
Implementing Probabilistically Checkable Proofs of

Proximity

Arnab Bhattacharyya�
MIT Computer Science and Arti�cial Intelligence Lab

abhatt@csail.mit.edu

Abstract

In this paper, we describe a proof-of-concept implementation of the probabilistically checkable proofof proximity (PCPP) system described by Ben-Sasson and Sudan in [BSS05]. In particular, we implementa PCPP prover and veri�er for Reed-Solomon codes; the prover converts an evaluation of a polynomialon a linear set into a valid PCPP, while the veri�er queries the evaluation and the PCPP to check thatthe evaluation is close to a Reed-Solomon codeword. We prove tight bounds on the various parametersassociated with the prover and veri�er and describe some interesting programmatic issues that ariseduring their implementation.
1 Introduction

A probabilistically checkable proof (PCP) system speci�es a format for writing proofs that can be veri�ede�ciently by querying only a few bits. Formally, a PCP system consists of an input string, a source ofrandom bits, a proof string, and a probabilistic polynomial-time Turing machine called the veri�er. Theveri�er has random access to the proof; given an address of a location in the proof, the veri�er can querythat location in the proof as a single oracle operation. A PCP veri�er V with perfect completeness andsoundness s(n) for the language L satis�es the following conditions:
� For every input x in L, there is a proof � such that V accepts with probability 1.
� For every input x not in L and for every proof �, V accepts with probability less than s(n).

Furthermore, a language L is said to be in PCP[r(n),q(n)] if there is a PCP veri�er for L that on eachinput of size n uses at most r(n) random bits and queries at most q(n) bits of the proof. The celebratedPCP Theorem states that for any language in NP , there exists a PCP veri�er with soundness 1=2 that usesO(logn) random bits and queries O(1) bits of the proof. Hence, the size of the proof needed by the veri�eris 2O(logn) = poly(n), polynomially larger than the size of the NP-witness.Subsequently, much work has been done in trying to reduce the length of the proof and to make itsconstructions simpler. The length of the proof is relevant to applications of PCP theory in cryptographyand to constructions of locally testable codes (LTCs). Moreover, there is the possibility that a PCP systemwith short proof size could form the basis for a semantic analog of error-correcting codes. Simplifyingthe proof construction is also important for this reason. Some progress toward these goals were made in[BSS05] where Ben-Sasson and Sudan showed that there exist probabilistically checkable proofs for verifying�This work was supported by a REU supplement to NSF ITR Award CCR-0312575. Any opinions, �ndings and conclusionsor recommendations expressed in this report are those of the author(s) and do not necessarily re
ect the views of the NationalScience Foundation (NSF).
1

satis�ability of circuits of size n of length n � poly(logn), with the veri�er querying poly(logn) bits of theproof. Moreover, the construction of the proof is signi�cantly simpler than in previous PCP constructions.Their Theorem 1 states:
Theorem 1 ([BSS05], Theorem 1): SAT has a PCP veri�er that on inputs of length n tosseslog(n � poly(logn)) coins, makes poly(logn) queries to a proof oracle of length n � poly(logn), runs intime n � poly(logn) and has perfect completeness and soundness at most 12 .

This PCP construction involves the construction of probabilistically checkable proofs of proximity(PCPPs) for Reed-Solomon codes. PCPPs provide an even stronger restriction on the veri�er's computation,compared to the standard PCP model. Whereas a PCP veri�er has unrestricted access to the input stringbut is restricted to making only a few queries to the proof, a PCPP has restricted access to both the inputand the proof. Formally:
Definition 1 (PCPP) A set C � �n has a probabilistically checkable proof of proximity overalphabet � of length `(n) with query complexity q(n), perfect completeness and soundness s(�; n) ifthere exists a veri�er V with oracle access to a pair (x; �) 2 �n+`(n) such that V tosses r(n) coins,makes q(n) queries into (x; �) and accepts or rejects as follows:

– If x 2 C, then 9� 2 �`(n) such that veri�er accepts (x; �) with probability 1.
– If �(x;C) � �, then 8� 2 �`(n), veri�er rejects (x; �) with probability at least s(�; n).

[BSS05] provides e�cient PCPPs for Reed-Solomon codes, which are de�ned next:
Definition 2 (RS-Codes) The Reed-Solomon code of degree d over a �eld F evaluated at S � Fis de�ned as RS(F ; S; d)=fhP (z)iz S : P (z) = Pd�1i=0 aizi; ai 2 Fg, where hP (z)iz S , the evaluationtable of P over S, is the sequence hP (s) : s 2 Si and S has some canonical ordering to make it asequence.

The primary result in [BSS05] regarding PCPPs for RS-codes that we are concerned with is the following:
Theorem 2 ([BSS05], Theorem 4) There exists a universal constant c � 1 such that for every�eld F of characteristic two, every linear S � F with jSj = n and every d � n, the Reed-Solomoncode RS(F ; S; d) has a PCPP over alphabet F with proof length l(n) � n logc n, randomness r(n) �logn+ c log logn, query complexity q(n) = O(1), and soundness s(�; n) � �= logc n.

