2 = j
pre m ∈ contents
e f f contents := delete(m, contents)

automaton P(n:Int)
signature

input receive(i1, i2, x:Int) where i1 = n-1 ∧ i2 = n
output send(i1, i2, x:Int) where i1 = n ∧ i2 = n+1,

overflow(i1:Int, s:Set[Int ]) where i1 = n
states

val:Int := 0,
toSend:Set[Int] := {}

trans i t ions
input receive(i1, i2, x) where i1 = n-1 ∧ i2 = n

e f f i f val = 0 then val := x
e l s e i f x < val then

toSend := insert(val, toSend );
val := x

e l s e i f val < x then
toSend := insert(x, toSend)

f i
output send(i1, i2, x) where i1 = n ∧ i2 = n+1

pre x ∈ toSend
e f f toSend := delete(x, toSend)

output overflow(i1, s; l o ca l t:Set[Int]) where i1 = n
pre s = toSend ∧ n < size(s) ∧ t ⊆ s
e f f toSend := t

automaton Watch(T:type, what:Set[T])
signature

input overflow(x:T, s:Set[T]) where x ∈ what
output found(x:T) where x ∈ what

states seen:Array[T,Bool ] := constant(false)
trans i t ions

input overflow(x, s; l o ca l s2:Set[T]) where s = s2 ∪ {x}
e f f seen[x] := true

input overflow(x, s) where ¬(x ∈ s)
e f f seen[x] := false

output found(x)
pre seen[x]

Figure 4.4: Intermediate desugarings of the sample automata Channel, P, and Watch, obtained from
the preliminary desugarings in Figure 4.2 by selecting canonical parameters for each action
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However, the local variable m2 is extraneous in both transition definitions, because it is equated with
m in the where clause and no value is assigned to it. Hence m2 equals m throughout the transition,
and we can eliminate it entirely by applying a substitution (e.g., σchannel,send

in,t1 ,simp , which maps m2 to
m) to the where,eff and pre (in the case of receive) clauses and simplifying the result, as shown in
Figure 4.4.

As for Channel, each action occurs only once in the signature of the automaton P. Hence, it is
trivial to select varsP,receive, varsP,send, and varsP,overflow and to canonicalize the signature.

To map varsP,receive
in,t1 ,desug (i.e., 〈i1:Int, i2:Int, i3:Int〉) to varsP,receive, we define σP,receive

in,t1
to replace i3:Int by x:Int. To avoid conflicts between the local variable x:Int and the canonical
parameter x:Int, the substitution also replaces x:Int by i4:Int. Applying this substitution to the
transition definition produces:

input receive(i1, i2, x; l o ca l i4:Int) where i1 = n-1 ∧ i2 = n ∧ x = i4
e f f i f val = 0 then val := i4

e l s e i f i4 < val then
toSend := insert(val, toSend );
val := i4

e l s e i f val < i4 then
toSend := insert(i4, toSend)

f i

Since the local variable i4 equals x throughout the transition definition, we can eliminate it entirely
by defining a substitution mapping i4 to x, applying that substitution to the where and eff clauses,
and simplifying the result, as shown in Figure 4.4.

Canonicalization of the send transition follows the same pattern as the receive transition.
Application of the canonicalizing substitution σP,send

out ,t1
yields:

output send(i1, i2, x; l o ca l i4:Int) where i1 = n ∧ i2 = n+1 ∧ x = i4
pre i4 ∈ toSend
e f f toSend := delete(i4, toSend)

This definition simplifies to the one shown in Figure 4.2, which does not contain a local variable.
Similarly applying the canonicalizing substitution σP,overflow

out ,t1
to the overflow transition yields:

output overflow(i1, s; l o ca l t, s2:Set[Int ]) where i1 = n ∧ s = s2
pre s2 = toSend ∧ n < size(s2) ∧ t ⊆ s2
e f f toSend := t

Once again, this definition simplifies to the one shown in Figure 4.2. Notice that the local variable
t cannot be eliminated because it is not equated with a canonical parameter. Further notice that,
in this case, canonicalization has eliminated all the local variables introduced in the desugaring
step.

As for Channel and P, each action occurs only once in the signature of the automaton Watch.
Hence it is trivial to select varsWatch,overflow and varswatch,found.

Canonicalizing the two transition definitions for overflow proceeds by defining σwatch,overflow
in,t1

and σwatch,overflow
in,t2

, which happen to be the same. They map t1:T to x:T, s1:Set[T] to s:Set[T],
s:Set[T] to s2:Set[T], and x:T to t2:T. Applying these substitutions to the transition definitions
yields:

input overflow(x, s; l o ca l t2:T, s2:Set[T])
where x = t2 ∧ s = s2 ∪ {t2}

e f f seen[t2] := true
input overflow(x, s; l o ca l t2:T, s2:Set[T])

where ¬(t2 ∈ s2) ∧ x = t2 ∧ s = s2
e f f seen[x] := false
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The local variable t2:T can be eliminated from both transition definitions. The local variable
s2:Set[T] can be eliminated from the second transition definition but not from the first. These
simplifications result in the transition definitions shown in Figure 4.4.

Notice that after the simplification of the local variable, the semantic meaning of the parameter
s:Set[T] in the desugared and canonicalized automaton shown in Figure 4.4 is different than the
meaning of the parameter s:Set[T] in the original automaton shown in Figure 2.3. The parameter
s:Set[T] in the original actually corresponds to the local variable s2:Set[T] in the canonicalized
version.

Applying the canonicalizing substitution σwatch,found
in,t1

to the found transition yields:
output found(x; l o ca l t2:T) where x = t2

pre seen[t2]

After its local variables are simplified, the transition definition shown in Figure 4.4 is identical to
the one originally defined in Figure 2.3.

4.3 Combining transition definitions

We will see in Sections 7.7–7.9 that combining multiple transition definitions for a given action into
a single transition definition is useful for composing automata. It is necessary for combining input
actions that execute atomically in the composition, and it avoids a code explosion multiplicative in
the number of input and output actions. Because this transition combining step is easy to under-
stand when applied to a single primitive automaton, we describe it here and assume all automata
hereafter have only a single transition definition per kind per action, as shown in Figure 4.5. To
combine the transition definitions for a given kind of an action π, we need to combine their se-
quences of parameters, their local variables, and their where, pre, eff, and ensuring clauses into
one, semantically equivalent, transition definition.

Furthermore, as will be discussed further in Section 7, the kind of an action may be changed
by composition. Input actions may be subsumed by output actions, and output actions may be
hidden as internal actions. Thus, the expansion of a composite automaton may combine transition
definitions across kinds. To facilitate such combinations, we collect together all the local variables
for each action of an automaton A into a single sequence of variables localVarsA,π, which is the
concatenation (with duplicates removed) of the all sequences localVarsA,π

kind ,tj
. Again, this variable

combining step is easy to understand when applied to a single primitive automaton, so we describe
it here and assume all automata hereafter have only one sequence of local variables per action
name.

In describing this combination, we assume that parameters of the automaton have already
been desugared and canonicalized as described in Sections 4.1 and 4.2. In Figure 4.5 and the
discussion below, we indicate the syntactic forms that result from that desugaring by use of the
desug subscript. We rely on the key semantic condition (mentioned in Section 3.4 and discussed
in Section 4.6) that exactly one transition definition be defined for each assignment of values to
varsA,π that satisfies PA,π

kind . That is, within an automaton, all like-named transition definitions
must have where clauses that are satisfiable only for disjoint sets of parameter values.13

First, notice that since all the contributing transition definitions are already desugared and
canonicalized, each is is parameterized by varsA,π. Hence, combining the parameters is trivial.

At first glance, combining local variables looks trickier. Each transition definition has local
scope with respect to local variables. So, there may be any amount of duplication of variables

13These semantic conditions also ensure that, in the absence of local variables, the resulting where clause can be
eliminated because it will be equivalent to true.
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automaton A(typesA, varsA)

. . .

states stateVarsA := initValsA initially σA(PA
init)

transitions

input π(varsA,π; local localVarsA,π) where
∨

j PA,π
in,tj ,desug

eff

if PA,π
in,tj ,desug

then ProgA,π
in,tj ,desug

elseif . . .

fi

ensuring
∧

j

(
PA,π

in,tj ,desug
⇒ ensuringA,π

in,tj ,desug

)
output π(varsA,π; local localVarsA,π) where

∨
j PA,π

out ,tj ,desug

pre
∨

j

(
PA,π

out ,tj ,desug ∧ PreA,π
out ,tj ,desug

)
eff

if PA,π
out ,tj ,desug then ProgA,π

out ,tj ,desug

elseif . . .

fi

ensuring
∧

j

(
PA,π

out ,tj ,desug
⇒ ensuringA,π

out ,tj ,desug

)
internal π(varsA,π; local localVarsA,π) where

∨
j PA,π

int ,tj ,desug

Analogous to output.

. . .

Figure 4.5: Intermediate form of a desugared primitive automaton, with canonical action parame-
ters and with all transition definitions for each kind of an action combined into a single transition
definition
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automaton Watch(T:type, what:Set[T])
signature

input overflow(x:T, s:Set[T]) where x ∈ what
output found(x:T) where x ∈ what

states seen:Array[T,Bool ] := constant(false)
trans i t ions

input overflow(x, s; l o ca l s2:Set[T]) where s = s2 ∪ {x} ∨ ¬(x ∈ s)
e f f i f s = s2 ∪ {x} then seen[x] := true

e l s e i f ¬(x ∈ s) then seen[x] := false
f i

output found(x)
pre seen[x]

Figure 4.6: Improved intermediate desugaring of the sample automaton Watch, obtained from the
intermediate desugaring in Figure 4.4 by combining the transition definitions for overflow

among the sequences localVarsA,π
kind ,tj ,desug

. One might think that a correctly combined transition
definition might need distinct local variables to store the values of the duplicate local variable appro-
priate to each contributing transition definition. However, for each assignment of values to varsA,π

only one contributing transition definition can be defined for any assignment of values to its local
variables. Therefore, there is at most one “useful” initial value for each local variable. Similarly,
at most one contributing eff clause can make assignments to its local variables. Hence, duplicate
declarations of local variables have no effect on the combined transition definition. Accordingly, we
define localVarsA,π to be the sequence of variables obtained by removing any duplicates from the
concatenation of all sequences localVarsA,π

kind ,tj ,desug .
In combining the various clauses of the contributing transitions, we use the where clauses of

the contributing transitions as guards to select the correct case to use. The four clauses of the
combined transition are combined as follows:

• The combined where clause is the disjunction of the where clauses from all the contributing
transition definitions.

• For output and internal transition definitions, the combined pre clause checks that one set of
parameters fulfills both the where and pre clauses of some contributing transition definition.

• The combined eff clause is a single if...then...elseif...fi statement in which the contribut-
ing eff clause is guarded by the associated where clause.

• Similarly, the combined ensuring clause asserts the appropriate contributing ensuring clause
when the associated where clause is true. Note that since PA,π

kind ,tj ,desug is defined on the initial

values of localVarsA,π
kind ,tj ,desug

, assignments made to local variables in the eff clause have no
effect on which ensuring clause is asserted.

Example 4.3 Consider the desugared and canonicalized automaton Watch shown in Figure 4.4.
The only action with multiple transition definitions is the overflow input action. Following the
above recipe, they are combined into the one equivalent action shown in Figure 4.6.

4.4 Combining aggregate sorts and expanding variable references

Section 3.2 described aggregate sorts that are automatically defined for the state and local variables
of an automaton A (i.e., States[A, typesA] and Locals[A, typesA, kind , π, tj ]). Desugaring alters the
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automaton A(typesA, varsA)

. . .

states stateVarsA := initValsA initially σA(PA
init)

transitions

σA

σA,π
kind


kind π(varsA,π; local localVarsA,π) where PA,π

kind ,comb,t1

pre PreA,π
kind

eff ProgA,π
kind ensuring ensuringA,π

kind




. . .

Figure 4.7: Final form of a desugared primitive automaton, with canonical action parameters, with
all transition definitions for each kind of an action combined into a single transition definition, and
with all variable references expanded.

automaton A and, consequently, can alter these aggregate sorts. In particular, as discussed in
Section 4.3, combining multiple transition definitions for a particular action π in automaton A
involves combining the local variables that appear in each transition into a single sequence. We
collect together all the local variables for each action π of an automaton A into a single sequence
of variables localVarsA,π, which is the concatenation (with duplicates removed) of the all sequences
localVarsA,π

kind ,tj
.

As a result, the aggregate sort for local variables also changes. Notationally, the kind and case
labels tj are dropped from the aggregate local sort name Locals[A, typesA, kind , π, tj ]. We define a
new sort Locals[A, typesA, π] for the combined transition definition to be a tuple with selection oper-
ators that are named, typed, and have values in accordance with the local variables in localVarsA,π.
That is, the set of identifiers for the selection operators on the sort Locals[A, typesA, π] is the union
of the sets of identifiers for the selection operators on the sorts Locals[A, typesA, kind , π, tj ]. We
change the sorts of the aggregate local and post-local variables A and A′ to this new sort. This has
the effect of collapsing multiple aggregate local and post-local variables each defined in the scope
of one transition into a single local and post-local variable defined in all transitions for a given
action.14).

Formally, for each transition definition tj for a given kind of an action π in A, we define a
resorting15 that maps the aggregate local sort Locals[A, typesA, kind , π, tj ] to the new aggregate local
sort Locals[A, typesA, π], and we apply that resorting to the transition definition before performing
the combining step. As a result, each variable A:Locals[A, typesA, kind , π, tj ] is mapped to a variable
A:Locals[A, typesA, π]. Thus, local variable references using the notation A.v form remain well
defined and the resorting does not change the text of the transition definition. After combining,
the sorts Locals[A, typesA, kind , π, tj ] may be ignored.

In addition to introducing notations for aggregate local sorts, Section 3.2 also introduced no-
tations for aggregate state sorts. These notations provided an additional, and potentially less
ambiguous, way of referencing the values of local and state variables. We now desugar simple
references to local and state variables to use the notations for aggregate local and state variables.

14To avoid complications that arise when new fields are added to an aggregate local tuple during the combining of
local variables across transitions, we should disallow use of the constructor [__,...] for aggregate local sorts.

15See Section 9 for a formal definition of resortings, which map sorts to sorts.
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Formally, we define a substitution16 σA to map state and post-state variables to terms. If x is a
state variable or a post-state variable (i.e., x ∈ stateVarsA or x ∈ postVarsA), then σA(x)) = A.x,
where A has sort States[A, typesA] and the operator __.x has signature States[A, typesA] → T ,
where T is the sort of x.

Similarly, for each transition definition π of type kind, we define a substitution σA,π
kind to map

local and post-local variables to terms. If x is a local or post-local variable (i.e., x ∈ localVarsA,π

or x ∈ localPostVarsAi ,π
kind ), then σA,π

kind (x) = A.x, where A has sort Locals[A, typesA, kind , π], and the
operator __.x has signature Locals[A, typesA, kind , π] → T , where T is the sort of x.

Figure 4.7 shows the final form of a desugared primitive automaton with canonical action
parameters and local variables and with all transition definitions for each kind of an action combined
into a single transition definition, and with all variable references expanded. In that figure, we
indicate the syntactic forms that result from the combining step by use of the comb subscript.
Figure 4.8 shows the result of applying these substitutions to the sample primitive automata.

4.5 Restrictions on the form of desugared automaton definitions

After the definition of a primitive automaton A has been desugared as described in Sections 4.1–4.4,
it has the following properties.

• No const parameters appear in the signature of A.

• Each appearance of an action π in the signature of A is parameterized by the canonical action
parameters varsA,π of π in A.

• Each transition definition of an action π is parameterized by the canonical action parameters
varsA,π of π in A; i.e., every parameter is a simple reference to a variable in varsA,π.

• Each action name has at most one transition definition of each kind.

• Each reference to a state variable x of A, other than in the list of state variables in the states
statement, has been replaced by the term A.x.

• Each reference to a post-state variable x′ of A has been replaced by the term A′.x.

• Each reference to a local variable x in a transition of A, other than in the local clause of that
transition definition, has been replaced by the term A.x.

• Each reference to a post-local variable x′ in a transition of A has been replaced by the term
A′.x.

4.6 Semantic proof obligations, revisited

We are now ready to formalize the semantic proof obligations for primitive automata introduced
in Section 3.4. Previously, we said that for each action named π and each sequence of parameters
values:

1. At most one of PA,π
in , PA,π

out , and PA,π
int is true.

