
Eclat: Automatic Generation and Classification of Test Inputs

Carlos Pacheco Michael D. Ernst
Technical Report MIT-LCS-TR-968

MIT Computer Science and Artificial Intelligence Lab
The Stata Center, 32 Vassar Street

Cambridge, MA 02139 USA
{cpacheco, mernst}@csail.mit.edu

Abstract

This paper describes a technique that helps a test en-
gineer select, from a large set of randomly generated test
inputs, a small subset likely to reveal faults in the software
under test. The technique takes a program or software com-
ponent, plus a set of normal executions — say, from an ex-
isting test suite, or from observations of the software run-
ning properly. The technique works by extracting an oper-
ational model of the software’s operation, and comparing
each input’s operational pattern of execution against the
model. Test inputs whose operational pattern is suggestive
of a fault are further reduced by selecting only one input
per such pattern. The result is a small portion of the orig-
inal inputs, deemed most likely to reveal faults. Thus, our
technique can also be seen as an error-detection technique.

We have implemented these ideas in the Eclat tool, de-
signed for unit testing of Java classes. Eclat generates a
large number of inputs and uses our technique to select only
a few of them as fault-revealing. The inputs that it selects
are an order of magnitude more likely to reveal faults than
non-selected inputs.

1 Introduction

Exhaustive software testing is infeasible. Therefore,
much of the skill in testing a software artifact lies in care-
fully constructing a small set of test cases that can reveal as
many errors as possible. A test case has two components: an
input to the program or module, and anoracle: a procedure
that determines whether the program behaves as expected
on the input. Many techniques can automatically generate
inputs for a program [10, 18, 16, 23, 7, 3, 19, 8, 12], but
constructing an oracle for each input still remains a largely
manual task (unless a complete formal specification of the
software exists, which is rare). Thus, a test engineer wish-
ing to use automated input generation techniques is often

faced with the task of inspecting each resulting input, deter-
mining whether it is a useful addition to the test suite, and
writing an oracle for the input or somehow verifying that the
output is correct. Doing so for even a few dozen inputs—
much less the thousands of inputs automated techniques can
generate—can be very costly in manual effort.

This paper presents a technique that helps the tester by
selecting from a large number of program inputs a few in-
puts. The resulting inputs are likely to reveal faulty behav-
ior, so writing full-fledged test cases is worth the effort. Our
goal is not to take the tester out of the loop—a human must
inspect the inputs and make test cases out of them. Our goal
instead is to focus the tester’s effort on inputs most likely to
reveal faults. Thus, our technique can also be viewed as an
error-detection technique.

The technique works by comparing the program’s behav-
ior on a given input against an operational model of correct
operation. The model is derived from an example set of pro-
gram executions, which can be an initial test suite or a set of
program runs. If the program violates the model when run
on the input, the technique heuristically classifies the input
as (1) likely to constitute an illegal input that the program
is not required to handle, (2) likely to produce normal op-
eration of the program (despite violating the model), or (3)
likely to reveal a fault. A second component of the tech-
nique (called the reducer) discards redundant inputs: inputs
that lead to similar program behavior.

We have implemented these ideas in the Eclat tool,
which generates unit tests for Java classes. Eclat uses a sim-
ple generation strategy to create new inputs for a class, and
it selects a small number of inputs likely to reveal faults.
Our experiments demonstrate that our technique is effec-
tive. An input selected as potentially fault-revealing is 10
times more likely to reveal a fault than a non-selected input.

The rest of the paper is structured as follows. Section 2
introduces our technique with an example. Section 3 de-
scribes the test selection technique in detail. Section 4 de-
scribes Eclat, a tool for unit testing of Java classes that em-

1



public class BoundedStack {
private int[] elems;
private int numElems;
private int max;

public BoundedStack() { ... }
public int getNumberOfElements() { ... }
public int[] getArray() { ... }
public int maxSize() { ... }
public boolean isFull() { ... }
public boolean isEmpty() { ... }
public boolean isMember(int k) { ... }
public void push(int k) { ... }
public int top() { ... }

public void pop() {
numElems --;

}

public boolean equals(BoundedStack s) {
if (s.maxSize() != max)

return false;
if (s.getNumberOfElements() != numElems)

return false;
int [] sElems = s.getArray();
for (int j=0; j<numElems; j++) {

if (elems[j] != sElems[j])
return false;

}
return true;

}
}

Figure 1. ClassBoundedStack (abbreviated). Methods
pop() andequals() contain errors.

bodies this paper’s ideas. Section 5 details the experimental
evaluation of the technique, and Section 6 discusses its ap-
plicability. Section 7 discusses related work, and Section 8
concludes.

2 Example: BoundedStack

We illustrate the technique with a bounded stack imple-
mentation used previously in the literature [22, 27, 8] (Fig-
ure 1). The implementation and testing code were written in
Java by two students, an “author” and a “tester.” The tester
wrote a set of axioms on which the author based the imple-
mentation. The tester also wrote two small test suites (one
containing 8 tests, the other 12) using different methodolo-
gies [22]. The smaller test suite reveals no errors, and the
larger suite reveals one error (the methodpop incorrectly
handles popping an empty stack).