In this paper, we describe an actual implementation of this PCPP system for Reed-Solomon codes.Speci�cally, the following two programs are implemented:
1. A prover that receives as input a description of the �eld F = GF (2l), a basis (b1; : : : ; bk) for L � F ,a degree parameter d and a polynomial P : L ! F of degree less than d, and that outputs a PCPPwhich is supposed to prove that hP (z)iz L is in RS(F ,L,d).
2. A veri�er that receives as input a description of the �eld F = GF (2l), a basis (b1; : : : ; bk) for L � F , adegree parameter d and oracle access to a purported RS-codeword p : L! F and its purported PCPP�, and that accepts or rejects based on the proximity of p to RS(F ,L,d).
In the following, we detail these implementations and provide some tight bounds on the various com-plexity parameters associated with the PCPP system. These results establish that the constants associatedwith the PCPP size are not at all large and, so, could perhaps motivate the use of probabilistically checkableproofs in real-life as analogs to error-correcting codes.

2

2 Implementation of the PCPP system

The most basic operations in constructing and verifying the probabilistically checkable proofs of proximitydescribed in [BSS05] are addition and multiplication in �elds of characteristic two, extension �elds of GF (2).To do these operations e�ciently while maintaining a proper programmatic abstraction, I used the excellentC++ library NTL, developed by Victor Shoup [Sho]. NTL is a high-quality and portable C++ libraryproviding an e�cient programmatic interface for computations over �nite �elds. Our PCPP prover andveri�er programs are implemented as dynamically-linked C++ libraries with dependencies on the base NTLlibrary. Thus, users of our implementation can link to our prover and veri�er modules to create a validPCPP and verify provided PCPPs respectively.NTL represents elements of the �eldGF (2l) as polynomials inGF (2)[x] modulo an irreducible polynomialP of degree l. Hence, in the following, I will view �eld elements as vectors from the (additive) vector spaceGF (2)l. For the prover to provide a proof acceptable to the veri�er, it must use the same irreduciblepolynomial P as the veri�er. Also, both must sequence the �eld elements in the same order, and both mustuse the same bases elements for any subspaces of F that are considered.
2.1 Evaluation and Interpolation of Polynomials

The following two problem need to be solved repeatedly while constructing and verifying our PCPPs:
� (Evaluation) Given a �nite �eld F of characteristic 2, coe�cients c0; : : : ; cn�1 2 F and linearlyindependent elements e1; : : : ; ek 2 F with n = 2k, compute the set f(�; p(�))j� 2 span(e1; : : : ; ek)gwhere p(x) =Pn�1i=0 cixi.
� (Interpolation) Given a �nite �eld F of characteristic 2, linearly independent elements e1; : : : ; ek 2 Fand the set f(�; p�)j� 2 span(e1; : : : ; ek)g, compute coe�cients c0; : : : ; cn�1 2 F such that p� =Pn�1i=0 ci�i for all � 2 span(e1; : : : ; ek).
Both can be achieved with O(n log2 n) �eld operations1 using a Fast Fourier Transform method. Here, Iwill describe the solution to the interpolation problem; the solution to the evaluation problem is very similaralthough not identical. The key ideas behind the interpolation algorithm are in the lemmas below:

Lemma 1 Given e1; : : : ; ek 2 F , there exists a monic quadratic q(x) such that for every � 2span(e1; : : : ; ek�1), q(�) = q(� + ek). Also, there exists vectors e01; : : : ; e0k�1 2 F such that for all� 2 span(e1; : : : ; ek), q(�) 2 span(e01; : : : ; e0k�1). Further, q and e01; : : : ; e0k�1 can be computed in timeO(k).
Proof Let q(x) = x2 � ek � x and let e0i = q(ei) for 1 � i � k � 1. Note that q(x + y) = q(x) + q(y)since we are in a �eld of characteristic 2. So, because q(ek) = 0, the �rst assertion is true. The secondassertion holds since if � =Pki=1 �iei with �i 2 GF (2), then q(�) =Pki=1 q(�iei) =Pk�1i=1 �iq(ei):�
Lemma 2 Given the set f(�; p�)j� 2 span(e1; : : : ; ek)g and the monic degree 2 polynomial q and theelements fe0igk�1i=1 from Lemma 1, there exist sets f(�0; p0�0)j�0 2 span(e01; : : : ; e0k�1)g and f(�0; p1�0)j�0 2span(e01; : : : ; e0k�1)g such that p� = p0q(�)+� � p1q(�) for all � 2 span(e1; : : : ; ek). Moreover, the two setscan be computed in time O(n).
Proof Note that from the properties of q in Lemma 1, we want the two sets to be such that for all � 2span(e1; : : : ; ek), p� = p0q(�)+� �p1q(�) and p�+ek = p0q(�)+(�+ek) �p1q(�). So, p1q(�) = e�1k �(p�+ek�p�).Also, then, p0q(�) = p��� �p1q(�) = p��e�1k � (p�+ek �p�). Assuming constant-time access to p�, thesecalculations can be done for all �0 = q(�) 2 span(e01; : : : ; e0k�1) in time O(n):�

