A Dynamic Data Structure for Checking Hyperacyclicity

Percy Liang Nathan Srebro

MIT Computer Science and Avrtificial Intelligence Laboratory
Cambridge, MA 02139, USA
{pl i ang, nati }@rit. edu

Abstract

We present a dynamic data structure that keeps track of an acyclic hypergraph (equivalently, a tri-
angulated graph) and enables verifying that adding a candidate hyperedge (clique) will not break the
acyclicity of the augmented hypergraph. This is a generalization of the use of Tarjan’s Union-Find data
structure for maintaining acyclicity when augmenting forests, and the amortized time per operation has
a similar almost-constant dependence on the size of the hypergraph. Such a data structure is useful when
augmenting acyclic hypergraphs, e.g.in order to greedily construct a high-weight acyclic hypergraph. In
designing this data structure, we introduce a hierarchical decomposition of acyclic hypergraphs that aid
in understanding hyper-connectivity, and introduce a novel concept of a hypercycle which is excluded
from acyclic hypergraphs.

1 Introduction

Acyclic hypergraphs, or hyperforests (such as the one in Figure 1(a)), are a natural generalization of forests.
They have been independently, and equivalently, defined in many different domains, and are also studied
as triangulated graphs (hyperforests are those hypergraphs formed by the cliques of triangulated graphs).
Hyperforests are useful in many domains where higher-order relations are to be captured, but certain tree-
like “acyclic” properties are desired.
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Figure 1: An example of a 2-hyperforest.

Acyclicity can allow many calculations to be carried out efficiently using dynamic programming. Such
calculations include a broad class of combinatorial problems [Cou90] as well as inference in graphical
models [Bes74]. In such applications the computation is often exponential in the width of the hypergraph,
which corresponds to the maximum size of the hyperedges (or cliques in a triangulated graph). The class of
K -hyperforests (width at most K) is then of particular interest.

When a K-hyperforest is necessary, one often wishes to choose the best possible K-hyperforest, where
the quality of a hyperforest is captured as the sum of precomputed weights over its hyperedges, leading to
the problem of finding a maximum-weight K -hyperforest [KSO1]. Such a procedure is common in several
different domains, for the special case where K = 1 and one seeks a maximum-weight tree: maximum



likelihood Markov trees, known as Chow-Liu trees [CL68]; Hunter-Worsley trees for Bonferroni inequal-
ities [Wor82]; and when trees are used to ensure efficient combinatorial optimization e.g. [Mat99]. Gen-
eralizations to higher width hyperforests are possible, and desirable, and have recently been investigated
[Mal91, Sre01, BPO1, Tom86].

Unfortunately, when K > 1 finding the maximum weight K-hyperforest is NP-complete, and finding
good approximation algorithms remains an open problem. The common heuristic approach is a Prim-like
greedy approach, maintaining a fully connected hypertree, and adding to it only single vertices [Mal91,
BP01, BJ02]. Alternatively, one might consider a more flexible, and possibly more powerful, Kruskal-
like greedy approach, adding hyperedges to a possibly unconnected K-hyperforest. In order to do so, it is
necessary to ensure that a new hyperedge about to be added does not break the acyclicity.

A particular situation where the Kruskal-like approach is necessary is when we would like to greedily
augment an initial, possibly unconnected, hyperforest. This might be a required, or strongly desirable,
substructure, or a high-weight substructure found by global search techniques (it is possible to efficiently
find hyperforests containing at least a constant fraction of the optimal weight [KS01]).

Acyclicity is also important in order to preclude possible conflicts in, e.g. relational databases [BFMY83],
or when learning graphical models [Bes74]. In such applications, one might want to ensure that new rela-
tions added, e.g. to a database scheme, do not break its acyclicity.

When augmenting forests, Tarjan’s Union-Find dynamic data structure enables checking efficiently if a
new edge breaks the acyclicity, by keeping track of the connected components in the graph. The main result
in this paper is a dynamic data structure that serves a purpose analogous to Tarjan’s Union-Find structure
in hyperforests: for any candidate hyperedge, the data structure enables verifying that adding the hyperedge
will not break the acyclicity of the augmented hyperforest. The amortized time per operation is almost
independent of the hypergraph size (dependent through the inverse of Ackarman’s function).