Eclat takes two inputs: the class under test, and a set of
correct uses of the class. In this example, we provide Eclat
with the stack implementation and the 8-test passing test
suite.

Eclat’s output (Figure 2) is a set of 4 new inputs, each
accompanied by an explanation of why the input suggests a
fault, and a set of violated properties. Each violated prop-
erty was true during execution of the original test suite, but
was violated by the new input.

Input 1 violates four properties during the call of method

Eclat Report

Input 1 BoundedStack var8 = new BoundedStack();
var8.isMember(2);

The last method invocation violated these properties:

On entry: k in elems[]
On entry: elems[numElems..] sorted by>

? On exit: orig(k) in elems[]
On exit: elems[numElems..] sorted by>

During execution of the last method invocation, at least one high-
confidence postcondition was violated (denoted by a star next to it). Since
no high-confidence preconditions were violated, this suggests a fault.

Input 2 BoundedStack var8 = new BoundedStack();
var8.equals((BoundedStack)null);

The last method invocation signaled a
java.lang.NullPointerException .

There were no violations, but a throwable was signaled. Since the throw-
able is considered severe, this suggests a fault.

Input 3 BoundedStack var8 = new BoundedStack();
var8.pop();

The last method invocation violated these properties:

On entry: numElems one of 1, 2
On exit: numElems one of 0, 1
On exit: elems[numElems] == elems[orig(numElems)-1]

? On exit: numElems>= 0
On exit: elems[numElems] == orig(elems[numElems-1])

During execution of the last method invocation, at least one high-
confidence postcondition was violated (denoted by a star next to it). Since
no high-confidence preconditions were violated, this suggests a fault.

Input 4 BoundedStack var8 = new BoundedStack();
var8.push(3);
int var7 = var8.numElems();
var8.push(var7);

The last method invocation violated these properties:

On entry: k != numElems
On exit: max<= elems[numElems-1]
On exit: elems[0..numElems-1] elements one of 2, 3
On exit: elems[] elements one of 0, 2, 3
On exit: numElems<= elems[numElems-1]

? On exit: size(elems[])-1 != elems[max-1]

During execution of the last method invocation, at least one high-
confidence postcondition was violated (denoted by a star next to it). Since
no high-confidence preconditions were violated, this suggests a fault.

Figure 2. Eclat’s output forBoundedStack . Inputs 2 and 3
expose errors in the code under test. Inputs 1 and 4 are false
reports: they merely indicate deficiencies in the original test
suite.

2



isMember : two on entry and two on exit. As Eclat’s tex-
tual explanation points out, only one of the four violations
leads the tool to classify this input as likely to expose a fault:
whenisMember(k) is called,k fails to be an element of the
arrayelems[] . This input reveals no fault; Eclat has made
a mistake. The input, however, does point out a rather glar-
ing omission in the test suite, which should be augmented
to include a call toisMember with an element not already
in elems[] .

Input 2 violates no properties, but throws an exception
from within the equals method. Eclat considers the ex-
ception severe and suggestive of a fault. Inspection of the
equals method (Figure 1) reveals that the method incor-
rectly handles anull argument. This fault went undetected
in all previous analyses of the class [22, 27, 8].

Input 3 violates five properties, but only one leads to its
classification as a fault. The variablenumElems becomes
negative after a call ofpop on an empty stack. Eclat has
revealed another true error; thepop method (Figure 1) al-
ways decrements the top-of-stack pointer, even on an empty
stack. This is a particularly subtle error, because it silently
corrupts the stack’s state, and a fault only arises on a subse-
quent access to the stack.

Input 4 is much like Input 1. It reflects a peculiarity of
the test suite, not an error in the program.

Eclat selects 4 inputs that quickly lead a user to discover
two errors. Behind the curtains, Eclat generates and ana-
lyzes 475 distinct inputs. Some are discarded because they
violate no properties and throw no exceptions (and thus sug-
gest no faults). Some are discarded because they violate
properties but are determined to constitute illegal uses of
the class instead of faults. Some are discarded because de-
spite violating some properties, none is considered severe.
Finally, some inputs are discarded because they behave too
similarly to already-chosen inputs: 3 of the 475 inputs ex-
pose the pop-on-empty-stack fault (for example, one input
pushes two items and then pops three times) but only one is
selected.

3 The Technique

We describe the classification technique in the context
of unit testing in an object-oriented programming language.
An input is a method call, possibly preceded by other state-
ments that set up state for the call. For example, In-
put 4 in Figure 2 tests the methodpush via the method
call var8.push(var7) , and the first three statements are
setup. The technique can also be applied to non-object-
oriented programs and to components larger than methods
and constructors.

