Automatic test factoring for Java

David Saff Shay Artzi

Jeff H. Perkins

Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab
The Stata Center, 32 Vassar Street
Cambridge, MA 02139 USA
{saff,artzi,jhp,mernst} @csail.mit.edu

Abstract

Test factoring creates fast, focused unit tests from slow
system-wide tests; each new unit test exercises only a subset
of the functionality exercised by the system test. Augment-
ing a test suite with factored unit tests should catch errors
earlier in a test run.

One way to factor a test is to introduce mock objects. If a
test exercises a component T, which interacts with another
component E (the “environment”), the implementation of
E can be replaced by a mock. The mock checks that T’s
calls to E are as expected, and it simulates E’s behavior
in response. We introduce an automatic technique for test
factoring. Given a system test for T and E, and a record
of T’s and E’s behavior when the system test is run, test
factoring generates unit tests for T in which E is mocked.
The factored tests can isolate bugs in T from bugs in E and,
if E is slow or expensive, improve test performance or cost.

We have built an implementation of automatic dynamic
test factoring for the Java language. Our experimental data
indicates that it can reduce the running time of a system
test suite by up to an order of magnitude.

1. Introduction

It is desirable for a test suite to contain small, fast, focused
tests. A unit test is one example of a focused test: it exer-
cises one component (such as a single class) without relying
on any other component. Focused tests execute quickly, so
they can provide fast feedback, and they can be run fre-
quently. Focused tests isolate errors to a small amount of
code, easing debugging by concentrating a developer’s atten-
tion on a smaller set of places that might be the source of an
error. Because they are faster and there are more of them,
focused tests are more amenable than system tests to test
selection and test prioritization, which can further reduce
the amount of time before the test outcome is known.

Often, focused tests are not available. Instead, a software
system may have system tests: long-running, end-to-end
tests that exercise much of the functionality of the entire
system. System tests have their own advantages. System
tests tend to be easier than unit tests for people to create
and understand. Because there are fewer of them, they are
easier to manage. They are less brittle in the face of changes,
such as modification of an internal interface. They tend to
be more comprehensive, both because they cover more code
and because they create more complex data structures that
may expose additional errors. Some so-called unit tests are
actually system tests in disguise: a test of one component

may utilize other parts of a system. (A true unit test would
use stubs or mock objects for all interaction with the rest of
the system.)

Our research aims to provide the benefits of focused tests
to a developer who has only written system tests. In particu-
lar, we propose a technique, test factoring [12], for automat-
ically converting a system test into a collection of focused
tests. Test factoring creates fast, focused unit tests from
slow system-wide tests; each new unit test exercises only
a subset of the functionality exercised by the system tests.
The focused tests can augment (but are not intended to re-
place) the system tests. When a system test is modified, or
the system itself is changed in a way that is incompatible
with the factored tests, the focused tests can be automati-
cally re-generated.

Test factoring takes three inputs: (1) a program, (2) a
system test, and (3) a partition of the program into the
“code under test” (for which factored tests are desired) and
the (untested) “environment”. The output of test factoring
is a set of factored tests for the code under test. Running
the factored tests does not execute the “environment” part
of the original program, only the “code under test” part.
The test factoring procedure can be repeated, varying the
program, the system test, or the partition.

Our approach to test factoring replaces the environment
part of the program by mock objects. Mock objects, like
stubs, simulate an expensive resource, but mock objects also
assert that they are used in a specific way [4]. If the simu-
lation is faithful to the expensive resource, then a test that
utilizes the mock object rather than the expensive resource
can be cheaper (e.g., faster). Some examples of expensive re-
sources that might be replaced by mock objects are: large or
slow computational resources such as databases; data struc-
tures and disks (setting them up in exactly the required state
may be difficult, or side effects may be unacceptable); net-
work communication (whose costs include delay, the need
for extra hardware such as remote computers and network
infrastructure, and the difficulty of isolating irrelevant ef-
fects); hardware resources; and human attention.

Developers have long constructed stubs and mock objects
by hand. Our contribution is the automatic creation of
mock objects via a dynamic, capture-replay technique. The
capture stage executes the system test, recording all inter-
actions between the code under test and the environment
in a “transcript”. During replay, the code under test is
executed as usual. However, at each point that it would
have interacted with the environment, no computation is
performed; instead, the value that was observed during the

capture stage (and was recorded in the transcript) is used.

Test factoring complements other techniques for reduc-
ing the cost of testing. Test selection [7] runs only those
tests that are possibly affected by the most recent change,
and test prioritization [16] runs first the tests that are most
likely to reveal a recently-introduced error. For test suites
with long-running or expensive tests, selection and prioriti-
zation are insufficient. We propose augmenting them with
test factoring, which from each large test generates multiple
unit tests that can be run individually and are amenable to
test selection and prioritization.

Section 2 describes our test factoring procedure, which
creates mock objects, and Section 3 describes the capture—
replay technique that underlies it. Sections 4 and 5 present
the details of our implementation, which works on Java pro-
grams, and Section 6 presents a crucial optimization. Sec-
tion 7 describes our experiments and their results. The pa-
per concludes with a discussion of future and related work
and a recap of contributions.

2. Test factoring via mock objects

Our prototype implementation of automatic test factoring
operates via automatic creation of mock objects. A mock
object, which is a stub that requires that it is used in par-
ticular ways, has a subset of the functionality of a real ob-
ject —for instance, the mock object may be able to respond
to only specific queries.

Suppose that a software system is composed of two parts,
T and E; we write the system as “T|E”. T (the code under
test) makes calls into E (the environment) and uses the re-
sults that E returns.' The tests for T (or for the system as a
whole) do not depend on the full functionality of E; rather,
the tests exercise E in a particular way. This is not a design
goal of the tests, but a consequence of the way that T and
E are designed to interact, and of use of a finite set of tests.

After a change to T, the system should be re-tested. If
the change does not affect E or the way that T and E inter-
act, then testing just T is sufficient. In particular, it may be
faster and cheaper to run the tests not on T|E (that is, the
original system), but on T|Em, where En is a mock version
of E. If En, faithfully simulates as much of E’s functionality
as T uses, then the result of the tests will be the same as if
they had been run on the original system. A mock object
En that is constructed for a specific set of tests is not nec-
essarily appropriate for a different set of tests; a different
mock object E;, may be required.

