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Abstract
Typestate systems ensure many desirable properties of imperative
programs, including initialization of object fields and correct use of
stateful library interfaces. Abstract sets with cardinality constraints
naturally generalize typestate properties: relationships between the
typestates of objects can be expressed as subset and disjointness
relations on sets, and elements of sets can be represented assets
of cardinality one. In addition, sets with cardinality constraints
provide a natural language for specifying operations and invariants
of data structures.

Motivated by these program analysis applications, this paper
presents new algorithms and new complexity results for constraints
on sets and their cardinalities. We study several classes ofcon-
straints and demonstrate a trade-off between their expressive power
and their complexity.

Our first result concerns a quantifier-free fragment of Boolean
Algebra with Presburger Arithmetic. We give a nondeterministic
polynomial-time algorithm for reducing the satisfiabilityof sets
with symbolic cardinalities to constraints on constant cardinalities,
and give a polynomial-space algorithm for the resulting problem.
The best previously existing algorithm runs in exponentialspace
and nondeterministic exponential time.

In a quest for more efficient fragments, we identify several
subclasses of sets with cardinality constraints whose satisfiabil-
ity is NP-hard. Finally, we identify a class of constraints that has
polynomial-time satisfiability and entailment problems and can
serve as a foundation for efficient program analysis. We givea sys-
tem of rewriting rules for enforcing certain consistency properties
of these constraints and show how to extract complete information
from constraints in normal form. This result implies the soundness
and completeness of our algorithms.

1. Introduction
Program analyses that reason about deep semantic properties are of
great value for software development; the value of such analyses
is growing with the adoption of language constructs that eliminate
low-level program errors. Many deep semantic properties are natu-
rally expressible in fragments of set theory, so constraintsolving for
such fragments is of interest. This paper presents new algorithms
and improved complexity bounds for fragments of set theory.The
starting point of our constraints is the boolean algebra of finite (but
unbounded) sets.
Sets in program analysis. The boolean algebra of finite sets
is a fragment of set theory that allows the basic set operations
of intersection, union, and complement on sets of uninterpreted
elements. Although simple, it turns out that this fragment can

express many properties of interest in program analysis. Examples
include typestate properties and public interfaces of datastructures.

Set specifications generalize typestate properties [29, 26]: the
fact that an objecto is in the typestatet is represented as the set
membership ofo in t. Through inclusion and disjointness con-
straints, sets can also express relationships (such as hierarchy or
orthogonality) between different typestates. Objects canbe rep-
resented as sets of cardinality one using a cardinality constraint
|o| = 1, so set membership reduces to subset. Multiple set member-
ships can then encode constraints such as|t| ≥ k for any constant
k.

Sets can also provide natural abstractions of container data
structures. When a content of a data structure is represented as an
abstract sets, an operation such as insertion can be characterized
by a postconditions′ = s ∪ e wheree is the set corresponding
to the element being inserted. By expressing both typestates and
data structure abstractions, sets can be used to combine theresults
of different analyses operating on the same program. Such an
approach allows us to combine the scalability of typestate analysis
with the precision of shape analysis and theorem proving [30, 28,
27, 46].
Sets with cardinality constraints. The use of the cardinality op-
erator on sets leads to a connection between set algebra opera-
tions and integer linear arithmetic, as evidenced, for example, in
the condition|a ∪ b| = |a| + |b| for disjoint setsa and b. It is
therefore natural to consider constraints that combine integer linear
arithmetic with set algebra operations. These constraintsconstitute
the Quantifier-Free Boolean Algebra with Presburger Arithmetic,
or QFBAPA for short — they are the quantifier-free fragment of
BAPA constraints whose decision procedure and complexity we
have studied in [23, 22].QFBAPA constraints can be used to ver-
ify an invariant such as|a| = |b| which allows us to conclude that
if a is nonempty, so isb, and therefore it is possible to call an op-
eration that removes an element fromb. Similarly, if i is an integer
variable ands is a set, it is possible to verify an invariant|s| = i
stating that an integeri correctly maintains the size of the sets.
In our experience, specialized decision procedures such as[22] are
the only automated technique for deciding with non-trivialcardi-
nality constraints. Currently, however, the complexity ofthese de-
cision procedures limits their applicability. In this paper we give
new algorithms for solving set cardinality constraints; these algo-
rithms provide exponential improvements over existing approaches
and make the checking of cardinality constraints in larger formulas
more feasible.

Our paper provides a systematic study of constraints on setsin
the presence of cardinalities. We study both more expressive and
less expressive fragments and demonstrate a trade-off between the
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 ≤ T2 | K dvd T

B ::= s | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= i | K | T1 + T2 | K · T | |B|

K ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .

Figure 1. Quantifier-Free Formulas of Boolean Algebra with Pres-
burger Arithmetic (QFBAPA)

expressive power and the efficiency of the algorithms. The main
contributions of our paper are the following:

• PSPACE algorithm for QFBAPA. The best previously
known algorithms forQFBAPA [23, 22, 45] execute in non-
deterministic exponential time, and involve searching foran ex-
ponentially large object. In this paper we first give a form of
bounded model property that shows that it is possible to replace
reasoning about symbolic cardinalities such as|a| = i∧|a| = i
wherei is an integer variable, with guessing sufficiently large
constant cardinalities, such as|a| = 1000 ∧ |b| = 1000. More-
over, we give a space-efficient algorithm for solving the result-
ing constraints on sets with large constant cardinalities.This
gives a PSPACE decision procedure forQFBAPA and is the
first contribution of this paper.

• A Polynomial-Time Class. Given thatQFBAPA constraints
are NP-hard, the question remains whether there are interest-
ing fragments of sets with cardinalities which can be reasoned
about in polynomial time. In a quest for such fragments, we
identify several features of constraints, each of which leads to
NP-hardness. By eliminating these features we have discovered
a class (calledi-trees) that has a polynomial-time satisfiability
and entailment (subsumption) problems, while still supporting
subset, union, disjointness, and arbitrarily large cardinality con-
straints. This class can therefore express generalized typestate
constraints such as multiple orthogonal classifications into inde-
pendent or disjoint sets. The identification of this polynomial-
time class, and the development of algorithms for testing the
satisfiability and subsumption of constraints in this classis the
second contribution of this paper. While the resulting algo-
rithms are efficient, the proof of their completeness is some-
what lengthy, and involves characterizations of normal forms
of i-trees and the construction of models for i-trees in normal
form. We therefore only summarize the main ideas; we refer
the reader to the full version of the paper [32] for details. Addi-
tional proofs are also included in the Appendix.

We proceed by defining the fragmentQFBAPA in Section 2. We
present a PSPACE algorithm forQFBAPA in Section 3, defining
the simplerCBAC constraints and identifying their NP-complete
fragment,CBASC constraints.

2. Constraints on Sets with Cardinalities
Boolean Algebra with Presburger Arithmetic. Figure 1 presents
the syntax of the constraints studied in this paper, we call these for-
mulas Quantifier-Free Boolean Algebra with Presburger Arithmetic
(QFBAPA). QFBAPA constraints contain two kinds of values: in-
tegers and sets, each with corresponding applicable operations. The
sets are interpreted as subsets of some arbitrarily large finite set.s
denotes a set variable,i denotes an integer variable. The symbol
|B| denotes the cardinality of the setB and establishes the connec-
tion between set and integer terms.MAXC is a special free variable
denoting the size of the universal set. Ifb is a set,bc denotes its
complement.K dvd T denotes thatK dividesT . K denotes con-
stants, encoded in binary: a constantk is encoded usingO(log k)

bits. The symbolA in Figure 1 denotes atomic formulas; a literal is
an atomic formula or its negation.

A quantified versionof this language (BAPA) is studied in
[23, 22]; where we give an algorithm that establishes a doubly ex-
ponential space upper bound on the complexity. Because quanti-
fiedBAPA subsumes Presburger arithmetic, the doubly exponential
nondeterministic time lower bound [15] applies toBAPA as well.
Preliminaries. If S is a finite set,|S| denotes the number of
elements inS. A literal is an atomic formula or its negation.Z =
{. . . ,−1, 0, 1, . . .} is the set of integers,N = {0, 1, . . .} is the
set of natural numbers.[a..b] denotes the set of integers{a, a +
1, . . . , b}. If f : A → B is a function andS ⊆ A, we define
f [S] = {f(a) | a ∈ S}.

If A is a set, the notationAy has several potential meanings;
the specific meaning should be clear from the context.An for
n ∈ {1, 2, . . . , } is the set of vectors(a1, . . . , an) whereaj ∈ A
for 1 ≤ j ≤ n, andAm,n is the set of matrices[apq] with m
rows andn columns with elementsapq for 1 ≤ p ≤ m and
1 ≤ q ≤ n. The expressionAc denotes the complement of the
setA. If α ∈ {0, 1}, thenAα denotesA for α = 1 andAc for
α = 0.

The relation≡ denotes the equality of the values of metavari-
ables denoting syntactic objects, so iff1 andf2 are formulas, then
f1 ≡ f2 means that they are the same formula. In the context of
inclusion diagrams (Section 4),≡ will denote the semantic equiva-
lence of diagrams (we use= to denote the equality of diagrams).

3. A PSPACE Algorithm for QFBAPA

Verification conditions arising in program verification canoften
be expressed using quantifier-free formulas, so it is natural to ex-
amine whether more efficient algorithms exist forQFBAPA con-
straints. When applied toQFBAPA formulas, existing algorithms
run in non-deterministic exponential time (NEXPTIME): theal-
gorithm [45] requires nondeterministically guessing an exponen-
tially large object, whereas the algorithmα from [22] produces an
exponentially large quantifier-free Presburger arithmetic formula.
The question arises whether there exist algorithms that avoid non-
deterministically guessingexponentially large objects. We show
that this is indeed the case. Namely, we first show that Presburger
arithmetic formulas generated by the algorithmα from [22] can in
fact be solved indeterministicexponential time. Our result reduces
QFBAPA to a simpler system ofCBAC constraints (shown in Fig-
ure 3), then applies a theorem by Papadimitriou [36] in a novel
way. This leads to a deterministic EXPTIME decision procedure
for QFBAPA satisfiability, which is an improvement on previously
existing algorithms. Nevertheless, the question arises whether it is
possible to avoid the construction of a non-deterministically large
system of equations. It turns out that this is indeed possible: we
present an alternating polynomial-time (and therefore, PSPACE)
algorithm forQFBAPA. Therefore, it is possible to solveQFBAPA
using solvers for quantified boolean formulas [9, 48, 37].

Figures 2 and 4 present our PSPACE algorithm forQFBAPA.
The algorithm has two phases.

In the first phase, the non-deterministic polynomial-time algo-
rithm in Figure 2 reducesQFBAPA constraints to a simpler class
of constraints. We call these simpler constraintsConjunctions of
Boolean Algebra expressions with Cardinalities(CBAC). CBAC
constraints have a very simple syntactic structure (see Figure 3),
but capture the key difficulty in solvingQFBAPA: the need to con-
sider exponentially large cardinalities on exponentiallymany set
partitions.

In the second phase, the algorithm in Figure 4 checks the satis-
fiability of CBAC in alternating polynomial time and therefore in
polynomial space. The key insight behind our algorithm is that it
is possible to use a divide and conquer approach to avoid explicitly
representing all possible regions in the Venn diagram.
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Let f be the inputQFBAPA formula.

1. Replace eachZ-variable with a difference of twoN-
variables:

C[i1, . . . , in]→ C[i′1 − i′′1 , . . . , i′n − i′′n]

i′1, i
′′
1 , . . . , i′n, i′′n are freshN-variables

2. Ensure that all set algebra expressions appear within
cardinality constraints by normalizing with the following
rules:

C[b1 = b2]→C[b1 ⊆ b2 ∧ b2 ⊆ b1]

C[b1 ⊆ b2]→C[|b1 ∩ bc
2| = 0]

3. Eliminate divisibility constraints:
C[k dvd t]→ C[ki = t], i is freshN-variable

4. Move all cardinality constraints to top level:

C[|b1|, . . . , |bn|]→ f1 ∧ f2

where f1
def
≡ C[i1, . . . , im1

]

f2
def
≡ |1|=MAXC ∧

m1
V

j=1

|bj |=ij

andi1, . . . , im1
are freshN-variables

5. Let p be a propositional formula such that
p(a1, . . . , am0

) ≡ f1 for atomic formulasa1, . . . , am0
.

Nondeterministically select the truth valueαj ∈ {0, 1}
for each atomic formulaaj , so thatp(a1, . . . , am0

) is

true. Letf11
def
≡

m0
V

j=1

a
αj

j .

6. For each conjunct ¬(t1=t2) in f11, non-
deterministically replace the conjunct with one of
the conjuncts(t1 + 1 ≤ t2) or (t2 + 1 ≤ t1).

7. Transform linear integer constraints to normal form:

C[¬(t1 ≤ t2)]→C[t2 + 1 ≤ t1]

C[t1 ≤ t2] →C[t1 − t2 + i = 0]

C[t1 = t2] →C[
Pn

j=1 cjij = k]

8. Let n0 be the number of integer variables in the entire
formula. The resulting system is of the form:

Av = d ∧
Vm1

j=1 |bj | = ipj

whereA ∈ Zm0,n0 , d ∈ Zm0 , andv = (i1, . . . , in0
)

where eachij is a variable ranging overZ and 1 ≤
p1, . . . , pm1

≤ m1 are variables denoting cardinalities
of sets. LetS be the total number of set variables in
b1, . . . , bm1

. Let m = m0 + m1, n = max(n0, 2
S),

and letM = n(ma)2m+1.

9. Non-deterministically select a vectork = (k1, . . . , kn0
)

wherekj ∈ {0, 1, . . . , M} for 1 ≤ j ≤ n0, such that
Ak = d.

10. Call CBAC decision procedure on
m1
V

j=1

|bj | = kpj
. If

there exists a solution, then report the formula satisfiable.

Figure 2. An NP Algorithm for ReducingQFBAPA Constraints
to CBAC constraints of Figure 3

F ::= |B|=K | F1 ∧ F2

B ::= s | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

K ::= 0 | 1 | 2 | . . .

Figure 3. Conjunctions of Boolean Algebra expressions with Car-
dinalities (CBAC)

Given aCBAC constraint
m1
X

j=1

|bj | = kj

where the free set variables ofb1, . . . , bm1
are amongs1, . . . , sS ,

runCBAC-check([], d) with d = (k1, . . . , km1
).

procCBAC-check([v1, . . . , vn], d) returnsresult
wherev1, . . . , vn, result ∈ {0, 1}; d ∈ Nm1

if (n < S) then
existentially choosed0, d1 ∈ Nm1 such thatd0 + d1 = d;
universally do

r1 = CBAC-check([v1, . . . , vn, 0], d0) and
r2 = CBAC-check([v1, . . . , vn, 1], d1);

returnr1 ∧ r2;
else

let pj = eval(bj , [s1 7→ v1, . . . , sS 7→ vS ])
for all (1 ≤ j ≤ m1);

J0 = {dj | pj = 0};
J1 = {dj | pj = 1};

returnJ0 ⊆ {0} ∧ |J1| ≤ 1.

proceval(b, α) returnsresult
where b : Boolean Algebra formula

α : {s1, . . . , sS} → {0, 1}
result ∈ {0, 1}

treatingb as a propositional formula,
return the value ofb under assignmentα.