3.1 Selecting inputs likely to reveal faults

This section describes the technique for selecting inputs
likely to reveal faults. The technique requires three things:
(1) the program under test, (2) a set of normal executions
of the program (for instance, a small initial test suite for the
program), and (3) a source of candidate inputs (the candi-
dates may constitute illegal inputs, or cause the program to
behave normally, or reveal a fault). The goal is to select
a small subset of the candidates likely to reveal faulty pro-
gram behavior. The Eclat implementation only requires the
user to provide (1) and (2), because it automatically gener-
ates the candidates (Section 3.2).

The technique has three main steps:

1. Observe the program’s behavior on the provided cor-
rect executions, and create anoperational modelof
correct behavior (Section 3.1.1).

2. Classify each candidate as (1)illegal, (2) normal oper-
ation, or (3) fault-revealing. Do this by running the
program on each candidate and comparing the pro-
gram’s behavior against the operational model (Sec-
tion 3.1.2). Discard candidates classified asillegal or
normal operation.

3. Partition thefault-revealingcandidates based on their
violation pattern: the set of violated properties, if any.
Report one candidate from each partition.

3.1.1 Modeling previous program behavior

The technique uses an operational model of the program to
classify inputs. An operational model consists of a set of
properties that hold at the boundary of the program’s com-
ponents (e.g., on public method entry and exit). The tech-
nique imposes no limitation on the program behavior cap-
tured by a property, but it requires that every property is
evaluable in the context of a new program execution.

The technique also requires that every property has an
associated number indicating the likelihood that the prop-
erty is universally true of all program executions. We call
this theconfidence measureof the property. Properties with
higher confidence measure are more likely to be universally
true. The way that confidence measures are calculated is
left up to the model extraction procedure.

Figure 3 shows a simple operational model for
BoundedStack . In this model, properties are mathematical
statements about the state of the stack at various program
points, and have a confidence value ofhighor low.

3.1.2 Classifying an input

The classifier takes four things: a candidate input, the pro-
gram under test, an operational model, and a confidence

3



Invariants properties (hold on entry and exit to all methods)
(conf=high) max = elems.length
(conf=high) elems 6= null

(conf=high) max = 2
(conf=high) numElems ≥ 0

Properties that hold on entry topop
(conf=low) elems[] ∈ {[3, 0], [3, 2]}

Properties that hold on exit frompop
(conf=low) ∀i : numElems ≤ i < elems.length

: elems[i] = 0

Properties that hold on entry toisMember
(conf=low) k ∈ elems[]

Properties that hold on exit fromisMember
(conf=low) elems[] = orig(elems[])
(conf=low) orig(k) ∈ elems[]

Figure 3. A simple operational model forBoundedStack .
Each property has an associated confidence value: high or
low.

Severe Severe
entry exit

violations? violations? Classification
yes yes illegal
— no normal operation
no yes fault-revealing

Figure 4. Decision table for classifying a violation pattern.

threshold. The classifier runs the program on the candi-
date input and collects the (possibly empty) set of violated
model properties. Violations of properties with confidence
measure above the threshold are consideredsevere, and vi-
olations of properties with confidence below or at threshold
are consideredmild.

Figure 4 shows how to classify the input based on the set
of violated properties:

1. Illegal. One or more severe entry violations occur, and
one or more severe exit violations occur as well.

2. Normal operation. No severe exit violations occur.
3. Fault-revealing. No severe entry violations occur, but

one or more severe exit violations occur.

3.1.3 Reducing inputs based on violation patterns

A violation pattern not only determines the classification
of an input. It also induces a partition on all inputs, with
two inputs belonging to the same partition if they violate
the same properties. Inputs exhibiting the same pattern of

BoundedStack var0 = new BoundedStack();
var0.pop();

BoundedStack var1 = new BoundedStack();
var1.push(1);
var1.pop();
var1.pop();

BoundedStack var2 = new BoundedStack();
var2.push(0);
int var3 = var2.numberOfElements();
var2.pop();
var2.isMember(var3);
var2.pop();

Figure 5. Three Eclat-generated inputs that reveal the same
fault in thepop method.

violations are likely to be manifestations of the same faulty
program behavior. The technique presents only one input
from each partition.

In practice, we have observed that the reduction tech-
nique works best if only high-confidence properties are con-
sidered when building partitions. Consider the example in
Figure 5. All inputs pop an empty stack, which results in
an erroneous stack state. The inputs violate different sets
of properties, but they all violate exactly the same high-
confidence property:numElems ≥ 0 on exit frompop() .

3.2 Efficient input space exploration

We have presented a technique that selects from a set of
candidate inputs a subset likely to reveal faults. In this sec-
tion, we use the technique to avoid generating illegal inputs
in a standard bottom-up input generation strategy. Gener-
ation starts with a small set of initial values (for example,
in Java, a few primitive values andnull ). New inputs are
created by calling methods and constructors with these val-
ues as arguments. The resulting objects and primitives are
added to the value pool, and the process is repeated any
number of times.

We now present two enhancements to bottom-up input
generation. Eclat implements these enhancements in its in-
put generation phase.

1. Avoiding illegal inputs. As before, the algorithm pro-
ceeds in rounds. For each round:

(a) Construct a new set of inputs from the existing
pool of values.