1Field operations take O(log jFj) bit operations and will be taken to have unit time cost.
3

Lemma 3 Given coe�cients of two polynomials p0(x) and p1(x) of degree less than n=2 and anymonic degree 2 polynomial q(x), then there exists a polynomial p(x) of degree less than n such thatp(x) = p0(q(x)) + x � p1(q(x)). Moreover, the coe�cients of p can be computed in time O(n logn).
Proof The existence statement is clear. We just have to give an e�cient algorithm to �nd thecoe�cients of p(x). First of all, write p0(z) = b0(z) + zn=4a0(z) and p1(z) = b1(z) + zn=4a1(z), wherea0, a1, b0 and b1 are polynomials of degree less than n=4. Recursively, we can �nd the coe�cients ofthe polynomials a(x) and b(x), where a(x) = a0(q(x)) + x � a1(q(x)) and b(x) = b0(q(x)) + x � b1(q(x));a(x) and b(x) have degrees less than n=2. Now, p(x) = b(x) + q(x)n=4 � a(x). Since n is a power of 2,if q(x) = x2 + cx + d, then q(x)n=4 = xn=2 + cn=4xn=4 + dn=4 = xn=2 + c0xn=4 + d0. Writing a(x) =Pn=2�1i=0 �ixi and b(x) = Pn=2�1i=0 �ixi, we can see that p(x) = Pn=4�1i=0 (d0�i + �i)xi +Pn=2�1i=n=4 (d0�i +c0�i�n=4+�i)xi+P3n=4�1i=n=2 (�i�n=2+ c0�i�n=4)xi+Pn�1i=3n=4 �i�n=2xi. Thus, we can get the coe�cientsof p(x) from the coe�cients of a(x) and b(x) in O(n) time, and so the total time for the recursion isO(n logn) as claimed. �

Given these lemmas, the interpolation algorithm follows:
InvFFT-Additive(e1; : : : ; ek; f(�; p�)j� 2 span(e1; : : : ; ek)g)1. Compute q(x); e01; : : : ; e0k�1 as by Lemma 1.2. Compute f(�0; p0�0)j�0 2 span(e01; : : : ; e0k�1)g and f(�0; p1�0)j�0 2 span(e01; : : : ; e0k�1)g as by Lemma 2.3. Compute p0(x) = InvFFT-Additive(e01; : : : ; e0k�1; f(�0; p0�0)j�0 2 span(e01; : : : ; e0k�1)g).4. Compute p1(x) = InvFFT-Additive(e01; : : : ; e0k�1; f(�0; p1�0)j�0 2 span(e01; : : : ; e0k�1)g).5. Compute p(x) from p0(x) and p1(x) as by Lemma 3.
The running time for the algorithm is O(n log2 n) because each recursion halves the span of the baseselements. During implementation, a choice must be made as to the data structure to be used in storing theevaluation table of a polynomial. Although in the proof of Lemma 2, we assumed that we need constant-time to retrieve p� given �, our implementation uses an associative data container, based on a red-black treewhich has a O(logn) access time. It can be checked that this does not a�ect2 the asymptotic running timefor the interpolation and evaluation algorithms. (The choice to use a logarithmic-time container instead ofa constant-time container was made merely for convenience reasons; the C++ Standard Template Libraryprovides the map data type, while there is no corresponding type for a hash table.)The C++ data structure declarations and function signatures associated with evaluation and interpola-tion of polynomials are shown in Listing 1. The code listing shows the two most important NTL types thatare used in the PCPP implementation. GF2E is the type of an element in an extension �eld of GF (2), and
GF2EXis the type of a polynomial with coe�cients of type GF2E. Before its �rst use, GF2Eneeds to be ini-tialized with an irreducible polynomial in GF (2)[x] to specify the extension of GF (2). More details regardingthe NTL programmatic interface to �nite �eld computations can be found at http://www.shoup.net .

Listing 1: Evaluating and interpolating polynomials on �elds of characteristic two
/** Evaluation table of a function f on elements of a field of characteristic 2.

*/
struct eval_table{

// Stores pairs <x,f(x)>

2Comparison of two �eld elements in traversing the red-black tree takes O(log jFj) time, same as that for any other �eldoperation. As before, we take �eld operations to have unit time cost.
4

// (ltGF2E is the comparison operator on field elements)
map<GF2E,GF2E,ltGF2E> evalmap;

// Given x, return f(x), assuming <x,f(x)> is in evalmap.
// Running time: O(log n)
GF2E query(const GF2E& x) const ;

// Store the pair <x,y>
// Running time: O(log n)
void insert(const GF2E& x, const GF2E& y);

// Clear the evaluation table
// Running time: O(1)
void clear();

};