Figure 4. An Alternating Polynomial-Time (and PSPACE) Algo-
rithm for Checking the Satisfiability ofCBAC Constraints

We next discuss our algorithm in more detail and argue that itis
correct. We begin with the description of the steps of the algorithm
in Figure 2, which reduces symbolic cardinalities to large constant
cardinalities.

1. Non-negative integers. To simplify the later steps, the first step
makes all integer variables range over non-negative integers N, by
replacing each integer variablei with a differencei1 − i2 of fresh
non-negative integer variablesi1, i2.

2,3. Eliminating set equality and subset, and integer divisibility.
The next step converts set equality and set subset into cardinality
constraints. This step helps the later separation between the boolean
algebra part and the integer linear arithmetic part. We thenelimi-
nate any divisibility relations using multiplication and afresh vari-
able.

4. Flattening. The next step separates the formula into the
boolean algebra part, denotedf1 and the integer linear arithmetic
part, denotedf2. This step simply amounts to naming the cardinal-
ity of each set by a fresh integer variable.

5,6. From quantifier-free formulas to conjunctions. An obvious
source of NP-completeness ofQFBAPA is the presence of arbitrary
propositional combinations of atomic formulas. An effective way
of dealing with propositional combinations is to enumeratethe
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satisfying assignments of the propositional formula usinga SAT
solver, and then solve the conjunctions of literals [16, 17]. Steps 5
and 6 of the non-deterministic algorithm in Figure 2 are an abstract
description of such procedure. The goal of step 6 is to eliminate
disequalities, which involve non-deterministic choice between the
two inequalities.

7. Normal form for integer constraints. The algorithm elimi-
nates the remaining negations of atomic formulas and transforms
linear constraints into normal formAv = d.

8,9,10. Estimating sizes of integer variables.The resulting sys-
tem contains linear integer equations of the form

Pn

j=1 cjij = k,
and set cardinality constraints of the form|b| = i. The algorithm
computes an upper boundM on integer variables in any poten-
tial solution of the system, using several parameters: the number
of conjunctsn, the number of integer variablesn0 and the number
of set variablesS . The computation of the upper bound is based
on an observation that the satisfiability of the conjunctionof con-
straints|b| = i can be reduced to the satisfiability of equations
of the form

Pp

j=1 lj = i, where variableslj denote sizes of set
partitions (regions in Venn diagram) whose union is the setb; this
is a specialization of the idea in [22] to the case of quantifier-free
formulas.

Let s1, . . . , sS be all set variables appearing in formula and
consider a constraint|b| = i. Consider all partitions

Tn

j=1 s
αj

j

for αj ∈ {0, 1}. For each such partitionbp, introduce a freshN-
variablelp, which denotes the cardinality of cubebp. Then consider
a constraint of the form|b| = i. Each set is a union of regions in the
Venn diagram (by the disjunctive normal form theorem) so suppose
that b = bp1

∪ . . . ∪ bpa . Then replace the term|b| = i with the
Pa

q=1 lpq = i. We use the term “CBAC linear equations” to denote
a system of linear equations resulting from the constraints|b| = i
as described above.

As a result, we obtain a system ofm0 + m1 linear equations
over non-negative integers, wherem0 equations have a polynomial
number of variables, andm1 equations (CBAC linear equations)
have exponentially many variables. It is easy to see that there exists
a surjective mapping of solutions of the original constraints on
sets onto solutions of the resulting linear equations (the mapping
computes the cardinality of each Venn diagram). Therefore,the
original system is satisfiable if and only if the resulting equations
are satisfiable. Moreover, we have the following fact.

FACT 1 (Papadimitriou [36]).Let A be anm × n integer matrix
andb anm-vector, both with entries from[−a..a]. Then the system
Ax = b has a solution inNm if and only if it has a solution in
[0..M ]m whereM = n(ma)2m+1.

Fact 1 implies that the estimateM computed in step 8 of the algo-
rithm in Figure 2 is a correct upper bound. Using this estimate, step
9 of the algorithm non-deterministically guesses the values of all
integer variables such that the original linear equationsAx = d are
satisfied. All this computation can be performed in nondeterminis-
tic polynomial time, and (unlike [22]), does not involve construct-
ing explicitly a system with exponentially many equations.Having
picked the values of integer variables, including the variablesi on
the right hand side of constraints|b| = i, we obtain a conjunction
of constraints of the form|b| = k wherek is a constant whose
binary representation has polynomially many bits—these are pre-
cisely theCBAC constraints in Figure 3. We have therefore shown
the following.

LEMMA 1. The algorithm in Figure 2 reduces in non-deterministic
polynomial time the satisfiability of aQFBAPA formula to the
satisfiability ofCBAC formulas.

It remains to find an algorithm forCBAC constraints.

A PSPACE algorithm for CBAC. One correct way to solve
CBAC constraints is to solve the associatedCBAC linear equa-
tions. This system has exponentially many variables, each of which
can take any value from[0..M ]. Therefore, guessing the values of
each of these variables can be done in non-deterministic exponen-
tial time; similar approaches not based on equations also require
guessing exponentially large objects [45]. Note, however,that there
are only polynomially manyCBAC linear equations. Using the idea
of the proof [36, Corollary 1], we can therefore show that a dynamic
programming algorithm can be used to solve the system in polyno-
mial time. In fact, we can use the dynamic programming algorithm
from the proof of [36, Corollary 1]. Instead of fixing the sizeof the
equationsm1 to be constant, we simply observe thatm1 is poly-
nomial in the size of the input, whereas the number of variables
is singly exponential. The boundM therefore yields a singly ex-
ponential deterministic time dynamic programming algorithm for
CBAC. While this is better than existing results, we show that an
even better result is achievable.

Clearly, any algorithm that explicitly constructsCBAC equa-
tions will require at least exponential time and space. Our solution
is therefore to adapt the dynamic programming algorithm to adi-
vide and conquer approach that always represents the equations in
terms of their original, polynomially sized, boolean algebra expres-
sion. Such an algorithm runs in alternating polynomial time, con-
suming polynomial space, and is presented in Figure 4. To seethe
idea of our PSPACE algorithm, consider theCBAC linear system
of equations written in the vector form:

P2p

j=1 aj lj = d whered,
aj are vectors andlj are the variables for1 ≤ j ≤ 2p. The algo-
rithm guesses the vectorsd0, d1 ∈ Nm such thatd0 + d1 = d, and
recursively solves two equations:

2p−1−1
X

j=1

ajlj = d0 ∧
2p

X

j=2p−1

aj lj = d1

This algorithm creates an OR-AND tree whose search gives the
answer to the original problem. A position in the tree is given by the
propositional assignment[v1, . . . , vn] to boolean variables. Each
leaf in the tree is given by a complete assignment[v1, . . . , vS ]
to set variables. Note that we never need to explicitly maintain
the system during the divide phase of the algorithm, it suffices to
determine in the leaf casep = 0 whether the coefficientaj is 0
or 1. The algorithm does this by simply evaluating each Boolean
algebra expressionb for the assignment[v1, . . . , vS ].

THEOREM1. The algorithm in Figure 4 checks the satisfiability of
CBAC constraints in PSPACE. The algorithm given by Figures 2
and 4 checks the satisfiability ofQFBAPA constraints in PSPACE.

Theorem 1 improves the existing algorithms forQFBAPA from
both a complexity theoretic and an implementation viewpoint. A
deterministic realization of previous NEXPTIME algorithms runs
in doubly exponential worst-case time and requires exponential
space; a deterministic realization of our new algorithm runs in
singly exponential time and consumes polynomial space. Previous
algorithms would require running a constraint solver such as a SAT
solver [47] on an exponentially large constraint; the new algorithm
can be solved by running a quantified boolean algebra solver [48]
on a polynomially large constraint.

NP fragments ofCBAC. We have seen that bothCBAC and
QFBAPA constraints are in PSPACE. Both of these classes of con-
straints are NP-hard, because the constraint|b| = 1 is satisfiable iff
b is corresponds to a satisfiable propositional formula. Moreover,
Lemma 1 shows thatQFBAPA constraints are in NP iffCBAC con-
straints are in NP. For some subclasses ofCBAC constraints we can
indeed show membership in NP. Define conjunctions of booleanal-
gebra expressions withsmallcardinalities, denotedCBASC, to be
the same asCBAC but with constant integers encoded inunary
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notation, where an integerx is represented in spaceO(x) as op-
posed toO(log x); such encoding can therefore be exponentially
less compact.

LEMMA 2. The satisfiability of CBASC constraints is NP-
complete.

CBASC solutions are NP-hard because|b| = 1 is aCBASC con-
straint. One way to prove membership in NP is to observe that
CBASC is subsumed by the language of set-valued fields which
was proven to be in NP [24, 25] by reduction to the universal class
of first-order logic formulas, which has the small model property
[7, Page 258]. Another way is to consider the notion ofsparse solu-
tionsof CBAC linear equations. AnM -sparse solution is a solution
to CBAC linear constraints with at mostM non-zero elements. An
M -sparse solution toCBAC linear constraints with2S variables
can be encoded as anM -tuple of pairs([v1, . . . , vS ], k) where the
propositional assignment[v1, . . . , vS ]; encodes one of the2S in-
teger variables, andk specifies the value of that integer variable.
This encoding is polynomial inMSw wherew is the number of
bits for representing the largest component of the solution. For any
CBAC linear constraint

Vm

j=1 |bj | = kj , each solution isM -sparse
whereM = max(k1, . . . , km). ForCBASC solutions,M is poly-
nomial in the size of theCBASC representation because eachki is
encoded in unary, so sparse solutions can be guessed in polynomial
time. This proves thatCBASC constraints are in NP.1

4. Inclusion Diagrams
This section introduces inclusion diagrams (i-diagrams),a graph
representation ofCBAC constraints. Figure 5 shows a formula with
sets and cardinalities and an equivalent i-diagram. I-diagrams allow
us to naturally describe fragments ofCBAC constraints and the al-
gorithms for checking satisfiability and subsumption of these frag-
ments. The basic idea of i-diagrams is to represent the subset partial
order using a graph where sets are annotated with cardinalities, and
then indicate the disjointness and union relations by constraints on
direct subsets of a set. To efficiently represent equal sets,the nodes
in the i-diagram stand not for set names, but for collectionsof set
names that are guaranteed to be equal. Finally, we associateun-
interpreted predicates with collections of nodes, representing the
fact that elements of given sets satisfy the properties given by the
predicate. The uninterpreted predicates illustrate a way to combine
i-diagram representations with other constraints.

DEFINITION 1 (i-diagrams).We fix a finite setSN of Set-Names,
and a finite setPN of predicatenames. We denote byPN± the set
of atoms{+P,−P |P ∈ PN}.
An i-diagram(Inclusion-Diagram) is either thenull-diagram⊥d or
a tuple(S, ∅d, Sons, Split, Comp, CInf, CSup, Φ) such that:

• S ⊆ P(SN) is a partition ofSN containing (nonempty) equiva-
lence classes of set names that are guaranteed to be equal, with
∅d ∈ S the equivalence class corresponding to names of sets
whose interpretation is the empty set∅;

• Sons : S→ P(S) represents subset relation;

we defineS  S′ def
⇐⇒ S ∈ Sons(S′); then (S, ) is a

graph, so we call elements ofS nodes, and the elements of 
edges; we write

∗
 for the transitive closure of ;

• Split, Comp : S → P(P(S)) represent disjointness and com-
pleteness of set inclusions; ifS is a node, thenSplit(S) is a set
of split views, where each view is a nonempty set of sons that

1 Sparse solutions are interesting for generalCBAC constraints as well. As
of yet we have no example of aCBAC constraint whose associatedCBAC
equation system is satisfiable but has no sparse solutions; moreover, we can
generalize the notion of sparse solutions to solutions representable using
binary decision diagrams [8] while preserving polynomial-time verifiability.

d
  

{s3}

[0..2]
−Q[1..1]

{s4}

+P
[1..5]

 {s1}

{s5,s6}
[0..3]

[0..0]

   {s2}

D is such thatCInf({s1}) = 1 , CSup({s1}) = 5, Sons({s1}) =
{{s5, s6}, {s4}, {s3}}, Comp({s1}) = {{{s5, s6}, {s4}, {s3}}}
Split({s1}) = {{{s5, s6}}, {{s4}, {s3}}}, Φ({s1}) = {+P}
and is equivalent to

s2 = ∅ ∧ s5 = s6 ∧
s2 ∪ s3 ∪ s4 ∪ s5 ⊆ s1 ∧ s1 ⊆ s5 ∧ s3 ⊆ s2 ∧ s5 ⊆ s4

s3 ∩ s4 = ∅ ∧ s1 ⊆ s3 ∪ s4 ∪ s5 ∧ s4 ⊆ s5

1 ≤ |s1| ≤ 5 ∧ |s4| = 1 ∧ |s5| ≤ 3 ∧ |s3| ≤ 2 ∧
∀x ∈ s1. P (x) ∧ ∀x ∈ s3. ¬Q(x)

Figure 5. An example i-diagramD and an equivalent formula

represent pairwise disjoint sets, andComp(S) is a set ofcom-
plete viewseach of which is a set of nodes that represent sets
whose union is equal to the father; we require

S

Split(S) = Sons(S)
S

Comp(S) ⊆ Sons(S)

for all S ∈ S;
• CInf, CSup : S → N specify lower and upper bounds on the

cardinality of sets;
• Φ : S → P(PN±) maps nodes to the uninterpreted unary

predicates and their negations that are true for all sets of a
node.

To avoid confusion between set names, nodes (sets of set names),
and views (sets of nodes), we use lowercase letterss, si, s

′ to
denote set names, uppercase lettersS, Si, S

′ to denote nodes,
and lettersQ,C to denote views and sets of nodes in gen-
eral. WhenD 6=⊥d is a diagram, unless otherwise stated, we
name its componentsS, ∅d, Sons, Split, Comp, CInf, CSup, Φ,
and similarly we name the components ofD′ as
S′, ∅′d, Sons′, Split′, Comp′, CInf ′, CSup′, Φ′.