2. If PA,π
kind is true, at least one PA,π

kind ,tj
is true.

16See Section 9 for a formal definition of substitutions, which map variables to terms.
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automaton Channel(Node, Msg:type, i, j:Node)
signature

input send(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j
output receive(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

states contents:Set[Msg] := {}
trans i t ions

input send(n1, n2, m) where n1 = i ∧ n2 = j
e f f Channel.contents := insert(m, Channel.contents)

output receive(n1, n2, m) where n1 = i ∧ n2 = j
pre m ∈ Channel.contents
e f f Channel.contents := delete(m, Channel.contents)

automaton P(n:Int)
signature

input receive(i1, i2, x:Int) where i1 = n-1 ∧ i2 = n
output send(i1, i2, x:Int) where i1 = n ∧ i2 = n+1,

overflow(i1:Int, s:Set[Int ]) where i1 = n
states

val:Int := 0,
toSend:Set[Int] := {}

trans i t ions
input receive(i1, i2, x) where i1 = n-1 ∧ i2 = n

e f f i f P.val = 0 then P.val := x
e l s e i f x < P.val then

P.toSend := insert(P.val, P.toSend );
P.val := x

e l s e i f P.val < x then
P.toSend := insert(x, P.toSend)

f i
output send(i1, i2, x) where i1 = n ∧ i2 = n+1

pre x ∈ P.toSend
e f f P.toSend := delete(x, P.toSend)

output overflow(i1, s; l o ca l t:Set[Int]) where i1 = n
pre s = P.toSend ∧ n < size(s) ∧ P.t ⊆ s
e f f P.toSend := P.t

automaton Watch(T:type, what:Set[T])
signature

input overflow(x:T, s:Set[T]) where x ∈ what
output found(x:T) where x ∈ what

states seen:Array[T,Bool ] := constant(false)
trans i t ions

input overflow(x, s; l o ca l s2:Set[T])
where s = Watch.s2 ∪ {x} ∨ ¬(x ∈ s)

e f f
i f s = Watch.s2 ∪ {x} then Watch.seen[x] := true
e l s e i f ¬(x ∈ s) then Watch.seen[x] := false
f i

output found(x)
pre Watch.seen[x]

Figure 4.8: Sample desugared automata Channel, P, and Watch, obtained from the intermediate
desugarings in Figures 4.4 and 4.6 by desugaring references to state and local variables
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3. If PA,π
kind is true, at most one PA,π

kind ,tj
is true

We explicitly did not define the phrase “sequence of parameters values” because these predicates
may be stated in terms of different variables. In other words, varsA,π

in may be different from varsA,π
out

and varsA,π
in,t1

. Similarly, varsA,π
in,t1

may be different from varsA,π
in,t2

. However, after desugaring and
canonicalizing (but before combining), we have predicates that are semantically equivalent to those
in the original automaton, but defined over a common set of free variables. That is, all the free
variables of all the predicates σA,π

kind (PA,π
kind ,desug) and σA,π

kind ,tj
(PA,π

kind ,tj ,desug) are among varsA and
varsA,π.

The alert reader will realize that Tables 3.1 and 4.1 list localVarsA,π
kind ,tj

among the variables that

may occur freely in PA,π
kind ,tj

and PA,π
kind ,tj ,desug

and might therefore conclude that the aforementioned
predicates are not “defined over a common set of free variables”. However, as noted Section 3.2, a
transition π is defined only for values of its parameters that, together with some choice of initial
values for its local variables, satisfy the where clause of the transition definition. Thus, for the
purposes of formalizing the semantic proof obligations for transition definitions, local variables
should be existentially bound, not free in where clauses, that is, PA,π

kind ,tj ,desug should be preceded

by ∃localVarsA,π
kind ,tj

.
The semantic proof obligations we introduced in Section 3.4 can be stated precisely as follows.

We require that for each action name π, all values of varsA, and all values of varsA,π, the following
statements must be provable from the axioms provided by IOA’s built-in types, by the theories
associated with the type definitions and the axioms in the IOA specification that contains the
automaton definition, and by the theories associated with the assumes clause of that definition.

X ¬
(
σA,π

in (PA,π
in,desug) ∧ σA,π

out (PA,π
out ,desug)

)
, (4.1)

X ¬
(
σA,π

in (PA,π
in,desug) ∧ σA,π

int (PA,π
int ,desug)

)
, (4.2)

X ¬
(
σA,π

out (PA,π
out ,desug) ∧ σA,π

int (PA,π
int ,desug)

)
, (4.3)

X σA,π
kind (PA,π

kind ,desug) ⇒
∨
j

∃localVarsA,π
kind ,tj

σA,π
kind ,tj

(PA,π
kind ,tj ,desug), and (4.4)

X σA,π
kind (PA,π

kind ,desug) ⇒ (4.5)

¬
(
∃localVarsA,π

kind ,tj
σA,π

kind ,tj
(PA,π

kind ,tj ,desug
) ∧ ∃localVarsA,π

kind ,tk
σA,π

kind ,tk
(PA,π

kind ,tk ,desug)
)

,

when j 6= k.
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5 Definitions for composite automata

This section introduces notations and semantic checks for composite IOA automata. Section 5.1
describes the syntactic structures that may appear in an IOA description of a composite I/O
automaton. Section 5.2 describes notations for the state variables of a composite automaton.
When component automata have type parameters, the sorts of these state variables are obtained
by mapping the formal type parameters of the component automata to the actual parameters used
to instantiate those components in the composition. Finally, Sections 5.3 and 5.4 describe the
conditions that descriptions of composite automata must satisfy to be semantically valid.

5.1 Syntax

As for primitive automata, we introduce a labeling of the syntactic elements of composite IOA
programs in order to facilitate describing their syntactic manipulation. Figure 5.1 indicates a
particular labeling of the expressions that can appear in the IOA definition of a composite I/O
automaton. Again, we have selected the granularity of this labeling to expose just those elements
of composite IOA programs that are needed in Section 7 to describe the expansion of composite
automata into primitive form.

automaton D(typesD , varsD)

assumes Assumptions

components

C1[varsD ,C1 ] : A1(actualTypesD ,C1 , actualsD ,C1 ) where PD ,C1 ;

. . . ;

Cn[varsD ,Cn ] : An(actualTypesD ,Cn , actualsD ,Cn ) where PD ,Cn

hidden

π1(paramsD ,π1

hide1
) where H D ,π1

hide1
;

. . . ;

πm(paramsD ,πm

hidem
) where H D ,πm

hidem

invariant of D : InvD
1 ; . . . InvD

z

Figure 5.1: General form of a composite automaton

In Figure 5.1, parameterized components named C1, . . . , Cn are based on instantiations of au-
tomata named A1, . . . , An. The formal parameters of component Ci are varsD ,Ci , and the ac-
tual parameters of automaton Ai consist of a sequence actualTypesD ,Ci of sorts and a sequence
actualsD ,Ci of terms. IOA permits the specification of Ci to be abbreviated by deleting the colon
and the following expression when Ci and Ai are named by the same identifier, actualTypesD ,Ci

is empty, and actualsD ,Ci = varsD ,Ci (e.g., see component P in Example 2.4). In the specification
of hidden actions, paramsD ,πp

hidep
is a sequence of terms, analogous to paramsA,πp

out ,t1
, and we define

varsD ,πp

hidep
to be the set of variables that occur freely in paramsD ,πp

hidep
but are not in varsD . Each

invariant of D is stated as a predicate InvD
x .
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syntactic structure free variables

actualsD ,Ci varsD , varsD ,Ci

PD ,Ci varsD , varsD ,Ci

H D ,πp

hidep
varsD , varsD ,πp

hidep

paramsD ,πp

hidep
varsD , varsD ,πp

hidep

InvD
x varsD , stateVarsD

Table 5.1: Variables that can occur freely in terms in the definition of a composite automaton.
Variables listed on the right may occur freely in the syntactic structure listed to their left.

Example 2.4 conforms to this general form, as follows.

• The first component of Sys is named C. Its parameters, varsSys,C, are 〈n:Int〉, and it is based
on the automaton Channel, for which it supplies the actual parameters actualTypesSys,C =
〈Int, Int〉 and actualsSys,C = 〈n, n+1〉.

• The second component of Sys is named P. It has the same parameters as C. By the conventions
for abbreviating component descriptions, it is based on the automaton of the same name, for
which it supplies the actual parameters actualsSys,P = 〈n〉; in this case, actualTypesSys,P is
empty (as required to use this abbreviated form).

• The third component of Sys, named W, has no parameters. It is based on the automaton Watch,
for which it supplies the actual parameters actualTypesSys,W = 〈Int〉 and actualsSys,W =
〈between(1,nProcesses)〉.

• The send actions that Sys inherits from P[nProcesses] are hidden as internal actions in Sys.
The parameters paramsSys,sendhide1

= 〈nProcesses, nProcesses+1, m〉 in the single clause in the

hidden statement involve a single free variable in varsSys,sendhide1
= 〈m:Int〉, and H Sys,send

hide1
is

true.

• The predicate
∀ m:Int ∀ n:Int (1 ≤ m ∧ m < n ∧ n ≤ nProcesses

⇒ P[m].val < P[n].val ∨ P[n].val = 0)

is invariant InvSys1 of Sys.

5.2 State variables of composite automata

The definition of a composite automaton in IOA does not mention the automaton’s state variables
explicitly. Rather, its components statement implicitly introduces a single state variable for each
component. We first describe the notations IOA provides for state variables associated with com-
ponent automata that have no type parameters. Then we describe how these notations extend to
state variables associated with component automata that have type parameters. Our goal is to
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provide a precise explanation of notations for state variables such as P[m].val, which appears in
the invariant for the sample composite automaton Sys.

As for primitive automata (see Section 3.2), we automatically define a sort States[D , typesD ]
representing the aggregate states of a composite automaton D, and we also define aggregate state
and post-state variables D and D′ of sort States[D , typesD ]. Furthermore, we treat the sort
States[D , typesD ] in the same fashion as for primitive automata, namely, as a tuple of state vari-
ables: we define the aggregate state of a composite automaton D to be a tuple containing a state
variable for each component automaton, and we use the names of the components (i.e., C1, . . . , Cn)
as the names of these state variables and of the corresponding selectors (i.e., __.C1, . . . , __.Cn) of
States[D , typesD ].

State variables for components with no type parameters

Defining the sort of the state variable Ci is simplest when the component Ci does not have pa-
rameters and when the automaton Ai on which Ci is based does not have type parameters. For
each such component Ci, the state variable Ci of D has sort States[Ai ], and the selector __.Ci has
signature States[D , typesD ] → States[Ai ].

When the component Ci has parameters, but Ai still does not have type parameters, the
situation is slightly more complicated, because the composite automaton D may contain multiple
instances of Ai. For example, the composite automaton Sys contains nProcesses instances of the
component automaton P, each with its own state variables val and toSend. These instances are
parameterized by a single integer n and are distinguished by the component names P[1], . . . ,
P[nProcesses].

For each parameterized component Ci, the corresponding state variable Ci does not refer to
the aggregate state of a single instance of Ai. Rather, it refers to a map from the values of the
parameters varsD ,Ci of Ci to the aggregate states of Ai. That is, the state variable Ci has sort
Map[typesD ,Ci ,States[Ai ]], where typesD ,Ci is the sequence of sorts of the variables in varsD ,Ci . The
selection operator __.Ci has signature States[D , typesD ] → Map[typesD ,Ci ,States[Ai ]].

For example, the state variable P of Sys has sort Map[Int,States[P]]. Hence, P[n] is a legitimate
term with sort States[P], and the term P[n].val has sort Int. Likewise, the selection operator __.P
has signature States[Sys] → Map[Int,States[P]], and Sys.P[n].val is an alternative notation for
the state variable val that Sys inherits from component P[n].

Resortings for automata with type parameters

Defining the sort of the state variable Ci is more complicated when Ai has type parameters. Since
the semantics for IOA are defined using multisorted, first-order logic, we cannot quantify over sorts
or use sorts as component indices. Instead, different instances of Ai, corresponding to different
actual types, must be described in separate clauses in the components statement, where they
are further distinguished by different component names. As a result, there can be only finitely
many differently typed instantiations of Ai, even though altogether there may be infinitely many
instances of Ai that are distinguished by the values of their non-type parameters. For example,
a composite automaton might contain channel components that transmit finitely many different
types of messages, but there may be infinitely many instances of such a component that transmits
a given type of message.

When a component Ci is based on an automaton Ai parameterized by the sorts typesAi , we
define a resorting ρi (which we write as ρCi in contexts, such as ρW, where it is more convenient to
use the name of the component rather than its position in the list of all components) that maps
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typesAi to actualTypesD ,Ci . For example, ρW maps typesWatch = 〈T〉 to actualTypesSys,W = 〈Int〉,
and ρC maps typesChannel = 〈Node, Msg〉 to actualTypesSys,C = 〈Int, Int〉.

As described in Section 9, there is a natural way to extend the resorting ρi to map arbitrary sorts
involving the formal type parameters in the defining automaton Ai to sorts involving the correspond-
ing actual types that the component Ci supplies for Ai. For example, this extension maps the auto-
matically defined sort States[Ai , typesAi ] for the state of Ai to the sort States[Ai , actualTypesD ,Ci ]
for the state of the instances of Ai corresponding to the component Ci.17

The resorting ρi also extends naturally to map operators with signatures involving the formal
type parameters in the defining automaton Ai to operators with signatures involving the corre-
sponding actual types that the component Ci supplies for Ai. Thus, for example, ρC maps

States[Channel,Node,Msg] = tuple of contents : Set[Msg]
to

States[Channel,Int,Int] = tuple of contents : Set[Int]
and it maps the signature of the selection operator __.contents from States[Channel,Node,Msg] →
Set[Msg] to States[Channel,Int,Int]→ Set[Int].

State variables for components with type parameters

When Ai has type parameters, we employ a resorting of its aggregate state sort to define the
sort of the state variable Ci of D. In the simple case when the component Ci does not have any
parameters, the state variable Ci has sort States[Ai , actualTypesD ,Ci ], and the selection operator
__.Ci has signature States[D , typesD ] → States[Ai , actualTypesD ,Ci ].

For example, the state variable W of Sys has sort States[Watch,Int], the term W.seen has sort
Array[Int,Bool], the selection operator __.W has signature States[Sys] → States[Watch,Int],
and Sys.Watch.seen is an alternative notation for the state variable seen that Sys inherits from
component W.

In the case when the component Ci has parameters (and the automaton Ai has type parame-
ters), the state variable Ci has sort Map[typesD ,Ci ,States[Ai , actualTypesD ,Ci ]], where typesD ,Ci is
the sequence of sorts of the variables in varsD ,Ci , and the selection operator __.Ci has signature
States[D , typesD ] → Map[typesD ,Ci ,States[Ai , actualTypesD ,Ci ]].

For example, the state variable C of Sys has sort Map[Int,States[Channel,Int,Int]], the term
C[n] has sort States[Channel[Int,Int], the term C[n].contents has sort Set[Int], the selection
operator __.C has signature States[Sys] → Map[Int,States[Channel,Int,Int], and C[n].contents

is an alternative notation for the state variable contents that Sys inherits from component C[n].

5.3 Static semantic checks

The following must be true for an IOA program to represent a valid composite I/O automaton and
can be checked statically. These checks are currently performed by ioaCheck, the IOA parser and
static-semantic checker.

X No sort appears more than once in typesD .

X Each component name (i.e., Ci) occurs at most once.

X The sequences varsD and varsD ,Ci of variables contain no duplicates; furthermore, no variable
appears in both varsD and varsD ,Ci for any value of i.

17Although Ai, typesA, Ci, and actualTypesD,Ci appear as subsorts of a sort constructor States[__,...], IOA
assigns no semantics to these sorts. Syntactically, however, they are treated in the same fashion as other sorts; in
particular, the resorting ρi replaces typesAi by actualTypesD,Ci .
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X Each component automaton is supplied with the appropriate number of actual types, that is,
actualTypesD ,Ci has the same length as typesAi .

X For every operator f in a theory specified in the assumes clause of the automaton Ai, a
corresponding operator ρi(f) must be introduced by a type definition or axioms clause in
the IOA specification that contains the definition of D, by a theory specified in the assumes
clause of D, or by a built-in datatype of IOA.

X Each component automaton is supplied with the appropriate number and sorts of its other
actual parameters, that is, actualsD ,Ci has the same length as varsAi and the same sorts as
ρi(varsAi ).

X Each component automaton is supplied with actual types that do not reduce the number of
distinct state variables. That is, all selectors of States[Ai , actualTypesD ,Ci ] are distinct.