/** Store in <table> the evaluation of the polynomial <poly> on the set of
* n=2ˆk field elements spanned by the k elements in <bases>.
* Running time: O(n (log n)ˆ2)
*/

void eval_poly(eval_table& table, const GF2EX& poly, const vec_GF2E& bases);

/** Make <poly> the polynomial interpolated from <table>, the
* evaluation table of a function at each element spanned by <bases>.
* Running time: O(n (log n)ˆ2)
*/

void interpolate_poly(GF2EX& poly, const eval_table& table, const vec_GF2E& bases);

2.2 The Prover

In this section, I will detail the implementation of the PCPP prover, the program that, given a polynomialover a �eld F of degree less than d and a subspace L � F , constructs a valid probabilistically checkableproof of proximity that shows that the polynomial's evaluation table over L is in RS(F ,L,d). The algorithmsthat appear in this section and the next are taken from [BSS04], the full version of the conference paper byBen-Sasson and Sudan.Throughout this paper, we will only consider the case when d is �xed to be jSj=8. As is shown in [BSS04],the more general case can be reduced to a sequence of these special PCPPs. It is convenient to think ofthe proof, not as a string of bits, but as an oracle that can be queried; the advantage of this viewpoint willbecome very apparent when we describe the veri�er. The basic idea of the PCPP construction is that weconvert a univariate polynomial of degree less than n=8 into a bivariate polynomial of degree less than pn ineach variable and then we invoke the Polischuk-Spielman analysis from [PS94] to reduce testing of bivariatepolynomials to testing of univariate polynomials of approximately the same degree. To describe the proofmore precisely, we will introduce the same notation as that used in [BSS04]. Throughout, assume that weare given a speci�c set of bases (b1; : : : ; bk) for a linear subspace L of the �eld and that n = 2k = jLj. De�nethe following:
� ~L0 = span(b1; : : : ; bbk=2c)
� L0 = span(b1; : : : ; bbk=2c+2)
� ~L1 = span(bbk=2c+1; : : : ; bk)

5

� q(x) =Q�2~L0(x� �)
� L1 = span(q(bbk=2c+1); : : : ; q(bk))
� A~� = f ~� + �j� 2 ~L0g, the a�ne shift of ~L0 by ~�
� For ~� 2 ~L1, L~� = � span(L0; bbk=2c+3) if ~� 2 span(bbk=2c+1; bbk=2c+2)span(L0; ~�) otherwise
� T = f(
; q(
))j
 2 Lg

Next, we make a few observations that the reader can easily verify to follow directly from the above de�ni-tions. Firstly, q(x) is a GF (2)-linear map with ~L0 as its kernel (see Proposition 8 in [BSS04]). Secondly, forall ~� 2 ~L1, jL~� j = 4jL0j = 8j~L0j from the de�nition of L~� . Thirdly, it is clear that for all ~� 2 ~L1, L~� is alinear set while A~� � L~� is not linear unless ~� = 0. Finally, note that
T = [

~�2~L1
A~� � q(~�)

which follows from the fact that q is a linear transformation with kernel ~L0.Using the above notation, the structure of the Reed-Solomon PCP of proximity oracle is:
Definition 3 ([BSS04], Definition 4) The proof oracle for a codeword of the RS-code RS(GF (2l),L,jLj=8)is de�ned by induction on k = dim(L). If k � 6, then it is empty. Otherwise, the proof is a pair� = ff;�g where f is a partial bivariate function over partial domain S � GF (2l)�GF (2l) and � isa sequence of PCPPs for RS-codes over smaller linear spaces.

Partial domain S: Let S~� = L~� � fq(~�)g and let T = f(
; q(
))j
 2 Lg. Then
S =

0
@ [

~�2~L1
S~�
1
A� T = [

~�2~L1
((L~� � A~�)� fq(~�)g)

Auxiliary proofs �: For each ~� 2 ~L1 and � = q(~�) 2 L1, � has one PCPP for an RS codewordover L~� of degree jL~� j=8, denoted �$� . For each � 2 L0, � includes a PCPP for an RS codeword
over L1 of degree jL0j=8, denoted �l�. Formally,

� = f�$� j� 2 L1g [f�l�j� 2 L0g
The C++ declaration of the PCPP object, shown in Listing 2, re
ects the recursive structure of the proofdescribed above.

Listing 2: Declaration of the PCPP data type
/** Analog of eval_table for a bivariate polynomial

*/
struct biv_eval_table {

map<GF2E,eval_table,ltGF2E> evalmap;

GF2E query(const GF2E& x, const GF2E& y) const ;
void insert(const eval_table& xvals, const GF2E& y);
void clear();

6

};

/** Representation of a PCPP oracle for RS-codes
*/

struct poly_oracle{
// Evaluation of f on S
biv_eval_table eval;

// Pointers to the auxiliary proofs �
vector<poly_oracle*> proof;

// Pointer to additional PCPPs
poly_oracle* next;

};