One common implementation of a mock object incorpo-
rates a lookup table, which we call a “transcript”. The tran-
script contains a list of expected method calls: each entry
consists of the method name, the arguments, and the return
value. The mock object maintains an index into the tran-
script; for each method call to the mock object, the mock
object verifies that the method name and arguments are the
same as those of the current transcript entry (throwing a Re-
playException if they are not), returns the current transcript
entry’s result value, and increments the index. Section 8.1
notes ways in which the transcript can be generalized and
made more flexible, so that the mock object permits certain
calls to be reordered or otherwise modified.)

LOur prototype implementation handles all interactions, in-
cluding calls from E to T, shared state such as public vari-
ables, use of static methods and variables, aliasing, etc.; see
Section 5.1.

2.1 Test factoring inaccuracies

Given an accurate transcript for En,, it is fairly easy to
ensure that a test executed on T|En, gives the same result as
the test executed on T|E. However, there is little point in
running such a test: T is already known to pass the tests.
The goal of testing is to gain information about a changed
software system. When T is changed to T’, it is desirable to
test T'. T’|Em should give a faster answer than T'|E, but it is
not guaranteed to produce the same answer: it can produce
an accurate result (“pass” or “fail”), a false success, a false
failure, or a ReplayException (described below).

A false success occurs when the factored test T’|Em passes
but the system test T’|E fails. A false failure occurs when
the factored test fails but the system test passes. Differ-
ent test factoring approaches can take different approaches
to reducing one or the other type of error, possibly trading
them off against one another. Our prototype implementa-
tion never yields false successes or false failures; however,
an implementation can trade off false successes and failures
against ReplayExceptions, for instance by permitting calls
to be reordered or by inferring the environment’s response to
a call that was never observed in practice [12]. It is straight-
forward to use the factored tests in a way that can cope with
either false successes or false failures. Recall that factored
tests run quickly, compared to the original tests.

e If false successes are expected, then factored tests can
be prioritized before system tests. If a factored test
correctly fails, then the test suite gives much quicker
notification of the error that a developer has intro-
duced. If a factored test falsely passes, the only cost is
a brief delay before running the original system test.

o [f false failures are expected, then the factored tests
can be used to select which system tests to run. If a
factored test correctly passes, then the corresponding
system test will not be selected, and the suite gives
much quicker notification that the developer has not
introduced any errors. If a factored test incorrectly
fails, then the only cost is the small extra cost of run-
ning the factored test.

A ReplayException indicates that the assumption inher-
ent in the test factoring methodology — that T’ uses the en-
vironment in the same way that T did — has been violated.
The factored test yields a ReplayException if the sequence
of calls from T’ to En, or the arguments, are different than
those that were captured during the training run of T|E
from which Em was created. Handling a ReplayException is
straightforward: the full system T’|E must be run — both to
obtain a test result for T’ and (in the background) to create
a new mock object Ej,.

3. Capture and replay technique

We introduce an automatic technique that creates mock
objects via a dynamic capture-replay approach. (By con-
trast, static test factoring could analyze the source code of
the program and the system test; it introduces a different
set of tradeoffs than dynamic test factoring, and is not con-
sidered here.) As noted in Section 1, the three inputs to test
factoring are a program, a system test, and a partition of
the program into the code under test and the environment.

1. The capture step occurs ahead of time, not at test
time. It executes the tests (we assume they pass) in

environment

environment

Figure 1: The life-cycle of two objects. On the left, an
object is created in the environment; on the right, an object
is created in the code under test. The curved line represents
the object being passed between the environment and the
code under test; the circle is the boundary between them.
The wide gray line background indicates where the object
must record a transcript (during capture) or be replaced by
a mock object (during replay). The black circles represent
method calls against the object.

the context of the original system T|E, and records
all interactions between T and E. The resulting tran-
script indicates, for each call, the method name, the
arguments, and the return value. It can be thought
of as encoding a transition function for objects in the
environment.

2. The replay phase occurs during execution of the fac-
tored tests, that is, T'|Em. The system is run as before,
but with real objects E replaced by mock objects Em;
the original environment is never executed during the
factored test. E. uses the recorded behavior in order
to simulate the environment. Whenever a mock object
is called, it checks that it was called with the same ar-
guments as the next entry in the transcript. If so, it
returns the value from the transcript; if not, it throws
a ReplayException.

Suppose that the ArrayList class is part of the environ-
ment, and consider an ArrayList object [that was created
in the environment and passed back and forth between the
environment and the code under test; see the left side of
Figure 1. During the capture stage, method calls on [that
are made from within the code under test must be recorded
(in addition to performing the requested operation); method
calls on [that are made from within the environment should
not be recorded. During the replay stage, method calls on
l that are made from within the code under test must re-
turn the recorded value; no calls will be made on [from the
environment, because the environment is replaced by mock
objects.

Objects created in the code under test are treated sym-
metrically. Such an object is accessed directly from within
the code under test; when it is passed to the environment,
it records the environment’s interactions with it. (See the
right side of Figure 1.) As a result, the transcript records
all interactions between the environment and the code un-
der test. Since the transcript records both arguments and
return values, it could equally well be used to run the code
under test in the absence of the environment (which is how
we use it), or to run the environment in the absence of the

code under test (effectively reversing the roles of the envi-
ronment and the code under test).

4. Instrumenting Java classes

This section describes our approach to replacing classes
and objects in a Java programs by instrumented versions.
The capture step uses a replacement class that records be-
havior to a transcript, and the replay step uses a mock class
that reads from the transcript.

Our approach proceeds in two steps. The first step intro-
duces a new interface for every class in the program, and
retrofits each class to implement its interface. These inter-
faces separate type inheritance from implementation inher-
itance and are useful for a variety of analyses other than
test factoring. The second step introduces new classes that
implement the interface, and therefore can be used in place
of the original (retrofitted) ones.