X All occurrences of an action name π in all component automata have the same number and
sorts of parameters; that is, if π is an action name in both Ai and Aj , then varsAi ,π has the
same length as varsAj ,π, and ρi(varsÂi ,π) has the same sort as ρj(varsÂj ,π).

X Each action name in a hidden statement must be an action name in some component au-
tomaton.

X All occurrences of an action name π in a hidden statement have the same number and sorts
of parameters as the occurrences of the action name π in the component automata; that is,
if π is an action name in some Ai and π = πp for the hidden clause p, then varsAi ,π has the
same length as paramsD ,πp

hidep
, and ρi(varsÂi ,π) has the same sorts as paramsD ,πp

hidep
.

X Any variable that occurs freely in a term used as a parameter or predicate, in the definition
of a composite automaton must satisfy the restrictions imposed by Table 5.1.

5.4 Semantic proof obligations

The following must also be true for an IOA program to represent a valid I/O automaton. Except in
special cases, these conditions cannot be checked automatically, because they may require nontrivial
proofs (or even be undecidable); hence static semantic checkers must translate all but the simplest
of them into proof obligations for an automated proof assistant. 18

X Only output actions may be hidden.

X The components of a composite automaton must have disjoint sets of output actions.

X The set of internal actions for any component must be disjoint from the set of all actions of
every other component.

We will express these these proof obligations in first-order logic in Section 7.4 using syntactic
forms we define earlier in Section 7.

18An implementation of these checks might reduce the number of errors reported by first confirming that the
composition contains no duplicate instances of any component automaton that contains internal or output actions.
Any such duplication would necessarily cause violations of the latter two checks.
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6 Expanding component automata

Before we can describe the contribution of a component Ci of a composite automaton D to the
expansion of D into a primitive automaton DExpanded , we must take four preparatory steps. The
result is a component that represents the instantiation of automaton Ai on which Ci is based using
the actual parameters supplied by the component and whose variables have been translated into a
unified name space used for DExpanded .

The first step is to desugar the definition of each component automaton Ai as described in
Section 4. In the discussion below, we refer to this desugared version of Ai as Âi and assume that
it satisfies the restrictions listed in Section 4.5. The second step, shown in Section 6.1, is to replace,
throughout the entire definition of the automaton Âi, the formal type parameters typesÂi of Âi

by the actual types actualTypesD ,Ci supplied by the component Ci. The third step is to replace
the formal automaton (non-type) parameters varsAi by the actual parameters actualsD ,Ci supplied
by the component Ci. The fourth step is to translate the aggregate state variables, aggregate
local variables, and action parameters from the name space of Âi into a unified name space for
DExpanded . (It is not necessary to translate individual state and local variables, because references
to them have been eliminated by the desugaring described in Section 4.4.) Sections 6.2 describes
how we choose canonical action parameters for the unified name space. Section 6.3 describes the
substitution we use to perform both this translation and the instantiation of actual automaton
parameters for the previous step. Table 6.8 summarizes the notation, figures, and examples we use
to present these stages.

Section 6.4 describes the result of applying these replacements and translations to individual
component automata. It sets the stage Section 7, which describes how to combine the expanded
components into a description of DExpanded by developing explicit representations for its signature
and transition definitions.

6.1 Resorting component automata

We produce a definition of the instances of Âi whose sorts correspond to those of the component Ci

by replacing the formal type parameters typesÂi of Âi with the actual types actualTypesD ,Ci sup-
plied by the component Ci. This replacement is accomplished by applying the resorting ρi, defined
in Section 5.2 to the entire definition of the automaton Âi. The precise definition of resortings and
a full description of how resortings are extended to perform this replacement throughout the entire
definition of the automaton Âi are given in Section 9. We denote the resulting definition by ρiÂi.

Example 6.1 Tables 6.1–6.3 show how the resortings ρC and ρW, induced by the components
statement of the sample automaton Sys in Example 2.4, map the sorts, variables, and operators
of the component automata.19 The resorted components ρCChannel and ρWWatch of the composite
automaton Sys are shown in Figure 6.1. Since the component automaton P of Sys does not have
any type parameters, ρP is the identity, and the resorted component ρPP is the same as shown in
Figure 4.8.

19The table shows only the non-identity mappings of sorts, variables, and operators. Sorts, variables, and operators
that appear in the sample automata, but are not shown in the table, are mapped to themselves.
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resorting domain range

ρC

Node Int

Msg Int

Set[Msg] Set[Int]

States[Channel,Node,Msg] States[Channel,Int,Int]

ρW

T Int

Set[T] Set[Int]

Array[T,Bool] Array[Int,Bool]

States[Watch,T] States[Watch,Int]

Locals[Watch,T,overflow] Locals[Watch,Int,overflow]

Table 6.1: Mappings of sorts by resortings in the composite automaton Sys. Resortings listed on
the left map domain sorts to their right to the range sorts on their far right.

resorting domain range

ρC

i:Node i:Int

j:Node j:Int

contents:Set[Msg] contents:Set[Int]

n1:Node n1:Int

n2:Node n2:Int

m:Msg m:Int

ρW

what:Set[T] what:Set[Int]

seen:Array[T,Bool] seen:Array[Int,Bool]

x:T x:Int

x:T x:Int

s:Set[T] s:Set[Int]

s2:Set[T] s2:Set[Int]

Table 6.2: Mappings of variables by resortings in the composite automaton Sys. Resortings listed
on the left map domain variables to their right to the range variables on their far right.
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resorting operator original and new signatures

ρC

=
Node,Node→Bool

Int,Int→Bool

=
Msg,Msg→Bool

Int,Int→Bool

→Set[Msg]

→Set[Int]

∈
Msg,Set[Msg]→Bool

Int,Set[Int]→Bool

insert
Msg,Set[Msg]→Set[Msg]

Int,Set[Int]→Set[Int]

delete
Msg,Set[Msg]→Set[Msg]

Int,Set[Int]→Set[Int]

.contents
States[Channel,Node,Msg]→Set[Msg]

States[Channel,Int,Int]→Set[Int]

ρW

[ ]
T→Bool

Int→Bool

{ }
T→Set[T]

Int→Set[Int]

=
Set[T],Set[T]→Bool

Set[Int],Set[Int]→Bool

∈
T,Set[T]→Bool

Int,Set[Int]→Bool

∪
Set[T],Set[T]→Set[T]

Set[Int],Set[Int]→Set[Int]

.seen
States[Watch,T]→Array[T,Bool]

States[Watch,Int]→Array[Int,Bool]

.s2
Locals[Watch,T,overflow]→Set[T]

Locals[Watch,Int,overflow]→Set[Int]

Table 6.3: Mappings of operators by resortings in the composite automaton Sys. Resortings listed
on the left map domain operators to their right to the range operators on their far right.
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% Resorting of Channel for component C of Sys
automaton Channel(Node, Msg:type, i, j:Int)

signature
input send(n1, n2:Int, m:Int) where n1 = i ∧ n2 = j
output receive(n1, n2:Int, m:Int) where n1 = i ∧ n2 = j

states contents:Set[Int] := {}
trans i t ions

input send(n1, n2, m) where n1 = i ∧ n2 = j
e f f Channel.contents := insert(m, Channel.contents)

output receive(n1, n2, m) where n1 = i ∧ n2 = j
pre m ∈ Channel.contents
e f f Channel.contents := delete(m, Channel.contents)

% Resorting of Watch for component W of Sys
automaton Watch(T:Type, what:Set[Int])

signature
input overflow(x:Int, s:Set[Int ]) where x ∈ what
output found(x:Int) where x ∈ what

states seen:Array[Int,Bool ] := constant(false)
trans i t ions

input overflow(x, s; l o ca l s2:Set[Int])
where s = Watch.s2 ∪ {x} ∨ ¬(x ∈ s)

e f f i f s = Watch.s2 ∪ {x} then Watch.seen[x] := true
e l s e i f ¬(x ∈ s) then Watch.seen[x] := false
f i

output found(x)
pre Watch.seen[x]

Figure 6.1: Sample component automata Channel and Watch, obtained by resorting the desugared
automata shown in Figure 4.8
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6.2 Introducing canonical names for parameters

For each action name π in some component Ci of D, we pick a sequence varsD ,π of variables to be
the canonical action parameters of π in D. Since the static checks ensure the number and sorts of
variables in ρi(varsÂi ,π) are the same for all components Ci, we take varsD ,π to be ρi(varsÂi ,π) for
the smallest i such that π is the name of an action in Ci and this choice does not cause variables
to clash. In particular, no variable in varsD ,π should be a parameter of D (i.e., varsD ,π and varsD

should be disjoint) nor of any component Ci (i.e., varsD ,π and varsD ,Ci should be disjoint).20

If varsD ,π cannot be defined in this fashion (without causing variables to clash), then we let
i be the smallest integer such that π is the name of an action in Ci, and we take varsD ,π to be
ρi(varsÂi ,π) with any clashing variables replaced by fresh variables, that is, with variables not in
varsD nor any varsD ,Ci .

6.3 Substitutions

For each component Ci of a composite automaton D, we define a substitution σi (which we write as
σCi in contexts, such as σW, where it is more convenient to use the name of the component rather
than its position in the list of all components) to map the non-type parameters varsρi Âi = ρi(varsÂi )
of the component automaton ρiÂi to the corresponding actual parameters actualsD ,Ci and to map
the aggregate state and post-state variables of ρiÂi to the appropriate state components in the
composite automaton. For each action π of Ci, we also define a substitution σi,π to be the same as
σi, except that it also maps the canonical action parameters varsρi Âi ,π = ρi(varsÂi ) of ρiÂi to the
corresponding canonical action parameters varsD ,π in D, and that it maps the aggregate local and
post-local variables for transition definitions in ρiÂi to the appropriate local and post-local values
in the composite automaton.

These substitutions21 are summarized in Table 6.4 and defined by rules 1–9 below.

1. If x is a non-type parameter of Âi (i.e., x ∈ varsρi Âi ), then σiρi(x) is the corresponding
element of actualsD ,Ci .

2. If Ci has no parameters and x is the variable Ai of sort States[Ai , actualTypesD ,Ci ] representing
the aggregate states of ρiÂi, then σi(x) is the state variable for the component Ci of D, which
has the same sort as Ai.

3. If Ci has parameters and x is the variable Ai of sort States[Ai , actualTypesD ,Ci ], then σi(x)
is the term Ci[varsD ,Ci ], where Ci is the state variable for the component Ci of D, which has
sort Map[typesD ,Ci ,States[Ai , actualTypesD ,Ci ]].

4. If Ci has no parameters and x is the variable A′
i of sort States[Ai , actualTypesD ,Ci ] representing

the aggregate post-states of ρiÂi, then σi(x) is the post-state variable C ′
i for the component

Ci of D.

5. If Ci has parameters and x is the variable A′
i of sort States[Ai , actualTypesD ,Ci ], then σi(x) is

the term C ′
i[vars

D ,Ci ], where C ′
i is the post-state variable for the component Ci of D, which

has sort Map[typesD ,Ci ,States[Ai , actualTypesD ,Ci ]].

20It is not necessary to avoid clashes with the state variables ρi(stateVarsAi ) or post-state variables ρi(postVarsAi )
of Ci, because desugaring has replaced references to such variables x by terms Ci.x.

21See Section 9 for a precise definition of substitutions, which ensures that they do not capture local, for, choose,
or quantified variables.
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substitution domain range rule

σi

varsρi Âi actualsD ,Ci rule 1

Ai:States[Ai , actualTypesD ,Ci ] Ci rule 2

Ai:States[Ai , actualTypesD ,Ci ] Ci[varsD ,Ci ] rule 3

σi,π

varsρi Âi actualsD ,Ci rule 1

Ai:States[Ai , actualTypesD ,Ci ] Ci rule 2

Ai:States[Ai , actualTypesD ,Ci ] Ci[varsD ,Ci ] rule 3

A′
i:States[Ai , actualTypesD ,Ci ] C ′

i rule 4

A′
i:States[Ai , actualTypesD ,Ci ] C ′

i[vars
D ,Ci ] rule 5

varsρi Âi ,π varsD ,π rule 7

Ai:Locals[Ai , actualTypesD ,Ci , π] Ci rule 8

A′
i:Locals[Ai , actualTypesD ,Ci , π] C ′

i rule 8

Ai:Locals[Ai , actualTypesD ,Ci , π] Ci[varsD ,Ci ] rule 9

A′
i:Locals[Ai , actualTypesD ,Ci , π] C ′

i[vars
D ,Ci ] rule 9

Table 6.4: Substitutions used in canonicalizing component automata. Substitutions listed on the
left map variables in the domains to their right to range variables according to the listed rules.

6. There is no rule 6! [1]

7. If x is a canonical action parameter (i.e., x ∈ varsÂi ,π), then σi,πρi(x) is the corresponding
element of varsD ,π.

8. If Ci has no parameters and x is the variable Ai of sort Locals[Ai , actualTypesD ,Ci ,π] (or the
variable A′

i of the same sort) representing the aggregate local (or post-local) variables for a
transition definition, then σi(x) is the local variable Ci (or the post-local variable C ′

i) for the
transition definition in D, which has the same sort as Ai.

9. If Ci has parameters and x is the variable Ai of sort Locals[Ai , actualTypesD ,Ci ,π] (or the
variable A′

i of the same sort), then σi(x) is the term Ci[varsD ,Ci ] (or the term C ′
i[vars

D ,Ci ]),
where Ci and C ′

i are the aggregate local and post-local variables in D, which have sort
Map[typesD ,Ci ,Locals[Ai , actualTypesD ,Ci , π]].

6.4 Canonical component automata

For each component Ci of D, we obtain a canonical automaton definition Ci for that component
by applying ρi and then σi to the desugared definition Âi of Ai. Figure 6.2 shows the general form
for such canonical component automata.

In the list of parameters for Ci, the type parameters typesD of D replace the type parameters
typesÂi of Âi, and the variables varsD and varsD ,Ci that parameterize D and its component Ci

replace the individual parameters varsAi of Âi. The body of the automaton definition for Ci is
obtained by applying the resorting ρi to the body of the automaton definition for Âi, thereby
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eliminating all references to the type parameters in typesÂi , to obtain a resorted definition for an
automaton ρiÂi and then by applying the substitution σi to this resorted definition, thereby elim-
inating all references to the individual parameters in varsAi . We do not apply σi to stateVarsρiAi ,
because we wish to preserve the names of the state variables in stateVarsAi . No ambiguity arises,
because the desugaring described in Section 4.4 has replaced all references to state variables x in
the definition of Âi with terms of the form Ai.x. For each action π, we also apply σi,π to the where

clause Pρi Âi ,π
kind for π in the signature of ρiÂi and to the transition definition for π in ρiÂi.

Despite the absence of ambiguity, the automaton Ci may not pass the static semantic require-
ments in Section 3.3 that prohibit any clashes between state variables and automaton parameters.
Furthermore, if Ci has non-type parameters, the aggregate state variable for the automaton is a
map as specified in Section 5.2 rather than a tuple as specified for primitive automata in Section 3.2.

Table 6.8 shows the steps taken to expand canonical component automata. The “Original”
column lists the names for syntactic elements of automata introduced in Section 3. The notation
given in the “Desugared” column describes the result of desugaring such automata as described in
Section 4. The elements listed in the the “Resorted” column result from the resorting of desugared
component automata that Section 6.1 describes. Syntactic elements listed in the “Expanded”
column are derived in Section 6.3 from resorted automata. Finally, names that appear in the
“Component” column are just synonyms for the values in the previous column. We use these
simpler synonyms in Section 7.

automaton Ci(typesD , varsD , varsD ,Ci )

signature

kind π(varsD ,π) where σi,π(Pρi Âi ,π
kind )

. . .

states stateVarsρiAi := σi(initValsρi Âi ) initially σi(P
ρi Âi
init )

transitions

σi,π


kind π(varsρi Âi ,π; local localVarsρi Âi ,π) where Pρi Âi ,π

kind ,t1

pre Preρi Âi ,π
kind

eff Progρi Âi ,π
kind ensuring ensuringρi Âi ,π

kind


. . .