We show how in hyperforests, it is no longer enough to consider a single type of connectedness. Thus,
the simple notion of connected components, which can be captured using a single Union-Find structure, is
not enough. Instead, we present a novel view of hyperforests, at different levels, each highlighting a different
degree of connectivity, and use a separate Union-Find structure for each level.

On the way to developing such a data structure, we also suggest the notion of a hypercycle. Although
acyclic hypergraphs have been studied for the past three decades, using many equivalent characterizations,
we are not aware of any characterization that directly defines a hypercycle and characterizes acyclic hyper-
graphs as those that to do not have hypercycles. Such a characterization, which we give in Definition 9 and
Theorem 12, provides added insight into hyperforests.

The rest of this paper is organized as follows: in Section 2 we define hyperforests and specify the
desired data structure. In Section 3 we examine the concepts of hyperconnectivity and hypercycles and lay
the foundations for the proof of the data structure, which is presented in Section 4. Finally, in Section 5 we
discuss the problem of finding maximum weight hypertrees and the utility of Kruskal-like greedy approaches
over Prim-like approaches.

2 Hypergraph Acyclicity

Preliminaries A hypergraph H (V) is a collection of subsets, or hyperedges, of the vertex set V:: H(V') C
2V. If ' C h € H then the hyperedge k' is covered by H. Of particular interest are the maximal hyperedges
of a hypergraph H, which are not covered by any other hyperedges in H—in fact, in this paper we refer to H
as containing only such maximal hyperedges, while denoting by H the collection of all covered hyperedges:
H = {h C V|3cgh C h'}. We say that a hypergraph H; covers Ho if Hy C H;.

The projection of a hypergraph H onto a set of vertices s is H; = {h N s|h € H}.



Several equivalent definitions of hypergraph acyclicity are in common use (see [Sre00] for a review).
Here, we define acyclicity using the notion of a tree structure:

Definition 1. A hypergraph H is said to have a tree structure 7'(H) iff T' is a tree over all the hyperedges of
H and the following path overlap property holds: If (h1, hg, ... ,hy,) is a path of H-hyperedges in 7', then
V1<i<m hl n hm c hz

Definition 2. A hypergraph is acyclic iff it has a tree structure. An acyclic hypergraph is also referred to
as a hyperforest. We say that a hyperforest has width (at most) K, and refer to it as a K-hyperforest, if its
hyperedges are of size at most K + 1.

Problem Statement: Checking Acyclicity We seek a data structure that will allow us to augment a
hyperforest by adding hyperedges to it, ensuring that it remains acyclic. That is, the data structure should
keep track of the “current” hyperforest H and support two operations, where hney IS @ hyperedge:

QUERY (hpew) returns TRUE iff H U {hpey } is acyclic.

INSERT (hpew) augments H < H U {hpeyw }, assuming that it is acyclic.

Bounded Tree-Width Hypergraphs Unlike forests, hyperforests do not form a monotone family of hy-
pergraphs: a sub-hypergraph of an acyclic hypergraph might be cyclic, and conversely, adding hyperedges
to a cyclic hypergraph might make it acyclic. When a tree structure is used in order to perform efficient
computation using dynamic programming (e.g.Tnference in graphical models), it is often admissible to add
extra hyperedges to a cyclic hypergraph in order to obtain a covering hyperforest. Computation is then per-
formed using the tree structure of this covering hyperforest. The important requirement is that the width of
the covering hyperforest be small, as computation is exponential in this width:

Definition 3. The tree-width of a hypergraph H is the minimum width of a hyperforest that covers H.

Accordingly, in such situations, one might want a have data structure that checks whether adding a
hyperedge maintains low tree-width. If all hyperedges added are of size at most K + 1, then the data
structure presented here ensures a tree-width of not more than K. The converse is not true: a hyperedge
hnew Might be refused even though H U {hpey } has tree-width at most K.