This section describes our approach. It presents require-
ments, the interface introduction step, the instrumented
classes that implement the interfaces, and finally discusses
other approaches to the problem.

4.1 Requirements

The instrumentation technique should handle all of the
Java language, including class loaders, native methods, re-
flection, etc. Since source code is not always available, in-
strumentation must be performed on bytecode.

It must be possible for an instrumented class to co-exist
with the uninstrumented version. For instance, it would be
prohibitively difficult to write and debug instrumentation
code that was not permitted to use JDK classes such as
ArrayList. However, it is essential not to “instrument the
instrumentation”: the instrumentation code must have ac-
cess to the original classes, to avoid infinite loops and to
permit accurate measurements.

Native methods make assumptions about the classes of
their arguments and the fields that those arguments contain.
Therefore, an invocation of a native method must pass in
uninstrumented objects.

Instrumenting the built-in system classes (java.*, etc.)
presents special difficulties. The JVM hard-codes assump-
tions about the system classes — for example, adding a field
or method to Object causes Sun’s JVM to crash —so instru-
mentation must not add or remove any field (nor method, in
some classes such as Object, Class, and String). The JVM
makes calls into the JDK, much as with native methods, so
it is not safe to change the type of any public member (field,
method, parameter, return value). As a minor point, system
classes cannot be instrumented dynamically, because about
200 classes are loaded by the JVM before any user-supplied
code can take effect; we avoid this problem by statically
instrumenting file rt. jar.

Despite its challenges, we must instrument the JDK, be-
cause code under test commonly interacts with the environ-
ment via an ArrayList or other JDK class. This constrains
our implementation strategy. We use the same implementa-
tion strategy for user code as well, for uniformity.

Our implementation satisfies all of these requirements.

4.2 Interface introduction

We wish to replace objects in a test execution by different
(capturing or replaying) objects. Making the new objects
subclasses of the old would permit the original code to run

Before:

class C {
Integer foo(int x) { ... }
void bar(Date d) { ... }

}

After:

interface C__iface {
Integer__iface foo__iface(int x);
void bar__iface(Date__iface d);

class C implements C__iface {

Integer foo(int x) { ... }

Integer__iface foo__iface(int x) { ... }

void bar(Date d) { ... }

void bar__iface(Date__iface d) { ... }
}
Figure 2: Example class before and after interface
introduction.

unmodified, but is problematic or impossible due to final
classes and methods, reflection, and similar code constructs.
Instead, we perform interface introduction: we change each
class reference in the code into a reference to an interface,
and change each class to extend that reference. The code
can run with the original objects, but any other object that
extends the interface can be substituted instead.

Interface introduction creates, for each class C, an inter-
face C__iface. The methods of C__iface are those of C, but
with __iface appended to the end of each name, and with all
reference types replaced by their __iface versions. Classes
are retrofitted to implement the new interface by appending
__iface to each reference type and method name in the signa-
ture or body.2 These side effects to the original classes have
no effect on their behavior. (They do change method calls
into interface calls, but that is an implementation detail of
the JVM.) For an example, see Figure 2.

Introduction of interfaces does not permit changing the
behavior of a few constructs, including accesses of static
variables and uses of reflection. Our transformation converts
these constructs into calls to special hook routines. Then,
when new objects are introduced into the program to replace
those, the hook routines can be set appropriately. It would
be possible to use this hook technique throughout, changing
most program operations into calls to hook routines, but use
of interfaces is more efficient and makes the resulting code
much more readable.

Classes Object, Class, and String are specially used by
the JDK (they are arguments to Object methods and native
methods), so interfaces cannot be added for them. None
are needed for Object —it is already the root of the class
hierarchy —and we use the hook mechanism for Class and
String.

The interface introduction step only needs be done once
for libraries such as the JDK; this is a critical feature that
permits the JDK to be statically transformed once rather
than once per analysis (which would be impossible in any
event, as noted above).

2 As a special case, built-in system classes, which are instru-
mented statically rather than dynamically, make a copy of
each method so that the original one still remains.

class C__capturing implements C__iface {
C _delegate;
Integer__iface foo__iface(int x) {
... // record arguments
Integer result = _delegate.foo(x);
... // record results
return wrapOrUnwrap(result);
}
void bar__iface(Date__iface d) {
... // record arguments (no results to record)
_delegate.bar (wrapOrUnwrap(d)) ;
}
WeakHashMap<C, C__capturing> hm;
C__iface wrapOrUnwrap(C__iface in) {
if (in instanceof C__capturing) {
return ((C__capturing) in)._delegate;
} else if (in instanceof C) {
C real = (C)in;
if (!hm.contains(real)) {
hm.put (in, new C__capturing(real));

return hm.get(real);
} else {
throw new Error("this can’t happen");

Figure 3: Capturing version of class ¢ from Figure 2.
Capturing wrappers are only created for classes in the
environment.

4.3 Capture and replay classes

In our approach, both the capture and replay steps replace
some objects from the environment by different objects that
satisfy the same specification. Only those objects that in-
teract with the code under test need to be replaced; for
reasons of correctness and performance, other objects from
the environment should not be affected.

1. While capturing, the replacement objects are wrap-
pers around the real ones. The wrappers delegate the
work to the real objects and record, to a transcript,
arguments and return values.

2. While replaying, the replacement objects are mock ob-
jects that read from the transcript. A mock object ver-
ifies that the arguments are as expected and returns
whatever the transcript indicates.

Figure 3 shows an example of a capturing version of a
class, which is a wrapper class that delegates all work to
the underlying object while recording arguments and return
values.

When the program counter is in the code under test, all
reachable objects whose type is from the code under test
are accessed directly, and all reachable objects whose type is
from the environment are accessed via instrumenting wrap-
pers; and symmetrically when the program counter is in the
environment.

Whenever the object is transferred from the environment
to the code under test (or vice versa), it must be transformed
from an instrumenting version to a non-instrumenting ver-
sion (or vice versa); that is, it must be wrapped or un-
wrapped. Figure 1 showed this graphically; the line entering
and exiting the circle represents program control (and ob-
jects) passing into and out of the code under test. Because

all interaction between the realms is via method calls (see
Section 5.1), the only way for an object to cross the bound-
ary is to be passed as an argument or returned as a result.