Figure 6.2: General form of the expansion of the automaton for component Ci, obtained from the
desugared definition Âi of the automaton on which Ci is based

Example 6.2 We derive the component automata C, P, and W of the composite automaton Sys by
applying the substitutions shown in Tables 6.5–6.7 to the resorted automata ρCChannel and ρWWatch
shown in Figure 6.1 and to the canonicalized automaton P shown in Figure 4.8. Since the per-action
substitutions (e.g., σC,send) are always extensions of the per-component substitutions (e.g., σC),
these tables show only the additional mappings that distinguish the per-action substitutions from
the per-component substitutions. We also omit from these tables identity mappings. For example,
we omit from Table 6.6 the identity mapping of i1:Int to itself due to rule 7 in σP,overflow. The
resulting component automata are shown in Figures 6.3–6.5.
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automaton C(nProcesses:Int, n:Int)
signature

input send(n1, n2:Int, m:Int) where n1 = n ∧ n2 = n+1
output receive(n1, n2:Int, m:Int) where n1 = n ∧ n2 = n+1

states contents:Set[Int] := {}
trans i t ions

input send(n1, n2, m) where n1 = n ∧ n2 = n+1
e f f C[n]. contents := insert(m, C[n]. contents)

output receive(n1, n2, m) where n1 = n ∧ n2 = n+1
pre m ∈ C[n]. contents
e f f C[n]. contents := delete(m, C[n]. contents)

Figure 6.3: Sample instantiated component automaton C, obtained by applying the substitutions
in Table 6.5 to the resorted automaton Channel in Figure 6.1

substitution domain range rule

σC

Channel:States[Channel,Int,Int] C[n]:Map[Int,States[Channel,Int,Int]] rule 3

i:Int n:Int rule 1

j:Int (n+1):Int rule 1

σC,send No additional substitutions

σC,receive No additional substitutions

Table 6.5: Substitutions used to derive sample component automaton C. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.

substitution domain range rule

σP P:States[P] P[n]:Map[Int,States[P]] rule 3

σP,send

i1:Int n1:int rule 7

i2:Int n2:int rule 7

x:Int m:int rule 7

σP,receive

i1:Int n1:int rule 7

i2:Int n2:int rule 7

x:Int m:int rule 7

σP,overflow P:Locals[P,overflow] P[n]:Map[Int,Locals[P,overflow]] rule 9

Table 6.6: Substitutions used to derive sample component automaton P. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.
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automaton P(nProcesses:Int, n:Int)
signature

input receive(n1, n2, m:Int) where n1 = n-1 ∧ n2 = n
output send(n1, n2, m:Int) where n1 = n ∧ n2 = n+1,

overflow(i1:Int, s:Set[Int ]) where i1 = n
states

val:Int := 0,
toSend:Set[Int] := {}

trans i t ions
input receive(n1, n2, m) where n1 = n-1 ∧ n2 = n

e f f i f P[n].val = 0 then P[n].val := m
e l s e i f m < P[n].val then

P[n]. toSend := insert(P[n].val, P[n]. toSend );
P[n].val := m

e l s e i f P[n].val < m then
P[n]. toSend := insert(m, P[n]. toSend)

f i
output send(n1, n2, m) where n1 = n ∧ n2 = n+1

pre m ∈ P[n]. toSend
e f f P[n]. toSend := delete(m, P[n]. toSend)

output overflow(i1, s; l o ca l t:Set[Int]) where i1 = n
pre s = P[n]. toSend ∧ n < size(s) ∧ P[n].t ⊆ s
e f f P[n]. toSend := P[n].t

Figure 6.4: Sample instantiated component automaton P, obtained by applying the substitutions
in Table 6.6 to the automaton P in Figure 4.8

automaton W(nProcesses:Int)
signature

input overflow(i1:Int, s:Set[Int ]) where i1 ∈ between (1, nProcesses)
output found(i1:Int) where i1 ∈ between (1, nProcesses)

states seen:Array[Int,Bool ] := constant(false)
trans i t ions

input overflow(i1, s; l o ca l s2:Set[Int])
where s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s)

e f f i f s = W.s2 ∪ {i1} then W.seen[i1] := true
e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false
f i

output found(i1)
pre W.seen[i1]

Figure 6.5: Sample instantiated component automaton W, obtained by applying the substitutions
in Table 6.7 to the resorted automaton Watch in Figure 6.1
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substitution domain range rule

σW
Watch:States[Watch,Int] W:States[Watch,Int] rule 2

what:Set[Int] between(1, nProcesses) rule 1

σW,overflow Watch:Locals[Watch,Int,overflow] W:Locals[Watch,Int,overflow] rule 8

x:Int i1:int rule 7

σW,found x:Int i1:Int rule 7

Table 6.7: Substitutions used to derive sample component automaton W. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.
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Â
i ,π

ρ
i vars

Â
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Â

i ,π
kin

d
σ

i,π
ρ

i P
re

Â
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7 Expanding composite automata

In this section, we present the main contribution of this document. We show how to expand a com-
posite IOA program into an equivalent primitive IOA program. Section 7.1 reviews our assumptions
about the form of the components of the composite automaton, and Section 7.2 describes a simpli-
fication of the structure of hidden statements, obtained by combining all clauses for a single action
into a single clause.

In Section 7.3, we define the expansion of the signature of a composite automaton to primitive
form. Section 7.4 gives first-order logic formulas for the semantic proof obligations we introduced in
Section 5.4. These include compatibility requirements for component automata. In Section 7.5, we
define the expansion of the initially predicate on states of a composite automaton. In Sections 7.6–
7.9, we define the expansion of the transitions of a composite automaton.

7.1 Expansion assumptions

We expand a composite automaton D into primitive form by combining elements of its components
C1, . . . , Cn. We assume each component automaton Ai has been desugared to satisfy the restrictions
in Section 4.5, resorted to produce an automaton ρiÂi as described in Section 5.2 and 6.1, and
transformed as described in Section 6.4 to produce an automaton σiρiÂi = Ci. In particular, for
each component automaton Ci, we assume the following.

• No const parameters appear in the signature.

• Each appearance of an action π in the signature is parameterized by the canonical action
parameters varsD ,π.

• Each transition definition of an action π is parameterized by the canonical action parameters
varsD ,π.

• Each transition definition of an action π is further parameterized by the canonical sequence
σi,πρi localVarsÂi ,π of local variables for that component.

• Each action has at most one transition definition of each kind.

• Every state, post-state, local variable, or post-local variable reference is of the unambiguous
form Ci.x, C ′

i.x, Ci[varsD ,Ci ].x, or C ′
i[vars

D ,Ci ].x.

7.2 Desugaring hidden statements of composite automata

The syntax for composite IOA programs as described in Section 5 provides programmers with flex-
ibility of expression that can complicate expansion into primitive form. Hence, as with primitive
automata, it is helpful to consider equivalent composite IOA programs that conform to a more
limited “desugared” syntax. As discussed later in this section, where clauses of composite au-
tomaton hidden statements and of component transitions are combined during expansion. Thus,
hidden statements must be desugared into a form analogous to that of a desugared transition.
In particular, we desugar composite automata with hidden statements to have the following two
properties.

• Each hidden clause for an action π is parameterized by the canonical action parameters
varsD ,π.
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• There is at most one hidden clause for each action π.

The static checks described in Section 5.3 ensure that the number and sorts of terms in paramsD ,πp

hidep

are the same as the number and sorts of variables in varsD ,πp . If no variable in varsD ,πp occurs
freely in paramsD ,πp

hidep
(i.e., if varsD ,πp and varsD ,πp

hidep
are disjoint), then we can desugar the clause

πp(paramsD ,πp

hidep
) where H D ,πp

hidep

by replacing paramsD ,πp

hidep
by varsD ,πp , reintroducing varsD ,πp

hidep
as existentially quantified variables

in the where clause, and adding conjuncts to the where clause to equate varsD ,πp with the old
parameters. This results in the desugaring

πp(varsD ,πp ) where ∃ varsD ,πp

hidep

(
H D ,πp

hidep
∧ varsD ,πp = paramsD ,πp

hidep

)
.

Notice that introducing varsD ,πp

hidep
as existentially quantified variables is analogous to introducing

varsA,π
in,tj

as local variables when desugaring transition parameters, as described in Section 4.1.

If varsD ,πp and varsD ,πp

hidep
are not disjoint, we define a substitution σhide

p that maps the intersec-
tion of these two sets to a set of fresh variables, and we desugar the hidden clause as

πp(varsD ,πp ) where ∃ σhide
p varsD ,πp

hidep

(
σhide

p H D ,πp

hidep
∧ varsD ,πp = σhide

p paramsD ,πp

hidep

)
.

We simplify each existentially qualified where clause produced by the above transformations
by dropping any existential quantifier, such as ∃ i:Int in the example, that introduces a variable
equated to a term, as in i = x in the example, in the conjunction varsD ,πp = σhide

p paramsD ,πp

hidep
, and

also by dropping the equating conjunct from that conjunction. We denote the resulting simplifica-
tion of the where clause by H D ,π

hidep ,canon .
Following this clause-by-clause canonicalization, we combine all clauses in the hidden statement

that apply to a single action π into one disjunction. This step is analogous to the combining step
for transition definitions in Section 4.3. For example, if πp = πq = π, then the clauses

πp(varsD ,πp ) where H D ,πp

hidep ,canon

πq(varsD ,πq ) where H D ,πq

hideq ,canon

become the single clause

π(varsD ,π) where H D ,πp

hidep ,canon ∨ H D ,πq

hideq ,canon .

We denote this combined where clause by H D ,π.

7.3 Expanding the signature of composite automata

In the composite automaton D, actions that are internal to some component are internal actions of
the composition, actions that are outputs of some component and are not hidden are output actions
of the composition, and actions that are inputs to some components but outputs to none are input
actions of the composition. The where clause predicates PD ,π

kind express these facts in the signature
of the expanded automaton DExpanded. We construct these predicates by defining subformulas,
PD ,Ci ,π

kind and ProvD ,π
kind which describe the actions components contribute to the composition. We
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automaton DExpanded(typesD , varsD)

signature

kind π(varsD ,π) where PD ,π
kind

. . .

Figure 7.1: General form of the signature in the expansion of a composite automaton

combine these formulas and the where predicate from any applicable hidden clause (i.e., H D ,π),
to account for the subsumption of input actions by output actions and for hiding output actions.
The final result consists of the three predicates PD ,π

in , PD ,π
out , and PD ,π

int .
All free variables that appear in these predicates are among the composite automaton parame-

ters varsD and the canonical action parameters varsD ,π. Figure 7.1 shows the general form of the
expanded signature. Below, we explain how to construct these predicates. (See Section 8.2 for an
example application of the process to composite automaton Sys defined in Example 2.4.)

Subformulas for actions contributed by a component

In order for an action kind π(varsD ,π) to be defined in D, it must be defined in some component.
An action is defined in a component Ci of D if, given action parameters varsD ,π there are component
parameters varsD ,Ci that satisfy both the component where clause PD ,Ci and the action where
clause PCi ,π

kind for π in the signature of Ci. Hence we define

PD ,Ci ,π
kind ::= ∃varsD ,Ci (PD ,Ci ∧ PCi ,π

kind ),

which is satisfied by varsD ,π if and only if π(varsD ,π) is an action of type kind in component Ci of
D.

It is important to note that the type of the action π(varsD ,π) in D may be different from the
type of π in some, or even all, the components contributing the action to the composition. Output
actions in one instance of one component may subsume inputs in another, and output actions may
be hidden as internal actions in the composition. We say that kind is the provisional kind of
π(varsD ,π) in D when an action of that kind is contributed to the composition by some component.
Hence we define the predicate ProvD ,π

kind as follows:

ProvD ,π
kind ::=

∨
1≤i≤n

PD ,Ci ,π
kind .

Signature predicates

We account for subsumed inputs and hidden outputs in the signature of DExpanded by appending
special case formulas to the predicates ProvD ,π

kind to form the signature predicates PD ,π
kind . The three

cases we must consider are:

• An action π(varsD ,π) is an output action of D if and only if it is an output action in some
component Ci of D and is not hidden in D.

• An action π(varsD ,π) is an input action of D if and only if it is an input action in some
component Ci of D, but not an output action in any component of D.
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• An action π(varsD ,π) is an internal action of D if and only if it is an internal action, or a
hidden output action, in some component Ci of D.

Translating these requirements into first-order logic, we derive the following definitions for the
signature predicates of DExpanded:

• PD ,π
out ::= ProvD ,π

out ∧ ¬H D ,π

• PD ,π
in ::= ProvD ,π

in ∧ ¬ProvD ,π
out

• PD ,π
int ::= ProvD ,π

int ∨
(
ProvD ,π

out ∧ H D ,π
)

.

7.4 Semantic proof obligations, revisited

We are now ready to formalize the following proof obligations on composite automata introduced
in Section 5.4.

X Only output actions may be hidden.

X The components of a composite automaton have disjoint sets of output actions.

X The set of internal actions for any component is disjoint from the set of all actions of every
other component.

Below we give corresponding formulas in first-order logic that must be verified for a composite
IOA program to represent a valid I/O automaton. In order to express the latter two of these
obligations in first-order logic, we break each of them into two parts. First, we consider different
components from different clauses of the components statement (i.e., Ci 6= Cj). Second, we
consider instances of the same parameterized component distinguished only by parameter values
(i.e., Ci[varsD ,Ci ] 6= Ci[vars′D ,Ci ]). We use these formulas to help construct the expansion of
transitions of composite automata in Sections 7.7–7.9.

Hidden actions

The first of these obligations is just the requirement that

X H D ,π ⇒ ProvD ,π
out .

Output actions

For output actions, we first require that different parameterized components have disjoint sets of
output actions. Formally, we say that for all distinct components Ci and Cj of D, all values of the
action parameters varsD ,π for π, all values of the composite automaton parameters varsD , and all
values of the component parameters varsD ,Ci and varsD ,Cj , we require that

X ¬PD ,Ci ,π
out ∨ ¬PD ,Cj ,π

out (7.1)

Second, we require that different instances of the same parameterized component have disjoint
sets of output actions. That is, for each component Ci of D, all values of the action parameters
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varsD ,π for π, all values of the individual parameters varsD of the composite automaton, and all
pairs of values of the component parameters varsD ,Ci and vars′D ,Ci , we require that

X
(
PD ,Ci ∧ P ′D ,Ci ∧ PCi ,π

out ∧ P ′Ci ,π
out

)
⇒ varsD ,Ci = vars′D ,Ci (7.2)

where P ′Ci ,π
out is PCi ,π

out evaluated on vars′D ,Ci .
In Example 2.4, these requirements are satisfied trivially, because the output actions in the

different components of Sys have different labels. However, the composition
automaton BadSys1

components P1[n:Int] where 0 < n ∧ n < 10;
P2: P(5)

would violate the first requirement, because components P1[5] and P2 share an output action, and
the composition

automaton BadSys2
components W[what:Set[Int ]]: Watch(Int, what)

where what = between (1,1) ∨ what = between (1,2)

would violate the second requirement because components W[[1]] and W[[1,2]] both have found(1)

as an output action.

Internal actions

Similarly, we break the last of these semantic proof obligations, which concerns internal actions, into
two parts. We first require that internal actions are defined in one component only for parameter
values where no action is defined in any other component. Formally, we say that for all distinct
components Ci and Cj of D, all values of the action parameters varsD ,π, and all values of the
composite automaton non-type parameters varsD , we require that

X PD ,Ci ,π
int ⇒ ¬PD ,Cj ,π

all (7.3)

where PD ,Cj ,π
all is the disjunction of PD ,Cj ,π

in , PD ,Cj ,π
out , and PD ,Cj ,π

int .
Second, we require that internal actions of one instance of a parameterized component are

defined only for parameter values where no action is defined in any other instance of that component.
That is, for each component Ci of D, all values of the action parameters varsD ,π, all values of the
composite automaton non-type parameters varsD , and all pairs of values of component non-type
parameters varsD ,Ci and vars′D ,Ci , we require that

X
(
PD ,Ci ∧ P ′D ,Ci ∧ PCi ,π

int ∧ P ′Ci ,π
all

)
⇒ varsD ,Ci = vars′D ,Ci , (7.4)

where P ′Ci ,π
all is the disjunction of P ′Ci ,π

in , P ′Ci ,π
out , and P ′Ci ,π

int and where the primed form of each
predicate is the evaluation of the predicate on vars′D ,Ci .

Note, although allowed by obligation 7.4, the cases where PCi ,π
int ∧ PCi ,π

in or PCi ,π
int ∧ PCi ,π

out hold
are already disallowed by semantic proof obligations 4.2 and 4.3, respectively.

Claim 1 (Signature compatibility) Semantic proof obligations 7.1–7.4 taken together with the
signature where predicates PD ,π

kind imply that DExpanded fulfills the semantic proof obligations for
primitive automata 4.1–4.3.