(b) Classify the new inputs using the technique from
Section 3.1.2.

(c) Discard inputs labeledillegal, add inputs labeled
normal operationto the pool, and save inputs la-
beledfault-revealing(but do not add them to the
pool).

After the last round, reduce the savedfault-revealing
inputs and select one input from each partition.

4



2. Choosing initial values from sources. The initial
pool of values is important: all inputs are derived from
them. Input generation can be enhanced by adding to
the initial pool all the primitive values found in the pro-
gram source code (and the test suite’s code, if avail-
able). This increases the chances that relevant con-
stants (e.g. constants used in conditional expressions)
are used to generate inputs.

4 Eclat

We have implemented our ideas in Eclat, a tool that sug-
gests potentially fault-revealing inputs for Java classes.

Eclat takes as input a classC (more precisely, a source
file C.java ), and a programP that uses the class. Eclat
performs the following steps.

Deriving an operational model. Eclat uses the Daikon
dynamic invariant detector [11, 9] to derive a model ofC ’s
behavior onP ; an example of Daikon’s output appeared in
Figure 3. Eclat assigns a confidence (low or high) to each
property based on a set of heuristics. Here are the two most
important ones:

• Properties such as object invariants, which hold at all
program points, inspire higher confidence than method
entry and exit properties, because the former are de-
rived from more program samples.

• Properties relating the input and output of a method
call inspire higher confidence than properties solely
describing the range of inputs or outputs of the method,
because input-output relationships are less sensitive to
the particular set of executions from which the model
was derived.

A valuable extension to this work would be the develop-
ment of statistical methods to mechanically compute confi-
dence measures and thresholds for particular properties.

Eclat treats exceptions as violations. Some kinds of
unchecked exceptions are considered severe; all other are
considered mild.

Compiling for runtime property checking. As part
of this research, we have implemented the Jicama com-
piler. Jicama uses the Java Modeling Language (JML)
toolset [17, 5] to convert a Daikon model into code that can
be checked at runtime. Jicama’s input is the source file of
the tested class (say,C.java ) and the operational model
derived by Daikon. It produces a class fileC.class in-
strumented to check model properties during execution. Ji-
cama’s instrumentation is transparent: a violation does not
alter the behavior of the class. Violated properties are sim-
ply recorded in a log.

Generating new inputs.Finally, Eclat generates, classi-
fies and reduces new inputs. It uses Java’s reflection mech-

formal public NCNB
Program versions spec? classes methods LOC
BoundedStack 1 yes 1 11 88
DSAA 1 no 8 64 640
JMLSamples 1 yes 28 174 1392
utilMDE 1 no 2 188 1832
RatPoly 97 yes 1 17 512
Directions 80 yes 6 42 342

Figure 6. Subject programs. For programs with multiple
versions, numbers are average per version. NCNB means
non-comment, non-blank lines of code.

anism to execute them. Eclat’s output is an XML file, view-
able in a web browser (as shown in Figure 2) or manipulable
programmatically. The file contains a list of inputs, along
with the properties they violated and a brief explanation of
the reason each input is considered fault-revealing.

5 Evaluation

This section quantifies our technique’s effectiveness on
a set of Java programs. Section 5.1 introduces the programs
and experimental methodology. Section 5.2 evaluates the
fault-revealing characteristics of Eclat’s selected inputs. Fi-
nally, Section 5.4 evaluates the technique’s three internal
components: the input generator, the classifier, and the re-
ducer.

5.1 Subject Programs

Figure 6 lists our subject programs. The programs
encompass 46 distinct interfaces, and a total of 567 im-
plementations of those interfaces in 75,000 non-comment
non-blank lines of code. All subject programs implement
modestly-sized libraries designed to support larger pro-
grams; thus, unit testing is appropriate for them. All errors
are real errors inadvertently introduced by the author(s) of
the program; we did not use synthetic fault-injection tech-
niques, which can have very different characteristics.

Four of the six subject programs have formal specifica-
tions. Of course, in the presence of a formal specification
our technique is not necessary: the specification can deter-
mine if an input is illegal, normal, or fault-revealing. We
use the specifications to evaluate our technique, with the
specification representing an ideal classifier.

• BoundedStack is the stack implementation discussed
in Section 2. We wrote the formal specification. We
report separately the results of running Eclat with the
8-test suite, and with the 12-test suite.

• DSAA is a collection of data structures from an intro-
ductory textbook [25]. The author of the classes wrote

5



a small set of example uses of the class: they are not
exhaustive tests.

• JMLSamples is a collection of 28 classes that illustrate
the use of the JML specification language. It is part of
the JML distribution (www.jmlspecs.org ). The test
suites and specifications were written by the authors of
the classes.

• utilMDE is a utility class that augments the
java.util package. We report two results: one run-
ning Eclat with the test suite written by the authors of
the class, and the other with a sample run of an unre-
lated program that uses part of the utilMDE package.

