
Byzantine Clients Rendered Harmless

Barbara Liskov and Rodrigo Rodrigues
MIT CSAIL and INESC-ID

32 Vassar Street - Cambridge, MA 02139 - USA
Rua Alves Redol 9 - 1000 Lisboa - Portugal

Abstract

Byzantine quorum systems have been proposed that work properly even when up to f replicas fail arbitrarily.
However, these systems are not so successful when confronted with Byzantine faulty clients. This paper presents novel
protocols that provide atomic semantics despite Byzantine clients. Our protocols are the first to handle all problems
caused by Byzantine clients. They prevent Byzantine clients from interfering with good clients: bad clients cannot
prevent good clients from completing reads and writes, and they cannot cause good clients to see inconsistencies. In
addition we also prevent bad clients that have been removed from operation from leaving behind more than a bounded
number of writes that could be done on their behalf by a colluder.

Our protocols are designed to work in an asynchronous system like the Internet and they are highly efficient. We
require 3f + 1 replicas, and either two or three phases to do writes; reads normally complete in one phase and require
no more than two phases, no matter what the bad clients are doing.

We also present strong correctness conditions for systems with Byzantine clients that limit what can be done on
behalf of bad clients once they leave the system. Furthermore we prove that our protocols are both safe (they meet
those conditions) and live.

1 Introduction

Quorum systems [4, 14] are valuable tools for building
highly available replicated data services. A quorum sys-
tem can be defined as a set of sets (called quorums) with
certain intersection properties. These systems allow read
and write operations to be performed only at a quorum of
the servers, since the intersection properties ensure that
any read operation will have access to the most recent
value that was written.

The original work on quorum systems assumed that
servers fail benignly, i.e., by crashing or omitting some
steps. More recently, researchers have developed tech-
niques that enable quorum systems to provide data avail-
ability even in the presence of arbitrary (Byzantine) faults [9].
Earlier work provides correct semantics despite server (i.e.,
replica) failures and also handles some of the problems of
Byzantine clients [9, 10, 5, 1, 2, 11, 12].

This paper extends this earlier work in two important
ways. First, it defines new protocols that handle all prob-
lems of Byzantine clients. In addition, our protocols are
more efficient than previous proposals, in terms of both
operation latency and number of replicas. Second, the
paper states correctness conditions for such systems and
proves that protocols are correct. The correctness condi-
tions are stronger than what has been stated previously [11]
and what has been guaranteed by previous approaches.

Since a dishonest client can write garbage into the shared
variable, it may seem there is little value in limiting what
bad clients can do. But this is not the case, for two reasons.
First, bad clients can cause a protocol to misbehave so that
good clients are unable to perform operations (i.e., the pro-
tocol is no longer live) or observe incorrect behavior. For
example, if the variable is write-once, a good client might
observe that its state changes multiple times.

Second, bad clients can continue to interfere with good
ones even after they have been removed from operation,
e.g., by a system administrator who learns of the misbe-
havior. We would like to limit such interference so that,
after only a limited number of writes by good clients, any
lurking writes left behind by a bad client will no longer be
visible to good clients. A lurking write is a modification
launched by the bad client before it was removed from
operation that will happen (possibly with help from an ac-
complice) after it has left the system. By limiting such
writes we can ensure that the object becomes useful again
after the departure of the bad client, e.g., some invariant
that good clients preserve will hold.

Of course, it is not possible to prevent actions by a bad

client, even if it has been shut down, if the private key it
uses to prove that it is authorized to modify an object can
be used by other nodes; thus, a bad client is in the system
as long as any node knows its private key. If nodes can
expose their private keys, we can make statements about
behavior in the absence of a bad client only when all faulty
nodes have been removed from operation [11] – a condi-
tion that is not very useful in practice. A more practical ap-
proach is make use of secure cryptographic coprocessors
(like the IBM 4758 [7]) that allow signing without expos-
ing the private key. Our correctness condition is stated in
a way that allows either model about the lifetime of faulty
nodes in the system.

Thus, we make the following contributions:

• We present strong correctness conditions for an atomic
read/write object in a system in which both clients
and replicas can be Byzantine. Our conditions en-
sure atomicity for good clients, and also limit the
effects of bad clients that have been removed from
operation: our conditions bound the number of lurk-
ing writes by a constant factor, and prevent lurking
writes after bad clients stop and good clients subse-
quently overwrite the data.

• We present the first Byzantine quorum protocols that
satisfy the conditions using only 3f + 1 replicas (to
survive f faulty replicas) and work in an unreliable
asynchronous network like the Internet. Further-
more our protocols are efficient: To do writes re-
quires either 3 phases (our base protocol) or mostly
2 phases (our optimized protocol). Reads usually
require 1 phase; they sometimes need an additional
phase (to write back the data just read). Our base
protocol ensures that there can be at most one lurk-
ing write after a bad client has left the system; the
optimized protocol ensures slightly weaker behav-
ior: there can be a most two lurking writes.

• We are able to manage with a small number of repli-
cas and phases because our protocol makes use of
“proofs”, an approach that we believe can be used
to advantage in other protocols. A proof is a col-
lection of 2f + 1 certificates from different replicas
that vouch for some fact, e.g., that a client has com-
pleted its previous write, or that the state read from
a single replica is valid.