In Sections 7.7–7.9, we argue that remaining obligations for primitive automata (4.4 and 4.5)
are discharged by the transition where clauses of DExpanded.
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7.5 Expanding initially predicates of composite automata

In Section 5.2, we described the state variables of a composite automaton D. Corresponding to each
component Ci is a state variable Ci with sort States[Ai , actualTypesD ,Ci ] if Ci has no parameters and
with sort Map[typesD ,Ci ,States[Ai , actualTypesD ,Ci ]] otherwise. Here, we describe the construction
of an initially predicate that constrains the initial values of these state variables. This predicate is a
conjunction of clauses, one per unparameterized component and two per parameterized component.

If a component Ci is not parameterized (i.e., the state variable Ci is a tuple, not a map), then
a single clause asserts that, for all values of the component parameters for which the component
is defined (i.e., when PD ,Ci is true), each element of the tuple has an appropriate initial value.
Furthermore, the clause asserts that, when PD ,Ci is true, the tuple as a whole satisfies the initially
predicate PCi

init of the component. In order to account for initial values specified as nondeterministic
choices, we proceed as follows. Let

• Xi be the set of indices k of state variable declarations of the form

xk:Tk := choose vk:Tk where PCi
init,k

in the definition of the component Ci,

• cVarsCi be a set of distinct fresh variables v′k:Tk, one for each k in Xi,

• ∗initValsCi be initValsCi with each of the above choose expressions replaced by the corre-
sponding v′k:Tk for each k in Xi, and

• ∗PCi
init,k be PCi

init,k with v′k substituted for vk when k ∈ Xi and the predicate true otherwise.

Then we formulate the clause (shown in Figure 7.2) corresponding to Ci in the initially predicate
of DExpanded by factoring out, and existentially qualifying, the variables (i.e., cVarsCi ) used to
choose nondeterministic values for the state variables of the component automaton Ci.

When a component Ci is parameterized (i.e., the state variable Ci is a map, not a tuple), then
there are two clauses for the component. The first is analogous to the single clause for the simple
case in which the state variable is a tuple, but now it asserts that each element of each tuple in the
map has an appropriate initial value and that, when PD ,Ci is true, the map as a whole satisfies the
initially predicate of the component. The second clause asserts that the map is defined exactly for
the values of the component parameters for which the component itself is defined (i.e., when PD ,Ci

is true). This second clause is also asserted automatically as an invariant of the automaton. That
is, no transition either extends or reduces the domain over which the map is defined. Figure 7.2
summarizes these two cases and the invariant.

7.6 Combining local variables of composite automata

Just as it helped to collect the local variables from all transition definitions for an action π when
desugaring a primitive automaton (see Section 4.3), it helps to collect the local variables from the
transitions definitions from different components for an action π when expanding the definition of
a composite automaton. Hence, we parameterize every transition definition by n per-component
aggregate local variables that are named for the components C1, . . . , Cn just as the n per-component
aggregate state variables are named for those components (see Section 5.2).
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states

. . . ,

Ci:States[Ai , actualTypesD ,Ci ], % if varsD ,Ci is empty

. . . ,

Cj : Map[varsD ,Cj ,States[Aj , actualTypesD ,Cj ]], % if varsD ,Cj is not empty

. . .

initially

. . . ∧

PD ,Ci ⇒ ∃cVarsCi

(
PCi

init ∧ Ci.stateVarsCi = ∗initValsCi ∧
∧

k∈Xi
∗PCi

init,k

)
∧

. . . ∧

∀varsD ,Cj

(
PD ,Cj ⇒ ∃cVarsCj (PCj

init ∧ Cj [varsD ,Cj ].stateVarsCj = ∗initValsCj

∧
∧

k∈Xj
∗PCj

init,k)
)
∧

∀varsD ,Cj
(
PD ,Cj ⇔ defined(Cj [varsD ,Cj ])

)
∧

. . .

invariant of DExpanded :

. . . ;

∀varsD ,Cj
(
PD ,Cj ⇔ defined(Cj [varsD ,Cj ])

)
;

. . .

Figure 7.2: General form of the states in the expansion of a composite automaton
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The sort of each per-component local variable depends on the name of the action and the param-
eterization of the component. If the component Ci has no parameters, then the aggregate local vari-
able Ci has sort Locals[Ai , actualTypesD ,Ci , π]. On the other hand, if the component Ci has param-
eters, then the aggregate local variable Ci has sort Map[typesD ,Ci ,Locals[Ai , actualTypesD ,Ci , π]],
where typesD ,Ci is the sequence of types of the variables in varsD ,Ci .

We define localVarsD ,π to be the sequence of the per-component local variables C1, . . . , Cn. If
a transition π has no local variables in component Ci or if π is not a transition in component Ci,
we omit Ci from localVarsD ,π. We also define the sort Locals[D , typesD , π] to be a tuple sort with
selection operators that are named, typed, and have values in accordance with the variables in
localVarsD ,π.

7.7 Expanding input transitions

Composition combines the transitions for identical input actions in different component automata
into a single atomic transition. An input transition is defined for an action π exactly for those
values of varsD ,π that satisfy the signature where predicate PD ,π

in . Figure 7.3 shows the general
form for the definition of a combined input transition based on this observation. Below, we discuss
the definitions of the where, eff, and ensuring clauses which appear in that figure.

Each of these clauses also appears as part of the expanded transitions for output and internal
transitions, so we name them PD ,π

in,t1
, ProgD ,π

in , and ensuringD ,π
in , respectively, and include them in

the figures for the output and internal transitions only by reference. In those transitions, PD ,π
in,t1

refers only to the predicate explicitly appearing in Figure 7.3. That is, without the implicitly
conjoined signature predicate PD ,π

in .

transitions

. . .

input π(varsD ,π; local localVarsD ,π) where
∧

1≤i≤n PD ,Ci ,π
in,t1

eff

. . .

% When varsD ,Ci is empty

if PD ,Ci ∧ PCi ,π
in then ProgCi ,π

in fi;

. . .

% When varsD ,Cj is not empty

for varsD ,Cj where PD ,Cj ∧ PCj ,π
in do

ProgCj ,π
in

od;

. . .

ensuring
∧

1≤i≤n ensuringD ,Ci ,π
in

Figure 7.3: General form of an input transition in the expansion of a composite automaton
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where clause

Since there is only one input transition for the action π in DExpanded, the expanded transition
where clause trivially satisfies semantic proof obligation 4.5 and its only functional role is to define
the initial values of the local variables localVarsD ,π that correspond to a given sequence of action
parameters varsD ,π. While the signature where predicate PD ,π

in need only establish that there exists
some instance of some component that contributes an input action π(varsD ,π), the transition where
predicate must define local variable initial values for each contributing instance of all contributing
components.

We define the input transition where clause PD ,π
in,t1

by constructing subformulas PD ,Ci ,π
in,t1

. Each
such subformula constrains the initial value of one local variable Ci of contributing component Ci.
The where clause shown in Figure 7.3 is then just the conjunction of these predicates PD ,Ci ,π

in,t1
for

all components.
The subformula PD ,Ci ,π

in,t1
is the implication that for each instance of the component that con-

tributes to the transition, the local variable Ci satisfies the proper initial constraints. The initial
value of local variable Ci in localVarsD ,π is properly constrained when it satisfies the where clause
PCi ,π

in,t1
for the input transition definition of π in component Ci (for the given values of the compo-

nent parameters varsD ,Ci and action parameters varsD ,π). Thus, the consequent of the subformula
implication is PCi ,π

in,t1
.

When the component is parameterized, the local variable Ci is a map and each entry Ci[varsD ,Ci ]
in that map corresponds to the aggregate local variable for one instance of the component. In this
case, the initial values for entries corresponding to all contributing instances must initialized. An
instance of component Ci contributes to the transition π(varsD ,π) when component parameters
varsD ,Ci satisfy both the component where clause PD ,Ci and the signature where clause PCi ,π

in in
that component (for the given values of the action parameters varsD ,π). Thus, the antecedent of
the implication is the conjunction of these two predicates. To cover all instances, the implication
is universally quantified over all values of the component parameters varsD ,Ci . Hence, we define

PD ,Ci ,π
in,t1

::= ∀ varsD ,Ci

((
PD ,Ci ∧ PCi ,π

in

)
⇒ PCi ,π

in,t1

)
.

Since component Ci satisfies the semantic proof obligation 4.4, there must exists a value for local
variable Ci that satisfies the above consequent whenever the antecedent holds. Thus, the implication
is always true when read with the existential quantifier over the local variables localVarsD ,π that
is implicit in the transition header. Thus, DExpanded also (trivially) satisfies semantic proof
obligation 4.4 for input transitions, since whenever the input action π(varsD ,π) is defined in the
signature of DExpanded, the input transition π(varsD ,π) is also defined.

Notice that for each distinct value of varsD ,Ci the predicate PCi ,π
in,t1

mentions a distinct local
variable Ci or Ci[varsD ,Ci ] in localVarsD ,π. So, the truth values of instantiations of the the impli-
cation are independent even though there is only one existential instantiation of the local variables
localVarsD ,π.

However, the fact that the implication is always true does not mean that it is equivalent to
omit the expanded transition where clause. It is a consequence of the expanded signature where
clause PD ,π

in that some value of varsD ,Ci satisfies the above implication antecedent. In that case the
where clause asserts that the initial value of the relevant local variable must satisfy the contributing
component transition where predicate PCi ,π

in,t1
.

When the component is not parameterized, PD ,Ci ,π
in,t1

reduces to PCi ,π
in,t1

. To see this, first, note
that the universal quantifier simplifies away for lack of variables to quantify. Second, note that
PD ,Ci and PCi ,π

in are true whenever PD ,π
in is true. So the implication reduces to just the consequent.
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Since the only functional role of the where clause is to define the initial values of the local
variables localVarsD ,π, when there are no local variables or when no local variable appears in any
PCi ,π

in , the where clause can be omitted altogether.

eff clause

The eff clause performs the effects of all input transitions of each contributing instance of all
contributing components. It contains a conditional statement for each unparameterized component
Ci of D and a loop statement for each parameterized component Ci of D.

The predicate in the conditional statement for an unparameterized component Ci (when im-
plicitly conjoined with the where clause for the entire transition and where clause for the action
in the automaton signature) is true if Ci contributes an input transition for π to the composite
automaton D. In that case, the body of the conditional statement executes the program in the eff
clause in the transition definition for π in Ci.

The situation is slightly more complicated when the component Ci is parameterized, because the
transition must execute the effects of all instances of the component that contribute to the action.
Thus, the eff clause loops over all the different values of the component parameters varsD ,Ci that
satisfy the component where clause PD ,Ci and the signature where clause PCi ,π

in in that component
to execute the program in the eff clause in the transition for π in that instance of component Ci.
Notice that each instance of a contributing component Ci (corresponding to one iteration of the
loop for Ci) manipulates a distinct tuple of local variables Ci[varsD ,Ci ].22

If only one unparameterized component Ci contributes to the input transition definition, the
conditional statement for that component may be replaced by the eff clause in the transition
definition for π in Ci itself because the guard is implied by PD ,π

in .

ensuring clause

The ensuring predicate must be true if and only if the ensuring predicate from each contributing
instance of all contributing components is true. That is, given the parameters varsD ,π, for each
sequence of values of component parameters varsD ,Ci of each component Ci that satisfies both the
component where clause PD ,Ci and the signature where clause PCi ,π

in in that component, the value
of the local variable Ci in localVarsD ,π must also satisfy the ensuring clause ensuringCi ,π

in for the
input transition definition of π in Ci. Thus, we define the predicate ensuringD ,Ci ,π

in analogously to
the the predicate PD ,Ci ,π

in,t1
:

ensuringD ,Ci ,π
in ::= ∀ varsD ,Ci

((
PD ,Ci ∧ PCi ,π

in

)
⇒ ensuringCi ,π

in,t1

)
.

22Currently, IOA syntax permits only a single single loop variable in for statements. However, if V is a sequence
of variables v1, v2, v3, . . . , then it is simple to rewrite multi-variable loops such as the ones used in Figure 7.3

for V where p do g od

as nested single-variable loops using the inductive step

for v1 where ∃V ′p do

for V ′ where p do g od

od

where is the variable sequence V ′ = v2, v3 . . . , p is a predicate and g is a program.
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7.8 Expanding output transitions

We build up to the general form of expanded output transitions by first considering three spe-
cialized cases. The simplest case we consider is an output transition that appears in exactly one
unparameterized component and in no component as an input transition. Second, we consider the
expansion of an output transition when that sole contributing component is parameterized. Third,
we extend our definitions to apply output transitions contributed by multiple components. Finally,
the fully general expansion of output transitions covers the case where output actions and input
actions share a name.

Output-only transition contributed by a single unparameterized component

We begin by considering the simplest case of an output transition π(varsD ,π) that appears in exactly
one unparameterized component Ci and in no component as an input transition. That is, there is
no component Cj , whose signature contains an input action π(varsD ,π). In this case, the expanded
output transition does not need to be performed atomically with any input transition.

As there is only one transition contributing to the expansion, there is only one transition for the
action π(varsD ,π) in DExpanded. Thus, the expanded transition where clause trivially satisfies
semantic proof obligation 4.5 and its only functional role is to define the initial values of the local
variable Ci that corresponds to a given sequence of parameters varsD ,π. In this case, simply reusing
the component transition where clause PCi ,π

out ,t1
as the expanded transition where clause gives the

correct definition. In fact, the only difference between the expanded transition and the component
transition in this simplest case is the way locals variables are declared in transition header. The
aggregate local variable of the component transition becomes the sole local variable of the expanded
transition. The resulting form is show in Figure 7.4.

transitions

. . .

output π(local varsD ,Ci , Ci:Locals[Ci , actualTypesD ,Ci , π])

where PCi ,π
out ,t1

pre PreCi ,π
out

eff ProgCi ,π
out

ensuring ensuringCi ,π
out

Figure 7.4: Expanded transition for an output action with no matching input actions, derived
uniquely from a component Ci with no parameters.

Output-only transition contributed by a single parameterized component

When the component Ci has parameters the expansion is slightly more complicated. As in the
previous case, no like-named input transitions exist in any component and, therefore, the expanded
output transition does not need to be performed atomically with any input transition. Also like the
previous case, there is only one transition definition for π(varsD ,π) in the expanded automaton, so
the transition where clause trivially satisfies semantic proof obligation 4.5 and its only functional
role is to define the initial values of the local variables. Unlike the previous case, the state and
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transitions

. . .

output π(varsD ,π; local varsD ,Ci , Ci:Map[typesD ,Ci ,Locals[Ci , actualTypesD ,Ci , π]])

where PD ,Ci ∧ PCi ,π
out ∧ PCi ,π

out ,t1

pre PreCi ,π
out

eff ProgCi ,π
out

ensuring ensuringCi ,π
out

Figure 7.5: Expanded transition for an output action with no matching input actions, derived
uniquely from a parameterized component Ci.

local variables Ci are maps rather than simple tuples and the contributing component parameters
varsD ,Ci are introduced as local variables.

The initial values of varsD ,Ci need to be the correct indices for the relevant entry in the state and
local variable maps. That is, Ci[varsD ,Ci ] should evaluate to the tuple derived from the aggregate
variable of the contributing instance of the component. Note, the semantic proof obligation 7.2
requires that at most one instance of a component may contribute an output action π(varsD ,π).
In fact, proof obligation 7.2 provides the formula for selecting the correct indices. The component
parameters of the sole contributing instance uniquely satisfy both the component where clause
PD ,Ci and the signature where clause PCi ,π

out . Thus, these two predicates appear as conjuncts in
the where clause.

Since at most one instance of component Ci contributes to the expanded transition, at most
one entry in each of state and local variable maps Ci, corresponding to the aggregate variable of
the contributing instance of the component, has any relevance to the transition. The other entries
are completely ignored.23 The initial values for that entry Ci[varsD ,Ci ] are those that satisfy the
component transition where clause PCi ,π

out ,t1
. Thus, this predicate forms the last conjunct in the

expanded where clause.
The fact that at most one instance of component Ci contributes to the expanded transition

also means the expanded definition for the transition of an output action π need not use a for
statement, as does the expanded definition for the transition of an input action. Instead, the
expanded definition simply reuses the eff clause of the sole contributing component transition.
Similarly, the pre and ensuring clauses of the expanded transition are the same as those of the sole
contributing component transition, as shown in Figure 7.5.