In a graphical representation of an i-diagram, we represent
each elementS ∈ S whereS = {s1, . . . , sn} using underly-
ing sets{s1, . . . , sn}. We represent inclusionS1  S2 by an
arrow from S1 to S2. We represent a split viewQ ∈ Split(S)
whereQ = {S1, . . . , Sn} with a circle connected with undirected
edges toS1, . . . , Sn and an arrow leading toS. We represent a
complete view similarly, using a filled square instead of a circle.
For each nodeS ∈ S we indicate its cardinality bounds by anno-
tating the node with[a..b] wherea = CInf(S), b = CSup(S).
We representΞ(S) = {±P1, . . . ,±Pn} by annotatingS with
±P1, . . . ,±Pn. We represent∅d = {s1, . . . , sn} by annotating
the node{s1, . . . , sn} with ∅d.

DEFINITION 2 (Semantics of i-diagrams).An interpretationof SN
andPN is a triple (∆, α, Ξ) where

• ∆ is a finite set (the universe);
• α : SN→ P(∆) specifies the values of sets;
• Ξ : PN→ P(∆) specifies the values of unary predicates;

An interpretationI is amodelfor an i-diagramD, denotedI |= D,
iff ∀s ∈ ∅d.α(s) = ∅, and for allS ∈ S whereS = {s1, . . . , sn},
the following conditions hold:

On Algorithms and Complexity for Sets with Cardinality Constraints 5 2005/8/3



• α(s1) = . . . = α(sn);

accordingly, defineα(S)
def
= α(s1) = . . . = α(sn)

• CInf(S) ≤ |α(S)| ≤ CSup(S)
• ∀P. (+P ) ∈ Φ(S)⇒ α(S) ⊆ Ξ(P )
• ∀P. (−P ) ∈ Φ(S)⇒ α(S) ⊆ Ξ(P )c

• ∀S′ ∈ Sons(S). α(S′) ⊆ α(S)
• ∀Q ∈ Split(S). ∀S1, S2 ∈ Q. S1 6= S2 ⇒ α(S1)∩α(S2) = ∅
• ∀Q ∈ Comp(S). α(S) ⊆

S

S1∈Q α(S1)

We use the standard notions of satisfiability, subsumption (entail-
ment), and equivalence:

D is satisfiable ⇐⇒ ∃I. I |= D
D′ |= D ⇐⇒ ∀I. I |= D′ ⇒ I |= D
D′ ≡ D ⇐⇒ D′ |= D ∧D |= D′

DEFINITION 3 (Explicit Disjointness).
We writedisjD,S0

(S1, S2) as a shorthand for

S1 6= S2 ∧ ∃Q ∈ Sons(S0). S1, S2 ∈ Q

and we say thatS1, S2 are explicitly disjoint, and we write
disj∗D(S1, S2) iff

∃S′
1, S

′
2, S0 ∈ S, S1

∗
 S′

1 ∧ S2
∗
 S′

2 ∧ disjD,S0
(S′

1, S
′
2)

LEMMA 3. I-diagrams have the same expressive power asCBAC
constraints.

By “same expressive power” we here mean that there is a natural
pair of mappings between the models of i-diagrams and solutions
to CBAC constraints.

Because nodes in i-diagrams are collections of set names, we
can define the following operations.

DEFINITION 4 (Factor-i-diagram).Let ρ ⊆ S × S be an equiv-
alence relation on nodes. We defineD/ρ as follows. Define
⊥d/ρ =⊥d. LetD = (S, ∅d, Sons, Split, Comp, CInf, CSup, Φ).
We defineD/ρ = D′ = (S′, Sons′, Split′, Comp′, CInf ′, CSup′,
Φ′) as follows. Defineh so that if{S1, . . . , Sn} is the equivalence
class ofS underρ, thenh(S) = S1 ∪ . . . ∪ Sn. If Q ⊆ S, define
h[Q] = {h(S) | S ∈ Q}. Then letS′ = h[S]. ConsiderS′ ∈ S′.
BothS and S′ are partitions, and givenS′ ∈ S′ there is a unique
set{S1, . . . , Sn} ⊆ S such thatS′ = S1 ∪ . . . ∪ Sn. Then define:

CInf ′(S′)= max(CInf(S1), . . . , CInf(Sn))
CSup′(S′)= min(CInf(S1), . . . , CInf(Sn))
Sons′(S′)= h[Sons(S1) ∪ . . . ∪ Sons(Sn)]

Φ′(S′)= Φ(S1) ∪ . . . ∪ Φ(Sn)
Split′(S′)= {h[Q] | Q ∈ Split(S1) ∪ . . . ∪ Split(Sn)}

Comp′(S′)= {h[Q] | Q ∈ Comp(S1) ∪ . . . ∪ Comp(Sn)}

DEFINITION 5 (Merge). For any i-diagramD we define the i-

diagramD[Merge(Q)]
def
= D/ρ for the equivalence relationρ =

{(S1, S2) | S1, S2 ∈ Q} ∪ {(S, S) | S ∈ S}

In the sequel we impose the following restrictions on the form
of i-diagrams.

DEFINITION 6 (Simple Diagrams).A diagram isD is simple iff
D = ∅d or all of the following conditions hold for allS ∈ S:

a) (S, ) has no cycles, in particularS 6∈ Sons(S)

b) ∅D 6∈ Sons(S)

c) ∅ 6∈ Split(S) ∧ ∅ 6∈ Comp(S)

d) ∀Q,Q′. Q ∈ Split(S) ∧Q′ ( Q⇒ Q′ 6∈ Split(S)

e) ∀Q,Q′. Q ∈ Comp(S) ∧Q′ ) Q⇒ Q′ 6∈ Comp(S)

f) CSup(∅d) = 0, Sons(∅d)=Φ(∅d) = ∅

procSimplify(D) :

1. use fixpoint iteration to computeρ as
the smallest equivalence relation such that:
1.1. S1

∗
 S2 ∧ S2

∗
 S1 ⇒ (S1, S2) ∈ ρ

1.2. (S, ∅d) ∈ ρ ∧ S1
∗
 S ⇒ (S1, ∅d) ∈ ρ

1.3. ∅ ∈ Comp(S)⇒ (S, ∅d) ∈ ρ

1.4. disjD,S0
(S1, S2) ∧ (S1, S2) ∈ ρ⇒ (S2, ∅d) ∈ ρ

1.5. disjD,S0
(S1, S2) ∧ (S0, S1) ∈ ρ⇒ (S2, ∅d) ∈ ρ

1.6. {S1} ∈ Comp(S)⇒ (S, S1) ∈ ρ

2.D := D/ρ

3.

2

4

Split(S) ←{Q− {∅d}|Q ∈ Split(S), S /∈ Q}
Comp(S)←{Q− {∅d}|Q ∈ Comp(S), S /∈ Q}
Sons(S) ←Sons(S)− {∅d, S}

3

5

S∈S

4.

2

6

6

4

Split(S) ← Split(S)− {∅}
−{Q | ∃Q′ ∈ Split(S), Q′ ) Q}

Comp(S)← Comp(S)− {∅}
−{Q | ∃Q′ ∈ Comp(S), Q′ ( Q}

3

7

7

5

S∈S

5.

2

6

6

6

4

CSup(∅d) ← 0
Φ(∅d) ← ∅
Sons(∅d) ← ∅
Comp(∅d)← ∅
Split(∅d) ← ∅

3

7

7

7

5

6. returnD

Where[a ← b] denotes the result of updating the componenta of
i-diagramD with valueb.

Figure 6. Polynomial-time algorithmSimplify to compute an
equivalent simple i-diagram

Simplicity eliminates redundancy from diagrams, but does not re-
strict their expressive power, as the following lemma shows.

LEMMA 4. For every i-diagramD we can obtain an equivalent
simple i-diagram using the polynomial-time algorithmSimplify
in Figure 6.

5. Sources of NP Hardness and Definition of
I-Trees

The satisfiability of i-diagrams is NP-hard because i-diagrams have
the same expressive power asCBAC constraints. We have observed
that the general directed acyclic graph structure of i-diagrams al-
lows us to encode NP-complete problems; this motives the follow-
ing two restrictions.

DEFINITION 7.
An i-diagramD is tree shapediff
(S, ) is a tree (with an additional isolated node∅d)
An i-diagramD hasindependent viewsiff
for all Q1, Q2 ∈ Split(S) ∪ Comp(S) at least one one of the
following two conditions holds:

• Q1 ∩Q2 = ∅
• Q1 ∈ Split(S) ∧ Q2 ∈ Comp(S) ∧ Q1 ⊆ Q2.

Recall that, by Lemma 4, it suffices to consider i-diagrams with
acyclic graphs of the subset relation. The tree shape condition is
then a natural next restriction on the structure of i-diagrams. How-
ever, due to the presence ofSplit andComp, the tree shape condi-
tion by itself does not reduce the expressive power of i-diagrams,
and further restrictions are necessary. The independent views con-
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dition extends the tree condition to the entire graphical representa-
tion of i-diagrams, including the circles and squares that represent
Split andComp views. The conjunction of these two conditions
can be expressed by saying that the graphical representation of i-
diagram is a tree.

REMARK 1. We can express the combination of the conditions:
being simple, being tree shaped, and having independent views by
saying that there are only four kinds of edges in the corresponding
graphical representation:2

• from an elementS ∈ S−{∅d} to a circle
• from a circle to a square, indicating that all nodes of a splitview

belong to a complete view
• from a circle to an elementS ∈ S−{∅d},
• from a square to an elementS ∈ S−{∅d}.

Unfortunately, the restrictions on tree shape and independent views
are not sufficient to guarantee a polynomial-time decision proce-
dure in the presence of predicates associated with nodes. The rea-
son is that the ability to encode disjointness of arbitrary sets leads to
NP-hardness, yet even with tree structure and independent views it
is possible to assert that two arbitrary setsS1 andS2 are disjoint by
letting (+P ) ∈ Φ(S1) and(−P ) ∈ Φ(S2) for some uninterpreted
predicateP . A simple way to avoid this problem is to require that
Φ contains only positive atoms(+P ). A more flexible restriction
is the following.

DEFINITION 8. An i-diagramD hasindependent signaturesiff
for every pair of distinct nodesS1, S2 such that(−P ) ∈ Φ(S1)
and(+P ) ∈ Φ(S2) for someP ∈ PN, at least one of the following
two conditions holds:

1. S1 andS2 are explicitly disjoint, that is,disj∗D(S1, S2)

2. S1 and S2 havecompatible signatures, that is, there exists a
nodeS such that

S1
∗
 S ∧ S2

∗
 S ∧

Sig(S1) ∩ Sig(S2) ⊆ Sig(S)

whereSig(S) = {P | (+P ) ∈ Φ(S) ∨ (−P ) ∈ Φ(S)}.

The independent signatures condition ensures that any disjointness
conditions are either 1) a result of the fact that the ancestors of
S1 and S2 are explicitly stated as disjoint, or 2) a result of a
contradictory predicate assignment (the case whenS1 andS2 have
compatible signatures, so there exists a parent that resolves which
of (+P ) or (−P ) hold for bothS1 andS2).

The discussion above leads to the definition of i-trees, for which
we will give polynomial-time algorithms for satisfiabilityand sub-
sumption in Sections 6 and 7.

DEFINITION 9 (i-trees,iT). An i-tree T is a simple i-diagram
such thatT =⊥d or such that all of the following three conditions
hold:

1. T is tree shaped
2. T hasindependent views
3. T hasindependent signatures.

We denote byiT the set of i-trees.

The following theorem justifies why all three conditions in our def-
inition of i-trees are necessary. Its proof is based on a reduction
from graph 3-colorability, which can be encoded using slightly dif-
ferent i-diagrams for each of the three cases. The common property
of these diagrams is that they can encode disjointness of arbitrary
pairs of nodes.

2 As a result, we can recognize this structure in linear time using, for
example, a tree-automaton [12].

THEOREM2. Omitting any one out of three conditions from Defi-
nition 9 yields a class of diagrams whose satisfiability is NP-hard.

We note that in addition to NP-hardness, the omission of tree
shaped or independent views properties in fact retains the full
expressive power ofCBAC constraints, using a similar argument
as in Lemma 3.

Our ability to specify i-trees as a natural subclass of i-diagrams
justifies the definition of i-diagrams themselves. For example, the
definition of i-trees would have been more complex had we chosen
to represent disjointness using a binary relations1 ∩ s2 = ∅.

Let us also observe that, despite the imposed restrictions,i-
trees are fairly expressive. In particular they can expresshierar-
chical decomposition of a set given by a nodeS into disjoint sets
S1, . . . , Sn, by letting{S1, . . . , Sn} ∈ Split(S) ∩ Comp(S). De-
spite the independent view condition, we can have multiple orthog-
onal decompositions, so{S′

1, . . . , S
′
m} ∈ Split(S)∩Comp(S) for

{S′
1, . . . , S

′
m}∩{S1, . . . , Sn} = ∅. This allows i-trees to naturally

express generalized typestate constraints.

6. Deciding the Satisfiability of I-Trees
In this section we prove that the satisfiability of i-trees isdecidable
in polynomial time. For this purpose we introduce a set ofweak
consistencyconditionsCi (Definition 10) such that:

(6.1) We can enforce weak consistency for any satisfiable i-tree us-
ing a rewriting systemRw (Definition 11) with the following
properties (Lemma 5):

• Rw is semantic-preserving;
• if a non-⊥d i-tree is inRw normal form, then it satisfies

weak consistency conditions;
• for a particular strategy (Figure 9) the systemRw termi-

nates in polynomial time.

(6.2) Every i-tree that satisfies weak consistency conditions is satisfi-
able; Lemma 6 gives an algorithm for constructing a model for
any i-tree that satisfies weak consistency conditions.

Figure 9 summarizes the polynomial-time satisfiability decision
procedure whose correctness (Theorem 3) follows from the results
of this section.

DEFINITION 10 (Weak Consistency).An i-tree satisfies weak
consistencyiff T 6=⊥d and T satisfies the following conditions
for all S ∈ S:

∀S′ ∈ Sons(S). Φ(S′) ⊇ Φ(S) (C1)

CSup(S) > 0⇒ ∀P ∈ PN. {+P,−P} 6⊆ Φ(S) (C2)

∀Q ∈ Comp(S). CSup(S) ≤ Σ(CSup[Q]) (C3)

∀Q ∈ Split(S). CInf(S) ≥ Σ(CInf[Q]) (C4)

CInf(S) ≤ CSup(S) (C5)

6.1 A Rewriting SystemRw for Enforcing Weak Consistency

We introduce the following rewriting system to enforce weakcon-
sistency properties when possible.