• We prove the correctness of our protocols, both safety
and liveness. In addition we describe a variation of

our protocols that supports a still stronger correct-
ness condition, in which we can bound the number
of writes of good clients that it takes to ensure that
modifications of the bad client that has left the sys-
tem will no longer be visible. This variation some-
times requires an additional phase to do a write.

The rest of this paper is organized as follows. We be-
ing by describing our assumptions about the system. Sec-
tion 3 describes our base protocol. Section 4 describes
our correctness conditions and we prove our base protocol
meets them in Section 5. Section 6 describes our opti-
mized protocol and proves its correctness. Section 7 de-
scribes a variation of our protocols that allows us to bound
the number of overwrites needed to hide effects of lurking
writes. Section 8 discusses related work and we conclude
in Section 9.

2 Model

The system consists of a set C = {c1, ..., cn} of client
processes and a set S = {s1, ..., sn} of server processes.
Client and server processes are classified as either correct
or faulty. Correct processes are constrained to obey their
specification, i.e., they follow the prescribed algorithms.
Faulty processes may deviate arbitrarily from their spec-
ification, i.e., we assume a Byzantine failure model [8].
Note that faulty processes include those that fail benignly,
and those that are initially correct and fail at some point in
the execution of the system.

We refer to the set of faulty clients as Cbad and the
set of correct clients as Cok, and consequently we have
C = Cbad∪Cok (and respectively S = Sbad∪Sok). Note
that our algorithms do not require the knowledge of Cok,
Cbad, Sok, nor Sbad. In other words, we do not assume
that we can detect faults.

We assume an asynchronous distributed system where
nodes are connected by a network that may fail to deliver
messages, delay them, duplicate them, corrupt them, or
deliver them out of order, and there are no known bounds
on message delays or on the time to execute operations.
We assume the network is fully connected, i.e., given a
node identifier, any other node can (attempt to) contact
the first node directly by sending it a message.

For liveness, we require that if a message is retransmit-
ted repeatedly it will eventually be delivered. Note that we
only require this for liveness; safety does not depend on
any assumptions a about message delivery.

We assume nodes can use unforgeable digital signa-
tures to authenticate communication. More precisely, any

node, n, can authenticate messages it sends by signing
them. We denote a message m signed by n as 〈m〉σn

.
And (with high probability) no node can send 〈m〉σn

(ei-
ther directly or as part of another message) on the network
for any value of m, unless it is repeating a message that
has been sent before or it knows n′s private key. We call
the set of possible signatures Σ. These signatures can be
verified with public keys in a set P .

We also assume the existence of a collision-resistant
hash function, h, such that any node can compute a digest
h(m) of a message m and (with high probability) it is im-
possible to find two distinct messages m and m′ such that
h(m) = h(m′).

These assumptions are probabilistic but there exist sig-
nature schemes (e.g., RSA [13]) and hash functions (e.g.,
SHA-1 [3]) for which they are believed to hold with very
high probability. Therefore, we will assume they hold
with probability one in the rest of the paper.

To avoid replay attacks we tag certain messages with
nonces that are signed in the replies. We also assume that
when clients pick nonces they will not choose a repeated
nonce with probability one.

3 BFT-BC Algorithm

This section presents our construction for a read/write vari-
able implemented using Byzantine quorum replication, and
that tolerates Byzantine-faulty clients. We begin by giv-
ing a brief overview of Byzantine quorums in Section 3.1.
Then we present our base protocol. This protocol requires
3 phases to write; in Section 6 we present an optimization
that requires only 2 phases most of the time.

3.1 Byzantine Quorums Overview

This section gives an overview of how current algorithms
use Byzantine quorums to implement a shared read/write
variable. This presentation follows the original BQS pro-
tocol [9], using their construction for a system that doesn’t
handle Byzantine clients. (We discuss this system further
in Section 8.)

A Byzantine quorum system defines a set of subsets
of a replica group with certain intersection properties. A
typical way to configure such a system is to use groups of
3f + 1 replicas to survive f failures with quorums of size
2f + 1 replicas. This ensures that any two quorums inter-
sect in at least one non-faulty replica. Each of the replicas
maintains a copy of the data object, along with an asso-
ciated timestamp, and a client signature that authenticates
the data and timestamp.

Two phases are required to write the data. First, the

client contacts a quorum to obtain the highest timestamp
produced so far. The client then picks a timestamp higher
than what was returned in the first phase, signs the new
value and timestamp, and proceeds to the second phase
where the new value is stored at a quorum of replicas.

Replicas allow write requests only from authorized clients.
A replica overwrites what it has stored only if the times-
tamp in the request is greater than what it already has.

The read protocol usually has a single phase where the
client queries a quorum of replicas and returns the value
with the highest timestamp (provided the signature is cor-
rect). An extension of this protocol [10] requires a second
phase that writes back the highest value read to a quorum
of replicas (this ensures atomic semantics for reads).

3.2 BFT-BC Protocol

The protocol just presented is not designed to handle Byzantine-
faulty clients, which can cause damage to the system in
several ways, e.g.:

1. Not follow the protocol by writing different values
associated with the same timestamp.

2. Only carry out the protocol partially, e.g., install a
modification at just one replica.

3. Choose a very large timestamp and exhaust the time-
stamp space.

4. Issue a large number of write requests and hand
them off to a colluder who will run them after the
bad client has been removed from the system. This
colluder could be one of the replicas, or a com-
pletely separate machine.