Before considering dynamic data structures for maintaining low tree-width, it is important to remember
that calculating the tree-width statically, or equivalently finding a narrow triangulation, is by itself a very
difficult task. Although linear time algorithms for constant width have recently been discovered [Bod96], the
dependence on the width is extremely prohibitive and these algorithms are not usable in practice. Instead,
various heuristics, approximation algorithms, and super-polynomial-time algorithms are used [SG97].

Augmentation in Greedy Algorithms Our main motivation for the dynamic data structure stems from
greedy Kruskal-like construction of high-weight hyperforests, particularly in order to find maximum like-
lihood Markov networks of bounded tree-width. If the weights on hyperedges are all non-negative, it may
be appropriate to allow bounded tree-width hypergraphs in intermediate stages, requiring a dynamic data
structure that checks tree-width rather then acyclicity. However, in situations in which weights might be
negative or positive, as in the case when the weight of a hypergraph corresponds to its likelihood [Sre01],
we cannot allow intermediate cyclic hypergraphs, as making them acyclic might introduce high negative
weights (the weight of a cyclic hypergraph does not correspond to its likelihood). For such applications, the
acyclicity is the correct property to require (along with ensuring each added hyperedge is of proper size).



3 A new look at hyperforests

3.1 Hyperconnectivity

Connectivity in hyperforests is more substantially complex than connectivity in forests. In forests, two edges
are either incident or disjoint. In a K-hyperforest, there are K + 1 “degrees” at which two hyperedges can
overlap, corresponding to overlap sizes ranging from 0 to K. We suggest a hierarchical decomposition of a
hyperforest into superedges, which allows us to concentrate on one degree of connectivity at a time.

Definition 4 (Superedge). Two hyperedges k; and h,, are k-connected? if there exists a sequence of hy-
peredges hi, ..., hy, such that |h; N h;yq1| > kforall 1 < i < m — 1. A k-superedge ¢ of a hyperforest H
is a maximal (k + 1)-connected subset of H.

Denote the set of all vertices in the union of all the hyperedges in a superedge ¢ as § = Ug.

Definition 5 (Overlap of superedges). The overlap between two superedges ¢; and g, of H is s = g1 N §o.
q1 and g¢o are said to overlap simply if s = hq N ho for some k1 € g1, ho € ¢o.

Figure 2 shows a hierarchical decomposition of a 3-hyperforest into superedges. Each (k —1)-superedge
contains a tree structure over the k-superedges that is a minor of the tree structure over all the hyperedges. In
a K-hyperforest H, the K -superedges are the hyperedges, the 0-superedges are the connected components,
and the single (—1)-superedge is the entire hyperforest H.

We can now look at a K-hyperforest one level at a time. At level k, we consider only k-connectivity
by focusing on the k-superedges in a (k — 1)-superedge. (< k)-connectivity does not exist in a (k — 1)-
superedge?, and (> k)-connectivity is abstracted into the k-superedges. As a result, the tree structure over
the k-superedges in a (k — 1)-superedge has the desirable property that all overlaps between adjacent k-
superedges have the same size.

7‘7 0-superedge
1-hyperedge N O 1-superedge
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Figure 2: An example of the hierarchical decomposition of superedges. (a) depicts a hypergraph H, and (b)
shows the tree structures of H at different levels.

Lemma 6. The path in a tree structure T' between two hyperedges in the same superedge ¢ contains only
hyperedges from ¢ (i.e. the hyperedges of a superedge appear contiguously in T').

INote that this is not the usual definition of £-connected.
2In this way, a k-superedge q “functions” as a k-hyperedge because all overlaps between g and any hyperedge not in ¢ have size
at most .



Proof. Since any overlap along the path in T" between two hyperedges is a separator between them, and the
two hyperedges are (k + 1)-connected, all overlaps must be of size at least & + 1, so all hyperedges along
the path are (k + 1)-connected. O

Let us now show that a hierarchical decomposition such as the one in Figure 2 exists for all hyperforests.
We do this by constructing, for each (k — 1)-superedge p, a tree structure over the k-superedges of p.