DEFINITION 11 (SystemRw). For each tuple (k, name,
condition, effect) in Figure 7, we define a rewriting rule on
i-diagrams by

D
spot
−→
name
D′ def
⇐⇒ (D 6=⊥d ∧ condition ∧ D′ = D[effect])

for each assignmentspot of the free variables appearing in the
conditioncolumn. We defineRk by

D−→
Rk

D′ def
⇐⇒ ∃spot. D

spot
−→
name
D′

We defineRw as union of−→
Rj

for 1 ≤ j ≤ 5.
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k name conditions effect

1 DnPhi
a1) S ∈ Sons(S′)
b1) φn

.
= Φ(S) ∪ Φ(S′)

c1) φn 6⊆ Φ(S)
Φ(S)←φn

2 Unsat

a2) {+P,−P} ⊆ Φ(S)
b2) n

.
= 0

c2) CSup(S) > n
CSup(S)←n

3 UpSup

a3) Q ∈ Comp(S)
b3) n

.
= Σ(CSup[Q])

c3) CSup(S) > n
CSup(S)←n

4 UpInf

a4) Q ∈ Split(S)
b4) n

.
= Σ(CInf[Q])

c4) CInf(S) < n
CInf(S)←n

5 Error a5) CInf(S) > CSup(S) D←⊥d

Figure 7. SystemRw for ensuring weak consistency

B

D

C

+P

A

[4..5]

[2..2]

+P−P
[0..0]

[3..5]

B

D

C

+P

A

[4..5]

[2..2]

+P−P
[0..0]

[3..2]

B

D

C

+P

A

[4..5]

[2..2]

+P−P
[0..6]

B

D
[0..6]

−P

C

+P

A

[4..5]

[2..2]

[3..5] [3..5]

d

T0
D,A
−→

DnPhi
T1

D
−→

Unsat
T2

A,{C,D}
−→

UpSup
T3

A
−→
Error

⊥d

Figure 8. An example sequence of rewriting steps forRw

Figure 8 shows an example sequence of rewriting steps applied to
an i-tree.

LEMMA 5 (Properties ofRw).

1. Rw is iT-stable, that is

T ∈ iT ∧ T −→
Rw
T ′ ⇒ T ′ ∈ iT

2. Rw preserves the semantics, that is

D−→
Rw
D′ ⇒ D ≡ D′

3. Rw enforces weak consistency when possible, that is, a dia-
gramD inRw normal form is either equal to⊥d or it is weakly
consistent

4. Rw terminates in polynomial for the strategy corresponding to
the algorithmRw

NF in Figure 9.

Proof sketch.

1. Follows easily from the fact thatRw rules do not modifySons,
Split, Comp.

2. Follows by construction ofRw rules. SupposeD−→
Rw
D′. Then

D |= D′ follows from conditionsai (1≤i≤5), andD′ |= D
follows from conditionsci (1≤i≤4).

3. For everyk = 1..5, the condition of application of the ruleRk

corresponds to the negation ofCk. When a diagram is in normal
form for the ruleRk, it either satisfiesCk, or is⊥d.

4. To prove thatRw
NF corresponds to a polynomial strategy, we

prove by induction that applying the ruleRk in the speci-

procRw
NF(T )

1. for everyS ∈ S from the root to the leaves
for everyQ ∈ Comp(S)

try to applyDnPhi(S, Q) to T
2.for everyS ∈ S

for everyP ∈ PN
try to applyUnsat(S, P ) to T

3. for everyS ∈ S from the leaves to the root
for everyQ ∈ Comp(S)

try to applyUpSup(S, Q) to T
4. for everyS ∈ S from the leaves to the root

for everyQ ∈ Split(S)
try to applyUpInf (S, Q) to T

5. for everyS ∈ S
try to applyError(S) to T

returnT

procItreeSAT(T )
if (Rw

NF(T ) =⊥d) returnsatisfiable
else returnunsatisfiable

Figure 9. Polynomial-time algorithmsRw
NF and ItreeSAT to

computeRw normal form and check satisfiability of i-trees

fied direction (from the root to the leaves or from the leaves
to the root), enforcesCk everywhere, and whenCk holds, the
rule is not applicable anymore. Finally, we prove that each
rule Rk for k = 1..12 preserves the conjunction of proper-
ties

V

j=1..(k−1) Rk, and as a consequence, we never need to
reapply any of the rulesRj for j < k.

6.2 Constructing Models for Weakly Consistent I-Trees

The following Lemma 6 is crucial for the completeness of our
algorithm, and justifies the definition of weak consistency.

LEMMA 6 (Model Construction).If an i-treeT is weakly consis-
tent, then we can construct a model forT .

The high-level idea of the proof of Lemma 6 is to first build thefirst
two components(∆, α) of the model, and then extend the model
with Ξ using the independent signatures condition for i-trees. We
build the (∆, α) part of the model by building a model for each
subtree using an induction on the height of the i-tree. To construct
models that satisfySplit and Comp constraints in the inductive
step, we use a stronger induction hypothesis: we show that there
exists a model(∆, α) for a tree rooted in nodeS with |∆| = k
for all CInf(S) ≤ k ≤ CSup(S), and we rely on the properties
of weak consistency to prove the inductive step. The proof ofthis
lemma is interesting because similar ideas are used when building
example models that show the completeness in Section 7.

Putting all results in this section together using the argument at
the beginning of the section, we obtain the following theorem.

THEOREM3 (ItreeSAT Correctness).T is satisfiable if and only
if WeakNF(T ) 6=⊥d. Therefore, the algorithmItreeSAT in Fig-
ure 9 is a sound and complete polynomial-time decision procedure
for the satisfiability of i-trees.

7. Deciding Subsumption of I-Trees
The goal of this section is to prove that we can decide the subsump-
tion of i-trees in polynomial time. Note that the subclass ofi-trees
is not closed under negation or implication, so we cannot decide
T |= T ′ by checking the satisfiability of¬(T ⇒ T ′). Instead,
our approach is to bringT into a form where the properties of the
models ofT areeasy to readfrom T . We then check thatT en-
tails each of the conditions that correspond to the semantics ofT ′.
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k name condition effect

6 DnInf

a6) ({S} ]Q0)∈Comp(S′)
b6) n

.
= CInf(S′)
−Σ(CSup[Q0])

c6) n > CInf(S)

CInf(S)←n

7 DnSup

a7) ({S} ]Q0)∈Split(S′)
b7) n

.
= CSup(S′)
−Σ(CInf[Q0])

c7) n < CSup(S)

CSup(S)←n

8 CCmp∗

a8) Q ∈ Split(S) ∧
CSup(S)≤Σ(CInf[Q])

b8) Cn
.
= Comp(S)∪{Q}

c8) Cn 6⊆ Comp(S)

Comp(S)←Cn

9 CSplit∗

a9) Q ∈ Comp(S) ∧
CInf(S)≥Σ(CSup[Q])

b9) Cn
.
= Split(S)∪{Q}

c9) Cn 6⊆ Split(S)

Split(S)←Cn

10 UpPhi

a10) Q ∈ Comp(S)
b10) φn

.
= Φ(S) ∪

T

Φ[Q]
c10) φn 6⊆ Φ(S)

Φ(S)← φn

11 Void∗ a12) S 6= ∅d ∧ CSup(S) = 0 Merge({S, ∅d})
12 Equal∗ a11) {S

′} ∈ Comp(S) Merge({S, S′})

∗Follow the application of these rules bySimplify .

Figure 10. Rules for SystemR

We formalize the intuitive condition of being easy to read inthe
notion ofstrong consistency. We build on the systemRw from the
previous section to create a larger rewriting systemR for ensuring
strong consistency. We introduce a polynomial-time strategy forR
that transforms every i-tree into⊥d or into an i-tree that is strongly
consistent, and we give polynomial-time algorithms for extracting
the information from strongly consistent i-trees.

DEFINITION 12 (Strong Consistency).An i-tree T is strongly
consistentiff it is weakly consistent and satisfies all of the following
properties:

∀Q ∈ Comp(S). ∀S0 ∈ Q.
CInf(S0) ≥ CInf(S)−Σ(CSup[Q− {S0}]) (C6)

∀Q ∈ Split(S). ∀S0 ∈ Q.
CSup(S0) ≤ CSup(S)− Σ(CInf[Q− {S0}]) (C7)

∀Q ∈ Split(S). Q 6∈ Comp(S)⇒
CSup(S) > Σ(CInf [Q]) (C8)

∀Q ∈ Comp(S). Q 6∈ Split(S)⇒
CInf(S) < Σ(CSup[Q]) (C9)

∀Q ∈ Comp(S).
T

(Φ[Q]) ⊆ Φ(S) (C10)

S 6= ∅D ⇒ CSup(S) > 0 (C11)

Q ∈ Comp(S)⇒ |Q| > 1 (C12)

7.1 A rewriting systemR to enforce strong consistency

This section follows the development of Section 6.1.

DEFINITION 13 (SystemR). The systemR extendsRw with the
additional rules of Figure 10, analogously to Definition 11.

LEMMA 7 (Properties ofR). 1. R is iT-stable, that is

T ∈ iT ∧ T −→
R
T ′ ⇒ T ′ ∈ iT

2. R preserves the semantics, that is

D−→
R
D′ ⇒ D ≡ D′

procRNF(T )
1 . . . 5. T ←WeakNF(T )
6. for eachS′ ∈ S from the root to the leaves

for eachQ ∈ Comp(S)
for everyS ∈ Q

try DnInf (S,S′, Q)
7. for eachS′ ∈ S from the root to the leaves

for eachQ ∈ Split(S)
for eachS ∈ Q

try DnSup(S, S′, Q)
8. for eachS ∈ S

for eachQ ∈ Split(S)
try CCmp(S, Q)

9. for eachS ∈ S
for eachQ ∈ Comp(S)

try CSplit(S, Q)
10. for eachS ∈ S from the leaves to the root

for eachQ ∈ Comp(S)
try UpPhi(S, Q)

11. for eachS ∈ S from the leaves to the root
try Void(S)

12. for eachS ∈ S
for eachQ ∈ Comp(S)

try Equal(S, Q)
returnT

Figure 11. Polynomial-time algorithmRNF(T ) to computeR
normal form

3. R enforces strong consistency when possible, that is, a diagram
D in R normal form is either equal to⊥d or it is strongly
consistent.

4. R terminates in polynomial time for the strategy corresponding
to the algorithmRNF described in Figure 11.

Proof sketch.

1. The iT-stability is trivial for the rulesDnInf , DnSup,
UpPhi. The other rules are marked with a star and we use the
algorithm Simplify. In fact, we can show that it is not necessary
to applySimplify in its full generality, but only to remove any
redundant views introduced byCCmp andCSplit, remove
any self edges introduced by the operationMerge used in the
rulesEqual andVoid, and to remove the edges going to∅d
that can be introduced by the ruleVoid.

2,3. Follow by construction as in the previous section.
4. This part is significantly more difficult than for systemRw ,

because the interactions between the rules are more complex,
but follows the same structure as the proof forRw.

7.2 Extracting Information from Strongly Consistent I-Tre es

In this section we start from a strongly consistent i-treeT and con-
sider the problem of checkingT |= D′. Analyzing Definition 2,
we observe that a diagram corresponds to a conjunction of con-
straints. Therefore, the subsumption problemT |= D′ corresponds
to the problem of verifying thatT entails atomic formulas of the
form s = ∅, s1 = s2, s1 ⊆ s2, a ≤ |s| ≤ b, s ⊆ P , s ⊆ P c,
s1 ∩ s2 = ∅ ands ⊆

S

{s1, . . . , sn}. Without the danger of con-
fusion, we writeT |= A when the atomic formulaA holds in all
models forT .

THEOREM4. Let T be a strongly consistent i-tree and letHT
A for

atomic formulaA be as defined in Figure 12. ThenT |= A if and
only if HT

A .
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procSubsumes(T ,D′)
T := RNF(T )
let f : SN→ S such that∀s ∈ SN. s ∈ f(s)
let h′ : S′ → SN be any function such that∀S′ ∈ S. h′(S′) ∈ S′

check all of the following conditions:
1.

V

S∈S′

V

s1,s2∈S

HT
s1=s2

whereHT
s1=s2

def
⇐⇒ f(s1) = f(s2)

2. HT
h(∅′

d
)=∅

whereHT
s=∅

def
⇐⇒ f(s) = ∅d

3.
V

S∈S′

HT
CInf′(S)≤|h(S)|≤CSup′(S)

whereHT
a≤|s|≤b

def
⇐⇒ CInf(f(s)) ≤ a ≤ b ≤ CSup(f(s))

4.
V

S∈S′

V

(+P )∈Φ′(S)

HT
+P (h(S))

whereHT
+P (s)

def
⇐⇒ (+P ) ∈ Φ(f(s))

5.
V

S∈S′

V

(−P )∈Φ′(S)

HT
−P (h(S))

whereHT
−P (s)

def
⇐⇒ (−P ) ∈ Φ(f(s))

6.
V

S∈S′

V

S′∈Sons′(S)

HT
h(S)⊆h(S′)

whereHT
s1⊆s2

def
⇐⇒ f(s1) = ∅d ∨ f(s1)

∗
 f(s2)

7.
V

S∈S′

V

Q∈Split′(S)

V

S1,S2∈Q

S1 6=S2

HT
h(S1)∩h(S2)=∅

whereHT
s1∩s2=∅

def
⇐⇒ f(s1) = ∅d ∨ f(s2) = ∅d ∨

disj∗T (S1, S2)
8.

V

S∈S′

V

Q∈Comp′(S)

HT
h(S)⊆∪h[Q]

whereHT
s⊆∪Z

def
⇐⇒ f(s) = ∅d ∨ Included(f(s), f [Z], T )

where procIncluded(S0, C, T )
return

W

S0

∗
 S

Incl(S)

procIncl(S)
if S ∈ C then returntrue

else return
W

Q∈Comp(S)

„

V

S′∈Q

Incl(S′)

«

Figure 12. An Algorithm for ComputingT |= D′ for a an i-tree
T and an arbitrary diagramD′.

It is easy to verify thatHT
A impliesT |= A. The proof of the

converse is based on the following two lemmas, which providea
link between strong and weak consistency.

LEMMA 8 (Bounds Refinement).LetT be a strongly consistent i-
tree, S ∈ S, i, s such thatCInf(S) ≤ i ≤ s ≤ CSup(S), let
T ′ = T [CInf(S)← i, CSup(S)← s] andT ′

NF = Rw
NF(T

′). Then
1) T ′

NF 6=⊥d, 2) T ′
NF |= T , and 3) if¬(S

∗
 S0), then

(CInf(S0), CSup(S0)) = (CInf
′
NF(S0), CSup

′
NF(S0)).

Proof sketch.

1. We prove this result by induction on the depth ofS in the tree
(S, ). The key step of this proof is to show that the application
of UpSup and/orUpInf to the fatherS′ of S does not produce
a situation wherea5 holds in the resulting diagramT ′′ (and
therefore the ruleError is not applicable inT ′′). We use the fact
that Rw

NF applies the rulesUpInf andUpSup bottom up, and
prove that each application preservesC5, only increasesCInf

and only decreasesCSup. At each step we distinguish three
cases:

(a) bothUpSup andUpInf are applicable; then the result fol-
lows fromC5;

(b) onlyUpSup is applicable; then the result follows fromC6;
(c) onlyUpInf is applicable; then the result follows fromC7.