To avoid these problems, we need to limit what bad
clients can do. But we must also allow good clients to
make progress, in spite of bad clients that might collude
with one another and/or with bad replicas.

Our protocol accomplishes these goals. It uses 3f + 1
replicas, and quorums can be any subset with 2f +1 repli-
cas. It uses a three-phase protocol to write, consisting of a
read phase to obtain the most recent timestamp, a prepare
phase in which a client announces its intention to write a
particular timestamp and value, and a write phase in which
the client does the write that it prepared previously.

As it moves from one phase to another, however, the
client needs to “prove” that what it is doing is legitimate.
A proof takes the form of a quorum of certificates from
different replicas that vouch for some fact.

For example, the purpose of the prepare phase is for
the client to inform the replicas of what it intends to do,
and this must be acceptable, e.g., the timestamp it pro-
poses can’t be too big. Replicas that approve the prepare
request return certificates that together provide a “prepare
proof”. This proof is needed to carry out the write phase:
a client can only carry out a write that has been approved.
If a write is allowed by a replica it returns a certificate and
these certificates together form a “write proof”. This proof
is needed for the replica to do its next write: it cannot do
a second write without completing its first one. This con-
straint, plus the fact that proofs cannot be forged or pre-
dicted in advance by bad clients, is what limits the num-
ber of lurking writes a bad client can leave behind when
it stops (to be carried out by some node that colludes with
it).

We now describe our protocol in detail.
As mentioned, each object in BFT-BC is replicated at

a set of 3f +1 replicas, numbered from 0 to 3f . Quorums
can be any subset with 2f +1 replicas and we use a three-
phase protocol to write.

Each replica maintains the following per-object infor-
mation:

• data, the value of the object.

• current-ts, the associated timestamp.

• prepare-proof, a valid prepare proof for above times-
tamp and a hash of the value.

• prepare-list, a list containing the timestamp, hash,
and proposing client of currently prepared writes.

• write-ts, the timestamp of the latest write known to
have completed at 2f + 1 replicas.

In the remainder of this paper we simplify the presen-
tation by considering a system containing only a single
object, and therefore we omit object identifiers from the
description of the protocol.

3.2.1 Write Protocol

Our protocols require that different clients choose differ-
ent timestamps, and therefore we construct timestamps by
concatenating a sequence number with a client identifier:
ts = 〈ts.val, ts.id〉. We assume that client identifiers are
unique. To increment a timestamp a client with identifier c

uses the following function: succ(ts, c) = 〈ts.val + 1, c〉.

Timestamps can be compared in the usual way, by com-
paring the val parts and if these agree, comparing the
client ids.
Client Processing

To write a data object, clients go through a three-phase
protocol. In all phases, clients retransmit their requests to
account for lost messages; they stop retransmitting once
they collect a quorum of valid replies.
Phase 1. The client, c, sends a READ-TS request to all
replicas; the request contains a nonce to avoid replays.
The replies each include a prepare proof for the timestamp
being returned. The client waits for a quorum of correctly
authenticated replies. It selects the largest timestamp tmax

it received, computes a new timestamp t′ = succ(tmax, c),
and moves to phase 2.
Phase 2. The client sends PREPARE requests to all repli-
cas. The request contains the new timestamp, the prepare
proof obtained in phase 1, a hash of the value it intends
to write, and a write proof (for the most recent write done
by this client, or null if this is the first write done by this
client), all authenticated by the client. The client waits for
a quorum of PREPARE-ACKs, and then moves to phase 3;
the 2f + 1 responses it received in phase 2 constitute a
prepare proof for the write.
Phase 3. The client sends a WRITE request containing the
prepare proof along with the new value, and waits for a
quorum of valid replies, all authenticated by the client.

Each reply contains a signed statement vouching for
the write for that timestamp and the replica id of the sender.
A vector of 2f + 1 such statements constitutes a write
proof for the current operation.
Processing at replicas
Phase 1. Replicas reply to a READ-TS request by sending
the prepare proof for their current timestamp and value,
plus the nonce, all authenticated by the replica.
Phase 2. Phase 2 processing is the crucial part of the al-
gorithm. The replicas check to ensure that the timestamp
being proposed is reasonable, that the client is doing just
one prepare, that the value being proposed doesn’t differ
from a previous request for the same timestamp, and that
the client has completed its previous write.

The replica discards the message if it is invalid: if the
prepare or write proof can’t be validated, the timestamp
doesn’t have the client id in the low-order part, the pro-
posed timestamp isn’t the successor of the timestamp in
the prepare proof, or the client isn’t authorized to write
the object.

Next, the replica uses the write proof to update its write-ts:
it sets this to the larger of the timestamp in the write proof

it just received, and what it already has stored. Then it re-
moves any entry from its prepare-list whose timestamp is
less than or equal to the write-ts.

If there is still an entry in the prepare-list for the client,
the replica discards the request unless that entry matches
what is being proposed (both the timestamp and the hash).