4.4 Alternative implementations

We initially hoped to use the Twin Class Hierarchy ap-
proach, which is designed specifically to permit instrumen-
tation of Java standard libraries [3]. We found that that
approach does not scale, however. The most serious prob-
lem is that wrappers must be written by hand for each native
method, of which there are a great many used by any real-
istic program. Another difficulty is that every array (even
those in the environment) must be wrapped. This results
from the need to simulate, in the twin class hierarchy, the
way that arrays are represented in the real class hierarchy.
Real arrays are subclasses of Object, but twin arrays should
be subclasses of Object__twin; handling covariance, dimen-
sionality, and casting adds additional complexity, both for
the implementation and at run time.

One alternative would be to always instrument classes (so
no objects of the original type would appear anywhere in the
system), rather than converting them between instrumented
and uninstrumented versions when crossing the boundary
between the code under test and the environment. The in-
strumentation could be enabled or disabled depending on
whether the program counter was in the code under test
or the environment. If implemented as a conditional cap-
ture or replay statement inserted into every method in the
system, this approach could work (so long as no new fields
were introduced), but introduces greater complexity, over-
head, and potential for error than making changes only at
the boundary. Furthermore, we find it compelling to de-
cide via run-time dispatch whether a particular line of code
is being captured or not; this is in the spirit of the un-
derlying object-oriented virtual machine. If implemented
as wrappers, then translation is required nonetheless, for
two reasons: because the JVM and native methods require
uninstrumented classes, and because any use of this in the
original code would permit an uninstrumented object to es-
cape. We choose to perform this translation at the boundary
rather than at every method call in the program. Addition-
ally, wrapping every object in the system (rather than just
those that participate in interactions between the code un-
der test and the environment) could lead to unacceptable
slowdowns. Finally, universal replacement does not permit
the “partially mocked libraries” optimization (Section 6).

A final approach would be to use debugger-based moni-
toring. Our experience with such an approach indicates that
it would be orders of magnitude slower than the approach
we chose, for instance because of the need to switch between
the debugged process and the monitoring process. Since the
purpose of a factored test is to have good performance, we
decided that this run-time slowdown as not acceptable.

Concurrently with us, Orso and Kennedy [8] have begun
implementing a capture-replay system with similarities to
ours. Unlike our algorithm, theirs does not handle impor-
tant features of Java, such as native methods and reflection,
that we found crucial for running real-world Java code. Ad-
ditionally, we provide an empirical evaluation, whereas they
have run their system on a single 3,300-line program but not
applied it to any tasks.

5. Capturing all behavior

The basic procedure of Section 3 captures procedure calls
between the code under test and the environment. This
section discusses how we have addressed other types of in-
teractions between the code under test and the environment.

5.1 Non-method-call communication

Before being run (during capture or replay), the program
undergoes a semantics-preserving transformation that re-
places array accesses and static and instance field accesses
by method calls. For example, field getter and setter meth-
ods are added, and a per-class singleton mock object han-
dles constructors and static methods. Client code is then
transformed to use those new methods. The reason for this
transformation is that method calls are easier and simpler
to instrument than the code constructs that they replace.

5.2 Callbacks

The behavior of the environment consists not just of how it
is used by the code under test, but also how it uses the code
under test. Therefore, calls from the environment to the
code under test must be captured; these may be callbacks,
or the system test might have started in the environment
rather than in the code under test.

We modify the description of the environment’s behavior
to include in the transcript, for each call, not just the argu-
ments and return value, but also any other interaction with
the environment, such as callbacks across the boundary. The
replay stage replays the full behavior of the environment, in-
cluding callbacks, and it checks that the return values of the
callbacks are as expected.

5.3 Objects passed across the boundary

Procedure arguments and return values can be objects as
well as primitive values. If the code under test manipulates
an object whose type is part of the environment, that manip-
ulation counts as an interaction with the environment. It is
monitored during trace capture and replayed when running
the factored test.

We augment the transcript to include a crossover cache
of objects that have passed across the boundary. This per-
mits object equality to be determined during capture and
maintained (by returning the proper object) during replay.
This functionality is handled by the wrapO0rUnwrap method of
Figure 3.

5.4 Arrays

The JVM treats arrays as a hybrid between objects and
primitives. They subclass Object, and certain methods call
be called on them, but they are accessed via special byte-
codes rather than by method calls. It is possible, but prob-
lematic, to wrap arrays by objects [3]; instead, our analy-
sis also treats them specially. When crossing the bound-
ary between the code under test and the environment, an
array is replaced by another array whose element type has
been transformed into a capturing or replaying version. The
crossover cache relates the two arrays, and operations on the
“wrapper” array are translated into the appropriate opera-
tion on the original array, plus translation for elements that
cross the boundary. This ensures that interaction through
aliased arrays is properly reflected on the other side of the
boundary.

5.5 Native methods and reflection

The wrapped version of a native method always delegates
to the actual code; as noted previously, the original object
must be passed to the native code, so passing a wrapper
object to a native method will cause an exception. We use
partially mocked libraries (Section 6) to ensure that any
object from such a library that has not crossed the boundary
is not wrapped. This permits native methods to be called
from either the environment or the code under test, and in
our experience, with a reasonable partition it is extremely
rare for an object to cross the boundary before being passed
to a native method.

Reflective calls, like native calls, should be provided with
original, never wrapped, objects. Our solution is similar: the
reflective call is intercepted and the arguments unwrapped if
necessary, then the results wrapped if necessary. The reflec-
tion mechanism cannot observe wrapped classes, and the
invariant is maintained that user code cannot observe an
unwrapped object on the other side of the boundary than
where it was created.

5.6 Class loaders

Large Java programs frequently use multiple class loaders
to control which versions of a class are loaded, to perform
transformations, to isolate parts of a program from one an-
other, or for other reasons. For example, the Eclipse IDE,
which is written in Java, makes extensive use of class load-
ers.

Our instrumentation also uses class loaders: when the pro-
gram requests a class such as MyClass__capturing, the class
loader loads the class MyClass, transforms it (rewriting byte-
codes to add interfacing and/or to insert capture or replay
logic), creates a fresh wrapper class based on its methods
and fields, and returns the wrapper class.