• RatPoly is a set of student solutions to an assignment
in MIT class 6.170, Laboratory in Software Engineer-
ing. The programs implement the core of a graphing
calculator for polynomials over rational numbers. We
wrote the formal specification. The course staff pro-
vided a test suite to the students as part of the assign-
ment. Successful completion of the assignment meant
passing all tests in the suite (which most, but not all,
students accomplished).

• Directions is a different set of student solutions in MIT
class 6.170, written by the same students that wrote the
RatPoly solutions. The Directions library is used by
a MapQuest-like program that outputs directions for
going from one location to another along Boston-area
streets. This time, students wrote their own test suites.
We report separately the results of running Eclat with
the student-written suite, and with the suite used by the
staff to grade the assignment, which was not provided
to the students. We wrote the formal specifications.

Eclat assumes a correct set of executions. Before run-
ning Eclat on BoundedStack and its 12-test suite, which
contains one failing test, we removed the failing test. (Eclat
re-discovered the failure, and also revealed a previously un-
known fault.)

For RatPoly, we discarded submissions that did not pass
the staff test suite, which was provided as part of the assign-
ment. For both RatPoly and Directions, we also discarded
submissions for which Eclat generated more than 10 times
the average number of fault-revealing inputs. These were
solutions so faulty that finding fault-revealing inputs was
not challenging, making input selection techniques unnec-
essary. The numbers in Figure 6 count only versions we
kept.

Measurements. We tested BoundedStack by running
Eclat on its single class. For DSAA, JMLSamples, and
utilMDE, which contain unrelated sets of classes, we ran
Eclat separately on each class. (For example, DSAA con-
tains unrelated implementations of a binary tree, a disjoint
set, a treap, a stack, a queue, a red-black tree, and a linked
list.) For these programs, the figures we report are aver-
ages per run. For RatPoly and Directions, we ran Eclat

true Generated inputs Selected inputs
label total fraction total fraction

normal 1606 0.90 6.27 0.56
illegal 213 0.08 0.91 0.22
fault 38 0.02 1.23 0.22
total 1856 8.40

Figure 8. Average generated and selected inputs for
BoundedStack, JMLSamples, RatPoly and Directions (the
programs with formal specifications). These results repre-
sent a total of 440,000 inputs.

once for each program version, and also report averages per
run. In computing global results (results that span several
subject programs), we give the same weight to each sub-
ject program, regardless of the number of versions or runs
of Eclat that the program represents. We do this to avoid
over-representing programs with multiple versions or runs.

Comparison with other tools. JCrasher [8], Jtest [19],
and Jov [27] have the same goals as Eclat: to generate ran-
dom inputs and select potentially fault-revealing ones. We
report results from running JCrasher. Jov and Jtest were
unusable in many instances (e.g., Jov sometimes exited ab-
normally, and Jtest sometimes failed to terminate).

5.2 Evaluating Eclat’s output

Figure 7 shows how many inputs per run Eclat gener-
ated, how many it selected, and how many of those revealed
faults. The figure also shows JCrasher’s end-to-end results
on the subject programs. For programs with formal speci-
fications, we counted an input as fault-revealing (mechani-
cally, usingjmlc [5]) if it satisfied all preconditions of the
tested method, and the method invocation caused a postcon-
dition violation. For programs without formal specifications
(DSAA and utilMDE), we manually inspected each selected
input, erring on the side of declaring an input non-faulty
unless the input was clearly legal and caused incorrect be-
havior. On average, Eclat selected 6.87 inputs per run, and
approximately 1.03 of those revealed a fault. By compari-
son, JCrasher selected on average 11.79 inputs per run, and
approximately 0.02 revealed a fault.

For the four programs with formal specifications, we also
determined thetrue labelof every generated input, i.e. the
label assigned by the formal specification. Figure 8 sum-
marizes the results. The inputs that the technique selects
are 11 times more likely to reveal faults than non-selected
inputs: 22% of selected inputs reveal faults, faults, and 2%
of non-selected inputs reveal them.

6



Generated inputs Selected inputs JCrasher inputs
inputs reveal inputs reveal inputs reveal

Program generated faults selected faults selected faults
BoundedStack (8-test suite) 475 12 4.00 2.00
BoundedStack (12-test suite) 854 13 2.00 1.00 0.00 0.00
DSAA 400 n/a 0.38 0.00 0.00 0.00
JMLSamples 264 2 0.50 0.00 2.43 0.00
utilMDE (test suite) 423 n/a 6.00 1.00
utilMDE (sample run) 3510 n/a 5.00 1.00 62.00 0.00
RatPoly 2862 17 2.48 0.33 4.42 0.11
Directions (student suite) 3197 93 15.58 1.21
Directions (staff suite) 3484 86 25.86 2.77 1.91 0.00

average 1719 37 6.87 1.03 11.79 0.02

Figure 7. Summary of Eclat’s results. The first two numeric columns represent inputs internally generated by Eclat. The “n/a”
entries denote programs without oracles, for which do not know how many of all internally-generated inputs reveal faults.
The next two columns represent inputs selected and reported to the user. The last two columns represent inputs selected as
fault-revealing by JCrasher.