Now, having speci�ed the form of a correct PCPP in De�nition 3, we need to specify its contents, thebivariate polynomial f and the auxiliary proofs �.
� Construction of f : Given the polynomials p and q, construct the unique bivariate polynomialQ(x; y) with degx(Q) < deg(q) and degy(Q) < bdeg(p)=deg(q)c such that p(x) = Q(x; q(x)) for allx 2 L. That such a Q exists and is unique is given by Proposition 7 in [BSS04], and the algorithm tocompute it is discussed below in 2.2.1. In our case, p is of degree n=8 while q is roughly of degree pn;so, Q is roughly of degree pn in x and pn=8 in y. Now, de�ne f(�; �) = Q(�; �) for all (�; �) 2 S.This is the bivariate function whose evaluation table over S is provided in the PCPP.
� Construction of �: Denote by p̂ : T ! F the bivariate polynomial de�ned by p̂(x; q(x)) = p(x)for all x 2 L 3. Then let f̂ be the function that agrees with f on S and p̂ on T . Also de�nef̂ j$� : f�j(�; �) 2 S [Tg ! F as f̂ j$� (�) = f̂(�; �). Similarly, de�ne f̂ jl� : f�j(�; �) 2 S [Tg ! F
as f̂ jl�(�) = f̂(�; �). It is fairly easy to verify (see Proposition 10 in [BSS04]) that for ~� 2 ~L1 and� = q(~�), f�j(�; �) 2 S [Tg = L~� and that for � 2 L0, f�j(�; �) 2 S [Tg = L1. Then for ~� 2 ~L1and � = q(~�), �$� is the PCPP proving that f̂ j$� is a codeword in RS(F ; L~� ; jL~� j=8), and for � 2 L0,�l� is the PCPP proving that f̂ jl� is a codeword in RS(F ; L1; jL1j=8).

This same description in C++ code is given in Listing 3.

Listing 3: Construction of Reed-Solomon PCPPs
// d = |L|/8
void ReedSolomon_PCPP(poly_oracle& pcpp, const GF2EX& poly, const vec_GF2E& L_bases){

vec_GF2E L00_bases, L10_bases, L0_bases, L1_bases, Lbeta_bases;
long k = L_bases.length(), i, j;
GF2EX q, frow, fcol;
vec_GF2EX f;
vec_GF2E L0_span, L10_span, Lbeta_span, L1_span;
GF2E beta0, beta, tmp;
eval_table coleval, roweval;
biv_eval_table bioracle;

if (L_bases.length() > 6){ // 6 because floor(k/2)+3<k for k>=7

3Notice that a veri�er does not need a separate evaluation table for p̂ because it can simply use the provided evaluationtable for p; separately evaluating p̂ and f is crucial to proving the soundness of the veri�er.
7

// get the bases for ~L0, L0 and ~L1.
get_L00_bases(L00_bases, L_bases);
get_L0_bases(L0_bases, L_bases);
get_L10_bases(L10_bases, L_bases);

// get q of degree approximately
pn

LinearizedPoly(q, L00_bases);

// get the bases for L1
get_L1_bases(L1_bases, L10_bases, q);

// get all elements in ~L1, L0 and L1 for later use
get_span(L10_span, L10_bases);
get_span(L0_span, L0_bases);
get_span(L1_span, L1_bases);

// get the bivariate polynomial f
create_bivariate(f, poly, q, L10_span); // given in Listing 4

// evaluate the bivariate polynomial f on S [T
for (i=0; i<L10_span.length(); i++){

beta0 = L10_span[i]; // for each ~� 2 ~L1

// get the bases for L~�
get_Lbeta_bases(Lbeta_bases, beta0, L_bases);

// Find f(�; q(~�)) for all � 2 L~� , i.e. the q(~�)-row of S [T
roweval.clear();
eval_poly(roweval, f[i], Lbeta_bases);

bioracle.insert(roweval, EvalLinearizedPoly(q, beta0));
}

// Construct the auxiliary proofs �
vector<poly_oracle*> proofs(L10_span.length() + L0_span.length());

// Construct the proofs �$� for all ~� 2 ~L1 with � = q(~�)
for (i=0; i<L10_span.length(); i++){

proofs.at(i) = new poly_oracle;
get_Lbeta_bases(Lbeta_bases, L10_span[i], L_bases);

// proof that f̂ j$� is in RS(F ; L~� ; jL~� j=8)
ReedSolomon_PCPP(*proofs.at(i), f[i], Lbeta_bases);

}

// Construct the proofs �l� for all � 2 L0
for (i=0; i<L0_span.length(); i++){

coleval.clear();
proofs.at(i+L1_span.length()) = new poly_oracle;
for (j=0; j<L1_span.length(); j++){

coleval.insert(L1_span[j], bioracle.query(L0_span[i], L1_span[j]));
}

8

interpolate_poly(fcol, coleval, L1_bases);

// proof that f̂ jl� is in RS(F ; L1; jL1j=8)
ReedSolomon_PCPP(*proofs.at(i+L1_span.length()), fcol, L1_bases);

}
pcpp.eval = bioracle;
pcpp.proof = proofs;