Our implementation handles programs with multiple class
loaders by creating a custom class loader for each class loader
that the program (dynamically) creates.

6. Partially mocked libraries

As described so far, each class in a program is either part
of the code under test or part of the environment. Unfortu-
nately, such a partition is too restrictive. Consider a utility
class such as String or ArrayList. If String is part of the
code under test, then all uses of String by the environment
become part of the resulting factored test, increasing its run-
ning time. If String is part of the mocked realm, then any
change to how a tested class uses Strings (even internally) is
likely to prevent replay. Furthermore, during replay, there
is no need for each String to be replaced by a mock object:
the library code itself is probably as fast.

We extend the partition of the program from two parts to
three: code under test, environment, and partially mocked
libraries. A common choice for the latter is the libraries
in java.*, sun.*, javax.x, etc. This realm consists only of
classes: each object that is instantiated from the partially
mocked libraries is placed in the mocked or tested realm;
the same realm as the object that instantiated it. Each
object of a class in the partially mocked libraries is either
in the code under test or in the environment, depending
on where it was created, and is transformed as it crosses
the boundary just as described in Section 4.3. Such objects
that are used entirely within the code under test and never
escape to the environment need not be captured or mocked.

Objects used for internal storage and computation within
the environment, and that never escape to the code under
test, will never even be mentioned in the factored test, since
they are part of the replaced, simulated logic.

Static fields and methods in the partially mocked libraries
are treated as being in the environment. The environment
is typically be larger than the code under test, so this choice
minimizes the size of the transcript.

Use of partially mocked classes makes the instrumenta-
tion more complex, since only some objects of the class are
captured and mocked. Use of partially mocked libraries also
complicates issues of object equality in the presence of alias-
ing. Our implementation addresses all these issues; for rea-
sons of space, we omit a detailed discussion.

7. Experiments

This section reports experiments that measure the efficacy
of test factoring.

Our methodology satisfies three key desiderata for evalu-
ation of testing tools: the use of real code, real errors, and a
realistic testing scenario. The program we studied, Daikon,
consists of 347,000 lines of Java code that implements so-
phisticated algorithms and makes use of Java features such
as reflection, native methods, callbacks from the JDK, and
communication via side effects. The code was under active
development, and all errors were real errors made by the de-
velopers; we did not use synthetically generated or inserted
errors, which may have quite different characteristics. Fi-
nally, our testing scenario uses frequent code snapshots un-
der the assumption that developers wish to test frequently,
which some of the developers were already doing. An alter-
native is to use revision control logs to see how much time
could be saved when testing various versions of the code, and
we also report results from such a methodology. However,
the latter methodology does not indicate the full benefits
of a testing technique in real practice, when developers run
tests throughout development — and before, not after, com-
mitting changes to the repository. It only indicates how
much faster a developer could be notified of a test success,
not how much faster a developer could be notified of a test
failure, which is typically more important.

7.1 Experimental subjects

Our evaluation methodology makes use of a log of actions
that are recorded in the background while a developer works,
and also a revision control log.

Given the log of developer actions, we can reconstruct the
developer’s file system at any moment in time. We can de-
termine whether, had the tests been run at that moment,
they would have passed or failed (thus, we know when the
developer introduced and corrected errors), and how long
the tests would have taken to run. Furthermore, we can
apply techniques such as test factoring in order to deter-
mine their effect on test suite execution: how much faster
a developer would have learned the test outcome, had the
developer been using that technique. The log also indicates
when the developer ran the tests.

This paper reports on data from two developers (one pro-
fessional and one undergraduate) working independently on
the Daikon invariant detector [2] between June 23 and Au-
gust 20, 2004. Figure 4 summarizes the changes to each
developer’s copy of the program in the file system. Each
moment corresponds to the developer saving (or otherwise

Code changes Errors

Files | Moments | Episodes | Avg. len. | Time
Dev. 1 | 254 1231 29 13.1 hours | 57%
Dev. 2 | 259 1274 41 11.9 hours | 38%
CVS 262 104 n/a n/a n/a

Figure 4: Summary of syntactically correct code changes
made by two developers. An error episode begins when the
tests would first begin to fail (had they been run at that
moment) and ends when they would pass again. The “Time”
column indicates what percentage of wall clock time the tests
failed.

modifying) a file. We ignore changes to generated files (such
as Java .class files) and to files that are not part of the pro-
gram code, but include non-Java files from which Java files
are generated. We also ignore the 41% of code changes that
caused a compilation error or made the unit tests fail. Such
errors may indicate that a developer was in the middle of an
edit; in any event, they are easy and fast to discover, and
development environments can indicate compilation errors
and unit test errors [13] on the fly.

The revision control log indicates the changes that were
checked into the CVS repository by each developer work-
ing on Daikon (not just the two most active developers,
whose file system actions were recorded). We arbitrarily
chose to use the CVS data from the period from March 1 to
September 1, 2004. Since developers test before checking in
changes, this data primarily indicates how much test factor-
ing can speed up indication of test successes, whereas the
fine-grained file system log information indicates how much
test factoring helps to indicate both test successes and test
failures.

7.1.1 Partitions

Test factoring requires a partition of the code into the en-
vironment, the code under test, and the partially mocked
libraries. At each point in time, we chose the class contain-
ing the main routine as the environment, the changed classes
as the code under test, and all other classes as the partially
mocked libraries. Another partition may have been better,
but we did not investigate that possibility.

To create the mock environment Ep,, we used the version
of the program that most recently passed the tests at mid-
night. In other words, for evaluating test factoring on a
particular day, we assume that capture occurred the previ-
ous midnight (or earlier if the tests did not pass as of the
previous midnight). This simulates a development method-
ology in which each night, many factored tests are prepared
against the eventuality that one or more of them will be
needed the next day. Because bad partitions (that generate
excessively large transcripts) can be quickly identified, and
the same partitions often arise on different days (a total of
126 distinct partitions in our data), this is a reasonable as-
sumption. This approach actually underestimates the ben-
efits of test factoring, because when a ReplayException is
encountered, a testing tool should immediately regenerate
the factored test, rather than waiting until the next mid-
night.