Generated inputs Selected inputs
inputs reveal inputs reveal

generated faults selected faults
original trace 1719 37 6.87 1.03
10% of trace 1722 34 8.17 0.79

Figure 9. Running Eclat on a reduced execution trace. The
first line repeats the “average” line of Figure 7, and the sec-
ond line reports the results for the reduced trace.

5.3 Sensitivity to the initial set of program runs

As Figure 7 shows, when we ran Eclat on the same pro-
gram but on a different set of program runs, the number of
inputs that Eclat generated and selected changed. But one
thing remained close to constant: the fraction of selected in-
puts that were fault-revealing. In other words, the chances
of a selected input being fault-revealing—the main measure
of the tool’s effectiveness—is not too sensitive to the set of
correct executions given. In a second experiment, we artifi-
cially reduced the set of correct executions used by Eclat to
construct an operational model. We re-ran the experiments
of Figure 7, using only the first 10% of the execution trace
that had been used to generate the operational model. Fig-
ure 9 shows the results.

When given a smaller trace, Eclat selected more inputs,
and these inputs revealed fewer faults. The difference is not
large, considering that we reduced the trace by an order of
magnitude: for the original trace, 1 in 7 inputs are faults re-
vealing; for the 90%-reduced trace, about 1 in 10. Eclat is
effective even with impoverished traces, because it assigns
high confidence to properties like object invariants, which
are established even for small traces. (e.g., BoundedStack’s

numElems > 0 ). Properties that are more dependent on a
particular set of executions (e.g., BoundedStack’sk ∈ el-

ems[] on entry toisMember(k) ) are assigned lower con-
fidence, and play no role in the generation and selection
process.

5.4 Evaluating Eclat’s components

Eclat consists of three main components: an input gen-
erator, a classifier, and a reducer. In the following sections,
we evaluate each component in turn, to better understand
how and why the technique works.

5.4.1 The input generator

Eclat generated on average 1719 inputs per run. Of these, 37
were fault-revealing. Random generation produced fault-
revealing inputs even for programs that passed passed their
original test suite. For example, it revealed an error in the
staff solution for RatPoly, and in a method of the utilMDE
library that went undetected in a test suite with hundreds of
unit tests.

Faults in specifications. While testing formal specifi-
cations was not part of our goals, running all the inputs
that Eclat generated for JMLSamples against their formal
specifications revealed a number of errors in the specifi-
cations (the inputs revealed no errors in the implementa-
tion). This is encouraging because the JMLSamples spec-
ifications were written as part of the JML formal methods
project [17], and the fact that our test generation strategy re-
vealed errors that the program’s test suite missed illustrates
the effectiveness of the generation strategy.

7



true Eclat label
label normal illegal fault recall
normal 0.731 0.023 0.109 0.84
illegal 0.039 0.043 0.038 0.36
fault 0.007 0.002 0.007 0.36

precision 0.93 0.43 0.09

Figure 10. Each entry shows the average proportion of
generated inputs with Eclat label and true label, for
BoundedStack, JMLSamples, RatPoly and Directions. The
nine middle entries sum to 1.

5.4.2 The Classifier

For the four formally-specified programs, every input has
two labels, one assigned by Eclat and the other one as-
signed by the formal specification (i.e., the true label). Fig-
ure 10 shows the proportion of inputs falling into each
〈Eclat label, true label〉 category.

The last row in the figure shows theprecision[21, 24] of
Eclat’s classifier. Precision is defined as the ratio of correct
labellings to the total number of labellings:

precision=
inputs correctly labeled asL

inputs labeled asL

The last column in the figure shows therecall of the clas-
sifier. Recall is defined as the ratio of correct labellings to
the total number of inputs that belong to the label:

recall=
inputs correctly labeled asL

inputs that are actuallyL

In summary, the classifier:

• correctly labels the vast majority of inputs as non-fault-
revealing (0.93 precision, 0.84 recall for normal in-
puts),

• recognizes more than a third of all fault-revealing in-
puts (0.36 recall for fault-revealing inputs), but

• labels fault-revealing many inputs that are not (0.09
precision for fault-revealing inputs)

Another way of characterizing the classifier is as apes-
simistic classifier, in the sense that it classifies many normal
inputs as illegal, not the other way around. A pessimistic
classifier is preferable, because it sheds light on the weak-
ness of the existing test suite. The degree to which the tech-
nique overclassifies normal inputs as illegal depends on the
accuracy with which the operational model captures the le-
gality of the program’s inputs. An operational model that
is out of sync with the true input space of the program
can indicate a poor test suite. A good example of this is
BoundedStack. This interface permits arbitrary sequences
of method calls with arbitrary parameters, so it is impossi-
ble to produce an illegal input, but the technique classifies

many inputs as such, due to the test suite’s poor coverage.
In cases like BoundedStack’s, inspecting spurious illegal in-
puts can help find weaknesses in a test suite.