}
pcpp.next = 0;
return ;

}

2.2.1 Running Time of the Prover

Let T (n) denote the running time of the algorithm shown in Listing 3 for n = jLj. Let Tf (n) denote thetime required to �nd the bivariate polynomial f . Then from inspection of the algorithm, it can be seen thatasymptotically:

T (n) = � Tf (n) +O(2dk=2e(8 � 2bk=2c log2(8 � 2bk=2c))) + 2dk=2e � T (8 � 2bk=2c) + 4 � 2bk=2c � T (2dk=2e) if k > 60 if k � 6
= � Tf (n) +O(n log2(n)) + 2dk=2e � T (8 � 2bk=2c) + 4 � 2bk=2c � T (2dk=2e) if k > 60 if k � 6

where k = log(n). So, we need to �nd Tf (n) in order to solve the recurrence above for T (n). Recall that f isthe restriction to S of a bivariate polynomial Q which satis�es the relationship, Q(x; q(x)) = p(x), on T andwhich has degx(Q) < deg(q) and degy(Q) < bdeg(p)=deg(q)c. Also, notice from Listing 3 that we representa bivariate polynomial over x and y as a sequence of univariate polynomials over x, one for each value of y inthe domain. The algorithm that we use for calculating Q uses division over the ring of bivariate polynomials.Note that if we �x a lexicographic ordering on terms with x > y, then dividing p(x) by q(x)� y, we obtain
p(x) = Q0(x; y) � (q(x)� y) +Q(x; y)

It can be easily checked that this remainder Q(x; y) has the requisite properties. For our representation, wewant to evaluate Q(x; �) for all � 2 L1. The following lemma asserts that Q(x; �) is the remainder after theunivariate division of p(x) by q(x)� �.
Lemma 4: Let F [x; y] be the ring of bivariate polynomials with the lexicographic ordering x > y onterms. Suppose f 2 F [x] and g 2 F [x; y]. Also, g(x; y) � m(x) + n(y) where m 2 F [x] and n 2 F [y].Let h(x; y) be the remainder after dividing f(x) by g(x; y). Then, for any � 2 F , if h�(x) is theremainder after the univariate division of f(x) by g(x; �), then h�(x) � h(x; �).
Proof: Fix � 2 F . Let f(x) � s(x; y)g(x; y) + h(x; y) and f(x) � s�(x)g(x; �) + h�(x). Wehave degx(h) < degx(g) anddeg(h�) < deg(g(x; �)) = degx(g). Now, s(x; �)g(x; �) + h(x; �) �s�(x)g(x; �) + h�(x), or h(x; �)� h�(x) � g(x; �)(s�(x)� s(x; �))
If (s�(x)� s(x; �)) is not zero, then the degree of the right hand side is at least deg(g(x; �) = degx(g)and so must the degree of the left hand side, contradicting what we said before. So, h(x; �)�h�(x) � 0.
�

9

Thus, we can represent Q by performing one univariate division for each � = q(~�) 2 L1. This algorithm inC++ code is given in Listing 4.

Listing 4: Construction of the bivariate polynomial Q
void create_bivariate(vec_GF2EX& bivs, const GF2EX& P,

const GF2EX& q, const vec_GF2E& L10_span){
GF2EX qp;
GF2E tmp;

bivs.SetLength(L10_span.length());

for (long i=0; i<L10_span.length(); i++){ // For each ~� 2 ~L1
tmp = EvalLinearizedPoly(q, L10_span[i]);
qp = q - GF2EX(0,tmp);
bivs[i] = P % qp;

}
}

Univariate division of two degree d polynomials can be reduced to multiplication of two degree d polyno-mials using the Sieveking-Kung method (see [vzGG99]); thus, univariate polynomial division can be achievedin O(d log d) �eld operations. This is how polynomial division in NTL is implemented. Since we are per-forming pn divisions of an n=8-degree polynomial, we have for this algorithm, Tf (n) = O(n3=2 log(n)).Then, we can rewrite the recurrence for T (n) as:
T (n) = � O(n3=2 log(n)) + 2dk=2e � T (8 � 2bk=2c) + 4 � 2bk=2c � T (2dk=2e) if k > 60 if k � 6 (1)

again with k = log(n).
Lemma 5: T (n) = O(n3=2 logn).
Proof: We prove by induction that T (n) � c � n3=2(logn� 6) for an appropriate choice of c and forsu�ciently large n. For k > 6, 8 � 2bk=2c < 2k and hence, we start by assuming that the bound to beproven holds for the recursive calls in (1). For large enough n, there exists a constant d such that:

T (n) � d � n3=2 log(n) + 2dk=2e � T (8 � 2bk=2c) + 4 � 2bk=2c � T (2dk=2e)
� d � k � n3=2 + c � 2dk=2e29=223bk=2c=2(3 + bk=2c � 6) + 4c � 2bk=2c23dk=2e=2(dk=2e � 6)
< d � k � n3=2 + c2n3=2