Whereas we found a number of partitions that enabled
test factoring to produce faster versions of the tests, other
partitions were useless for test factoring. In some cases this
was because the class that contains the main routine was

changed, and our heuristic places that class in the environ-
ment. In other cases the partition induced extremely large
transcripts, because classes in the environment interacted
extensively with classes in the code under test. (An ex-
ample of this is that Developer 1 completely restructured
Daikon during the summer. Test factoring would yield cor-
rect results, but due to file I/O overheads it would be slower
than the original tests.) In yet other cases, limitations in
our prototype tool prevented capture from completing; we
are working to fix these bugs. Bad partitions were easy to
recognize, and in such cases the testing infrastructure would
run the original tests, not the factored ones. Therefore, we
omit these from the experimental measurements.

Daikon is a very difficult subject for test factoring. The
fundamental problem with Daikon is that it processes a huge
amount of data, and that data is passed to many parts of
the program. A typical run processes a gigabyte of trace
data and calls methods from over 100 distinct classes on
each sample read from the trace. Equally seriously, no part
of Daikon is particularly expensive; its slowness stems from
many operations, not from expensive ones. Therefore, it is
difficult to find a good partition for Daikon. The nature of
the developers’ changes (including an extensive refactoring)
made matters even worse. (And, our CVS experiments are
on larger-than-average changes, since developers accumulate
code changes until they check them in to source control.)
Therefore, our results on Daikon are extremely encouraging,
and we intend to collect data for additional programs in
order to see whether, as we expect, they will prove more
amenable to test factoring.

7.2 Measurements

7.2.1 Baseline

Daikon contains two sets of tests: unit tests and regression
tests. The unit tests primarily cover libraries and other tar-
geted parts of the Daikon codebase. They are automatically
executed each time the code is compiled. Since they take
less time than compilation itself, test factoring is unlikely
to help significantly, so we ignore them for the purposes of
this paper: test factoring is most applicable to long-running
tests. The regression tests are end-to-end system tests that
exercise much more of Daikon. Running the regression tests
from scratch takes 60 minutes. Running them with the make
command, as all Daikon developers do, completes in 15 min-
utes. This avoids certain unnecessary work performed by
front ends, which are not part of the Java codebase and
which did not change during the monitored period. This use
of make’s dependency mechanism can be viewed as a manual
test factoring; our goal is to reduce the need for such manual
effort.

Our results would be dramatically better if we took 60
minutes, rather than 15 minutes, as our baseline, but such
results would be misleading, as they would not be indicative
of the benefit in practice to developers who have already
made some effort to reduce test times. The developers re-
ported that 15 minutes is still long enough to be a nuisance;
they did not run tests as often as they would have liked to,
or they wasted time waiting for the tests to complete, or
they continued editing while the tests ran, which occasion-
ally made debugging more difficult. In fact, the developers
sometimes ran only a portion of the regression tests, which
can be viewed as manual test selection; the logs indicated

a number of instances in which this practice was unsound,
indicating the need for a tool such as ours.

7.2.2 Quantities

The purpose of testing is to indicate that a codebase either
passes or fails its tests. A developer who tests frequently
(as is universally recommended) expects the tests to usually
pass, and they usually do pass. The earlier a developer is
informed of an error (a test failure), the easier, faster, and
cheaper it is to correct the error; therefore, a key thrust
of testing research, including ours, is earlier notification of
errors. Developers gain a complementary but lesser benefit
from earlier notification of test successes: when uncertain
about their code, they can wait less time before proceeding
with code changes. (However, developers do not always wait
for tests to complete before proceeding with code changes.)

We measure the following quantities.

1. Test time, the amount of time required to run the tests.

2. Ignorance time, for a particular error and test strategy,
is the time between when the error was introduced and the
first test failure in the test suite. (An alternative formula-
tion would measure from error introduction to completing
running the test suite, but that is not realistic: the devel-
oper becomes aware of the error as soon as the first test
fails, and often the test suite terminates at that point.) For
a given test suite, the ignorance time is at least as large as
the run time of the quickest test that exposes the error. If
a testing technique fails to expose an error, then its igno-
rance time is the full duration of the error. A technique
might fail to expose an error because the technique is un-
sound, or because it is too slow and the developer corrected
the error before the technique would have notified the de-
veloper. (The developer correcting the error is indicated by
a file system change that makes the tests pass.)

3. Waiting time is the time between starting tests and suc-
cessfully completing them. Successful test suite completion
always requires running the entire test suite. We measure
waiting time from every file system change by the developer
for which the program passes the tests—that is, all of the
moments of Figure 4 that are not within an error episode.

Our measurements account for the time to run the tests,
but we ignore the time to compile and to run unit tests.
The former is eliminated by the use of incremental continu-
ous compilation, which is supported by many development
environments such as Eclipse. The latter is also fast.

7.2.3 Testing methodologies

Our experimental evaluation compares two techniques for
reducing ignorance time and waiting time. In each case,
we report the ratio between measurements for continuous
testing, and measurements for continuous testing augmented
with test factoring.

7.2.3.1 Continuous testing.

Continuous testing [11] uses excess cycles on a developer’s
workstation to continuously run tests in the background,
providing rapid feedback about test failures as source code
is edited. Continuous testing starts rerunning the tests (ter-
minating the current test execution) when the program re-
compiles after the developer saves his modifications. If tests
take a long time to run, then the benefits of continuous
testing are greatly lessened, for it cannot achieve the goal
of providing feedback almost immediately after a developer

Test time | Ignorance time | Wait time
Dev. 1 .79 1.56 .59
Dev. 2 .52 1.37 .97
CVS .09 n/a .09

Figure 5: Experimental results. Each cell is the ratio of
time with continuous testing to time with continuous testing
and test factoring, averaged over all points to which test
factoring applied. That is, each cell indicates how much
improvement test factoring contributes. Smaller numbers
are better.

commits an error, which makes the error easier to fix [1, 14].
Test factoring has the potential to help continuous testing
achieve these goals.