Output-only transitions contributed by multiple components

When an output action name appears in several components, it would be valid for the expanded
composite automaton to include a separate output transition derived from each contributing com-
ponent transition using the above definitions. Unfortunately, as we see below, this approach yields
a code-size explosion multiplicative in the number of like-named input and output transitions. To
avoid this code explosion, we define the expanded composite automaton to combine all like-named

23In this special case, the references to local variable maps (rather than simple tuples) introduced by substitution
σi,π rule 9 in Section 6.3 are actually an unnecessary complication. However, they are required in the more general
cases discussed below.
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transitions

. . .

output π(varsD ,π; local varsD ,C1 , . . . , varsD ,Cn , localVarsD ,π)

where
∨

1≤i≤n

(
PD ,Ci ∧ PCi ,π

out ∧ PCi ,π
out ,t1

)
pre

∨
1≤i≤n

(
PD ,Ci ∧ PCi ,π

out ∧ PreCi ,π
out

)
eff

if . . .

elseif PD ,Ci ∧ PCi ,π
out then ProgCi ,π

out

elseif . . .

fi

ensuring
∧

1≤i≤n

(
PD ,Ci ∧ PCi ,π

out ,t1
⇒ ensuringA,π

out

)
Figure 7.6: Expanded transition for an output action with no matching input actions, contributed
by several components

output transitions into a single output transition, as shown in Figure 7.6. An additional advantage
of combining all like-named output transitions is that, once again, the expanded transition where
clause trivially satisfies semantic proof obligation 4.5 and its only functional role is to define the
initial values of the local variables.

In the expansion, we declare as local variables the parameters of each (contributing) component
and the local variable Ci from each (contributing) component. As in the previous case, the semantic
proof obligations for output actions given in Section 7.4 provide the key to defining the where clause.
Obligation 7.1 requires that for any value of parameters varsD ,π, at most one disjunct of∨

1≤i≤n

PD ,Ci ,π
out =

∨
1≤i≤n

∃varsD ,Ci (PD ,Ci ∧ PCi ,π
out )

can be true. That is, at most one component may contribute an output transition π(varsD ,π).
Since, all the component parameters varsD ,Ci appear as local variables in the expanded transition
header, these variables are implicitly existentially quantified in the where clause. Therefore, in the
expanded transition, the above obligation can be expressed simply as∨

1≤i≤n

(PD ,Ci ∧ PCi ,π
out ).

Similarly, obligation 7.2 requires that at most one set of values for the component parameters
varsD ,Ci of that contributing component Ci satisfies the conjunction

PD ,Ci ∧ PCi ,π
out .

That is, at most one instance of that component may contribute an output transition π(varsD ,π).
Notice that this conjunction appears exactly in the previous obligation. In fact, we use the conjunc-
tion of the component where clause PD ,Ci of the contributing component and the signature where
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clause PCi ,π
out as a “guarding conjunction” for selecting the contributing instance of the contributing

component throughout the expanded output transition.
In the where clause the guarding conjunction is paired with the corresponding component tran-

sition where clause and that triple conjunct is disjoined over all the components. Doing so has the
effect that the initial values of the relevant local variable Ci (or its relevant map entry Ci[varsD ,Ci ])
satisfies the component transition where clause whenever Ci is the contributing component.

Notice, it is a consequence of the expanded signature where clause PD ,π
out that some value of

varsD ,Ci satisfies the guarding conjunction. Furthermore, since component Ci satisfies the semantic
proof obligation 4.4, there must exists a value for local variable Ci that satisfies the consequent
whenever the guarding conjunction is true. Therefore, whenever the output action π(varsD ,π) is
defined in the signature of DExpanded, the output transition π(varsD ,π) is also defined. Thus,
DExpanded also satisfies semantic proof obligation 4.4 for output transitions.

In the precondition, the guarding conjunction is paired with the corresponding component
precondition and that triple conjunct is disjoined over all the components. Thus, the expanded
transition is enabled when there is a component for which all three of the transition precondition,
the transition where clause, and the component where clause are true for the given parameters
and initial local variable values. Checking the conjunction of all three predicates avoids enabling
the transition when the where clause is satisfied by the transition from one component while the
pre clause is satisfied by the transition of another component.

In the eff clause, the guarding conjunction selects the conditional branch containing the effects
of the single contributing output transition that is defined for the given parameters. Similarly, the
ensuring clause of the contributing output transition must be satisfied.

Output transitions subsuming input transitions (general case)

When both input and output transitions are defined and (the output transition is) enabled, the
output transition subsumes the input transitions. That is, the input actions execute atomically
with the output action. Just as we cannot statically decide that two input actions will never
be simultaneously executed, we cannot, in general, statically decide that an input transition can
never be subsumed by a like-named output transition. Therefore, each expanded output transition
must include the effects of all like-named input transitions (appropriately guarded). (It is this fact
that would cause the code-size explosion mentioned in the previous section were we to include a
separate output transition derived from each contributing component transition.) Figure 7.7 shows
the general form for expanding output transitions of composite automata.

In the cases where the output transition subsumes one or more input transition, the local
variables from the instance(s) of the component(s) contributing the input transition(s) must be
initialized by the expanded transition where clause. On the other hand, the where clause must
still always be satisfiable when an output action is defined. As we argue in Section 7.7, the
expanded input transition where predicate PD ,π

in,t1
does exactly these two things. First, it requires

the local variables derived from contributing input transitions to satisfy the where clauses of those
transitions. Second, PD ,π

in,t1
is satisfiable by some choice of values for localVarsD ,π. Thus, we simply

conjoin PD ,π
in,t1

to the where clause developed in the previous case.
The eff clause selects the effects of the single contributing output transition that is defined

for the given parameters and then performs all the effects of the subsumed input transitions by
executing ProgD ,π

in . Each effect in ProgD ,π
in is already guarded so as to occur only when the source

transition contributes. Therefore, we simply append ProgD ,π
in to the eff clause from the previous

case. Similarly, the ensuring clause ensuringD ,π
in can also be simply conjoined with the the ensuring
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transitions

. . .

output π(varsD ,π; local varsD ,C1 , . . . , varsD ,Cn , localVarsD ,π)

where
∨

1≤i≤n

(
PD ,Ci ∧ PCi ,π

out ∧ PCi ,π
out ,t1

)
∧ PD ,π

in,t1

pre
∨

1≤i≤n

(
PD ,Ci ∧ PCi ,π

out ∧ PreCi ,π
out

)
eff

if . . .

elseif PD ,Ci ∧ PCi ,π
out then ProgCi ,π

out

elseif . . .

fi;

ProgD ,π
in

ensuring
∧

1≤i≤n

(
PD ,Ci ∧ PCi ,π

out ⇒ ensuringA,π
out

)
∧ ensuringD ,π

in

Figure 7.7: General form of an output transition in the expansion of a composite automaton

clause from the previous case.
Note that, ProgD ,π

in may, in fact, amount to a no-op in all executions. However, in general,
this cannot be statically decided. Also note that the order of execution of the subsumed input
transitions with respect to each other or to the enabled output transition does not matter. The
semantic checks require that each conditional branch or for body executed in either the subsumed
input transition or the remainder of the clause must be derived from distinct automata. These
effects can alter only the value of state, local, or choose variables derived from the automaton
contributing that effect. Furthermore, the effects can depend only on those same set of state, local,
and choose variables or on the parameters of the transition. No effect can change a parameter
value.

We define ProgD ,π
out to be the program in the eff clause that combines the effects of output

transitions and subsumed input transitions. Similarly, we define ensuringD ,π
out to be the predicate

that appears in the ensuring clause.

7.9 Expanding internal transitions

The basic form of expanded internal transitions is analogous to that of output actions. The most
significant difference is that the internal transition expansion must account for output actions that
are (potentially) hidden. So before we consider the general expansion for internal transitions, we
build on the discussion of the expansion of output transitions above to consider the the simpler case
of expanding transitions for internal actions when there are no hidden clauses for those actions.
We then discuss how to generalize this construction to account for hidden output transitions.

Internal-only transitions

The expanded form of the transition for an internal action when there is no hidden clause for that
action follows a pattern similar to that of output transitions when there are no like-named input
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transitions

. . .

internal π(varsD ,π; local varsD ,C1 , . . . , varsD ,Cn , localVarsD ,π)

where
∨

1≤i≤n

(
PD ,Ci ∧ PCi ,π

int ∧ PCi ,π
int ,t1

)
pre∨

1≤i≤n

(
PD ,Ci ∧ PCi ,π

int ∧ PreCi ,π
int

)
eff

if . . .

elseif PD ,Ci ∧ PCi ,π
int ∧ then ProgCi ,π

int

elseif . . .

fi

ensuring
∧

1≤i≤n

(
PD ,Ci ∧ PCi ,π

int ,t1
⇒ ensuringA,π

int

)
Figure 7.8: Expanded transition for an internal action with no matching hidden clause

transitions. In that expansion, shown in Figure 7.8, we introduce local variables for the parameters
of each contributing automaton as well as all the local variables from all the contributing transitions.
Following reasoning analogous to the output case, we use the conjunction of the component where
clause PD ,Ci of the contributing component and the signature where clause PCi ,π

int as the guarding
conjunction for selecting the contributing instance of the contributing component throughout the
expanded internal transition.

In the where clause, the guarding conjunction is paired with the component where clause
for the contributing transition PCi ,π

int ,t1
to initialize the local variable values. In the precondition,

the guarding conjunction is paired with the pre predicate of the contributing transition. In the
eff clause, the guarding conjunction selects the conditional branch containing the effects of the
single contributing transition that is defined for the given parameters. In, the ensuring clause, the
contributing transition ensuring clause must be satisfied when the guarding conjunction holds.

Internal transitions with hiding (general case)

The most important difference between the expansion for internal transitions and that for output
transitions is that the internal transition expansions must account for output actions that are
(potentially) hidden. We cannot, in general, statically decide whether the hidden predicate H D ,π

covers the output signature predicate PD ,π
out . Nor can we, in general, statically decide whether

H D ,π covers the where clause for any contributing transition PCi ,π
out ,t1

. Thus, each transition for each
action π(varsD ,π) mentioned by a hidden clause must be incorporated into the expanded composite
automaton twice, once in an output transition and once in an internal transition.

One way to do this, would be to include two internal transitions for each transition π(varsD ,π).
The first transition would be derived as in the previous section, ignoring any hidden output actions.
The second transition would be a second copy of the expanded output transition π(varsD ,π). This
transition would be identical to the general case output transition expansion except it would be
labeled internal.
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An alternative expansion is shown in Figure 7.9. This expansion follows the pattern of including
just one transition of each kind. An advantage of having just one transition is that the expanded
transition where clause trivially satisfies semantic proof obligation 4.5 and its only functional role
is to define the initial values of the local variables.

Proof obligations 7.3 and 7.4 imply that, over all components, at most one of the conjunctions
PD ,Ci ∧ PCi ,π

int and PD ,Ci ∧ PCi ,π
out can be true. So these conjunctions are used as the guard-

ing conjunctions for the expanded transition. The former guards elements derived from internal
component transitions. The latter guards elements derived from output component transitions.

In the where clause, each guarding conjunction is paired with the component where clause for
the contributing transition PCi ,π

kind ,t1
of matching kind to initialize the local variable values. Since a

hidden output transition might also subsume a like-named input action, the where predicate also
asserts PD ,π

in .24 In the precondition, the guarding conjunction selects the appropriate component
transition precondition PreCi ,π

int or PreCi ,π
out to satisfy. These latter disjuncts are abbreviated by

referencing the expanded output pre predicate PreD ,π
out . The eff clause selects the effects of the

single contributing internal or output transition that is defined for the given parameters and then
performs all the effects of the subsumed input transitions. The conditional selecting the effects of
an internal action is shown in the figure. Effects derived from hidden output and hidden subsumed
inputs are executed in the appended program ProgD ,π

out . Similarly, the ensuring clause from the
previous case can be simply conjoined with expanded output transition ensuring clause ensuringD ,π

out

Notice, it is a consequence of the expanded signature where clause PD ,π
int that some value of

varsD ,Ci satisfies one of the guarding conjunctions. Furthermore, since component Ci satisfies
the semantic proof obligation 4.4, there must exists a value for local variable Ci that satisfies
the consequent whenever a guarding conjunction is true. Therefore, whenever the internal action
π(varsD ,π) is defined in the signature of DExpanded, the internal transition π(varsD ,π) is also
defined. Thus, DExpanded also satisfies semantic proof obligation 4.4 for internal transitions.

24We cannot simply conjoin PD,π
out to the transition where clause because PD,π

in would not distribute correctly.
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transitions

. . .

internal π(varsD ,π; local varsD ,C1 , . . . , varsD ,Cn , localVarsD ,π)

where
∨

1≤i≤n

((
PD ,Ci ∧ PCi ,π

int ∧ PCi ,π
int ,t1

)
∨

(
PD ,Ci ∧ PCi ,π

out ∧ PCi ,π
out ,t1

))
∧ PD ,π

in,t1

pre∨
1≤i≤n

(
PD ,Ci ∧ PCi ,π

int ∧ PreCi ,π
int

)
∨ PreD ,π

out

eff

if . . .

elseif PD ,Ci ∧ PCi ,π
int ∧ then ProgCi ,π

int

elseif . . .

fi;

ProgD ,π
out

ensuring
∧

1≤i≤n

(
PD ,Ci ∧ PCi ,π

int ,t1
⇒ ensuringA,π

int

)
∧ ensuringD ,π

out

Figure 7.9: General form of an internal transition in the expansion of a composite automaton
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8 Expansion of an example composite automaton

In this section, we detail the expansion the composite automaton introduced in Example 2.4. In this
expansion, we apply the techniques described in Section 7 to the composite automaton Sys shown
in Figure 2.4 and to the canonical versions of its component automata shown in Figures 6.3–6.5.
In Section 8.2, we derive the signature of SysExpanded in three stages. In Section 8.3, we describe
the state of the expanded automaton, including its initial values, and an invariant about the scope
of definition for its state variables.

Where convenient, we recapitulate definitions developed in previous sections in summary tables
to save the reader (and the authors!) from having to flip back to look up definitions.

8.1 Desugared hidden statement of Sys

Following the procedure described in Section 7.2, we eliminate terms other than variable references
from the parameters of the hidden statement of automaton Sys by replacing paramsSys,send

hide1
=

〈nProcesses, nProcesses+1, x:Int〉 with varsSys,send = 〈n1:Int, n2:Int, m:Int〉, defining σhide
1 to

map m:Int to a fresh variable i:Int, and rewriting the where clause in the hidden statement to
produce

hidden send(n1, n2, m)
where ∃ i:Int (i = m ∧ n1 = nProcesses ∧ n2 = nProcesses +1)

which simplifies to
hidden send(n1, n2, m) where n1 = nProcesses ∧ n2 = nProcesses +1

Thus, we define H Sys,send to be n1 = nProcesses ∧ n2 = nProcesses+1.

8.2 Signature of SysExpanded

To expand the signature of composite automaton Sys as described in Section 7.3, we first calculate
the per-kind, per-action, per-component predicates PSys,Ci ,π

kind . Then we combine these by compo-
nent to form the provisional kind predicates ProvSys,π

kind . Finally, we combine these predicates with
the hidden statement predicate to derive the signature predicates PSys,π

in , PSys,π
out , and PSys,π

int .
In computing these predicates it is helpful to remember the component predicates and canonical

variables of the sample composite automaton Sys. Table 8.1 collects the former from Example 2.4.
Table 8.2 recalls the latter as they were defined in Example 6.2. The local variables shown are
derived from Example 6.2 as described in Section 7.6.

predicate value

PSys,C j = i+1 ∧ 1 ≤ i ∧ i < nProcesses

PSys,P 1 ≤ n ∧ n ≤ nProcesses

PSys,W true

Table 8.1: Component predicates of the sample composite automaton Sys

Actions per component

First, we define predicates for each kind of each action for each component. Sys has three compo-
nents and four action names, each of up to three kinds. Thus, there are thirty-six possible per-kind,
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canonical sequence variables

varsSys nProcesses:Int

varsC n:Int

varsP n:Int

varsSys,send n1:Int, n2:Int, m:Int

varsSys,receive n1:Int, n2:Int, m:Int

varsSys,overflow i1:Int, s:Set[Int]

varsSys,found i1:Int

localVarsSys,overflow P:Map[Int, Locals[P, overflow]],

W:Locals[Watch, Int, overflow]

Table 8.2: Canonical variables used to expand the sample composite automaton Sys

per-action, per-component predicates PSys,Ci ,π
kind . Table 8.3 shows the seven of these predicates that

are not trivially false. All the existential quantifiers have been eliminated from the predicates shown
in the table.