Definition 7. If p is a (k — 1)-superedge, a tree structure T over a set of k-superedges @, in p is a tree
such that the following hold:

1. Any two k-superedges in @, overlap simply.
2. Forall paths ¢1,...,qm, inTg,V1 <i <m,§i N Gm C §.

Theorem 8. A hypergraph H is a hyperforest iff for all k, for all (k — 1)-superedges p, there exists a tree
structure over the set (), of k-superedges of p.

Proof.

== From the tree structure T’z of H, we will construct a tree structure Ty over @,, which is a minor
of Ty. Include (q1,q2) € Tq iff there is some edge (h1,ho) € Ty With by € g1 and hy € ¢o. Call h; and
hs the gateway hyperedges of the edge (g1, g2) € Tp. Now we have to show that T is a valid tree structure.

To verify that T is actually a tree, we will show that a cycle g, g1, - - - , g in Tp means there is a cycle
inTg.3 Leth;_; € ¢;_1 and g; € g; be the two gateway hyperedges of (¢;_1,¢;). By Lemma 6, the path
from g; to h; in T contains only hyperedges in ¢;. Consider the sequence ¢ = hg,g1,---,h1,92,--.,ho,. ..
In any case, there are at least . > 3 distinct hyperedges, so c is a cycle in T'y.

To verify that all superedges overlap simply, we will show that the overlap between ¢1,¢, € Q is
contained in gateway hyperedges of ¢ and gy,. Let g1, ..., g, be the path in T, and hy € ¢; and h,, € g,
be gateway hyperedges of (g1, g2) and (gm—1, gm), respectively. Both hq and h,,, must be on the path in Ty
fromany b} € ¢; toany k!, € ¢,,. Because Ty is a tree structure, hi Nhl, C h1Nhy,, SO G1 NG C hiNhy,.

To verify the path overlap property, we invoke the path overlap property of Ty and notice that the
overlaps along the path between two k-superedges ¢1, g, € Q are included in the overlaps along a corre-
sponding path in Ty. Let s be the overlap between ¢; and ¢,,, (s = hy N h,, for some hy € g1, huy € Gm).
The path from h; to h,, in Ty contains the gateway hyperedges of each (g;, gi+1). Since s is contained in
every hyperedge in the path k4, ..., ks, (in particular, the gateway hyperedges), s is also contained in every
superedge in the path ¢1,..., gm.

<—: To show that H is a hyperforest, we will construct a tree structure Ty over H. To do this, we
assume by induction that there is a tree structure T}, over each (k + 1)-superedge T, of H and then show
that there is a tree structure T}, over each k-superedge p of H. When k = —1, p = H is the single (—1)-
superedge, and we have the desired tree structure Ty = Tj,.

Base case (k = K): Each k-superedge is a single hyperedge and has a trivial tree structure.

Inductive case (k < K): Assume that there is a tree structure T, over each (k + 1)-superedge g of H.
Fix any k-superedge p. p is partitioned into a set @ of (k + 1)-superedges, each of which has a tree
structure by the induction hypothesis. Furthermore, there is a tree structure Tg over Q. We now
construct Tj,. T, includes Uge Ty, plus an edge (hy, , hg,) for each (g1, g2) € T, where hy, € ¢; and
hg, € go are chosen to be any hyperedges containing g Ng». Itis clear that T}, is a valid tree structure.

O

3Recall that a (simple) cycle is a closed path of at least three vertices, all distinct. To clarify notation, if we say o, q1,...,qm
isacycle, go = gm and m > 3.
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3.2 Hypercycles

A tree structure proves the acyclicity of a hypergraph, whereas a hypercycle proves the non-acyclicity of a
hypergraph.

Definition 9. A k-hypercycle is one of the following:

1. Two k-superedges that overlap non-simply. Call this a hyperdoublet.

2. Asequence ¢ = q1,92,---,qm (m > 3) of distinct k-superedges with distinct overlaps s; = ¢; N G;+1
of size exactly k, such that there exists some s; that does not contain s, = g1 N G, If s« =k, call ¢
a regular hypercycle. Otherwise, call ¢ a hyperloop.