Continuous testing can be thought of as the most frequent
possible testing strategy. However, there is no need for the
developer to remember to run the tests, and there is no
penalty to the developer in terms of nuisance or distraction.

7.2.3.2 Test factoring.

Test factoring seeks to create additional small tests (fac-
tored tests) to a test suite that expose the same errors as the
large tests, thus reducing ignorance time. It can also reduce
waiting time, but see Section 2.1 regarding whether factored
tests should be added to, or should replace, an original test
suite. In our evaluation, since there are no false positives or
false negatives, the factored tests replace the original tests
(but if a ReplayException occurs, the original test must be
run).

We measured how much test factoring improves contin-
uous testing. Continuous testing is a state-of-the-art tech-
nique that provides feedback much faster than when devel-
opers run tests manually, so it is a reasonable baseline.

7.3 Results

Figure 5 provides experimental results. Test factoring
generally reduces the running time, but it is influenced by
the developer’s working style. For example, Developer 1 had
a larger set of changed files (due to less frequent checkins)
and was also making a large architectural change. Devel-
oper 2, and other developers whose data are reflected in the
CVS logs, made smaller changes at any time.

It is notable that use of test factoring actually increased
Developer 1’s ignorance time (from 9 to 14 seconds). The
reason is that the Daikon developers had already performed
manual test prioritization. The first system test in the sys-
tem test suite was both very fast to run, and it usually
failed when the suite failed. Therefore, it was difficult to
improve its performance (the factored first system test was
little faster than that test itself), and a ReplayException
that forced execution of the entire first test would increase
ignorance time (by adding the time to run the factored ver-
sion, after which the test itself had to be run). Even on
failing runs, overall test suite execution time was reduced,
but ignorance time, which measures only time to the first
failure, was increased. A sophisticated testing framework
could avoid factoring those system tests, but we did not
simulate such a framework.

For the CVS data, the wait time is always the same as
the test time. This is not necessarily the case, if the tests
are unable to complete before the developer makes the next
change. CVS checkins tend to be spaced far enough apart
to permit tests to complete between them.

8. Resilience to code changes

A factored test introduces assumptions about the imple-
mentation details of the functionality being tested; if those
assumptions are violated during program evolution, the fac-
tored test may return a false success or a false failure. It
is easy to recognize such problems and correct them by re-
running the test factoring procedure, but in the meanwhile
the factored test is useless for regression testing. We wish
test factoring to construct factored tests that are useful for
as long as possible —that is, that are resilient to many code
changes to the code under test.

For example, consider a test for a method that inserts
records into a database. If making calls against the database
is slow, the test may be factored to use a mock object that
simulates the behavior of the database and ensures that the
expected calls are made to the database API. If the code
under test is modified to insert the records in a different
order or to use a database API call that inserts them all at
once rather than one at a time, then the original test will
still pass, but the factored test will likely fail, because the
mock object receives unexpected calls.

A test factoring procedure can always be extended to elim-
inate an erroneous assumption. For example, with knowl-
edge of the semantics of the database API, the database
mock object could be extended to accept all valid data in-
put call sequences. However, the only way to eliminate all
assumptions is to turn the factored tests into exact replicas
of the original test, eliminating the speed and bug-isolation
advantages of test factoring.

8.1 Change language

A change language [12] characterizes some of the ways
that a developer may modify a codebase. It is a kind of pat-
tern language that breaks down complex maintenance goals
into a set of simple code changes, much like refactorings [5].
We believe that a developer facing a maintenance task con-
sciously or unconsciously uses a change language. If this is
the case, then understanding a developer’s change language
would allow prediction of which changes they are likely to
make. This in turn would help to maximize the “lifespan”
of factored tests before their assumptions are violated and
they become useless.

The change language of a test factoring procedure is the
set of program transformations and refactorings for which
its factored tests remain valid. The change language of the
simple procedure of Section 3 includes any refactoring that
does not affect observable behavior. This includes standard
refactorings such as Extract Method and Inline Method, but
also many wholesale re-implementations that maintain un-
changed the order and arguments of method calls and re-
turns, public field accesses, etc.

It is desirable to extend the change language of test factor-
ing to other changes that are common during development
tasks. However, the factored tests need not tolerate every
possible change or sequence of changes, for three reasons.
First, factored test are not expected to last forever; they
will be regenerated periodically in any event. Second, non-
tolerated changes can be discovered by a static or dynamic
analysis, and the system test re-factored. Third, the changes
to the code under test are not made by an adversary, but
by a developer with a maintenance task in mind. Most of
the changes are likely to come from a relatively small set of
refactorings, and it is those that are worth considering.

The basic procedure of Section 3 assumes that the ex-
pectations and behavior of the environment depends on the
order of all calls to mocked objects; none may be added, re-
moved, or reordered. The remainder of this section proposes
extensions to the change language handled by our test fac-
toring to include three common and important functionality-
preserving changes. A static or dynamic program analysis
can indicate where the strict requirements of the transcript
table can be relaxed. This reduces the number of false fail-
ures, generally without introducing false successes.

8.2 Reordering calls to independent objects

Sometimes, two objects from the environment are inde-
pendent of each other’s state, and calls to these objects can
be intermixed in any order without affecting overall behav-
ior. For example, in the Eclipse continuous testing plug-
in [13], method disableContinuousTesting both deletes fail-
ure markers and removes a command from the launch con-
figuration. These could have been done in either order, and
a maintenance change that reorders them should not cause
a test failure.

Our implementation addresses this problem by creating
multiple transcript tables. One table per object would per-
mit maximal reordering, but that would oversimplify in the
other direction, treating every mocked object as indepen-
dent. Instead, we group objects into state sets, forcing them
to share the same transcript and MockState, if one is passed
to the constructor for the other. This heuristic is unsound?,
but it has been surprisingly effective in practice. Further
research will help to fine-tune it.

8.3 Adding or removing calls to accessors

Accessor methods, which do not change the receiver’s
state, may be added, deleted, and reordered during mainte-
nance. For example, multiple calls to an accessor might be
replaced with a single call to improve efficiency (this is the
Replace Query With Temp refactoring).