��k2
�� 3�+ c2n3=2

��k2
�� 6�

= n3=2(dk + c2(k � 9))
< c � n3=2(k � 6)

The �rst inequality follows from the de�ning recurrence relation for T (n) in (1). The second inequalityfollows from the inductive hypothesis. The third inequality follows from observing that for k > 22,92 + 12 �k2� < k2 � 1 and 2 + 12 �k2� < k2 � 1. The fourth equality is algebra. The �fth inequality followsfrom having an appropriately large c. As for the base case of the induction, we choose a c so thatc � n3=2(logn � 6) is larger than T (214) and T (212) because these are the values that T (223) dependson. �
10

So, �nding the bivariate polynomial f is the main bottleneck in constructing the PCPP and leads to therather large running time of the prover in Lemma 5. It remains an open question whether the running timeof the prover for this PCPP system can be improved.
2.2.2 Proof Size

As mentioned in the introduction, the size of the PCPP is an important parameter in many applications ofthe theory. Having a nearly linear proof size has consequences for the construction of locally testable codes,for example. We will show that our PCPPs indeed have this property.Looking at Listing 3, the proof size4, S(n), can be recursively characterized as:
S(n) = � 2dk=2e � (8 � 2bk=2c) + 2dk=2e � T (8 � 2bk=2c) + 4 � 2bk=2c � T (2dk=2e) if k > 60 if k � 6

= � 8n+ 2dk=2e � T (8 � 2bk=2c) + 4 � 2bk=2c � T (2dk=2e) if k > 60 if k � 6 (2)
Lemma 6: S(n) = O(n log4 n)
Proof: We prove by induction that S(n) � c � n log4 n for an appropriate value of c. We will assumethat this bound holds for the recursive calls in (2). Then, we have:

S(n) � 8n+ 2dk=2e � c � 8 � 2bk=2c��k2
�+ 3�4 + 4 � 2bk=2c � c � 2dk=2e �k2

�4

= 8n+ 8cn��k2
�+ 3�4 + 4cn�k2

�4

< 8n+ 12cn��k2
�+ 3�4

< cn log4 n
The �rst inequality is the inductive hypothesis. The second equality is from simpli�cation. The thirdinequality follows from dk=2e � bk=2c + 1. The fourth inequality holds for large values of k (since12 < 24). For the base case of the induction, take c to be large enough so that the bound holds for thevalues of n where the fourth inequality is true. �

Although the proof to the lemma above treats the bounds loosely, the O(n log4 n) bound to the solutionof the recursion in (2) is pretty tight. In fact, we �nd from running our program that S(n) = 14n log4 n is agood bound for the proof size.
2.3 The Verifier

The veri�er for the Reed-Solomon PCPP uses the bivariate polynomial test analyzed in [PS94] to check thatthe provided input is indeed close to a Reed-Solomon codeword. All this is done by querying only a constantnumber of �eld elements! The test made by the veri�er is described in [BSS04] as follows:
Definition 4 ([BSS04], Definition 5) The veri�er for proximity to RS(GF (2`),L,d = jLj=8) receivesas input the parameters GF (2`), a basis (b1; : : : ; bk) for L and degree parameter d = jLj=8. It has oracleaccess to a purported codeword p : L ! GF (2`) and its purported proof � = ff;�g and is denotedV (p;�)RS (GF (2`); L; d). If jLj � 64 (in which case � = ;), the veri�er reads p in entirety and accepts i�

4We count the number of �eld elements in the proof. Counting the number of bits leads to another factor of logF .
11

p 2 RS(GF (2`); L; jLj=8). Otherwise, it computes bk=2c and performs one of the following two testswith probability half each.
Row-Test Pick random ~� 2 ~L1, set � = q(~�), compute basis for L~� and recursively run
V (f̂ j$� ;�$�)RS (GF (2`); L~� ; jL~� j=8).
Col-Test Pick � 2 L0 at random, compute basis for L1 and then recursively run V (f̂ jl�;�l�)RS (GF (2`); L1; jL1j=8).

In the above de�nition, f̂ is the bivariate function that agrees with the evaluation table of f on S andwith p̂ on T . Recall from Section 2.2 that p̂ is is a partial bivariate function with the partial domain T ,de�ned to be p̂(x; q(x)) = p(x). So, at the top level, when a row or column of f̂ is selected, some of its valuescan be retrieved from querying the bivariate polynomial evaluation table (for f) provided in the PCPPwhile for others, the input string (the evaluation for p) must be queried. As the veri�er gets deeper into therecursion tree, determining where to look in the PCPP for an evaluation of f̂ requires looking back at thedecision tree of choosing row-tests or column-tests and determining at each level if the needed evaluationof f̂ is contained in the bivariate evaluation table at that level. Instead of complicating the implementationof the veri�er, it is easier to restructure the proof as an oracle program that automatically determines thecorrect place to look in itself for an evaluation of f̂ . Such a program implemented in C++ is shown inListing 5.
Listing 5: Implementation of a Proof Oracle

enum Level {TOP, ROW, COL};

struct verifier_oracle {
// Evaluation of f on S
const biv_eval_table* table;