Identifying new behavior. We experimented with a
four-label set that splitnormal operationinto old andnew
behavior. Inputs that violated no properties were labeled
old behavior—these are inputs that did not diverge at all
from the test suite. Inputs that violated only low-confidence
properties were labelednew behavior. We found that new
behaviors were no more effective than old behaviors in re-
vealing faults. However, distinguishing new behaviors from
old ones might help the programmer improve a test suite’s
coverage by suggesting normal program operation not al-
ready covered by the suite.

5.4.3 The Reducer

The reducer takes the inputs labeledfault-revealing, and se-
lects a subset. The table below summarizes its behavior for
the four programs with formal specifications. The first nu-
meric column shows the average distribution of all inputs
that the classifier labeledfault-revealing(the input to the
reducer). The last column shows the distribution of inputs
selected (the output of the reducer). Each column sums to
1.

labeled
true as fault reduced
label by classifier (selected)

normal 0.58 0.56
illegal 0.32 0.22
fault 0.10 0.22

The reduction step increases the proportion of fault-
revealing inputs by a factor of 2. For these programs (and,
we suspect for programs in general), fault-revealing pro-
gram behavior is more difficult to produce than illegal or
normal behavior, and thus more difficult to produce repeat-
edly by different inputs. This makes fault-revealing inputs
less reducible than other inputs, because there are fewer in-
puts per partition, resulting in an increased proportion of
selected fault-revealing inputs.

6 Discussion

Applicability. We have presented our test selection tech-
nique in the context of an object-oriented programming lan-
guage. The technique is applicable in other programming
contexts, as long as an operational model can be obtained,
the model can be evaluated in the context of new program
executions, and the model can be partitioned into entry and
exit properties (preconditions and postconditions).

Integration with manually-written specifications. Our
research addresses a testing situation in which the tester has

8



no access to a formal specification, but has a set of correct
program executions from which an operational model can
be derived. Increasingly, programmers write partial speci-
fications to capture important properties of their software.
These specifications can be used to generate and classify
test inputs. Partial specifications can erroneously classify
inputs; for example, an illegal input may be labeled legal
because the partially-specified precondition is not strong
enough. Our classification technique doesn’t care whether
properties are obtained manually or mechanically, and its
use of confidence measures makes it amenable to mixing
derived properties with partial specifications: the latter sim-
ply translate to high-confidence properties. The operational
model can benefit from manually-written specifications that
capture important properties not mechanically derived. On
the other hand, partial specifications can benefit from de-
rived properties that may be crucial for the input generation
and classification process to be effective.

7 Related Work

The most closely related work to ours is the Jov [27] and
JCrasher [8] tools, which share the goal of selecting, from
a randomly-selected set of test inputs, a set most likely to
be useful. This reduces the number of test inputs a human
must examine.

Our research was inspired by Jov [27]. Jov builds on
earlier work [15] that identified a test as a potentially valu-
able addition to a test suite if the test violates an operational
abstraction built from the suite: the test represents some
combination of values that differs from all tests currently in
the suite. (The DIDUCE tool [14] takes a similar approach,
though with the goal of identifying bugs rather than improv-
ing test suites: a property that has held for part of a run, but
is later violated, is suggestive of an error.) The Jov tool uses
the operational abstraction not just to select tests, but also to
guide test generation, by iterated use of the Jtest tool [19].
Jov also enhances the previous, automated work on test se-
lection by placing it in a loop with human interaction and
iterating as many times as desired:

1. Create an operational model (invariants) for a test
suite.

2. Generate test inputs that violate the invariants.
3. A human selects some of the generated tests and adds

them to the test suite.

Often, overconstrained preconditions rendered Jtest inca-
pable of producing any outputs, so Xie and Notkin report on
the effectiveness of Jov after eliminating all preconditions
from the operational model generated in step 1. Essentially,
this permitted Jtest to generate any input that violates the
postconditions (including many illegal ones), not just inputs
similar to the ones in the original test suite. However, the

user gets no help in recognizing such illegal inputs. In fact,
the majority of errors that Jov finds [27] are illegal inputs
and precondition violations, not true errors [26].

Our work extends that of Xie and Notkin in several ways.
Our technique explicitly addresses the imperfect nature of
a derived operational model, for instance by using confi-
dence measures for model properties. Our technique ex-
plicitly distinguishes between illegal and fault-revealing in-
puts. Our technique is more automated: it requires only
one round of examination by a human, rather than multi-
ple rounds. Our technique uses operational abstractions in
a different way to direct test input generation. Our imple-
mentation is much faster; it takes less than two minutes for a
class that took Jov over 10 minutes to process (primarily be-
cause the Jtest tool is so slow). We have performed a more
extensive experimental evaluation (567 classes rather than
12). Even though we count only actual errors, not illegal
inputs, our approach outperforms the previous one.

JCrasher [8], like Eclat, generates a large number of ran-
dom inputs and selects a small number of potentially fault-
revealing ones. An input is considered potentially fault-
revealing if it throws an undeclared runtime exception. In-
puts are grouped (reduced) based on the contents of the call-
stack when the exception is thrown. JCrasher and Eclat have
similar underlying generation techniques but different mod-
els of correct program behavior, which leads to different
classification and reduction techniques. JCrasher’s model
takes into account only exceptional behavior, and Eclat aug-
ments the model with operational behavior, which accounts
for its greater effectiveness in uncovering faults.