If the replica accepts the request it updates the prepare-
list by adding the timestamp and hash for this client (un-
less this information is already in the list). Then it returns
a PREPARE-ACK message containing a signed certificate
for the new timestamp and hash.
Phase 3. Replicas carry out the request only if it is valid:
the prepare proof must be valid and the new value must
match the hash in the proof. Replicas respond to valid re-
quests by sending a WRITE-ACK containing a signed cer-
tificate for the new timestamp. The replica additionally
modifies its state if the timestamp in the request is greater
than its current timestamp; in this case it stores the pro-
vided information as the current value, timestamp, and as-
sociated prepare proof.

3.2.2 Read Protocol

The read protocol usually requires just one phase.
Phase 1. The client sends a READ request to all replicas;
the request contains a nonce. A replica replies with its
value, timestamp, prepare proof, and nonce all signed by
it. The client waits for a quorum of valid responses and
chooses the one with the largest timestamp (this is the re-
turn value). If all the timestamps are the same the read
protocol ends.
Phase 2. Otherwise the client goes on to the write-back
phase for the largest timestamp; this is identical to phase 3
when a client is doing a write, except that the client needs
to send only to replicas that are behind, and it must wait
only for enough responses to ensure that 2f + 1 replicas
now have the new information.

3.3 Discussion

In the above description we mentioned that certain mes-
sages or statements were authenticated, but the kind of
authentication that may be used was unspecified. This
issue is important since different techniques have differ-
ent costs: we can authenticate a point-to-point message by
means of symmetric cryptography by establishing session
keys and using message authentication codes (MACs). This
does not work for signing statements that have to be shown
to other parties, in which case we need to rely on more ex-
pensive public key cryptography.

Our protocol requires signing using public key cryp-
tography in two places: the phase 2 and phase 3 responses.
These signatures are needed because they are used as proofs
offered to third parties, e.g., the prepare proof is generated
for one client but then used by a different client to justify
its choice of the next timestamp.

A further point is that only the phase 2 response sig-
nature needs to happen in the foreground. The signature
for the phase 3 response can be done in the background:
a replica can do this after replying to the phase 2 request,
so that it will have the signature ready when the phase 3
request arrives.

4 Correctness Condition

This section defines the correctness conditions for a vari-
able shared by multiple clients that may incur Byzantine
failures. We begin by defining histories (Section 4.1), and
then we give our correctness condition.

4.1 Histories and Stopping

We use a definition of history similar to the one proposed
in [6], extended to handle Byzantine clients.

The execution is modeled by a history, which is a se-
quence of events of the following types:

• Invocation of operations.

• Response to operation invocations.

• Stop events.

An invocation by a client c is written 〈c : x.op〉 where
x is an object name and op is an operation name (pos-
sibly including arguments). A response to c is written
〈c : x.rtval〉 where rtval is the response value. A re-
sponse matches an invocation if their object names agree
and their client names agree. A stop event by client c is
written 〈c : stop〉.

A history is sequential if it begins with an invocation, if
every response is immediately followed by an invocation
(or a stop or no event), and if every invocation is imme-
diately followed by a matching response. A client subhis-
tory H|c of a history H is the subsequence of all events in
H whose client names are c. A history is well-formed if
for each client c, H|c is sequential. We use H to denote
the set of well-formed histories.

A object subhistory history H|x is the subsequence of
all events whose object names are x and a history H is
a single-object history for some object x if H|x = H . A
sequential specification for an object is a prefix-closed set

of single-object sequential histories for that object. A se-
quential history H is legal if each object subhistory H|x
belongs to the sequential specification of x.

An operation o in a history is a pair consisting of an
invocation inv(o) and the next matching response rsp(o).
A history H induces an irreflexive partial order <H on
the operations and stop events in H as follows: o0 <H

o1 if and only if rsp(o0) precedes inv(o1) in H; o0 <H

〈c : stop〉 if and only if rsp(o0) precedes 〈c : stop〉 in
H; 〈c : stop〉 <H o1 if and only if 〈c : stop〉 precedes
inv(o1) in H; and 〈c1 : stop〉 <H 〈c2 : stop〉 if and only
if 〈c1 : stop〉 precedes 〈c2 : stop〉 in H.

4.1.1 Verifiable Histories

In [6], the notion of linearizability is applied to a concur-
rent computation, which is modeled by a history (a finite
sequence of invocation and response events by all pro-
cesses).

It would be difficult to model such computations in our
environment, since faulty processes do not obey any spec-
ification, and therefore we cannot define what an invoca-
tion or a response means for such processes. However, we
know that after a STOP event from a faulty process it will
halt.

Therefore we introduce the concept of a verifiable his-
tory which is a history that contains the sequence of invo-
cations and responses from correct clients, and stop events
from faulty clients.

The correctness condition we present next is applicable
only to verifiable histories.

4.2 Correctness Condition

We are now ready to define the correctness condition for
variables shared by multiple processes that may incur Byzan-
tine failures.

The idea is that, as in linearizability [6], we require
that the verifiable history look plausible to the correct pro-
cesses, i.e., that there is a sequential history in which all
processes are correct that explains what the correct pro-
cesses observed. Furthermore, we require that once a faulty
client stops, its subsequent effect on the system is limited
in the following way: The number of operations by that
client that are “seen” by correct clients after it stopped is
bounded by some constant.