We can simplify such a predicate by dropping existential quantifiers and conjuncts that are
superfluous. A quantifier is superfluous if the predicate equates the quantified variable directly
with a term not involving a quantified variable. The conjunct that equates the quantified variable
to a defining term is also superfluous. The simplification proceeds in four steps:

1. Define a substitution that maps any superfluous existential variables to the corresponding
term.

2. Apply the substitution to the predicate.

3. Delete identity conjuncts from the where clause.

4. Delete the existential quantifiers for variables that no longer appear in the predicate.

For example, by the definition given in Section 7.3,

PSys,C,send
in ::= ∃varsSys,C (PSys,C ∧ PC,send

in )
= ∃ n:Int (1 ≤ n ∧ n < nProcesses ∧ n1 = n ∧ n2 = n+1)

We simplify this predicate by defining and applying a substitution that maps n:Int to n1:Int,
delete the resulting identity conjunct, the quantified variable, and the quantifier, resulting in the
predicate shown in Table 8.3.

Provisional action kinds

Since no two components of Sys share the same kind of any action, it is simple to define the
provisional kind predicates ProvSys,π

kind . Seven of the twelve possible predicates are not trivially
false. Each of these has exactly one nontrivial disjunct—the corresponding predicate PSys,Ci ,π

kind , as
shown in Table 8.4
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Predicate value

PSys,C,send
in (1 ≤ n1 ∧ n1 < nProcesses) ∧ (n2 = n1+1)

PSys,P,send
out (1 ≤ n1 ∧ n1 ≤ nProcesses) ∧ (n2 = n1+1)

PSys,C,receive
out (1 ≤ n1 ∧ n1 < nProcesses) ∧ (n2 = n1+1)

PSys,P,receive
in (1 ≤ n2 ∧ n2 ≤ nProcesses) ∧ (n1 = n2-1)

PSys,P,overflow
out 1 ≤ i1 ∧ i1 ≤ nProcesses

PSys,W,overflow
in i1 ∈ between(1, nProcesses)

PSys,W,found
out i1 ∈ between(1, nProcesses)

Table 8.3: Simplified predicates defining contributions to the signature of Sys

Predicate value

ProvSys,send
in PSys,C,send

in

ProvSys,send
out PSys,P,send

out

ProvSys,receive
out PSys,C,receive

out

ProvSys,receive
in PSys,P,receive

in

ProvSys,overflow
out PSys,P,overflow

out

ProvSys,overflow
in PSys,W,overflow

in

ProvSys,found
out PSys,W,found

out

Table 8.4: Provisional where predicates for the signature of Sys
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Signature predicates

We now compute the nontrivial signature predicates PSys,π
in , PSys,π

out , and PSys,π
int for the four action

labels send, receive, overflow, and found of automaton SysExpanded.

Output actions We compute the signature predicate for output action send, by applying the
formula

PSys,send
out = ProvSys,P,send

out ∧ ¬H Sys,send.

Using the desugared form of the hidden predicate shown in Example 7.2, we find that PSys,send
out

is
1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1
∧ ¬(n1 = nProcesses ∧ n2 = nProcesses +1)

Computing the predicates for output actions receive, found, and overflow is simple because
there is no hidden clause applying to them (i.e., H Sys,π is false) and the action predicate is, in
fact, just the provisional kind predicate, as shown in Figure 8.1.

Input actions We compute the signature predicate for input action send by applying the formula

PSys,send
in = ProvSys,send

in ∧ ¬ProvSys,send
out .

Thus, PSys,send
in evaluates to

1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1 ∧
¬((1 ≤ n1 ∧ n1 ≤ nProcesses ) ∧ (n2 = n1+1))

The signature predicates for input actions receive, and overflow are computed similarly and
appear in Figure 8.1.

Internal actions In Example 2.4, the component automata have no internal actions. Therefore,
the only internal action in Sys is the hidden action send. Thus, the predicate PSys,send

int is equivalent
to

ProvSys,send
out ∧ H Sys,send,

which evaluates to

1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1 ∧ n1=nProcesses ∧ n2=nProcesses+1

The complete expanded signature of automaton Sys is given in Figure 8.1.

8.3 States and initially predicates of SysExpanded

The complete expanded state of automaton Sys is given in Figure 8.1. Since each component of the
desugared composite automaton has non-type parameters, all three state variables are maps. Three
of the initially subclauses (and the subsequent invariant) assert the well-formedness requirement
that each map is defined only for values of the component parameters on which the component itself
is defined. The other three initially subclauses assert that the contents of each channel is initially
empty, the watch process is looking for values between 1 and nProcesses and that each process P

initially has value 0 and nothing to send. The type declaration appearing at the beginning of the
figure is the automatically generated sort for the state of the composite automaton.
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type States[Sys] = tuple of C:Map[Int, States[Channel,Int,Int]],
P:Map[Int, States[P]],
W:States[Watch,Int]

automaton SysExpanded(nProcesses:Int)
signature

output send(n1, n2, m:Int)
where 1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1

∧ ¬(n1 = nProcesses ∧ n2 = nProcesses +1),
receive(n1, n2, m:Int)

where 1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1,
overflow(i1:Int, s:Set[Int ]) where 1 ≤ i1 ∧ i1 ≤ nProcesses,
found(i1:Int) where i1 ∈ between (1, nProcesses)

input send(n1, n2, m:Int)
where 1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1

∧ ¬(1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1),
receive(n1, n2, m:Int)

where 1 ≤ n2 ∧ n2 ≤ nProcesses ∧ n1 = n2-1
∧ ¬(1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1),

overflow(i1:Int, s:Set[Int])
where i1 ∈ between (1, nProcesses)

∧ ¬(1 ≤ i1 ∧ i1 ≤ nProcesses)
internal send(n1, n2, m:Int)

where 1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1
∧ n1 = nProcesses ∧ n2 = nProcesses +1

states C:Map[Int, States[Channel , Int, Int]],
P:Map[Int, States[P]],
W:States[Watch, Int]

i n i t i a l l y
∀ n:Int ((1 ≤ n ∧ n < nProcesses ) ⇒ C[n]. contents = {})

∧ ∀ n:Int ((1 ≤ n ∧ n < nProcesses ) ⇔ defined(C, n))
∧ ∀ n:Int ((1 ≤ n ∧ n ≤ nProcesses ) ⇒ P[n].val = 0 ∧ P[n]. toSend = {})
∧ ∀ n:Int ((1 ≤ n ∧ n ≤ nProcesses ) ⇔ defined(P, n))
∧ W.seen = constant(false)

...
invariant of SysExpanded:
∀ n:Int (1 ≤ n ∧ n < nProcesses ⇔ defined(C[n]));
∀ n:Int (1 ≤ n ∧ n ≤ nProcesses ⇔ defined(P[n]))

Figure 8.1: Expanded signature and states of the sample composite automaton Sys
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8.4 Input Transition Definitions of SysExpanded

We compute the input transitions of SysExpanded by following the pattern of Figure 7.3 for each of
the input actions in its signature (receive, send, and overflow) and simplifying. Figure 8.2 shows
the three resulting forms.

In that figure, each input transition is formed from only a single contributing component.
Thus, the conjunctions in the where over the contributing components in Figure 7.3 each resolves
to a single term. Furthermore, we omit the where clauses for the receive and send transitions
because the transition definitions have no local variables. In each of the three transitions, we
omit the ensuring predicate altogether because the sole contributing predicate for each transition
(ensuringP,receive

in , ensuringC,send
in , and ensuringW,overflow

in ) is trivially true. The eff clause of each
transition resolves to a single for loop or conditional. In the overflow transition, the conditional is
replaced by its body because there is only a single contributing transition.

Figure 8.3 shows the final text of the expanded input transitions. In that figure, we omit
the local variable P:Map[Int, Locals[P, overflow]] from the overflow transition because it does
not appear in the transition precondition or effects. The where clause predicate PSys,W,overflow

in,t1

reduces to the implication shown in Table 8.5 because varsSys,W is empty and PSys,W is trivially
true.

The for loops in the receive and send transitions have been eliminated by the following simpli-
fication. Filling in the specified variables from Tables 8.2, predicates from Tables 8.1 and 8.5 and
statements from Example 6.2 in the receive transition for loop yields the loop

for n:Int where (1 ≤ n ∧ n ≤ nProcesses ∧ n1 = n-1 ∧ n2 = n) do
i f P[n].val = 0 then P[n].val := m
e l s e i f m < P[n2].val then

P[n]. toSend := insert(P[n].val, P[n]. toSend );
P[n].val := m

e l s e i f P[n].val < m then
P[n]. toSend := insert(m, P[n]. toSend)

f i
od.

Since the last conjunct of the loop where clause limits the loop variable to a single value, the
transition parameter n2, we can eliminate the loop altogether. Thus, in Figure 8.3, we replace the
loop with its body after applying to the body a substitution that maps the loop variable n to its
value n2. Similarly, the for loop in the send transition is eliminated using a substitution that maps
its loop variable n to the transition parameter n1.

8.5 Output Transition Definitions of SysExpanded

We compute the output transitions of SysExpanded by following the pattern of Figure 7.7 for each of
the output actions in its signature (receive, send, overflow, and found) and simplifying. Figure 8.4
shows the four resulting forms.

Notice that only one component contributes an output transition to each expanded output tran-
sition. Therefore, only syntactic elements from the sole contributing component and the correspond-
ing expanded input action appear in each transition. Each local variable list contains of the compo-
nent variables for that contributing component. Since, localVarsSys,receive, localVarsSys,send, and
localVarsSys,found are empty, they are omitted from their respective transitions. Since component
W is unparameterized, the found transition has no local variables at all.

The where clause of each transition resolves to a single term rather than being a disjunction
over the contributing components. Furthermore, we omit the where clauses for the receive, send,
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predicate value

PP,receive
in n1 = n-1 ∧ n2 = n

PC,send
in n1 = n ∧ n2 = n+1

PW,overflow
in i1 ∈ between(1, nProcesses)

PW,overflow
in,t1

s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s)

PSys,W,overflow
in,t1

i1 ∈ between(1, nProcesses) ⇒ (s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s))

Table 8.5: Nontrivial predicates used in expanding input transition definitions of the sample com-
posite automaton Sys derived from Figures 6.3, 6.4 and 6.5

input receive(varsSys,receive)

eff for varsSys,P where PSys,P ∧ PP,receive
in do ProgP,receive

in od

input send(varsSys,send)

eff for varsSys,C where PSys,C ∧ PC,send
in do ProgC,send

in od

input overflow(varsSys,overflow; local localVarsSys,overflow) where PSys,W,overflow
in,t1

eff ProgW,overflow
in

Figure 8.2: Form of input transitions of SysExpanded

input receive(n1, n2, m)
e f f i f P[n2].val = 0 then P[n2].val := m

e l s e i f m < P[n2].val then
P[n2]. toSend := insert(P[n2].val, P[n2]. toSend );
P[n2].val := m

e l s e i f P[n2].val < m then
P[n2]. toSend := insert(m, P[n2]. toSend)

f i

input send(n1, n2, m)
e f f C[n1]. contents := insert(m, C[n1]. contents)

input overflow(i,s; locals W:Locals[W,int,overflow ])
where i1 ∈ between (1, nProcesses ) ⇒ (s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s))
e f f i f s = W.s2 ∪ {i1} then W.seen[i1] := true

e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false
f i

Figure 8.3: Input transition definitions of SysExpanded
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predicate value

PC,receive
out n1 = n ∧ n2 = n+1

PC,receive
out ,t1

n1 = n ∧ n2 = n+1

PreC,receive
out m ∈ C[n].contents

PP,send
out n1 = n ∧ n2 = n+1

PP,send
out ,t1

n1 = n ∧ n2 = n+1

PreP,send
out m ∈ P[n].toSend

PP,overflow
out i1 = n

PP,overflow
out ,t1

i1 = n

PreP,overflow
out s = P[n].toSend ∧ n < size(s) ∧ P[n].t ⊆ s

PW,found
out i1 ∈ between(1, nProcesses)

PreW,found
out W.seen[i1]

Table 8.6: Nontrivial predicates used in expanding output transition definitions of the sample
composite automaton Sys derived from Figures 6.3, 6.4 and 6.5

and found transitions because the transition definitions have no local variables. Similarly, the en-
suring clause is only a single conjunction. In each of the four transitions, we omit the ensuring
predicate altogether because the consequent for each transition (ensuringC,receive

out , ensuringP,send
out ,

ensuringP,overflow
out , and ensuringW,found

out ) is trivially true. Furthermore, the conditional and guard-
ing conjunction can be omitted from the eff clause because only one output contributes. So each
effect is just the effect of the contributing output transition followed by the effect of the corre-
sponding expanded input transition. Since the output transition definition for the found action in
component W has no effect and there is no found input action, the expanded found transition has
no effect either.

Filling in the specified variables from Tables 8.2, predicates from Tables 8.1 and 8.6 and state-
ments from Example 6.2 and Figure 8.3 yields the complete the complete text of the expanded
output transitions shown in Figure 8.5. We simplify the transition definitions using two techniques.
First, we eliminating unneeded local variables. Second, we use the fact that the signature where

predicate for an action (e.g., PSys,receive
out ) is implicitly conjoined to the corresponding transition

where predicate (e.g., PSys,receive
out ,t1

) and precondition (PreSys,receive
out ) to eliminate redundant

assertions in the transition where predicate and precondition. The resulting final form of output
transitions is shown in Figure 8.6.

To eliminate unneeded local variables, we follow the four step process to eliminate unneeded
local variables described in Section 4.2. For example, we note that the where clause of the receive

transiting equates n with parameter n1. Furthermore, there is no assignment to n in the effects of
that transition. Thus, the local variable n is extraneous. So, we define a substitution that maps
the local variable n to the parameter n1 and apply it to the where, pre, and eff clauses. We then
delete the resulting identity conjunct from the where clause and the declaration of the local variable
n. Similarly simplifications eliminate the local variable n from the send and overflow transition
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output receive(varsSys,receive; local varsSys,C)

where PSys,C ∧ PC,receive
out ∧ PC,receive

out ,t1
∧ PSys,receive

in,t1

pre PSys,C ∧ PC,receive
out ∧ PreC,receive

out

eff ProgC,receive
out ;

ProgSys,receive
in

output send(varsSys,send; local varsSys,P)

where PSys,P ∧ PP,send
out ∧ PP,send

out ,t1
∧ PSys,send

in,t1

pre PSys,P ∧ PP,send
out ∧ PreP,send

out

eff ProgP,send
out ;

ProgSys,send
in

output overflow(varsSys,overflow; local varsSys,C, varsSys,P, localVarsSys,overflow)

where PSys,P ∧ PP,overflow
out ∧ PP,overflow

out ,t1
∧ PSys,overflow

in,t1

pre PSys,P ∧ PP,overflow
out ∧ PreP,overflow

out

effProgP,overflow
out ;

ProgSys,overflow
in

output found(varsSys,found)

pre PSys,W ∧ PW,found
out ∧ PreW,found

out

Figure 8.4: Form of output transitions of SysExpanded

definitions. Since the resulting receive and send transitions no longer have any local variables, we
omit their where clauses altogether.

After this simplification, the precondition for the receive transition is
pre 1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1 ∧ m ∈ C[n1]. contents

However, the first three conjuncts are also asserted by the the signature where clause for the receive
output action PSys,receive

out and, therefore, are redundant. Similarly simplifications to the where
and pre clauses of the other transitions result in the final text of the expanded output transitions
shown in Figure 8.6.