A regular 1-hypercycle is exactly a simple cycle: overlaps between edges of the cycle are the distinct
vertices along it, while the overlap s, is the vertex between the “first” and “last” edge. In higher order
cycles, we cannot always require that the overlap s, that “closes” the cycle is also of size exactly &, e.g. (c)
in Figure 3. However, it is not enough to require that the overlap s, be non-empty (e.g. (d) in the Figure):
to be a cycle a path much “touch” itself “outside” of the common overlap in the path.

k=2
) %
k=1 k=1

=& €2

(d) not ahypercycle

k=1

(a) regular hypercycles

(b) hyperdoublets (c) ahyperloop

Figure 3: Examples of hypercycles.

Before introducing the main theorem of this section, we state the following lemma which facilitates
discussing hypergraphs without hypercycles:

Definition 10. We say that a sequence of overlaps s1, . . ., s,, is block-distinct if all repeated overlaps occur
next to each other (if s; = s;, then Vi < k < j,s; = s, = s5).

Lemma 11. A hypergraph has no k-hypercycles iff both of the following conditions are true:

1. All k-superedges overlap simply.
2. For all sequences g1, ¢qo, - -.,qn (m > 3) of block-distinct k-superedges with distinct overlaps s; =
Gi N ;41 of size exactly k, s, = g1 N G, is contained in every s;.

Proof. The difference between this lemma and the definition of a hypercycle is that in condition 2, we
require block-distinct, whereas in part 2 of Definition 9, we say distinct. Before we show that distinct and
block-distinct are interchangeable, we note that in condition 2 of Lemma 11, Vi, s, C s; can be equivalently
replaced by 3¢, s, C g;: suppose that s, C ¢; for some i. Then s, C g1 N¢g; and s, C ¢; N gn,. By induction
on the two halves of g1, ..., gm, s« C ¢;Vi.



Now, for each sequence ¢ = q1, .. ., g, With block-distinct overlaps, we construct a subsequence ¢’ with
distinct overlaps by replacing each maximal contiguous subsequence g;, . .., g; in ¢ with identical overlaps
along gi, . . ., g; With just ¢; and ¢;. The overlaps along ¢’ are distinct and also contain s.. O

Requiring lack of hypercycles resembles the definition of a tree structure over superedges (Definition
7). The main difference between the two conditions is that the path overlap property requires agreeing on
a global object, namely the tree structure, and only paths along along the tree structure must have the path
overlap property. The independence from a specific tree structure, which will be crucial later in proving
the correctness of the data structure, is achieved by requiring a uniform degree of connectivity between
superedges.

Theorem 12. H is a hyperforest iff H contains no hypercycle.

Proof.
= Let T’y be any tree structure of H. We will verify the two conditions in Lemma 11.

1. To show that any two k-superedges g1, g» overlap simply, let &’ be the largest value such that ¢; and
g2 are in the same (k' — 1)-superedge p. Let ry be the k’-superedge that contains g1, and ro # 71 be
the k’-superedge that contains go. By Theorem 8, r; and 7o overlap simply, so ¢; and g5 also overlap
simply.

2. Letc = ¢q1,-..,q9, be a sequence of distinct k-superedges with distinct overlaps s; of size k. We
want to show that for all 4, s, C s;. Consider the path ¢ in T;; which is the concatination of the paths
in Tg between every g;, gi+1: ¢ =q1,...,42,-.-,qm. Since all overlaps s; are of size k, all adjacent
k-superedges in ¢’ in the sub-path ¢;, . .., g;+1 have the same overlap s;. Label each edge (g, ) along
the path ¢’ in Ty, with the overlap ¢ N 7. Then, for i # j, the set of edges from g¢; to g;+1 and the set
of edges from g; to ¢, are disjoint because their labels are different (s; # s;). Of course, for all 4,
the edges between g; and ¢;1 are distinct because they form a simple path. Therefore, all edges in the
path ¢’ are distinct, and ¢’ is a simple path. Moreover, Tg is atree structure, so V1 < ¢ < m, s, C G;.