These concepts can be formalized as follows.
Definition 1 A verifiable history H ∈ H is BFT-linearizable
if there exists some legal sequential history H ′ ∈ H such
that

1. H|p = H ′|p,∀p ∈ Cok

2. <H⊆<H′

3. ∀c ∈ Cbad : 〈c : stop〉 ∈ H ⇒
(∃h1, h2 ⊆ H ′ : H ′ = h1 〈c : stop〉 h2 ∧
|{o ∈ h2 : o = 〈c : x.op〉}| ≤ max-b)

Points 1 and 2 of the definition above state that there
must exist a sequential history that looks the same to cor-
rect processes as the verifiable history in question, and that
sequential history must preserve the <H ordering (in other
words, if an operation or a stop event precedes another op-
eration or stop event the verifiable history, then the prece-
dence must also hold in the sequential history).

Point 3 says that if all faulty clients stop, then when
we look at the sequential history and consider the sub-
history after the last stop event by faulty clients (this is
h2), the number of events by faulty clients in that history
is bounded by max-b.

Note that there is a counter-intuitive notion that a bad
client can execute operations after it has stopped. This cor-
responds to the notion that the bad client left some pending
operations (e.g., with a colluder) before it left, and this is
precisely the effect we want to minimize.

We can now define a BFT-linearizable object to be an
object whose verifiable histories are BFT-linearizable with
respect to its sequential specification.

5 Correctness Proof

This section sketches a proof that the algorithm presented
in Section 3 meets the correctness conditions presented in
Section 4.

The idea is to look at what kind of properties we can
ensure given a certain state of the system when a faulty
client c stops. If we look at the current-ts values stored at
that instant, we can guarantee the following.
Lemma 1. Let tsmax be the f + 1st highest timestamp
stored by non-faulty replicas at time tstop (when some
faulty client c stops). Then the following must hold

1. At any time up to tstop, no node can collect a write
proof for a timestamp t′ such that t′ > tsmax.

2. There are no two timestamps t1, t2 > tsmax such that
client c assembled a prepare proof for t1 and t2.

3. No two prepare proofs exist for the same timestamp
t > tsmax and different associated values.

Proof.

1. By algorithm construction, a nonfaulty replica will not
sign an entry in a write proof vouching for a times-
tamp higher than the one held in the variable current-ts.
Since non-faulty replicas always store increasing times-
tamp values, this means that the number of signatures
that can be held in the system at time tstop for times-
tamps higher than tsmax is at most 2f (i.e., f from
faulty replicas and the f correct replicas that may hold
timestamps higher than tsmax).

2. By contradiction, suppose that client c held prepare
proofs for t1, t2, both greater than tsmax. The two
proofs intersect in at least one nonfaulty replica. By
part (1) of this lemma, that replica had its write-ts vari-
able always at a value less than or equal to tsmax (at
all times up to and including tstop). Therefore that
replica could not have signed both proofs, since after
signing the first one (say, for t1) it would insert an
entry for client c and t1 in its prepare-list, and that
entry would not be removed (because of the value of
write-ts), which prevents the replica from signing the
proof for t2.

3. Suppose, by contradiction that two prepare proofs exist
for timestamp t and values v and v′. By the quorum in-
tersection properties, these two prepare proofs contain
at least one signature from the same correct replica. By
part (1) of this lemma, no write proof was ever assem-
bled for timestamps greater or equal than tsmax, and
these entries in the prepare list were never removed.
This violates the constraint that correct replicas do not
sign a timestamp that is already in its prepare list for a
different value.

We are now ready to show the correctness of our algo-
rithm.
Theorem 1. The BFT-BC algorithm is BFT-linearizable.
Proof. Consider any correct reader in the case that the
writer is correct. In this case, the quorum initially ac-
cessed in a read operation intersects the quorum written
in the most recently completed write operation in at least
one correct replica. Therefore, the read returns either the
value in the most recently completed write, or a value with
a higher timestamp (which could be written concurrently
with the read). Since a read also writes back its obtained
value and timestamp to a quorum of processes, any subse-
quent read by a correct reader will return that timestamp
value or a later one. So, for any execution, we construct
the history needed to show BFT-linearizability by putting
every read right after the write whose value it returns.

If the writer is faulty, we construct the sequential his-
tory to show BFT-linearizability as follows: for each read
by a correct reader returning v such that the phase 3 re-
quest for v was produced by client cb, insert a write opera-
tion in the history that writes v (by client cb) immediately
before the read.

Insert a stop event before the invocation of the first op-
eration that succeeded the stop event in the original (veri-
fiable) history (i.e., as late as possible while preserving the
<H dependencies).

It is left to show that if a faulty process stops, this
history contains a bounded number of operations by that
faulty process after it stops.

To prove this condition we note that Lemma 1 part (2)
says that client c only assembled prepare proofs for a sin-
gle timestamp for a write that would become visible after
it stopped (i.e., with a timestamp greater than tsmax), and
Lemma 1 part (3) implies that if the write were to become
visible, the prepare proof could only correspond to a sin-
gle value.

This means the number of operations by the faulty client
c after it stops is at most one.