8.6 Internal Transition Definitions of SysExpanded

Since no component has any internal transitions, the only internal transitions in SysExpanded is the
hidden output send transitions. In the case where no component contributes an internal transition,
the form in Figure 7.9 reduces exactly that in Figure 7.7. That is, the internal send transition
definition is identical to the output transition definition except for its label. The two actions are
distinguished exactly by the assertion or negation of H Sys,send in the signature of SysExpanded.
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output receive(n1, n2, m; l o ca l n:Int)
where 1 ≤ n1 ∧ n1 < nProcesses ∧ n1 = n ∧ n2 = n1+1

pre 1 ≤ n ∧ n1 < nProcesses ∧ n1 = n ∧ n2 = n+1
∧ m ∈ C[n]. contents

e f f
C[n]. contents := delete(m, C[n]. contents)
i f P[n2].val = 0 then P[n2].val := m
e l s e i f m < P[n2].val then

P[n2]. toSend := insert(P[n2].val, P[n2]. toSend );
P[n2].val := m

e l s e i f P[n2].val < m then
P[n2]. toSend := insert(m, P[n2]. toSend)

f i

output send(n1, n2, m; l o ca l n:Int)
where 1 ≤ n ∧ n ≤ nProcesses ∧ n1 = n ∧ n2 = n+1

∧ n1 = n ∧ n2 = n+1
pre 1 ≤ n ∧ n ≤ nProcesses ∧ n1 = n ∧ n2 = n+1 ∧ m ∈ P[n]. toSend
e f f

P[n]. toSend := delete(m, P[n]. toSend)
C[n1]. contents := insert(m, C[n1]. contents)

output overflow(i1, s; l o ca l n:Int,
P:Map[Int, Locals[P, overflow ]],
W:Locals[Watch, Int, overflow ])

where 1 ≤ n ∧ n ≤ nProcesses ∧ i1 = n ∧
i1 ∈ between (1, nProcesses ) ⇒ (s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s))

pre 1 ≤ n ∧ n ≤ nProcesses ∧ i1 = n ∧
s = P[n]. toSend ∧ n < size(s) ∧ P[n].t ⊆ s

e f f P[n]. toSend := P[n].t
i f s = W.s2 ∪ {i1} then W.seen[i1] := true
e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false
f i

output found(i1)
pre i1 ∈ between (1, nProcesses ) ∧ W.seen[i1]

Figure 8.5: Output transition definitions of SysExpanded
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output receive(n1, n2, m)
pre m ∈ C[n1]. contents
e f f

C[n1]. contents := delete(m, C[n1]. contents)
i f P[n2].val = 0 then P[n2].val := m
e l s e i f m < P[n2].val then

P[n2]. toSend := insert(P[n2].val, P[n2]. toSend );
P[n2].val := m

e l s e i f P[n2].val < m then
P[n2]. toSend := insert(m, P[n2]. toSend)

f i

output send(n1, n2, m)
pre m ∈ P[n1]. toSend
e f f

P[n1]. toSend := delete(m, P[n1]. toSend)
C[n1]. contents := insert(m, C[n1]. contents)

output overflow(i1, s; l o ca l P:Map[Int, Locals[P, overflow ],
W:Locals[Watch, Int, overflow ])

where s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s)
pre s = P[i1]. toSend ∧ i1 < size(s) ∧ P[i1].t ⊆ s
e f f P[i1]. toSend := P[i1].t

i f s = W.s2 ∪ {i1} then W.seen[i1] := true
e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false
f i

output found(i1)
pre W.seen[i1]

Figure 8.6: Simplified output transition definitions of SysExpanded
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internal send(n1, n2, m)
pre m ∈ P[n1]. toSend
e f f

P[n1]. toSend := delete(m, P[n1]. toSend)
C[n1]. contents := insert(m, C[n1]. contents)

Figure 8.7: Internal transition definitions of SysExpanded

The final transition of SysExpanded is shown in Figure 8.7.
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9 Renamings, Resortings, and Substitutions

In this section, we give formal definitions for resortings and variable substitutions in IOA.

9.1 Sort renamings

A sort renaming or resorting is a map from simple sorts to sorts.25 Any resorting ρ extends
naturally to a map ρ̇ defined for all simple sorts by letting ρ̇ be the identity on elements not in the
domain of ρ. In turn, ρ̇ extends further to a map ρ̈ from sorts to sorts by the following recursive
definition:

ρ̈(u) ::=

{
ρ̇(T ) if u is a simple sort T , and
T [ρ̈(T1), . . . , ρ̈(Tn)] if u is a compound sort T [T1, . . . , Tn].

Let ρS→T denote a resorting that maps the sort S to sort T and is otherwise the same as ρ
(even if S is already in the domain of ρ).

9.2 Variable renamings

A variable renaming ρq is an extension of a resorting ρ that maps variables in a sequence q to
distinct variables. If v is a variable i:T in q, then ρq(v) is defined to be j:ρ̈(T ) where j is an
identifier (i itself, if possible) such that j:ρ̈(T ) 6= ρq(v′) for all variables v′ that precede v in q. We
say that ρq is a variable renaming with respect to precedence sequence q.

If ρr is a variable renaming where r = q‖p then we say ρr is an extension of ρq with respect to
precedence sequence p and we write that ρr = ρq ` p.

9.3 Operator renamings

An operator renaming ω is a map from operators to operators that preserves signatures. Any
operator renaming ω extends naturally to a map ω̇ defined for all operators by letting ω̇ map each
operator not in the domain of ω to itself.

We extend any operator renaming ω further to a map ω̈ on some syntactic elements of an IOA
automaton (terms to terms, statements to statements, etc.) We now define ω̈ for each type of IOA
syntax to which it may apply.

Terms and sequences of terms

If u is a term, then ω̈(u) is

• v, if u is a variable v,

• ω̇(f)(ω̈(u1), . . . , ω̈(un)), if u is a term f(u1, . . . , un) for some operator f and terms u1, . . . , un,

• ∀v ω̈(u′), if u is a term ∀v (u′) for some variable v and term u′, and

• ∃v ω̈(u′), if u is a term ∃v (u′) for some variable v and term u′.

If q is a sequence of terms {u1, u2, . . . , un}, then ω̈(q) is {ω̈(u1), ω̈(u2), . . . , ω̈(un)}.
25In IOA, sorts are divided into simple or primitive sorts, such as Int and T, and compound or constructed sorts,

such as Set[T] and WeightedGraph[Node,Nat].
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Values

If l is a value, then ω̈(l) is

• ω̈(t), if l is a term t

• choose v where ω̈(p), if l is a choice choose v where p for some variable v and predicate p.

Statements and programs

If s is a statement, then ω̈(s) is

• ω̈(lhs) := ω̈(rhs), if s is an assignment lhs := rhs for some lvalue lhs and some value rhs,

• if ω̈(p1) then ω̈(s1) elseif ω̈(p2) then . . . else ω̈(sn) fi, if s is a conditional statement
if p1 then s1 elseif p2 . . . else sn fi for some predicates p1, . . . , pn−1 and statements s1, . . . , sn,
and

• for v where ω̈(p) do ω̈(g) od, if s is a loop statement for v where p do g od for some
variable v, predicate p, and program g.

If g is a program s1; s2; . . . , then ω̈(g) is ω̈(s1); ω̈(s2); . . . .

Shorthand tuple sort declarations

If ω is an operator renaming and d1 and d2 are two shorthand tuple sort declarations:

d1 ::= T tuple of i1:T1, i2:T2, . . . , and
d2 ::= T tuple of j1:T1, j2:T2, . . . ,

where i1, i2, . . . , and j1, j2, . . . , are identifiers and T , T1, T2, . . . , are sorts then we write ωd1→d2 or
ωT,{i1,i2,... }→{j1,j2,... } for the operator renaming that maps

1. tuple selection operators .ik:T → Tk to .jk:T → Tk, and

2. tuple set operators set ik:T, Tk → T to set jk:T, Tk → T .

9.4 Renamings for automata

In Section 5 we defined resortings that map typesA to actualTypesD ,A for some desugared automaton
A with formal type parameters typesA instantiated with actual type parameters actualTypesD ,A.

Let ρ be such a resorting and % be the variable renaming ρ{}. We extend % to a map %̇ on
some syntactic elements of an IOA automaton (terms to terms, statements to statements, etc.) by
defining %̇ for each type of IOA syntax to which it may apply.

Automata

If A is desugared primitive automaton with syntax as given in Section 4 and shown in Figure 4.5,
then %̇(A) is26

26Strictly speaking, the definition of the automaton %̇(A) is not a legal definition of a primitive IOA automaton. Its
type parameters, shown as typesA, should really consist of the non-built-in types that appear in sorts in %̇(typesA).
Furthermore, the declared state variables may not match the aggregate state variable selectors that appear in terms
in signature where clauses, in the initially clause, or in transition definitions.
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automaton A(%̇A(varsA); typesA)

signature

. . .

kind π(%̇A,π(varsA,π)) where %̇A,π(PA,π
kind )

. . .

states ρ(stateVarsA) := %̇A(initValsA) initially %̇A(PA
init)

transitions

. . .

%̇A,π
kind ,t1


kind π(varsA,π; local localVarsA,π

kind ) where PA,π
kind ,t1

pre PreA,π
kind ,t1

eff ProgA,π
kind ,t1

ensuring ensuringA,π
kind ,t1


. . . .

where

1. %̇A is a variable renaming %̇ ` ({A,A′:States[A, typesA]}‖ varsA‖ stateVarsA‖ postVarsA).27

2. %̇A,π is a variable renaming %̇A ` varsA,π.

3. %̇A,π
kind ,t1

is a variable renaming

%̇A,π ` ({A,A′:Locals[A, typesA, kind , π]}‖ localVarsA,π
kind‖ localPostVarsA,π

kind ).28

Transition definitions

Let t be a transition definition in automaton A as given above. That is, t is

kind π(varsA,π; local localVarsA,π
kind ) case c where p1

pre p2

eff g ensuring p3

where varsA,π is a sequence of variables, localVarsA,π
kind = {i1:T1, i2:T2, . . . , } is a sequence of vari-

ables, p1, p2, and p3 are predicates, and g is a program. Let S be the aggregate local sort
Locals[A, typesA, kind , π] of t, and %̇ be the variable renaming %̇A,π

kind ,t1
given above. That is, %̇

is an extension of ρ with respect to the precedence sequence {A,A′:States[A, typesA]}‖ varsA‖
stateVarsA‖ postVarsA‖ varsA,π‖ {A,A′:Locals[A, typesA, kind , π]}‖ localVarsA,π

kind‖ localPostVarsA,π
kind .

27Even though variables in stateVarsA and postVarsA do not appear in any terms in a desugared automaton
definition, we include those variables in the precedence sequence to ensure that selectors for local variables do not
clash with selectors for state variables in transition definitions (see below).

28Like state variables, variables in localVarsA,π
kind and localPostVarsA,π

kind do not appear in any terms in a desugared
automaton definition. We include those variables in the precedence sequence only to ensure that selectors for local
variables do not clash with each other. (see below).
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We define %̇(t) to be

kind π(%̇(varsA,π); %̇(localVarsA,π
kind )) case c where ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(p1))

pre ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(p2))

eff ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(g)) ensuring ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(p3)).

where %̇(localVarsA,π
kind ) is a variable sequence {j1:ρ(T1), j2:ρ(T2), . . . , }. Note that if localVarsA,π

kind =
%̇(localVarsA,π

kind ), then ωρ(S),{i1,i2,... }→{j1,j2,... } is the identity operator renaming.

Statements and programs

If s is a statement and % is some variable renaming, then %̇(s) is

• %̇(lhs) := %̇(rhs), if s is an assignment lhs := rhs for lvalue lhs and value rhs,

• if %̇(p1) then %̇(s1) elseif %̇(p2) then . . . else %̇(sn) fi, if s is a conditional statement
if p1 then s1 elseif p2 . . . else sn fi for some predicates p1, . . . , pn−1and statements s1, . . . , sn,
and

• for %̇′(v) where %̇′(p)do %̇′(g) od, if s is a loop for v where p do g od for some variable v,
predicate p, and program g, where %̇′ = %̇ ` {v}.

If g is a program s1; s2; . . . , then %̇(g) is %̇(s1); %̇(s2); . . . .

Values

If l is a value and % is some variable renaming, then %̇(l) is

• %̇(t), if l is a term t, and

• choose %̇′(v) where %̇′(p), if l is a choice choose v where p for some variable v and predicate
p, where %̇′ = %̇ ` {v}.

Terms and sequences of terms

If u is a term and % is some variable renaming, then %̇(u) is

• %(v), if u is a variable v,

• f(%̇(u1), . . . , %̇(un)), if u is a term f(u1, . . . , un) for some operator f and terms u1, . . . , un,

• ∀%̇′(v) %̇′(u′), if u is a term ∀v (u′) for some variable v and term u′, where %′ = % ` {v}, and

• ∃%̇′(v) %̇′(u′), if u is a term ∃v (u′) for some variable v and term u′, where %′ = % ` {v}.

If q is a sequence of terms {u1, u2, . . . , un}, then %̇(q) is {%̇(u1), %̇(u2), . . . , %̇(un)}.
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9.5 Substitutions

A substitution is a map from variables to terms such that the image of any variable has the same
sort as the variable. Any substitution σ extends naturally to a map σ̇ defined for all variables by
letting σ̇ map each variable not in the domain of σ to a term that is a simple reference to the
variable itself.

Let σv→t denote a substitution that maps the variable v to the term t and is otherwise the same
as σ (even if v is already in the domain of σ). We extend any substitution σ further to a map σ̈
on some syntactic elements of an IOA automaton (terms to terms, statements to statements, etc.).
We now define σ̈ for each type of IOA syntax to which it may apply.

Terms and sequences of terms

If u is a term, then σ̈(u) is

• σ̇(v), if u is a variable v,

• f(σ̈(u1), . . . , σ̈(un)), if u is a term f(u1, . . . , un) for some operator f and terms u1, . . . , un,

• ∀w σ̈v→w(u′), if u is a term ∀v (u′) for some variable v and term u′, where w is a variable (v
itself, if possible) with the same sort as v, where w 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(u),
and

• ∃w σ̈v→w(u′), if u is a term ∃v (u′) for some variable v and term u′, where w is as above.

If q is a sequence of terms {u1, u2, . . . , un}, then σ̈(q) is {σ̈(u1), σ̈(u2), . . . , σ̈(un)}.

Values

If l is a value, then σ̈(l) is

• σ̈(t), if l is a term t

• choose w where σ̈v→w(p), if l is a choice choose v where p for some variable v and
predicate p, where w is a variable (v itself, if possible) with the same sort as v, and where
w 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(l).

Statements and programs

If s is a statement, then σ̈(s) is

• σ̈(lhs) := σ̈(rhs), if s is an assignment lhs := rhs for some lvalue lhs and some value rhs,

• if σ̈(p1) then σ̈(s1) elseif σ̈(p2) then . . . else σ̈(sn) fi, if s is a conditional statement
if p1 then s1 elseif p2 . . . else sn fi for some predicates p1, . . . , pn−1 and statements s1, . . . , sn,

• for w where σ̈v→w(p) do σ̈v→w(g) od, if s is a loop statement for v where p do g od for
some variable v, predicate p, and program g, where w is a variable (v itself, if possible) with
the same sort as v, where w 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(s).

If g is a program s1; s2; . . . , then σ̈(g) is σ̈(s1); σ̈(s2); . . . .
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Transition definitions

If, in automaton A parameterized by type parameters typesA, t is a transition definition

kind π(paramsπ; local v1, v2, . . . ) case c where p1

pre p2

eff g ensuring p3

where paramsπ is a sequence of terms, v1, v2, . . . is a sequences of variables i1:T1, i2:T2, . . . , p1, p2,
and p3 are predicates, g is a program, and S is the aggregate local sort of t, then σ̈(t) is

kind π(σ̈{v1,v2,... }→{w1,w2,... }(paramsπ); local w1, w2, . . . )

case c where ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(p1)))

pre ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(p2)))

eff ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(g)))

ensuring ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(p3)))

where

1. wk is a variable jk:Tk (vk itself, if possible), and

2. wk 6∈ FV(σ̈(v′)), for all variables v′ ∈ {A,A′:States[A, typesA]} ∪ stateVarsA ∪ postVarsA ∪
varsA ∪ FV(paramsπ) ∪ {A,A′:Locals[A, typesA, kind , π, c]} ∪ {vl, v

′
l | l < k}.

Note that if ik = jk for all k, then ωS,{i1,i2,... }→{j1,j2,... } is the identity operator renaming.

Hidden clauses

If c is a clause in a hidden statement

π(paramsπ) where p

where paramsπ is a sequence of terms and p is a predicate, then σ̈(c) is

π(σ̈{v1,v2,... }→{w1,w2,... }(paramsπ) . . .where σ̈{v1,v2,... }→{w1,w2,... }(p)

where

1. vk is a variable ik:Tk ∈ FV(paramsπ)

2. wk is a variable (vk itself, if possible) with sort Tk

3. wk 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(paramsπ) ∪ FV(p) ∪ {vl | l 6= k}.

9.6 Notation

Except in definitions such as these, we do not employ separate notations for the extensions ρ̇, ρ̈,
ρω, ρq, and %̇ of a resorting ρ. In particular, when applying a resorting ρ to an IOA automaton A,
we write ρ for %̇. Similarly, we do not distinguish σ̇ and σ̈ from a substitution σ and we write σ for
σ̈.
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