Input generation. While it may not help in establish-
ing the reliability of a program, random testing seems to be
remarkably effective in exposing errors (and may be as ef-
fective as more formally founded techniques [10, 13]. How-
ever, it is primarily useful when all inputs are legal, or when
a specification of valid inputs is available. Therefore, tech-
niques that make it more effective are valuable contribu-
tions. Our technique could be combined with any technique
for generating tests [7, 3], in order to filter the tests before
being presented to a user. Our technique is attractive be-
cause it does not require a formal specification; when one
is present, much more powerful testing methodologies are
possible [1, 6].

Input classification. Eclat’s reduction step clusters test
inputs in order to reduce their number, and JCrasher has a
similar step. Several researchers have used machine learn-
ing to classify program executions as either correct or faulty
[20, 4, 2]. It would be interesting to apply such techniques
in order to further improve Eclat.

9



8 Conclusion

We have presented an input selection technique that com-
bines a classifier and a reducer, both of which make use of
a model of correct program operation. The inputs that the
technique selects are an order of magnitude more likely to
reveal faults than non-selected inputs. When the technique
fails, the user is not heavily inconvenienced, because only a
few inputs are selected.

Testing by comparing a program’s execution against a
model of correct program behavior is not a new idea. Mod-
els are typically written by hand, which is often too costly
to do in practice. The software engineering community has
developed automatic—if imprecise—techniques that infer
program models. By allowing for imprecision in the model,
our technique provides many of the advantages of testing
against a model, without requiring the test engineer to write
the model by hand.

References

[1] M. J. Balcer, W. M. Hasling, and T. J. Ostrand. Automatic
generation of test scripts from formal test specifications. In
R. A. Kemmerer, editor,TAV3, pages 210–218, Dec. 1989.

[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning
for automatic classification of software behavior. InISSTA,
pages 195–205, July 2004.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Auto-
mated testing based on Java predicates. InISSTA, pages 123–
133, July 2002.

[4] Y. Brun and M. D. Ernst. Finding latent code errors via ma-
chine learning over program executions. InICSE, pages 480–
490, May 2004.

[5] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. InFMICS, Trondheim, Norway, June
2003.

[6] J. Chang and D. J. Richardson. Structural specification-based
testing: Automated support and experimental evaluation. In
ESEC/FSE, pages 285–302, Sept. 6–10, 1999.

[7] K. Claessen and J. Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. InICFP, pages 268–
279, Sept. 2000.

[8] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java.Software: Practice and Experience.
To appear.

[9] The Daikon Invariant Detector User Manual, Dec. 7,
2001. Version 2.3.2.http://pag.csail.mit.edu/
daikon/ .

[10] J. W. Duran and S. C. Ntafos. An evaluation of random test-
ing. IEEE TSE, 10(4):438–444, July 1984.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE TSE, 27(2):1–25, Feb. 2001.

[12] Foundations of Software Engineering group, Microsoft Re-
search. Documentation for AsmL 2, 2003. http://
research.microsoft.com/fse/asml .

[13] D. Hamlet and R. Taylor. Partition testing does not inspire
confidence.IEEE TSE, 16(12):1402–1411, Dec. 1990.

[14] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InICSE, pages 291–301,
May 2002.

[15] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InICSE, pages 60–71, May
2003.

[16] B. Korel. Automated test data generation for programs with
procedures. InProceedings of the 1996 ACM SIGSOFT
international symposium on Software testing and analysis,
pages 209–215. ACM Press, 1996.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for
detailed design. InBehavioral Specifications of Businesses
and Systems, pages 175–188. Kluwer Academic Publishers,
Boston, 1999.

[18] T. J. Ostrand and M. J. Balcer. The category-partition method
for specifying and generating functional tests.CACM,
31(6):676–686, June 1988.

[19] Parasoft Corporation.Jtest version 4.5. http://www.
parasoft.com/ .

[20] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying soft-
ware failure reports. InICSE, pages 465–475, May 2003.

[21] G. Salton. Automatic Information Organization and Re-
trieval. McGraw-Hill, 1968.

[22] D. Stotts, M. Lindsey, and A. Antley. An informal for-
mal method for systematic JUnit test case generation. In
XP/Agile Universe, pages 131–143, Aug. 2002.

[23] N. Tracey, J. Clark, K. Mander, and J. McDermid. An auto-
mated framework for structural test-data generation. InASE
’98, pages 285–288, Oct. 1998.

[24] C. J. van Rijsbergen.Information Retrieval. Butterworths,
London, second edition, 1979.

[25] M. A. Weiss. Data Structures and Algorithm Analysis in
Java. Addison Wesley Longman, 1999.

[26] T. Xie. Personal communication, Aug. 2003.
[27] T. Xie and D. Notkin. Tool-assisted unit test selection based

on operational violations. InASE 2003, pages 40–48, Oct.
2003.

10