5.1 Liveness

As far as liveness is concerned, we guarantee that good
clients can always execute read operations in the time it
takes for two client RPCs to complete at 2f + 1 replicas
(i.e., the requests reaching the replicas and the respective
replies returning to the client). This is so because at least
2f +1 replicas will provide them with the appropriate an-
swers (client requests are answered unconditionally pro-
vided the requests are well-formed). For the write proto-
col, the operation will complete in the time for three client
RPCs to complete in 2f + 1 replicas, and the trick is to
ensure that their phase 2 requests are never refused (since
phase 1 requests are answered unconditionally and phase 3
requests are answered if they contain a valid prepare proof,
which good clients will always send).

The phase 2 request also get replies since the client will
submit the write proof for its latest write alongside with it,
which will force the replica to discard the client’s entry in
the prepare list and accept the prepare request.

6 Optimized BFT-BC Algorithm

This section describes our optimized protocol, which usu-
ally requires only two phases to do a write, and proves that
the optimized protocol satisfies our correctness condition.

6.1 Optimized BFT-BC

Our plan is to avoid one of the phases by merging it with
another phase. We cannot merge phases 2 and 3 since the
protocol requires that the prepare information be stored at
f +1 honest replicas before the client can do phase 3: this
is how we avoid a bad client being able to create many
writes in advance that could be launched after it leaves the
system. Therefore, we will merge phases 1 and 2.

The idea is that the client sends the hash in the phase
1 request and the replica does phase 2 on its behalf: it
predicts the next timestamp, adds the new timestamp with
the hash to the prepare-list, and returns this information,
signed by itself. If the client receives a quorum of re-
sponses all for a particular (highest) new timestamp, it can
move to phase 3 immediately.

This optimization will work well in the normal case
where a write is actually received by all replicas. There-
fore the good client is highly likely to receive a quorum of
acknowledgments for the same timestamp in the responses
in phase 1, and most of the time a write will require two
phases.

However there are problems that must be overcome for
the optimization to be used. They occur when there are
concurrent writes or when other clients are faulty.

A simple example is the following. Suppose a client
does phase 1 for some hash h. It receives PREPARE-ACKS

for a particular timestamp t from replicas R1 and R2, and
PREPARE-ACKS for a larger timestamp t′ from replicas R3
and R4. The client will then be unable to get approval
for either t or t′, because to approve the request a replica
would need to violate our restriction on having at most one
entry per client on the prepare-list.

Clearly we need to find a way to allow clients to do
writes in cases like this one. But given our current con-
straints this is not possible.

To allow the client to make progress we will weaken
our constraint on how many entries a client can have in the
prepare list. In particular we will change the replica state
to have a second prepare list, opt-list, containing entries
produced by the replica, with the constraint that a client
can have at most one entry per list. The two entries for
the same client (one in each list) might be for different
timestamps, or they might be for the same timestamp. In
the latter case, it will be possible for the write with that
timestamp to happen twice (when there is a bad client). In
this case we need a way to order the writes: we will do
this by using the numeric order on their hashes.

6.2 Detailed Write Protocol

Phase 1. The client, c, sends a READ-TS-PREP request
containing the hash of the proposed value, and the client’s
current write proof, to all replicas.

Replicas process the request in the usual phase-2 way,
including removing entries from the prepare-lists. Then it
will do the prepare on behalf of the client for timestamp
t′ = succ(ts, c), unless the client already has an entry in
either prepare list for a different timestamp or hash. If
the prepare is successful, the replica adds an entry to the
opt-list for t′ and the hash (unless that entry is already in
the list) and returns a PREPARE-ACK signed by it; other-
wise it returns a normal phase 1 response.

If the client gets a quorum of PREPARE-ACKS (i.e.,
obtains a prepare proof) for the same new timestamp, it
moves to phase 3.
Phase 2. Otherwise the client chooses the new timestamp
as before and carries out phase 2 for it (as in the normal
protocol). When it has a quorum of signatures for this
choice (obtained either in phase 1 or phase 2), it moves to
phase 3.

Replicas handle phase 2 requests as in the normal pro-
tocol; they ignore the opt-list in this processing.
Phase 3. The client does phase 3 in the normal way.

The replica also does normal processing, except that
the timestamp in the write might match the current times-
tamp, but with a different value: in this case it retains the
value with the larger hash.

6.3 Discussion

The optimized protocol can lead to a client having entries
on two prepare lists (normal and optimized). A dishonest
client can exploit this to carry out phase 3 twice as part
of the same write request. And as a result, each dishon-
est client can leave two lurking writes behind when it is
removed from the system.

Another point is that it is now possible for honest clients
to see valid responses to a read request that have the same
timestamp but different values. The client protocol re-
solves this situation by returning (and writing back) the
value with the larger hash.

6.4 Optimized BFT-BC Correctness Proof

For the optimized protocol some of the invariants shown
in Section 5 need to be slightly modified. Notably, Lemma
1 parts (2) and (3) no longer hold, since a faulty client can
now collect two distinct prepare proofs (for its entries in
prepare-list and opt-list). Therefore Lemma 1 parts (2)
and (3) become:

Lemma 1’.
(2+3). For the optimized BFT-BC protocol, no more than
two prepare proofs can exist for distinct timestamp, value
pairs, with timestamps greater than tsmax.
Proof. Same as Lemma 1, but taking into consideration
that the new algorithm allows for one entry in the normal
prepare list, and another in the optimistic prepare list.