2. Follows easily from the hypothesisCInf(S) ≤ i ≤ s ≤
CSup(S) and the fact thatRw

NF is semantics preserving.
3. It is enough to notice that only rulesUpInf andUpSup are used

when applyingRw
NF, and these rules are applied in the bottom-

up direction.

The fact that the resulting i-treeT ′
NF is not strongly consistent any-

more prevents us to apply this lemma twice from a given strongly
consistent i-tree. To enforce more than one restriction, weneed to
refine simultaneously the bounds of several nodes. For this purpose,
we use the following lemma.

LEMMA 9 (Parallel Bounds Refinement).LetT be a strongly con-
sistent i-tree, and(Q0, ) a subtree ofT such that

• The nodes ofQ0 are pairwise independent, that is,
∀S1, S2 ∈ Q0. ¬(disj∗T (S1, S2))

• (Q0, ) has the same root asT .

Then the i-treeT ′ defined by the simultaneous update

T ′ def
= T [ ∀S ∈ Q0:CInf(S)←CSup(S) ]

is such that itsRw normal formT ′
NF

def
= Rw

NF(T
′) satisfies

1. T ′
NF 6=⊥d

2. T ′
NF |= T

Lemmas 8 and 9 are the basic tools we need to show that
the information syntactically computed from an i-tree is the most
precise information computable from the semantics of the i-tree.
We prove this property for each of the atomic formulasA.

LEMMA 10. If an i-treeT is strongly consistent, then for allS ∈ S
we have

S 6= ∅d ⇒ ∃M. M |= T ∧ αM(S) 6= ∅

Proof. If S 6= ∅d, we haveCSup(S) > 0 by C11 and therefore

the i-treeT ′ def
= T [CInf(S)←max(1, CInf(S))] subsumesT . By

Lemma 8,T ′ is satisfiable, and we can take any model ofT ′ as a
model ofT .

LEMMA 11. If an i-treeT is strongly consistent, then for allS ∈ S
we have

∃M.M |= T ∧ |αM(S)| = CInf(S)
∃M.M |= T ∧ |αM(S)| = CSup(S)

Proof. According to Lemma 8, the two i-trees

T ′
1

def
= T [CSup(S)←CInf(S)] andT ′

2
def
= T [CInf(S)←CSup(S)]

are satisfiable, and bothT ′
1 andT ′

2 trivially subsumeT . Any model
M1 of T ′

1 is such that|αM1
(S)| = CInf(S), and any modelM2

of T ′
2 is such that|αM2

(S)| = CSup(S).

LEMMA 12. If an i-tree T is strongly consistent,S0 ∈ S, C ∈
P(S), andIncluded(S0, C, T ) returnsfalse, then

∃M.M |= T ∧ αM(S0) 6⊆
[

αM[C]

Proof sketch. Assume thatIncluded returnsfalse. We argue
that the modelM exists in several steps. LetQ0 be the smallest
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set of nodes such that:

S0
∗
 S ⇒S ∈ Q0

S ∈ Q0 ∧ C1 ∈ Comp(S)
∧ S1 ∈ C1 ∧ ¬Incl(S1)

ff

⇒S1 ∈ Q0

By definition ofIncl, we haveQ0 ∩ C = ∅.
Q0 is tree-shaped by construction, but may contain two nodes

which are explicitly disjoint. We therefore compute a subtreeQ1 of
Q0, by starting from the root and keeping at most one son for each
complete view. In this process we ensure thatQ1 containsS0, by
avoiding to cut the branch which leads toS0.

We then apply Lemma 9 toQ1 and construct a model of the
resulting i-tree while enforcing that a certain elementx ∈ α(S) is
such thatx ∈ α(S′) ⇔ S′ ∈ Q1 for all S′ ∈ S. More precisely,
we prove by induction onn that for each nodeS1 of Q1 of depthn
in the treeQ1 we can construct a model(∆, α, Ξ) for the sub-i-tree
of T with rootS1 such that

∀S′. S′ ∗
 S1 ⇒ (x ∈ α(S′) ⇔ S′ ∈ Q1)

If n = 0 thenS1 is a leaf of(Q1, ) and has no complete view by
construction ofQ1. Then usingC8 we show that we can construct
a model of the sub-i-tree with rootS1 containing a fresh element
(not included in any of the sons ofS1).

If n > 0, we can deal with the split views in the same way, but
this timeS1 can have some complete views. If this complete view
contains a unique split view, we avoid mergingx in a son ofS1 with
elements in the other sons ofS1. If there exist more than one split
view, we can useC8 and construct the model using a refinement of
the ideas of Lemma 6.

Finally, sinceS0 ∈ Q1, we havex ∈ α(S0), and since
C ∩Q1 = ∅ we havex /∈

S

α[C].

LEMMA 13. If an i-treeT is strongly consistent, for allS1, S2 ∈ S
such thatS1 6= ∅ andS2 6= ∅ we have

¬(S1
∗
 S2)⇒ ∃M. M |= T ∧ αM(S1) 6⊆ αM(S2)

Proof. The property∃M. M |= T ∧ αM(S1) 6⊆ αM(S2) can
be checked usingIncluded(S1, {S2}, T ). Using C12 we show
that this test is equivalent to testS1

∗
 S2.

LEMMA 14. If an i-treeT is strongly consistent, for allS1, S2 ∈ S
we have

S1 6= S2 ⇒ ∃M. M |= T ∧ αM(S1) 6= αM(S2)

Proof. If S1 6= S2, then¬(S1
∗
 S2) or ¬(S2

∗
 S1). In either

case the result follows from Lemma 13.

LEMMA 15. If an i-treeT is strongly consistent, then for allS ∈ S
andP ∈ PN we have

(+P ) 6∈ Φ(S)⇒ ∃M. M |= T ∧ αM(S) 6⊆ Ξ(P )
(−P ) 6∈ Φ(S)⇒ ∃M. M |= T ∧ αM(S) 6⊆ Ξ(P )c

Proof sketch. Let S ∈ S be such that(+P ) 6∈ Φ(S). We define

QP
def
= {S′ ∈ S|(+P ) ∈ Φ(S′)}. UsingC10 andC1 we show that

Included(S, QP , T ) returns false. By Lemma 12, there exists a
model such thatα(S) 6⊆

S

α[QP ]. We then change the model by
redefiningΞ′ on PN asΞ′(P ) =

S

α[QP ], so α(S) 6⊆ Ξ′(P ).
The case(−P ) 6∈ Φ(S) is dual and follows from the previous case
by swapping(+P ) and(−P ) in the i-tree and taking complements
of Ξ(P ).

LEMMA 16. If an i-tree T is strongly consistent, then for all
S1, S2 ∈ S such thatS1 6= ∅d, S2 6= ∅d we have

¬(disj
∗
T (S1, S2))⇒ ∃M. M |= T ∧ αM(S1) ∩ αM(S2) 6= ∅.

From the previously stated lemmas, we can prove Theorem 4.
From Theorem 4 and Lemma 7 we conclude that the algorithm in
Figure 12 is a correct and complete test for subsumption, notonly
of between trees, but also between a tree and an arbitrary diagram.

8. Related Work
Boolean algebras with cardinalities. Quantifier-free formulas of
boolean algebra are NP-complete [33]. Quantified formulas of
boolean algebra are in alternating exponential space with alin-
ear number of alternations [21]. Cardinality constraints naturally
arise in quantifier elimination for boolean algebras [31, 42, 43].
Quantifier elimination implies that each first-order formula of the
language of boolean algebras is equivalent to some quantifier-free
formula with constant cardinalities; however, quantifier elimina-
tion may introduce an exponential blowup. The first-order theory
of boolean algebras of finite sets with symbolic cardinalities, or,
equivalently, boolean algebras of sets with equicardinality operator
is shown decidable in [14]. These results are repeated, motivated
by constraint solving applications, in [23, 39] and a special case
with quantification over elements only is presented in [44].Upper
and lower bounds on the complexity of this problem were shownin
[22] which also introduces the nameBAPA, for Boolean Algebra
with Presburger Arithmetic. The quantifier-free case ofBAPA was
studied in [45] with an NEXPTIME decision procedure, which is
also achieved as a special case of [23, 22]. The new decision pro-
cedure in the present paper improves this bound to PSPACE and
gives insight into the problem by reducing it to boolean algebras
with binary-encoded large cardinalities, and showing thatit is not
necessary to explicitly construct all set partitions.

Several decidable fragments of set theory are studied in [10].
Cardinality constraints also occur in description logics [5] and
two-variable logic with counting [35, 19, 38]. However, alllogics
of counting that we are aware of have complexity that is beyond
PSPACE.

We are not aware of any previously known fragments of boolean
algebras of sets with cardinality constraints that have polynomial-
time satisfiability or subsumption algorithms. Our polynomial-time
result for i-trees is even more interesting in the light of the fact that
our constraints can express some “disjunction-like” properties such
asA = B ∪ C.

Set constraints. Set constraints [1, 3, 2, 6] are incomparable to
the constraints studied in our paper. On the one hand, set constraints
are interpreted over ground terms and contain operations that ap-
ply a given free function symbol to each element of the set, which
makes them suitable for encoding type inference [4] and interproce-
dural analysis [20, 34]. Researchers have also explored theefficient
computation of the subset relation for set constraints [13]. On the
other hand, set constraints do not support cardinality operators that
are useful in modelling databases [40, 11] and analysis of the sizes
of data structures [29]. Tarskian constraints use uninterpreted func-
tion symbols instead of free function symbols and have very high
complexity [18].

9. Conclusions
Constraints on sets and relations are very useful for analysis of soft-
ware artifacts and their abstractions. Reasoning about sets and re-
lations often involves reasoning about their sizes. For example, an
integer field may be used to track the size of the set of objectsstored
in a data structure. In this paper, we have presented new complexity
results and algorithms for solving constraints on boolean algebra
of sets with symbolic and constant cardinality constraints. We have
presented symbolic constraints and large constant constraints, gave
more efficient algorithm for quantifier-free symbolic constraints,
identified several sources of NP-hardness of constraints, and pre-
sented a new class of constraints for which satisfiability and en-
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tailment are solvable in polynomial time. We hope that our results
will serve as concrete recipes and general guidance in the design of
algorithms for constraint solving and program analysis.
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A. Proofs
A.1 I-Diagrams

Lemma 3 I-diagrams have the same expressive power asCBAC
constraints.

Proof. We translate an i-diagram into aCBAC constraint as fol-
lows. As in Figure 2, we note thatb1 = b2, b1 ⊆ b2 can be ex-
pressed in the form|b| = 0, so we may assume that they are part of
CBAC. Similarly, |b| ≤ k can be expressed asb ⊆ s ∧ |s| = k
for a fresh variables, and |b| ≥ k can be expressed ass ⊆
b ∧ |s| = k. We translate⊥d into e.g.|0| = 1. Next considerD =
(S, ∅d, Sons, Split, Comp, CInf, CSup, Φ). For eachS ∈ S, let
η(S) ∈ S be a representative set name. For eachS1 ∈ S \ {η(S)}
introduce conjunctS1 = η(S). Next, for eachS1 ∈ Sons(S), in-
troduce a conjunctS1 ⊆ S. For each+P ∈ Φ(S), introduce con-
junctS ⊆ P , and for each−P ∈ Φ(S) conjunctS ⊆ P c. Express
the bounds using conjuncts|S| ≤ CSup(S) and |S| ≥ CInf(S).
For eachQ ∈ Split(S) andS1, S2 ∈ Q whereS1 6= S2, intro-
duce conjunct|S1 ∩ S2| = 0. For each{S1, . . . , Sn} ∈ Comp(S)
introduce conjunctS = S1 ∪ . . . ∪ Sn.

We translate aCBAC constraint into i-diagram using the follow-
ing observations. It is sufficient to translate the following boolean
algebra expressions:s0 = s1 ∪ s2, s0 = sc

1, and |s| = k. We
construct an i-diagram whose nodes are singletons. We pick one
set variableu to act as a universal set and put{s} ∈ Sons({u})
for every set variables in the i-diagram. We translates0 = s1 ∪
s2 as {{s1}, {s2}} ∈ Comp({s0}) and translates0 = sc

1 as
{{s0}, {s1}} ∈ Split({u}), {{s0}, {s1}} ∈ Comp({u}). We
translate|s| = k asCInf({s}) = k andCSup({s}) = k. Then
for each satisfiable assignment ofCBAC there is a model for the
constructed i-diagram where{u} is interpreted as a universal set.
Conversely, for a model of i-diagram wherēα({s}) = A, we let
[s 7→ A∩ ᾱ(u)]. The result is an assignment that satisfies the orig-
inal CBAC formula.

Lemma 4 For every i-diagramD we can obtain an equivalent
simple i-diagram using the polynomial-time algorithm in Figure 6.

Proof. We argue that algorithm in Figure 6 produces diagram that
is i) well-formed,ii) simple,iii) equivalent to the original diagram.

We first observe that after step 2, the following two conditions
hold:

C) if Q ∈ Split(S) andS ∈ Q, thenQ ⊆ {S, ∅d}. This condition
holds because the step 1.5 of the algorithm merges all nodes
Q \ {S} with ∅d whenS ∈ Q ∈ Split(S).

D) if Q ∈ Comp(S), thenQ 6= ∅ (by step 1.3) and if|Q| = 1 then
Q = {S} (by step 1.6).

i) To see that the resulting i-diagram is well-formed, it suffices
to check the conditions

S

Split(S) = Sons(S) and
S

Comp(S) ⊆
Sons(S). This condition is preserved by factor-diagram construc-
tion (for any equivalence relation). It is preserved by step3 for the
following reason. The only nodes removed fromSons(S) are∅d
andS. These nodes do not appear in

S

Comp(S) because∅d is
removed from each viewQ, and views withS ∈ Q are removed.
It remains to check thatSons(S) ⊆

S

Split(S) after step 3, and
this holds because our condition (C) implies that no elementother
thanS, ∅d is lost from

S

Split(S) in step 3. The well-formedness
condition is preserved by step 4 because this step does not change
S

Comp(S) or
S

Split(S). Step 5 does not violate this condition
either because it sets the components of∅d to ∅.

ii) To see that the resulting diagram is simple, we show that
it satisfies conditionsa),. . . ,f)of Definition 6. After step 2 of the
algorithm, the resulting factor-diagram has no cycles of length 2
or more, there are only potentially some self-cycles. Theseare
eliminated in step 3 and no further edges are introduced. Hence,
a) holds. For each of the following condition, they are enforced in

certain step and not violated afterwards, according to the following
table:

b) c) d) e) f)
3. 4. 4. 4. 5.

iii) We show that semantics is preserved when executing each
sequence of steps1, . . . , k for 2 ≤ k ≤ 5, that is, each step pre-
serves the semantics provided that it is executed after the previous
steps.

k = 2. Each equality introduced intoρ is a semantic conse-
quence of the diagram, because

1.1 α(S1) ⊆ S2 andα(S2) ⊆ α(S1),
1.2 α(S1) ⊆ α(∅d) = ∅,
1.3 α(S1) ⊆

S

∅ = ∅,
1.4 α(S1) ∩ α(S2) = ∅ for α(S1) = α(S2) soα(S2) = ∅, or
1.5 α(S1)∩α(S2) = ∅, for α(S1) = α(S0), andα(S2) ⊆ α(S0),

so againα(S2) = ∅,
1.6 α(S1) ⊆ S andα(S) ⊆

S

{α(S1)} = α(S1).