<=: For a hypergraph H with no hypercycles, we will show that H is a hyperforest by constructing a
tree structure 7}, over the set of k-superedges @, of each (k —1)-superedge p (Theorem 8). For each covered
hyperedge (subset of a hyperedge) s of size exactly k, consider the k-superedges g1, g2, .. ,g¢m € @) that
contain it. Note that since there are (k — 1)-superedges in a k-superedge, their overlap is of size exactly &,
and is therefore exactly s. Choose one of these, say g1, arbitrarily and connect all remaining g¢s, ... , gm t0
q1in Ty (8. Vici<m(q1,¢) € Tp)

To show that T}, is a tree, label each edge in T}, with its corresponding overlap. By construction of
Ty, for each label, there is a single k-superedge (g; in the above notation) that is incident to all edges so
labeled. Therefore, every simple path must contain at most two edges of the same label, and if there are
two such edges in the path, they must be adjacent. Suppose for contradiction that there is a simple cycle
€ =q0,q1,---,qm INTy with s; = ¢; N g;41 for 0 < ¢ < m, such that sg # s1. q1,- .., gm 1S a sequence of
distinct k-superedges with block-distinct overlaps. Due to condition 2 of Lemma 11, sq C s1. Butthisisa
contradiction since both overlaps are of size k. Thus, c could not have existed, and 77, is indeed a tree.

The simplicity of the overlaps and the path overlap property in T, now follow immediately from the
definition of a hypercycle.

O



QUERY (Apew):

1 compute Hy . and Zg INSERT (hpew):

2 for k + K downto 1 do 1 assert QUERY (hpew)
3 for s,t € S do 2 fork+1toK do

4 if Ug(s,t) and not Z(s,t) then 3 for s,t € S do

5 return FALSE 4 union (s, t) in Uy
6 return TRUE

Figure 4: Pseudocode for QUERY and INSERT. Sy, denotes the set of k-supervertices in Hy, .

4 TheData Structure

We use ordinary Union-Find structures at each of the K levels. At level &, a Union-Find structure U, keeps
track of disjoint sets of connected k-supervertices.

Definition 13 (Supervertex). A k-supervertex (same as a covered (k — 1)-hyperedge) of a hypergraph H
is a k-subset of some hyperedge h € H. Two k-supervertices s1 and so are k-connected (or just connected)
if there exists a (k — 1)-superedge ¢ of H such that s1, s9 C q.

4.1 Overview of the data structure state
We maintain the following two values with respect to the current hyperforest H:
e The set H of all covered hyperedges in H, equivalent to the supervertices of H.

e The transitive relation Uy, for each k¥ < K, where Uy(s,t) specifies whether the two k-supervertices
s and ¢ are connected.

In addition, in each QUERY operation, we compute two additional values that are dependent on A ey -
These two values are projections of H and Uy, 0nt0 Apey.

e The set Hy,_,,, which is the projection of H onto hpey-
e The relation Zj, for each & < K, where Z(s,t) specifies whether two k-supervertices s and ¢ are
connected in Hy, ..

4.2 The QUERY and INSERT operations

QUERY (hnew) returns TRUE iff for some k, there exists two k-supervertices s and ¢ such that s and ¢ are
connected in H but not connected in Hy,_ . If QUERY (hnew) returns TRUE, INSERT (hneyw) COnnects all
k-supervertices of hyew in Ug. See Figure 4 for pseudocode.

Roughly speaking, QUERY returns FALSE when s and ¢ are connected “outside” of hpeyw. In this case,
adding hpew Would close a hypercycle. It is not enough to merely require that s and ¢ are connected in H,
since if they are also connected to the same extent inside A pew, hnew Might “collapse” into the path between
sandt.



4.3 Correctness

We now show that QUERY (Apey) returns TRUE iff H' = H U {hpew} is a hyperforest*. Let H' =
H U {hyew } be the supervertices of the augmented hyperforest.

Theorem 14. If INSERT (hpew) returns TRUE, then H' is a hyperforest.