This only affects the proof of Theorem 1 in that the
number of operations by a faulty client after it stops be-
comes 2 instead of 1, and therefore the main theorem still
holds:
Theorem 2. The optimized BFT-BC algorithm is BFT-
linearizable.

7 Stronger Correctness Conditions

In this section we propose a stronger correctness condition
than the one introduced in Section 4, and discuss how to
extend the current protocol to meet the new condition.

7.1 New Correctness Conditions

The idea is that we want to further limit the effects a bad
client can have on the system once it stopped such that,
if correct clients execute a certain number of write opera-
tions after a faulty client stops, then no more operations by
that client will ever be “seen”. (We can generalize this to
any state-overwriting operation in a set Ooverwrite in case
the variable has an interface other than read and write.)

We formalize the BFT-linearizable+ condition as be-
ing equal to the condition presented in Section 4, except
that point (3) is modified to state that no operations by the
faulty client c appear after the kth state-overwriting oper-
ation in h2.

7.2 Modified BFT-BC protocol

To meet this stronger correctness condition, we merely
need to modify the BFT-BC protocol to require the client
to submit a write proof in its prepare request (along with
the information it already sends in the prepare). This proof
certifies that the timestamp it is proposing is the successor
of one that corresponds to a write that has already hap-
pened; a replica will discard the request if this condition
doesn’t hold.

The client can easily assemble this proof in phase 1
if all responses to its phase 1 request contain the same
timestamp. If they don’t the client can obtain the proof
by doing a write-back; the difficulty is getting the value to
write back. This could be accomplished by having phase
1 actually be a read, but this is unattractive since values

can be large. So instead, the client fetches the value, if
necessary, in a separate step; effectively it redoes phase
1 as a normal read, although this can be optimized (e.g.,
to fetch from the f + 1 replicas that returned the largest
timestamps).

This scheme guarantees that the timestamp in the lurk-
ing write is the successor of a lower bound on the value
stored by at least f + 1 non-faulty replicas when the bad
client stopped. Consequently, if there were two consecu-
tive writes by correct clients after the bad client stopped,
the lurking write would no longer be seen.

8 Related Work

In this section we discuss the previous work that dealt with
bad clients, and also the previous work on correctness con-
ditions.

Our protocol is more efficient than those proposed pre-
viously. Furthermore it enforces stronger constraints on
the behavior of bad clients: we handle all problems han-
dled by previous protocols plus we limit the number of
lurking writes that a bad client can leave behind after it
has left the system.

In addition we provide stronger safety and liveness guar-
antees than previous protocols: in particular read opera-
tions cannot return null values, and reads terminate in a
constant number of rounds, independently of the behavior
of concurrent writers.

Our use of prepare proofs is what enables us to ensure
liveness, since this allows a client to complete a read using
information it received from just one replica. No previous
protocol uses this technique. As a result they can only en-
sure that a read will return the result of the latest write in
a constant number of rounds provided there are no con-
current writes. Yet concurrent writes are a real issue in a
system with Byzantine clients, since bad clients can use
this to prevent good clients from making progress: they
can either write continually, or they can write partially (not
complete their writes), and either of these causes problems
for readers.

The previous proposals fall into two categories: those
that ensure that at most one value can be associated with
a timestamp, and those that enforce non-skipping times-
tamps.

The initial work on Byzantine quorum systems [9] de-
scribed the quorum consensus protocol discussed in Sec-
tion 3, which used 3f+1 replicas, one phase reads and two
phase writes, and did not handle Byzantine clients. That
paper also described a protocol for a system of 4f + 1
replicas that prevented malicious clients from associating

different values with different timestamps; the protocol re-
quired a three-phase communication among the replicas to
be carried out as part of performing a write (in addition to
the client-server communication) where servers guarantee
that each value and timestamp pair is propagated to a quo-
rum. The protocol provides liveness, but at the expense
of providing weak semantics for reads where they could
return a null value in case of concurrent writes.

The Phalanx system [10] improves on the previous re-
sult in two ways. First it added the write-back phase (to the
simpler protocol) as a way to ensure atomicity for reads.
In addition it presented a more efficient protocol to handle
Byzantine clients. That protocol used 4f + 1 replicas, but
clients carried out a three-phase protocol to do a write, and
the server-to-server communication was no longer needed.
In the new protocol for Byzantine clients, read operations
could return a null value if there was an incomplete or a
concurrent write.

The work by Goodson et al. [5] proposes a solution for
erasure-coded storage that tolerates Byzantine failures of
clients and servers; this system requires 4f + 1 replicas.
This work is focused on integrating erasure coded storage
with Byzantine quorum protocols and they tolerate Byzan-
tine clients that write different “values” to different repli-
cas by having the next reader detect the inconsistency and,
if possible, repair it. In some cases, reads may return a null
value.