It follows that the condition on equality of sets, as well as the con-
ditions onCInf, CSup, Sons, Φ, Comp are all semantically equiv-
alent when applied to the original and the factor diagram. The only
semantic condition which can be lost in factor-diagram construc-
tion isdisjD,S0

(S1, S2) whenS1 andS2 nodes are merged, that is,
when(S1, S2) ∈ ρ. However, in this case the disjointness condi-
tion follows fromα(S1) = ∅, which is enforced in 1.3. Therefore,
for the particular relation constructed in step 1, factor-diagram is
an equivalence preserving transformation.

k = 3. We need to show that no information is lost by removing
∅d and S from the sons, as well as split and complete views of
S. Clearly, removingS and ∅d from Sons(S) does not change
the subset conditions because∅ ⊆ α(S) and α(S) ⊆ α(S).
Eliminating∅d from Q ∈ Comp(S) is justified because the view
has the same semantics with or without∅d. Dropping a viewQ ∈
Comp(S) for S ∈ Q is justified because in that caseα(S) ⊆
S

S1∈Q α(S1) holds trivially. Eliminating∅d from Q ∈ Split(S)
is justified because intersection with empty set is always empty,
so this condition does not bring any new information. Finally,
dropping aQ ∈ Split(S) with S ∈ Q is justified because condition
(C) implies that in such caseQ ⊆ {∅d, S} so theSplit condition is
trivial.

k = 4. Removing{∅d} from Split(S) preserves semantics
because such view carries no information. Similarly, because all
maximal views are preserved, removing their subsets does not
change the semantics. ForComp(S), we consider two cases. In first
case∅ /∈ Comp(S). In this case, removing∅ does not have any
effect, and it is sound to remove all non-minimal views because
they are implied by the minimal views. The second case is∅ ∈
Comp(S). By condition D) on the step 1, we know thatQ 6= ∅ after
the step 2, and the only node removed in step 3 is∅d, so it must have
been the case thatQ = {∅d} after step 2. By condition D), we then
haveS = ∅d. Because the semantic condition onComp for Q = ∅
reduces toα(S) = ∅, this condition brings no new information, so
we can remove it.

k = 5. Becauseα(∅d) =, CSup(∅d) = 0 does not change
semantics, similarly forΦ(∅d) = ∅. We also know thatSons(S) ⊆
{∅d} because this condition is ensured by step 2 and is not violated
afterwards. Because we have already observed that the diagram
is well-formed, we concludeComp(S) ⊆ {∅d} andSplit(S) ⊆
{∅d}, so setting these values to∅ does not change the semantics.
Theorem 2 Omitting any one out of three conditions from Defini-
tion 9 (1. being tree-shaped, 2. having independent views, and 3.
having independent signatures) yields a class of diagrams whose
satisfiability is NP-hard.

Proof. Suppose that at least one of the three conditions does not
apply to a class of i-diagrams. We then give a reduction from the
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problem 3COL to the satisfiability of i-diagrams in this class. Here
3COL denotes the NP-complete problem of deciding, given an
indirected graph, whether the graph can be colored using 3 colors
such that adjacent nodes have different colors [41, Page 275].

Given a graph(N, E) whereE ⊆ N × N is a symmetric ir-
reflexive relation, we first build the i-diagramD defined as follows:
S = N ∪ {U}, CInf(U) = CSup(U) = 3, Sons(U) = N ,
Split(U) = {{n}|n ∈ N}, andComp(U) = Φ(U) = ∅. For
all n ∈ N we let CInf(n) = CSup(n) = 1 and letSons(n) =
Split(n) = Comp(n) = Φ(n) = ∅.

Each model of this diagram is a triple(∆, α, Ξ) such that
|α(U)| = 3 and for alln, α(n) is a singleton included inα(U).
If we considerα(U) as a set of three colors, then in each model
with this property,α(n) indicates the color of noden.

Then for each edge(n1, n2) ∈ E we encode the fact that
n1 and n2 must have different colors by enforcing the property
α(n1)∩α(n2) = ∅ on the models ofD. We encode this constraint
in different ways depending on the class of i-diagrams:

• If D allows dependent signatures, we introduce a fresh pred-
icate symbol Pn1,n2

, and add (+Pn1,n2
) to Φ(n1), and

(−Pn1,n2
) to Φ(n2).

• If D allows dependent views, we add{n1, n2} to Split(U).
• If D allows multiple fathers, then we simulate depen-

dent views by introducing a new nodem(n1, n2).
We let CInf(m(n1, n2)) = CSup(m(n1, n2)) = 2,
Sons(m(n1, n2)) = {n1, n2}, Split(m(n1, n2)) =
Comp(m(n1, n2)) = {{n1, n2}}, andΦ(m(n1, n2)) = ∅.
We then removen1, n2 from Sons(U), and addm(n1, n2) to
Sons(U) instead.

None of these constructions violates more than one of the three con-
sidered restrictions. It is straightforward to verify thatthe diagram
is satisfiable iff the graph is colorable, and that the construction of
D can be done in polynomial time. This proves that the satisfia-
bility of i-diagrams with any of the three restrictions removed is
NP-hard.

A.2 Termination of SystemR

LEMMA 17 (Invariants ofR). For everyk ∈ [1..12] the ruleRk

preserves
V

j=1..(k−1) Cj or returns⊥d.

Proof. We analyze each ruleRk, for two i-treesT andT ′ such
that T −→

Rk

T ′ , assuming thatT satisfies
V

j=1..(k−1) Cj , and,

more precisely,T
spot
−→
Rk

T ′, wherespot are variable names as they

appear in the definition ofR.

1. (DnPhi). Trivial.
2. (Unsat). (C1) does not depend onCSup.
3. (UpSup). If n = 0, (C2) is trivialy true for S in D′. If

n > 0, by (c3) CSup(S) > 0 and we have already∀P ∈
PN.{+P,−P} 6⊆ Φ(S) and sinceΦ′ = Φ, (C2) holds inT ′.

4. (UpInf ). Neither (C1),(C2) nor (C3) depend onCInf.
5. (Error). T ′ =⊥d

6. (DnInf ). Only (C4) and(C5) depends onCInf.

• (C5) is maintained forS in T ′ because, noticing that (C5) is
maintained forS′ 6= S, we have

CInf ′(S) = CInf(S′)− Σ(CSup(Q0))
≤CSup(S′)− Σ(CSup(Q0)) (by C5)
≤CSup(S) (by C3)

• To prove that (C4) is maintained inT ′ we need to check
that (C4) is maintained forS, which is trivial by (c6), and
that (C4) is maintained for the fatherS′ of S and the views
Q ∈ Split(S′) containingS. By property of independent

views there exists only one such viewQ = ({S} ] Q′
0)

such thatQ′
0 ⊆ Q0 and

ΣCInf ′(Q)= CInf ′(S)+ΣCInf(Q′
0)

= (CInf(S′)−ΣCSup(Q0))+ΣCInf(S′
0)

= CInf(S′)−ΣCSup(Q0 −Q′
0)

+ΣS′

0
∈Q′

0
(CInf(S′

0)− CSup(S′
0))

≤CInf(S′)−ΣCSup(Q0 −Q′
0) (by C5)

≤CInf(S′)
= CInf ′(S′)

7. (DnSup). Only (C2), (C3) and(C5) depend onCSup. (C2) is
maintained thanks to (c7) as for the case of ruleUpSup.

• (C5) is maintained forS in T ′ because, noticing that (C5) is
maintained forS′ 6= S we have

CSup′(S) = CSup(S′)− Σ(CInf(Q0))
≥CInf(S′)− Σ(CInf(Q0)) (by C5)
≥CInf(S) (by C4)

• To prove that (C3) is maintained inT ′ we need to check
that (C3) is maintained forS, which is trivial by (c7), and
that (C3) is maintained for the fatherS′ of S and the views
Q ∈ Comp(S′) containingS. By property of independent
views there exists only one such viewQ = ({S}]Q0) and

ΣCSup′(Q)= CSup′(S)+ΣCSup(Q0)
= (CSup(S′)−ΣCInf(Q0))+ΣCSup(S0)
= CInf(S′)+ΣS0∈Q0

(CSup(S0)− CInf(S0))
≥CInf(S′) (by C5)
= CInf ′(S′)

8. (CCmp). Only (C3) and(C6) depend onComp.

• (C3) is maintained forS, Q because

CSup′(S) = CSup(S)
≤Σ(CInf(Q)) (by a8)
≤Σ(CSup(Q)) (by C5)
= Σ(CSup′(Q))

• (C6) is maintained forS, Q and allS0 ∈ Q because

CInf ′(S) = CInf(S)
≤CSup(S) (by C5)
≤Σ(CInf(Q)) (by a8)
= CInf(S0) + Σ(CInf(Q− {S0}))
≤CInf(S0) + Σ(CSup(Q− {S0})) (by C5)
= CInf ′(S0) + Σ(CSup′(Q− {S0}))

(Remark). If ever we use a simplification afterwards, as indi-
cated by the star in figure 10, it can only consists in removing
a complete viewQ′ such thatQ′ ( Q. This operation trivially
maintains

V

j=1..(7) Cj because in every properties of consis-
tency where complete views appear they are universally quan-
tified.

9. (CSplit). Only (C4) and(C7) depend onSplit.

• (C4) is maintained forS, Q because

CInf ′(S)= CInf(S)
≥Σ(CSup(Q)) (by a9)
≥Σ(CInf(Q)) (by C5)
= Σ(CInf ′(Q))

• (C7) is maintained forS, Q and allS0 ∈ Q because

CSup′(S)= CSup(S)
≥CInf(S) (by C5)
≥Σ(CSup(Q)) (by a9)
= CSup(S0) + Σ(CSup(Q− {S0}))
≥CSup(S0) + Σ(CInf(Q− {S0})) (by C5)
= CSup′(S0) + Σ(CInf ′(Q− {S0}))
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(Remark). If ever we use a simplification afterwards, as indi-
cated by the star in figure 10, it can only consists in remov-
ing a split viewQ′ such thatQ′ ( Q. This operation trivially
maintains

V

j=1..8 Cj because in every properties of consistency
where split views appear they are universally quantified.

10. (UpPhi). Only (C1) and(C2) depend onΦ

• (C1) is maintained forS and allS′ ∈ Q because

Φ′(S) =Φ(S) ∪
T

Φ(Q) (by b10)
=Φ(S) ∪ (Φ(S′)

T

Φ(Q− {S′})
⊆Φ(S) ∪ Φ(S′)
⊆Φ(S′) (by C1)
=Φ′(S′)

• We can also prove that (C2) is maintained forS. Suppose
there existsP in PN such that{+P,−P} ∈ Φ′(S). Then
we distinguish three cases.

if {+P,−P} ⊆ Φ(S), by C2, CSup(S) = 0

if {+P,−P}∩Φ(S) = ∅, then{+P,−P} ∈
T

Φ(Q).
Then for allS′ ∈ Q, CSup(S′) = 0 by C2. Then byC3,
CSup(S) = 0

if {+P,−P} ∩ Φ(S) = ±P for one atom±P ∈
{+P,−P}. Then the opposite atom∓P belong
T

Φ(Q) and byC1,±P belong to
T

Φ(Q). By C2, each
nodeS′ ∈ Q is such thatCSup(S′) = 0 and byC3,
CSup(S) = 0

In the three casesCSup′(S) = CSup(S) = 0.

11. (Void). If S is the root,the resulting i-treeT ′ is such that
S′ = {SN} = {∅d} and Ci is trivial for all i ∈ [1..11].
Otherwize, we have to check that removing the nodeS from
the sons of the father ofS (as indicated in the step 3 of the
proceduresimplify ) maintains

V

j=1..10 Cj . We denote byS0

the father ofS and byQ0 the split view ofS0 containingS. If
S is also contained in a complete view ofS0 we denote byC0

this complete view.

• (C1) and (C2) are trivially maintained.
• (C3) is maintained because, ifC0 exists andC′

0 = C0−{S}
is not empty

CSup′(S0)= CSup(S0)
≤ΣCSup(C0) ( by C3)
= ΣCSup(C′

0) ( by a12)
= ΣCSup′(C′

0)

• (C4) is maintained because, ifQ′
0 = Q0−{S} is not empty

CInf ′(S0) =CInf(S0)
≥ΣCInf(Q0) ( by C4)
≥ΣCInf(Q′

0)
=ΣCInf ′(Q′

0)

• (C5) is maintained for the node∅′d = S ∪ ∅d of T ′ because
by (a12) and(C5), CInf(S) ≤ CSup(S) = 0, by simplic-
ity and (C5), CInf(∅d) ≤ CSup(∅d) = 0, and therefore
CInf ′(∅′d) = Max(CInf(S), CInf(∅d)) = 0 ≤ CSup′(∅′d).

• (C6) is maintained forS0, C0 and everyS1 ∈ C0 such that
S1 6= S because

CInf ′(S1)= CInf(S1)
≥CInf(S0)−Σ(CSup(C0−{S1})) (by C6)
= CInf(S0)−Σ(CSup(C0−{S}−{S1})) (by a12)
= CInf ′(S0)−Σ(CSup′(C′

0−{S1}))

• (C7) is maintained forS0, Q0 and everyS1 ∈ Q0 such that
S1 6= S because

CSup′(S1) =CSup(S1)
≤CSup(S0)− Σ(CInf(C0 − {S1})) (by C7)
≤CSup(S0)− Σ(CInf(C0 − {S} − {S1}))
=CSup′(S0)− Σ(CInf ′(C′

0 − {S1}))

• (C8) is maintained forQ0 because

CSup′(S0) =CSup(S0)
>Σ(CInf(Q0)) ( by C8)
≥Σ(CInf(Q0 − {S0}))
=Σ(CInf ′(Q′

0))

• (C9) is maintained forC0 (if exists andC′
0 = C0−{S0} 6=

∅) because

CInf ′(S0)= CInf(S0)
< Σ(CSup(Q0)) ( by C9)
= Σ(CSup(Q0 − {S0})) ( by a11)
= Σ(CSup′(Q′

0))

• (C10) is maintained forC0 (if exists andC′
0 = C0−{S0} 6=

∅) because
T

Φ′(C′
0) =

T

Φ(C0 − {S0})
⊆

T

Φ(C0)
⊆Φ(S0) ( by C10)
= Φ′(S0)

12. (Equal). Before to mergeS andS′ for {S′} ∈ Comp(S) we
have

• CInf(S) = CInf(S′) by C4 andC6
• CSup(S) = CSup(S′) by C3 andC7
• Φ(S) = Φ(S′) by C1 andC10

Therefore all the propertiesCi for i = 1..10 are trivially
maintained.