Proof. From any tree structure Ty of H, we will construct a tree structure Ty, for H'. The idea is to break
up Ty into the subtrees T4 (H1), ..., T (Hp) that hney Separates, and then connect each subtree t0 hney
via some h; € T;.

Specifically, to get Ty, remove each edge (hq, hy) in Ty such that Ay N hy C hpew. We claim that
letting h; = argmax, ¢ i, |h' N hyew| (the hyperedge that overlaps with Ay, the most) creates a valid tree
structure. It is enough to verify that the path overlap property holds for paths in Ty involving hpeyw: both
paths hg, ... , Bnew, - - - , Ay Passing through Anew and paths in which hyey is an endpoint.

Paths passing through hne., connect h,, by from different subtrees, and so the path from h, to hy in Ty
must have contained a removed edge, and h, N Ay C Pnew-

For paths where h,ey is an endpoint, we show the path overlap property by showing that the sequence of
overlaps between hnew and every hyperedge along the path from A, t0 Anew in Ty increases telescopically.
To do this, we must argue that (1) the overlaps form a subset relation, and that (2) there are no “local
minimum” overlaps where both the preceding and following overlaps are proper supersets of an overlap.
Formally, we verify two properties:®

1. Forany (he,hy) € Ty, if ha N hy ¢ hnew, then either k), C hj or by C hy. Otherwise, there would
be two k-supervertices in h, and hy connected “outside of” H.

2. Forany path hg, hy, he in Ty such that haNhy ¢ hyew and hyNhe & hnew, then |hy| > min{ |k |, kY| }.
Otherwise, there would be two k-supervertices in h, and h. connected “outside of” H.

U
Theorem 15. If QUERY (hpew) returns FALSE, then H' is not a hyperforest.

Proof. We will show how to construct a hypercycle using the two k-supervertices s, ¢ that are k-connected
“outside” hpew. We will construct a hypercycle that includes hpey and the k-connected path between s
and ¢. Let qi,...,qn be the k-connected path in the tree structure Ty over the k-superedges @), of the
(k — 1)-superedge p containing s and ¢.

Intuitively, h,q1,...,qy, “forms a hypercycle,” but h,e, may collapse any of the g;’s into one k-
superedge. So we extract out a subpath of g1, ..., g, such that hyey collapses at most the terminals ¢, g.,.

For each ¢, let u; be a maximum overlap between A, and a hyperedge in the k-supervertex ¢; along
the path. We also require |u;| > k; otherwise, we say that u; does not exist. We choose u; and u,,, so that
u1 D s and u,, D t. See Figure 5 for an illustration.

Extracting the subpath proceeds in two steps:

1. Choose a subpath for which all overlaps between adjacent k-superedges on this subpath are not con-
tained in Apeyw. This is possible because s and ¢ are not k-connected in Hy, ..

2. Choose a subpath ¢;, . .., g; from the resulting subpath of the first step such that the «,.’s do not exist
fori < r < j, but u;,u; do exist.

“Due to space limitations we provide only proof outlines—see [LS03] for full proofs.
SFor notational convenience, denote the overlap of hnew and a hyperedge as the hyperedge with an added prime. For instance,
hiy = ha N Anew-



Figure 5: Construction of a hypercycle in Theorem 15.

Now, consider the k-superedges ¢’ = qi,...,q; in H' after hpe, optionally collapses the terminal su-
peredges. All overlaps in this sequence are block-distinct and of size k. If I’ > 3, ¢ is a regular hypercycle.
If I = 2, ¢ is a hyperdoublet. If I’ = 1, we have to delve deeper and look at the &’-superedges of g} for the
smallest & > k. There are at least two k’-superedges that result. If there are two, we have a hyperdoublet.
Otherwise, we have a hyperloop around the overlap of size k.

Therefore, H' is not a hyperforest. O

4.4 Time complexity

In QUERY, we compute Hj,_ . by iterating through all subsets of Ay, and selecting the ones that are in H.
We compute Zj, by iterating through all b’ € Hy,, . and unifying all pairs of k-subsets of 4’. There are less
than 4/Pew| pairs of k-subsets in Apey, and so computing Zy, requires no more than O (K 4%) time.