To accommodate such changes, an analysis labels each
method in the environment as read-only, write-only, or read-
write with respect to each state set. A static analysis of the
environment code would suffice, but we achieve additional
precision via a dynamic analysis, by extending the trace to
record reads and writes to the state of mocked objects. The
transcript table is modified to neither fail nor advance the
state when a read-only method is called.

8.4 Changing the order of simple mutators

Some classes have multiple options that must be set through
individual setter methods before an action method can be
called. For example, before a Button object in the SWT
framework is displayed, methods setText, setFont, addSe-
lectionListener, and setSelection may be called in any or-
der. Reordering calls to these methods should not cause a
factored test to fail.

To address this problem, the transcript object can be fur-
ther modified to allow an unordered set, or clump, of method
calls to be the trigger to advance to a new state, rather than
changing state on every method call that is not read-only.

3Static analysis to compute the relation is difficult. For
instance, a may-alias analysis would not be enough, since
even if two objects are definitely not aliased, they can both
reference a third object that is modified by calls to either of
the first two.

Choosing the right method calls for advancing the state is
important. In our example, methods that read-write tend to
be important state-changing operations like open, close, or
addListener. This suggests the heuristic of allowing write-
only method calls to clump, but advancing the state on read-
write method calls.

9. Related work and conclusion

Section 4.4 discussed the most closely related work: other
approaches to instrumenting Java files for tasks such as cap-
ture and replay.

Mocking is closely related to stubbing, a well-known tech-
nique used in testing [4]. However, stubbing is manual; re-
places a non-existent, rather than merely expensive, compo-
nent (stubbing is a pre-implementation approach, and mock-
ing is a post-implementation approach); and is more general:
a stub may work with multiple tests, whereas a mock object
asserts that it is used in specific ways.

Fowler [5] suggests that when a bug is discovered by a
functional test, unit tests should be added that expose the
same bug—this introduces a small best test for that bug,
should it ever be reintroduced. Test factoring essentially
performs exactly that procedure, automatically. The fac-
tored tests are useful for informing developers of test results
more quickly, but can also be added as standalone unit tests.
The greatest challenge is ensuring that the test results are
meaningful and lead a developer to the proper error; since
test factoring failures are exceptions thrown by the code un-
der test, this should not be too difficult. As suggested in
Section 8.1, the transcript file can be viewed as a scripting
language for unit tests; we are investigating the possibility
of having users edit the factored tests or write their own.

Test suites are rich artifacts in which developers embody
substantial knowledge about a software system. This re-
search continues a line of work, advocated by us and others,
to mine these artifacts in order to extract useful information
from them. Test factoring is just one approach to exploit
existing test suites in order to make testing more effective.
Related approaches are test selection [7, 6, 9], prioritiza-
tion [16, 10, 15], augmentation (say, via coverage), etc.

Test factoring mines fast, focused unit tests from slow
system-wide tests; each new unit test exercises only a sub-
set of the functionality exercised by the system test. We
have described a novel algorithm for test factoring that cre-
ates mock objects that simulate the behavior of part of the
software system. We have also described other uses for the
information, and how to adjust the algorithm to trade off re-
silience to code changes against false positives or negatives.
To our knowledge, our test factoring implementation, which
operates on Java programs of substantial size and complex-
ity, is the first practical system for performing partial cap-
ture and replay of a Java program. Our experiments show
that test factoring can significantly reduce the running time
of a system test suite.

References

[1] B. W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. I[EFEE
Transactions on Software Engineering, 27(2):1-25,

10

(10]

(1]

(12]

(13]

(14]

(15]

(16]

Feb. 2001. A previous version appeared in ICSE 99,
Proceedings of the 21st International Conference on
Software Engineering, pages 213-224, Los Angeles,
CA, USA, May 19-21, 1999.

M. Factor, A. Schuster, and K. Shagin.
Instrumentation of standard libraries in
object-oriented languages: The Twin Class Hierarchy
approach. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2004), pages
288-300, Vancouver, BC, Canada, Oct. 26-28, 2004.
M. C. Feathers. Working Effectively with Legacy Code.
Pearson Education, 2004.

M. Fowler. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley, 2000.

M. J. Harrold, R. Gupta, and M. L. Soffa. A
methodology for controlling the size of a test suite.
ACM Transactions on Software Engineering and
Methodology, 2(3):270-285, July 1993.

H. K. N. Leung and L. White. Insights into regression
testing. In Proceedings of the Conference on Software
Maintenance, pages 6069, Miami, FL, Oct. 16-19,
1989.

A. Orso and B. Kennedy. Selective capture and replay
of program executions. In Workshop on Dynamic
Analysis (WODA), St. Louis, MO, USA, May 17,
2005.

G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22(8):529-551, Aug. 1996.

G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
IEEFE Transactions on Software Engineering,
27(10):929-948, Oct. 2001.

D. Saff and M. D. Ernst. Reducing wasted
development time via continuous testing. In
Fourteenth International Symposium on Software
Reliability Engineering, pages 281-292, Denver, CO,
Nov. 17-20, 2003.

D. Saff and M. D. Ernst. Automatic mock object
creation for test factoring. In ACM
SIGPLAN/SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’04),
pages 49-51, Washington, DC, USA, June 7-8, 2004.
D. Saff and M. D. Ernst. Continuous testing in
Eclipse. In 2nd Eclipse Technology FExchange
Workshop (eTX), Barcelona, Spain, Mar. 30, 2004.
D. Saff and M. D. Ernst. An experimental evaluation
of continuous testing during development. In ISSTA
2004, Proceedings of the 2004 International
Symposium on Software Testing and Analysis, pages
76-85, Boston, MA, USA, July 12-14, 2004.

A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
ISSTA 2002, Proceedings of the 2002 International
Symposium on Software Testing and Analysis, pages
97-106, Rome, Italy, July 22-24, 2002.

W. E. Wong, J. R. Horgan, S. London, and

H. Agrawal. A study of effective regression testing in
practice. In Fighth International Symposium on
Software Reliability Engineering, pages 264274,
Albuquerque, NM, Nov. 2-5, 1997.