The work of Martin et al. [12] proposes a protocol that
only uses 3f + 1 replicas (like our protocol). They re-
quire a quorum of 2f + 1 identical replies for read oper-
ations to succeed, which is difficult to ensure in an asyn-
chronous system. Their solution is to assume a reliable
asynchronous network model, where each message is de-
livered to all correct replicas. This means that infinite re-
transmission buffers are needed in an asynchronous envi-
ronment like the Internet: the failure of a single replica
(which might just have crashed) causes all messages from
that point on to be remembered and retransmitted. In this
protocol concurrent writers can slow down readers. The
authors discuss how to extend their protocols to guaran-
tee that Byzantine clients associate the same value with
the same timestamp by having servers forward the writes
among themselves (again, this is possible due to their net-
work model) and keep the highest value for each times-
tamp. They also discuss how to prevent a faulty client
from exhausting resources at correct servers, but at the ex-
pense of possibly sacrificing liveness for correct readers.

Two papers (Bazzi and Ding [1], Cachin and Tessaro [2])
describe protocols that enforce non-skipping timestamps.

In both cases, the protocols are based on the Martin et
al. work, which uses the reliable asynchronous network
model with the problems we mentioned above. The proto-
col of Bazzi and Ding [1] requires 4f +1 replicas. Cachin
and Tessaro [2] require 3f + 1 replicas; an added prob-
lem in this system is the use of threshold signatures to
vouch for an increment on the current timestamp (since
these signatures are very expensive). They also employ an
expensive reliable broadcast mechanism for client-server
communication.

Our definition of BFT-linearizability presented in Sec-
tion 4 builds upon a condition (called Byznearizability)
proposed by Malkhi et al. [11]. This work was the first
to point out the problem of lurking writes. However, their
correctness condition is weaker than ours, since they re-
quire only that the number of lurking writes is finite, whereas
we require that the number of lurking writes is bounded
by a constant. In fact, their correctness condition is met
by the variant of the Phalanx protocol [10] that was de-
signed to handle only honest clients. Another point is that
this paper did not consider the use of secure co-processors
to prevent malicious clients from leaking their private key,
and therefore their condition requires all faulty clients and
servers to stop in order to provide any guarantees.

Our condition is also stronger due to the fact that we
consider the number of overwrites to mask all the lurking
writes (see Section 7).

9 Conclusions

This paper has presented novel protocols for Byzantine
quorum systems that provide atomic semantics despite Byzan-
tine faulty clients. Ours is the first protocol to fully address
the complete range of problems that can arise with Byzan-
tine clients. We prevent bad clients from leaving behind
more than one or two lurking writes and from exhausting
the timestamp space. In addition Byzantine clients are un-
able to interfere with good clients in the sense that they
cannot prevent good clients from completing reads and
writes, and they cannot cause good clients to see incon-
sistencies. Another point is that an extension of our pro-
tocol can additionally ensure that the effects of a Byzan-
tine client are no longer visible to good clients at all after
two successive writes by good clients (or four successive
writes in the optimized protocol).

We also presented strong correctness conditions that
address the above problems: we require that protocols
guarantee atomicity for good clients, and limit what can
be done on behalf of bad clients once they leave the sys-
tem. Furthermore we proved that our protocols are both

safe (they meet those conditions) and live.
Our protocols are designed to work in an asynchronous

system like the Internet and they are highly efficient. Our
base protocol completes writes in three network round-
trips; the optimized protocol reduces this cost so that writes
normally complete in two network round-trips (at the ex-
pense of allowing one more lurking write). In either case
reads normally complete in one phase, and require no more
than two phases, no matter what the bad clients are do-
ing. We achieve these efficiencies because of our use of
“proofs”, which allow clients or replicas to know that in-
formation presented to them is valid, without having to
hear the same thing directly from 2f + 1 replicas.

References
[1] R. Bazzi and Y. Ding. Non-skipping timestamps for byzantine

data storage systems. In Distributed Computing, 18th Interna-
tional Conference, DISC 2004, pages 405–419, Oct. 2004.

[2] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded
byzantine distributed storage. Technical Report RZ 3575, IBM
Research, Feb. 2005.

[3] FIPS 180-1. Secure Hash Standard. U.S. Department of Com-
merce/NIST, National Technical Information Service, Spring-
field, VA, Apr. 1995.

[4] D. K. Gifford. Weighted voting for replicated data. In 17th SOSP.
[5] G. Goodson, J. Wylie, G. Ganger, and M. Reiter. Efficient

byzantine-tolerant erasure-coded storage. In Proc. of the Inter-
national Conference on Dependable Systems and Networks, June
2004.

[6] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects.
In Conference Record of the Fourteenth Annual ACM Symposium
on Principles of Programming Languages, pages 13–26, Munich,
Germany, Jan. 1987.

[7] IBM. http://www.ibm.com/security/cryptocards/, 2005.
[8] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals

Problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[9] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Journal
of Distributed Computing, 11(4):203–213, 1998.

[10] D. Malkhi and M. Reiter. Secure and scalable replication in pha-
lanx. In Proc. 17th SRDS, Oct. 1998.

[11] D. Malkhi, M. Reiter, and N. Lynch. A Correctness Condi-
tion for Memory Shared by Byzantine Processes. Unpublished
manuscript, Sept. 1998.

[12] J. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine stor-
age. Technical Report TR-02-38, University of Texas at Austin,
Department of Computer Sciences, Aug. 2002.

[13] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communica-
tions of the ACM, 21(2):120–126, Feb. 1978.

[14] R. H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Transactions on
Database Systems, 4(2):180–209, June 1979.