Each U}, can be implemented as an ordinary Union-Find structure. The number of supervertices stored
in these Union-Find structures is bounded by the maximal number of covered hyperedges in a hyperforest of
width K, which is less than |V |2K+1, The amortized time of each call to Find is then O(a(|V|2K), where
« is the inverse Ackermann function. Each QUERY operations calls Find once for each pair of k-subsets in
hnew, Yielding a combined amortized run-time of O(4% (K + «(|V|2K))) per QUERY operation.

Each INSERT operation calls Union a similar number of times, its amortized run-time is also O (4% (K +
a([V[25))).

5 Experimentswith Greedy Hypertrees

Given as input weights on candidate hyperedges, the weight of a hyperforest is equal to the sum of the
weights of all hyperedges it covers. In the K-maximum hypertree problem, we would like to find the K-
hyperforest of maximum weight. When K > 1 the problem is NP-hard [Sre00]. Figure 6 provides an
example where greedy approaches perform suboptimally.

Figure 6: An example hypergraph on which a greedy algorithm would capture asymptotically none of the
weight of the optimal hypertree.

The common greedy heuristic for constructing a high-weight hyperforest is Prim-like: we start with the
highest-weight hyperedge, and at each iteration consider only candidate hyperedges of the form s U {v},
where s C h € H is a subset of size exactly K of a hyperedge of the “current” hyperforest, and v is a new
vertex not yet in the hyperforest. The heaviest® such hyperedge is added to the hyperforest, which remains

61f weights are specified also for non-maximal hyperedges, then when considering the weight of a hyperedge, the weights of all
its sub-hyperedges not already covered by H are added to it.
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fully K-connected.

Using the data structure described in this paper, one can consider a more flexible Kruskal-like greedy
procedure: at each iteration, all hyperedges which do not cause hypercycles are considered, and the heaviest
one is added to the hyperforest.

To demonstrate the possible utility of a Kruskal-like greedy procedure, as compared to a Prim-like
greedy procedure, we generated random weights on all candidate 2-hyperedges in a hypergraph with 100
vertices in the following way: we first constructed a random “planted” 2-hypertree by augmenting a hy-
perforest randomly. Hyperedges outside the planted hypertree were assigned a random weight uniformly
distributed between 0 and 1. In one set of experiments, weights inside the hypertree were assigned random
weights uniformly distributed between 0 and 10. In the second set, the weights were chosen uniformly
between 0 and 1 with probability 1/2, and between 0 and 20 with probability 1/2. We generated 10 ran-
dom weight-sets of each type, and tried both greedy approaches on each graph. Table 1 summarizes the
weights of the resulting hypertrees. Kruskal performed significantly better on both sets of experiments, and
especially when the weight was less evenly distributed in the “planted” hypertree.

U10, 10] =U[0,1] + U0, 20]
Planted 0.590 & 0.0339 0.609 =+ 0.059
Prim-like 0.506 & 0.0816 0.323 + 0.107
Kruskal-like | 0.587 £ 0.0342 0.619 +0.058

Table 1: Averages and standard deviations of fraction of the weight captured by the hypertrees: the planted
hypertree, the hypertree recovered with a Prim-like greedy approach, and the one recovered with a Kruskal-
like greedy approach.

6 Conclusion

We have presented a dynamic data structure for keeping track of acyclicity in hypergraphs, allowing aug-
menting a hyperforest while ensuring new hyperedges to not break its acyclicity. Each operation takes time
which is almost constant in the size of the hyperforest but, like most hyperforest algorithms, is exponential
in the tree-width. Although an exponential dependence is probably unavoidable, it might well be possible
to reduce the precise dependence.

The new dynamic data structure allows efficient implementation of Kruskal-like greedy heuristics for
finding high-weight hyperforests that have some advantages over Prim-like heuristics. However, the im-
portant problem of constructing efficient algorithms that approximate well the maximum-weight hypertree
remains open.
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