A.3 Model Construction

Lemma 6 (Model Construction) If an i-treeT is weakly consis-
tent, then we can construct a model forT .

Proof. Let T be a weakly consistent i-tree.
We construct a model(∆, α, Ξ) by first constructing a partial

model (∆, α) for all parts of T exceptΦ, and then extending
(∆, α) with Ξ to satisfyΦ.
Constructing (∆, α). We write(∆, α) |= T to denote that∆ and
α satisfy those conditions onS, Sons, Split, Comp, CSup, CInf that
do not mentionΦ in Definition 2. To show we can construct(∆, α)
such that(∆, α) |= T we prove by induction onn the following
more general claim.

CLAIM 1. For every i-treeT of heightn with rootSR:

∀k ∈ [CInf(SR), CSup(SR)].
∃(∆, α). (∆, α) |= D ∧ |α(SR)| = |∆| = k

If n = 1, the claim holds byC5 taking

∆ = α(SR) = {1, . . . , k}

For n>1, consider an i-treeT with root SR and k ∈
[CInf(SR), CSup(SR)]. By examining the constraints inT , we
choose the cardinalities for subtrees ofT , use the induction hy-
pothesis to construct models for subtrees, and paste the models for
subtrees into a model forT . We decompose this process into three
steps:
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1. For eachC ∈ Comp(SR), consider a subtreeTC built from T
by removing all sons outside

S

C. We construct a modelMC

for TC of cardinalityk.
2. For each remainingQ ∈ Split(SR) whereQ 6⊆

S

Comp(SR),
consider a subtreeTQ with the same rootSR but without the
sons outside

S

Q. We construct a modelMQ for TC of cardi-
nality k.

3. Because the constructed models have the same cardinality, we
can easily merge them to obtain a model forT .

Step 1. Let C ∈ Comp(SR), and C ⊆ Split(SR) such that

C = ∪C. For eachQ ∈ C, let tQ
def
= min(k, Σ(CSup[Q])). Using

k ≥ CInf(SR) andC4 we can show

Σ(CInf [Q]) ≤ tQ ≤ Σ(CSup[Q]) (H1)

To each nodeS ∈ Q we can therefore assign an integerK(S) ∈
[CInf(S), CSup(S)] such thattQ = Σ(K[Q]). Let TS be the sub-
i-tree of T rooted atS. By induction hypothesis, letMS be the
model ofTS of cardinalityK(S). We can then take the disjoint
union of these models to construct a modelMMQ

of sizetQ for
the forest

S

S∈Q
TS .

For all Q ∈ C, we havetQ ≤ k by definition of tQ and k.
We can also prove thatk ≤ ΣQ∈CtQ. Indeed, if there exists a
Q0 ∈ C such thattQ0

= k, this is trivial. Otherwise, becauseT
is weakly consistent, fromC3 we can show thatk ≤ CSup(S) ≤
Σ(CSup[C]) because

Σ(CSup[C]) = Σ
Q∈C

(Σ(CSup[Q])) = Σ
Q∈C

(tQ).

We finally obtain

max
Q∈C

tQ ≤ k ≤ Σ
Q∈C

tQ (H2)

Thanks to(H2), we can build a model for the i-treeTC , as follows.
We start with the disjoint union of modelsMQ for TQ for Q ∈ C.
This model has cardinalityΣQ∈CtQ. Then, we rename elements
from different models to be identical to elements from othermod-
els. Such merging is possible as long as there is no model whose
domain contains the domains of all others, so we can reach any
cardinalityk for maxQ∈C ≤ k.

REMARK 2. (Freedom in the choice of{ti}i∈[1..n]) In Section 7
we enforce some additional properties on models using a differ-
ent choice oftQ. Such construction is possible wheneverti satisfy
(H1) and(H2). Moreover, ifK(S) denotes some chosen cardinal-
ity for each nodeS, and the valuesK(S) satisfy certain assump-
tions, then we can enforce additional properties when merging the
modelsMQ corresponding forQ ∈ Split(S). The following two
cases are of interest.

1. If
P

Q∈C

tQ > K(S), we can chose any pair of different split

views Q1, Q2 ∈ C, and two elementsx1 fromMQ1
andx2

fromMQ2
and decide to merge them.

2. If C = {Q0} ] C0 and max
Q∈C0

tQ < K(S), we can chose any

element in the modelMQ0
and decide not to merge it with any

of the elements of the modelsMQ′ for Q′ ∈ C0.

Step 2. Let Q ∈ Split(SR), such thatQ is not included in any
complete view. We construct a modelMQ of sizek for the i-forest
TT by first building a model of sizeK(S′) = CInf(S′) for each
S′ ∈ Q. Becausek ≥ CInf(S) ≥ Σ(CInf [Q]), by C4, the disjoint
union of these models has cardinality smaller thank. By adding
the correct number of fresh elements to∆, we obtain a model of
cardinalityk.

REMARK 3. (Existence of fresh elements) In Section 7 we use the
following property: For allQ ∈ Split(S) andQ 6∈ ∪Comp(S),

if Σ(CInf [Q]) < K(S), then there exists a model such thatα(S)
contains an element which does not belong to anyα(S′) for any of
the sons ofS.

Step 3. We can apply an arbitrary bijectionσC : ∆C → [1..n]
to each modelMC constructed as previously described before to
build a model for the entire i-tree. We letα(SR) = [1..n] and for
all S 6= SR, α(S) = αC(S) whereC is the view containing an
ancestor ofS in Split(SR) or Comp(SR).

REMARK 4. (Freedom in the choice ofσ.) If we know that
K(S) > 0, for any pairS1, S2 of sons ofS such thatS1, S2 belong
neither to the same split view nor to the same complete view, for
each choice of elementsx1, x2 in the modelsTS1

andTS2
we can

chooseσ1, σ2 such thatσ1(x1) = σ2(x2)
def
= x and the resulting

i-tree will be such thatx ∈ α(S1) ∩ α(S2).

Extending the model with Ξ. Let (∆, α) |= T . Then for each
P ∈ PN, define

Ξ(P ) =
[

{α(S) | S ∈ S ∧ P ∈ Φ(S)}

Then (+P ) ∈ Φ(S) ⇒ α(S) ⊆ Ξ(P ) holds by construction,
it remains to show(−P ) ∈ Φ(S) ⇒ α(S) ⊆ Ξ(P )c for every
nodeS. ConsiderS1 ∈ S such that(−P ) ∈ Φ(S1). If S1 = ∅d,
then α(S1) = ∅, so the condition trivially holds. Similarly, if
(+P ) ∈ Φ(S1), then byC2, CSup(S1) = 0 soα(S1) = ∅ and the
condition holds. Otherwise, assume(+P ) /∈ Φ(S1). For the sake
of contradiction suppose that there exists an elementx ∈ α(S1),
x ∈ Ξ(P ). By definition ofΞ(P ), there exists a nodeS2 6= S1

such thatx ∈ α(S2) and (+P ) ∈ Φ(S2). By the condition on
independent signatures, one of the followig two cases applies.

1. disj∗T (S1, S2). Then α(S1) ∩ α(S2) = ∅ by the semantics
of i-diagrams, which is a contradiction withx ∈ α(S1) and
x ∈ α(S2).

2. S1 and S2 have compatiable signatures. Then there exists a
nodeS such thatS1

∗
 S, S2

∗
 S andSig(S1) ∩ Sig(S2) ⊆

Sig(S). Because(−P ) ∈ Φ(S1), (+P ) ∈ Sig(S1), and
because(−P ) ∈ Φ(S2), P ∈ Sig(S2). ThereforeP ∈ Sig(S).
We have two cases:

(a) (+P ) ∈ Φ(S). By C1, then(+P ) ∈ Φ(S1), a contradic-
tion.

(b) (−P ) ∈ Φ(S). By C2, then(−P ) ∈ Φ(S2). By C2 then
CSup(S2) = 0, soα(S2) = ∅, a contradiction withx ∈
α(S2).

We have reached the contradiction in each case, so we conclude
α(S1) ⊆ Ξ(P )c.

A.4 Details of the Proofs for Subsumption Completeness

A.4.1 Refinemenents of Lemma 6

According to the remarks in the proof of Lemma6, if an i-treeT is
weakly consistent, there exists a choice of cardinalitiesK : S→ N,
such that we can build a model(∆, α, Ξ) for T with the property
|α(S)| = K(S) for all S ∈ S. For a fixed choice of cardinalities
K, we can, in certain cases, enforce some additional properties
by choosing which element we merge in the steps 1 and 3 of the
construction. The three following Lemmas are based on this idea.

LEMMA 18 (Non-empty intersection (1)).LetS1 andS2 be nodes
in a weakly consistent i-treeT is such that

CInf(S1) > 0 ∧ S1
∗
 S′

1 ∧ S′
1 ∈ Q1 ∧

CInf(S2) > 0 ∧ S2
∗
 S′

2 ∧ S′
2 ∈ Q2

for someS, S′
1, S

′
2 ∈ S, Q1, Q2 ∈ Split(S) whereQ1 6= Q2 and

¬(∃C ∈ Comp(S). Q1 ⊆ C ∧ Q2 ⊆ C). Then there exists a
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model(∆, α, Ξ) for T such that

α(S1) ∩ α(S2) 6= ∅.

Proof. We use the construction described in Lemma 6, with the
exception of step 3 of the construction of the modelMS for the
subtreeTS with rootS, where we do the following:

• We choose an elementx1 in α1(S1) in the modelMS′

1
built for

TS′

1
(we know there exists one suchx1 becauseCInf(S1) > 0)

• Analogously, we choose an elementx2 in α2(S2) in the model
MS′

2
build for TS′

2

• We choose the bijectionsσQ1
and σQ2

in step 3 such that
σQ1

(x1) = σQ2
(x2).

LEMMA 19 (Non-empty intersection (2)).LetS1 andS2 be nodes
in a weakly consistent i-treeT is such that

CInf(S1) > 0 ∧ S1
∗
 S′

1 ∧ S′
1 ∈ Q1 ∧

CInf(S2) > 0 ∧ S2
∗
 S′

2 ∧ S′
2 ∈ Q2

for someS, S′
1, S

′
2 ∈ S, Q1, Q2 ∈ Split(S) whereQ1 6= Q2, and

Q1 ⊆ C, Q2 ⊆ C for someC ∈ Comp(S) with the property

CSup(S) < Σ(CSup[C]).

Then there exists a model(∆, α, Ξ) for T such that

α(S1) ∩ α(S2) 6= ∅.

Proof. We use the construction described in the proof of
Lemma 6, except for the step 1 of the construction of the model
MS for the subtreeTS with rootS, for which we do the following.
From K(S) ≤ CSup(S) < Σ(CSup[Q]), we conclude that the
choice of cardinalitiestQ for Q ∈ C in the proof of Lemma 6 is
such thatΣQ∈CtQ > K(S), by considering two cases.

1. There existsQ ∈ C such that

tQ = min(K(S), Σ(CSup[Q])) = K(S).

Then we chooseQi ∈ {Q1, Q2} such thatQi 6= Q. Since
CInf(S1) > 0 ∧ S1

∗
 S′

1  S, repeatedly applyingC4 and
usingC5, we have

• Σ(CSup[Qi]) ≥ CSup(S′
i) ≥ CInf(S′

i) ≥ CInf(Si) > 0
• K(S) ≥ CInf(S) ≥ CInf(Si) > 0

As a consequencetQi
= min(K(S), Σ(CSup[Qi])) > 0 and

ΣQ∈CtQ ≥ tQ + tQi
> K(S).

2. For all Q ∈ C, tQ = Σ(CSup[Q])). Then ΣQ∈CtQ =
Σ(CSup[C]) > CSup(S) ≥ K(S).

BecauseΣQ∈CtQ > K(S), we can apply Remark 2 and choose
one elementx1 in α1(S1) in the modelMS′

1
built for TS′

1
, and

an elementx2 in α2(S2) in the model built forTS′

2
, and decide

to merge these elements in the step 1 of the construction. We
know that such elementsx1, x2 exist becauseCInf(S1) > 0 and
CInf(S2) > 0.

LEMMA 20 (Isolated element).Let T be a weakly consistent i-
tree and(Q1, ) a subtree of(S, ) with the same rootSR as
T , such that for allS ∈ Q1 all the following conditions hold:

1. CInf(S) > 0

2. ∀C ∈ Comp(S). ∃=1Q ∈ Split(S). Q ⊆ C ∧ |Q ∩Q1| = 1

3. ∀Q ∈ Split(S). |Q ∩Q1| 6= 1 ⇒
(|Q ∩Q1| = 0 ∧ Σ(CInf[Q]) < CInf(S)).

Then we can construct a model forT such that

∃x ∈ α(R). ∀S ∈ S. (x ∈ α(S) ⇔ S ∈ Q1)

Proof. We use a variation of the construction in the proof of
Lemma 6. We apply the assumptions about the subtreeQ1 to show
that we always have enough “slack” to avoid merging one specific
element fromQ1 with the elements of neighbors. We being by
describing a slightly modified Step 1 of the proof of Lemma 6.
Step 1’ (for nodes ofQ1). Consider the rootSR ∈ Q1. Let
C ∈ Comp(SR), andC ⊆ Split(SR) such thatC = ∪C. By
construction, there exists a unique sonS′ ∈ Q1 of SR and a
corresponding split viewQ′ such thatS′ ∈ Q′ andC = {Q′}]C0.
We definetQ′ = min(k, Σ(CSup[Q′])) and for eachQ0 ∈ C0, we

definetQ0

def
= min(k−1, Σ(CSup[Q0])). For eachQ0 ∈ C0, since

k ≥ CInf(SR) by choice ofk andCInf(SR) > Σ(CInf[Q0]) by
hypothesis 3 onT , we haveΣ(CInf[Q0]) ≤ k−1, so

Σ(CInf [Q0]) ≤ tQ0
≤ Σ(CSup[Q0]) (H1)

and the property (H1) also holds fortQ′ , becausetQ′ is defined as
in Lemma 6.

By definition of t we clearly havemaxQ∈C tQ ≤ k. We next
show Σ

Q∈C

tQ ≥ k by considering the following cases.

• tQ′ = k. Then the claim is obvious.
• For all Q ∈ C we havetQ = Σ(CSup[Q]). The claim follows

from C3 and the choice ofk becauseΣtQ ≥ Σ(CSup[C]) ≥
CSup(SR) ≥ k.

• There existsQ0 ∈ C0 such thattQ0
= k − 1. Using

Σ(CSup[Q′]) ≥ CSup(S′) > 0 and k ≥ CInf(SR) > 0,
we obtaintQ′ > 0, so

Σ
Q∈C

tQ ≥ tQ0
+ tQ′ ≥ (k − 1) + 1 ≥ k.

We finally obtain

max
Q∈C

tQ ≤ k ≤ Σ
Q∈C

tQ (H2)

By definition of alltQ0
we then have

∀Q0 ∈ C0. tQ0
< k (H3)

According to Remark 2, H3 allows us to choose an element of the
modelMS′ constructed for the subtreeTS′ and decide not to merge
it with any other element. This observation allows us to recursively
enforcex ∈ α(S) ⇐⇒ S ∈ Q1.

Indeed, consider a nodeSR ∈ Q1 and let{S1
R, . . . , Sp

R} =
Sons(SR) ∩ Q1 be its sons inQ1. For eachi, we can then recur-
sively ensurexi ∈ α(S) ⇐⇒ S ∈ Q1 for eachS in the Si

R

subtree i.e. for eachS for which S
∗
 Si

R. By definition of Q1,
eachSi

R is in a different complete view, so we can apply bijection
to the submodels (Remark 4) and letσi(x1) = . . . = σp(xp) = x.
We ensure thatx does not belong to any subtree rooted at a node
S0 ∈ Sons(SR) \ Q1, using Remark 2 to make sure thatx is not
merged with any of the elements ofα(S0), which is possible thanks
to H3. Finally, for the base case, whenS has no sons, we pickx to
be a fresh element, which is possible by assumption 3 on the sub-
treeQ1, as noted in Remark 3.

A.4.2 Links between weak and strong consistency

Lemma 8 (Bounds Refinement)Let T be a strongly consistent
i-tree, S ∈ S, i, s such thatCInf(S) ≤ i ≤ s ≤ CSup(S), let
T ′ = T [CInf(S)← i, CSup(S)← s] andT ′

NF = Rw
NF(T

′). Then
1) T ′

NF 6=⊥d, 2) T ′
NF |= T , and 3) if¬(S

∗
 S0), then

(CInf(S0), CSup(S0)) = (CInf
′
NF(S0), CSup

′
NF(S0)).

Proof.

1. We prove this result by induction on the depth ofS in the tree
(S, ). The key step of this proof is to show that the application
of UpSup and/orUpInf to the fatherS′ of S do not produce
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a situation wherea5 holds in the resulting diagramT ′′ (and
therefore the ruleError is not applicable inT ′′). We distinguish
three different cases :

• WhenUpSup andUpInf are both applicable to this node
S′ we haveCInf ′′(S′) ≤ CSup′′(S′) because forC ∈
Comp(S′), Q ∈ Split(S′) such thatQ ⊆ C, Q = {S} ]

Q0, C = {S} ] C0 andT ′ S′,C
−→

UpSup

S′,Q
−→

UpInf
T ′′ we have

CInf ′′(S′) =Σ(CInf ′[Q0]) + CInf ′(S) (by b4)
=Σ(CInf ′[Q0]) + CSup′(S) (i ≤ s)
≤Σ(CSup′[Q0]) + CSup′(S) (by C5)
≤Σ(CSup′[C0]) + CSup′(S) (Q0 ⊆ C0)
=CSup′′(S′) (by b3)

• When onlyUpSup is applicable to this nodeS′ we have
CInf ′′(S′) ≤ CSup′′(S′) because forC ∈ Comp(S′),

C = {S} ] C0 andT ′ S′,C
−→

UpSup
T ′′ we have

CSup′′(S′) =Σ(CSup′[C0]) + CSup′(S) (by b3)
≥Σ(CSup′[Q0]) + CInf ′(S) (i ≤ s)
≥CInf ′(S′) (by C6)
=CInf ′′(S′)

• When onlyUpInf is applicable to this nodeS′ we have
CInf ′′(S′) ≤ CSup′′(S′) because forQ ∈ Split(S′),

Q = {S} ]Q0 andT ′ S′,Q
−→

UpInf
T ′′ we have

CInf ′′(S′) = Σ(CInf ′[Q0]) + CInf ′(S) (by b4)
≤Σ(CInf ′[Q0]) + CSup′(S) (i ≤ s)
≤CSup′(S′) (by C7)
= CSup′′(S′)

2. Follows easily from the hypothesisCInf(S) ≤ i ≤ s ≤
CSup(S) and the fact thatRw

NF is semantics preserving.
3. It is enough to notice that only rulesUpInf andUpSup are used

when applyingRw
NF, and these rules are applied in the bottom-

up direction.

Lemma 9 (Parallel Bounds Refinement (1))Let T be a strongly
consistent i-tree, and(Q0, ) a subtree ofT which has the same
root asT and is such that

• The nodes ofQ0 are pairwise independent, that is

∀S1, S2 ∈ Q0.¬(disj
∗
T (S1, S2))

Then the i-treeT ′ defined by

T ′ def
= T [∀S ∈ Q0:CInf(S)←CSup(S) ]

is such that hisRw normal formT ′
NF

def
= Rw

NF(T
′) satisfies

1. T ′
NF 6=⊥d

2. T ′
NF |= T

3. ∀S ∈ Q0. ∀Q ∈ Split′NF(S). Q ∩Q0 = ∅ ⇒
Σ(CInf ′NF[Q]) < CInf′NF(S)

Proof. If we apply[CInf(S′)←CSup(S′)] to every nodeS′ of Q0

starting from the root to the leaves, we always maintainC1, C2, C3
becauseΦ and CSup are never modified. We also maintainC4
because for eachS ∈ Q0 and each viewQ ∈ Split(S) such that
there existsS′ ∈ Q ∩ Q0, by¬disj∗T (S1, S2), we know thatS′ is
the only modified node, and

CInf ′(S) = CSup(S)
≥Σ(CInf[Q− {S′}]) + CSup(S′) (by C7)
= Σ(CInf ′[Q])

Therefore,T ′ is already in normal form, soT ′
NF is identical toT ′

and is clearly distinct from⊥d, proving condition 1. Condition 2
holds becauseT ′ |= T because the cardinality bounds inT ′ are at
least as strong as inT . Condition 3 holds because

Σ(CInf ′[Q])= Σ(CInf[Q]) (becauseQ ∩Q0 = ∅)
< CSup(S) (by C8)
= CInf ′(S) (by definition ofT ′)

LEMMA 21 (Parallel Bounds Refinement (2)).LetT be a strongly
consistent i-tree andS1, S2, S

′
1, S

′
2, S ∈ S andC, Q such that

C ∈ Comp(S), Q1, Q2 ∈ Split(S)

S1
∗
 S′

1 ∧ S′
1 ∈ Q1 ∧Q1 ⊆ C

S2
∗
 S′

2 ∧ S′
2 ∈ Q2 ∧Q2 ⊆ C

Q1 6= Q2

Define

T ′ def
= T [∀S′, S1

∗
 S′ ∗

 S′
1 : CInf(S′)← CSup(S′)]

[∀S′, S2
∗
 S′ ∗

 S′
2 : CInf(S′)← CSup(S′)]

T ′
NF

def
= Rw

NF(T
′)

T ′′ def
= Rw

NF(T
′

NF[CSup′′(S)← CInf ′NF(S)])

ThenT ′′ 6=⊥d, T ′′ |= T , andCSup′′(S) < Σ(CSup′′[C]).

Proof. As in the proof of Lemma 9, weak consistency con-
ditions hold in T ′ for all nodes inS′ such thatS1

∗
 S′

1 or
S2

∗
 S′

2. Therefore, the only rewrite step that mat be applicable
in T ′ is the application ofUpInf to S. This application may
lead to applications of other instances ofUpInf , but the proof
of Lemma 8 shows that this process will result in a weakly con-
sistent i-tree, soT ′

NF 6=⊥d. Moreover, the process of comput-
ing Rw

NF(T
′

NF[CSup′′(S) ← CInf ′NF(S)]) is identical to applying
Lemma 8 toT ′ with boundsi = s = CInf ′NF(S), and therefore
leads to a weakly consistent i-treeT ′′, soT ′′ 6=⊥d.

The conditionT ′′ |= T follows becauseRw
NF is semantics-

preserving, and the updates of trees only shrink the bounds on
nodes, so they convert a diagram into a stronger one.

To prove CSup′′(S) < Σ(CSup′′[C]), observe first
that CSup′′(S) = CInf ′NF(S) by definition of T ′′, and
Σ(CSup′′[C]) = Σ(CSup[C]) becauseCSup does not change for
any ancestors ofS. Therefore, it suffices to show

CInf
′
NF(S) < Σ(CSup[C])

We prove this condition by distinguishing two cases.

1. UpInf is not applicable toS. ThenCInf ′NF(S) = CInf(S) and
the condition follows byC9.

2. UpInf is applicable toS. Then for somea, b where{a, b} =
{1, 2} we have

CInf ′NF(S) = Σ(CInf ′[Qa])
< Σ(CInf ′[Qa]) + Σ(CInf ′[Qb])
≤ Σ(CInf ′[C])
≤ Σ(CSup[C])

A.4.3 Completeness of the algorithmSubsumes

Theorem 4 Let T be a strongly consistent i-tree and letHT
A for

atomic formulaA be as defined in Figure 12. ThenHT
A if and only

if T |= A.
The (⇒) direction of Theorem 4 is trivial by the semantics of i-
diagrams. For (⇐) direction we prove the following characteriza-
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tions:

S 6= ∅d ⇒ ∃M. α(S) 6= ∅
k ∈ [CInf(S), CSup(S)] ⇒ ∃M. |α(S)| = k
¬(Included(S0, C, T )) ⇒ ∃M. α(S0) 6⊆

S

α[C]

S1 6= ∅d ∧ ¬(S1
∗
 S2) ⇒ ∃M. α(S1) 6⊆ α(S2)

S1 6= S2 ⇒ ∃M. α(S1) 6= α(S2)
∅d 6∈ {S1, S2} ∧ ¬disj∗T (S1, S2) ⇒ ∃M. α(S1) ∩ α(S2) 6= ∅

+P 6∈ Φ(S) ⇒ ∃M. α(S) 6⊆ Ξ(P )
−P 6∈ Φ(S) ⇒ ∃M. α(S) 6⊆ Ξ(P )c

whereM denotes a modelM = (∆, α, Ξ) of T . We next present
the remaining lemmas that prove these characterizations (see also
Section 7).

Lemma 12 If an i-tree T is strongly consistent,S0,∈ S, C ∈
P(S), andIncluded(S0, C, T ) returnsfalse, then

∃M. α(S0) 6⊆
[

α[C]

Proof. Let Q0 be the smallest set of nodes such that:

S0
∗
 S ⇒S ∈ Q0

S ∈ Q0 ∧Q1 ∈ Comp(S)∧
S1 ∈ Q1 ∧ ¬Incl(S1, C)

ff

⇒S1 ∈ Q0

By definition ofIncl we know thatQ0 ∩ C = ∅.
Q0 is tree-shaped by construction, but may contain two nodes

which are explicitly disjoint. We compute a subtreeQ1 of Q0,
by starting from the root and keeping each time at most one son
for each complete view. We also impose thatQ1 containsS, by
avoiding to cut the branch which leads toS.

We then define

T ′ = R
w
NF(T [∀S ∈ Q1 : CInf(S)←CSup(S)])

According to Lemma 9 (Parallel Bounds Refinement) we have
T ′ 6=⊥d.

We then apply Lemma 20 to construct a model for the weakly
consistent i-treeT ′ such that

∀S′ ∈ S. (x ∈ α(S′) ⇔ S′ ∈ Q1)

for some elementx ∈ α(S). BecauseS ∈ Q1, we havex ∈ α(S).
BecauseC ∩Q1 = ∅, we havex /∈

T

α[C].

Lemma 15 If an i-treeT is strongly consistent, then for allS ∈ S
andP ∈ PN we have

(+P ) 6∈ Φ(S)⇒ ∃M. M |= T ∧ αM(S) 6⊆ Ξ(P )
(−P ) 6∈ Φ(S)⇒ ∃M. M |= T ∧ αM(S) 6⊆ Ξ(P )c

Proof. Let S ∈ S be such that(+P ) 6∈ Φ(S). We define

Q+P
def
= {S′ ∈ S|(+P ) ∈ Φ(S′)}. Using C10 we show that

Included(S, Q+P , T ) cannot return true. Then, there exists a
model such thatα(S) 6⊆ (

S

α[Q+P ]). We then change the model
by redefiningΞ′ by:

∀P ∈ PN. Ξ′(P ) =
[

{α(S′)|S′ ∈ Q+P }

to ensure thatΞ′(P ) 6⊆ α(S). The case of(−P ) 6∈ Φ(S) is
analogous by taking a model such thatα(S) 6⊆ (

S

α[Q−P ]) and
redefiningΞ′ by:

∀P ∈ PN. Ξ′(P ) = ∆−
[

{α(S′)|S′ ∈ Q−P}

Lemma 16 If an i-tree T is strongly consistent, then for all
S1, S2 ∈ S such thatS1 6= ∅, S2 6= ∅ we have

¬(disj
∗
T (S1, S2))⇒ ∃M. α(S1) ∩ α(S2) 6= ∅.

Proof. Let S1, S2 ∈ S \ {∅d} such that¬(disj∗D(S1, S2)). If
S1 = S2 we can find a modelM whereα(S1) = α(S2) 6= ∅ by
Lemma 10, in this modelα(S1) ∩ α(S2) = α(S2) 6= ∅. Suppose
S1 6= S2. DefineS′

1, S
′
2, S0 as the unique nodes such thatS0 is the

least common ancestor ofS1 andS2 in T , andS′
1,S′

2 ∈ Sons(S0)
are the ancestors ofS1 andS2, respectively. We distinguish two
cases:

• S′
1 andS′

2 do not belong to a same complete view ofS0. Then
apply Lemma 9 to the subtree

Q0
def
= {S ∈ S | S1

∗
 S ∨ S2

∗
 S}

whose nodes are pairwise independent by the hypothesis
disj∗T (S1, S2). The resulting treeT ′

NF satisfies the hypothesis
of Lemma 18, so there exists a modelM = (∆, α, Ξ) for T ′

NF

such that

α(S1) ∩ α(S2) 6= ∅.

M is also a model ofT becauseT ′
NF |= T .

• S′
1 andS′

2 belong to a same complete viewC. Define

T ′ def
= Rw

NF(T [∀S′, S1
∗
 S′ ∗

 S′
1 : CInf(S′)← CSup(S′)]

[∀S′, S2
∗
 S′ ∗

 S′
2 : CInf(S′)←CSup(S′)])

T ′′def
= Rw

NF(T
′[CSup′′(S)← CInf ′(S)]

By Lemma 21, thenT ′′ |= T andCSup′′(S) < Σ(CSup′′[C]).
This last property allows us to apply Lemma 19 and prove
the existence of a model(∆, α, Ξ) for T such thatα(S1) ∩
α(S2) 6= ∅.
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