// Looking at row or column <header> of f
GF2E header;

// Pointer to the proof oracle that should be queried for
// evaluations on T
const verifier_oracle* parent;

// If this is the top level, evaluation table of the univariate
// polynomial p
const eval_table* orig_poly;

// The level: top, a row, or a column
Level lev;

// The linearized polynomial q
GF2EX q;

// Constructor for the top level
verifier_oracle(const eval_table* orig){

orig_poly = orig;
lev = TOP;
parent = 0;

}

12

// Constructor if this is the row or column projection
verifier_oracle(const verifier_oracle* par, const biv_eval_table* tab,

Level roworcol, GF2E& val, GF2EX& qp){
parent = par;
table = tab;
lev = roworcol;
header = val;
q = qp;

}

// Recursive query
GF2E query(const GF2E& ask) const {

if (lev == TOP)
return orig_poly->query(ask);

else if (lev == ROW){
if (EvalLinearizedPoly(q,ask) != header){

return table->query(ask,header);
}
else {

return parent->query(ask);
}

}
else {

if (EvalLinearizedPoly(q,header) != ask){
return table->query(header,ask);

}
else {

return parent->query(header);
}

}
}

};

Using this proof oracle structure, the implementation of the veri�er is simple and direct. It is shownbelow.

Listing 6: Implementation of the PCPP veri�er of [BSS04]
/** Verify if indeed <proof> is a valid PCPP that shows that <poly>

* is the evaluation table of a polynomial of degree less than |L|/8.
*/

bool verify_proof(const vec_GF2E& L_bases, const eval_table& poly,
const poly_oracle& proof){

verifier_oracle* root = new verifier_oracle(&poly);
return verify(L_bases, *root, proof);

}

/** A helper procedure for the above
*/

bool verify(const vec_GF2E& L_bases, const verifier_oracle& oracle,
const poly_oracle& proof){

13

long k = L_bases.length(), index, i;
vec_GF2E L00_bases, L10_bases, L0_bases, L1_bases, Lbeta_bases, L_span;
poly_oracle *rowproof, *colproof;
verifier_oracle* next;
GF2E choice, qchoice;
GF2EX q, poly;
int rand;

// if k < 7, simply read in all of the input, interpolate a
// polynomial, and check its degree
if (k < 7){

get_span(L_span, L_bases);
eval_table polyvals;

// maximum of 64 queries here
for (long i=0; i<L_span.length(); i++){

polyvals.insert(L_span[i], oracle.query(L_span[i]));
}

interpolate_poly(poly, polyvals, L_bases);

if (deg(poly) < power_long(2,k-3))
return true;

else
return false;

}

else {

// get the bases for ~L0, L0, ~L1 and L1
get_L00_bases(L00_bases, L_bases);
get_L0_bases(L0_bases, L_bases);
get_L10_bases(L10_bases , L_bases);

LinearizedPoly(q, L00_bases);
get_L1_bases(L1_bases , L10_bases, q);

// flip a coin
if (getRandomBit() == 1){ // check row

index = 0;
for (i=0; i<L10_bases.length(); i++){ // choose random element ~� 2 ~L1

rand = getRandomBit();
index = index + rand * power_long(2,i);
choice += rand * L10_bases[L10_bases.length()-i-1];

}
// � = q(~�)
qchoice = EvalLinearizedPoly(q,choice);

// get �$�
rowproof = proof.proof[index];

next = new verifier_oracle(&oracle, &(proof.eval), ROW, qchoice , q);

14

get_Lbeta_bases(Lbeta_bases, choice, L_bases);
// recurse
return verify(Lbeta_bases, *next, *rowproof);

}

else { // check column
index = 0;
for (i=0; i<L0_bases.length(); i++){ // choose random element � 2 L0

rand = getRandomBit();
index = index + rand * power_long(2,i);
choice += rand * L0_bases[L0_bases.length()-i-1];

}

// get �l�
colproof = proof.proof[index + power_long(2, L10_bases.length())];

next = new verifier_oracle(&oracle, &(proof.eval), COL, choice, q);
//recurse
return verify(L1_bases, *next, *colproof);

}
}

}

The query complexity of the veri�er is immediate. The veri�er queries at most 64 �eld elements and,hence, at most 64 log jFj bits. Next, we look at some other complexity parameters associated with the PCPPveri�er.
2.3.1 Randomness Complexity

In [BSS05], it is ascertained that the randomness complexity is r(k) � k + c � log k for a constant c. Here,we give a tighter bound for r(k).First of all, note that the exact number of coins
ipped by the veri�er depends on its decision tree ofchoosing between row-tests and column-tests; this is so because jL~� j and jL1j are di�erent for all ~�. Wewant to determine the maximum number of coins that can be be
ipped by the veri�er, i.e. an upper boundon r(k). Thus, looking at the de�nition of the veri�er, we can write:
r(k) � � 1 + max ��k2�+ r ��k2�+ 3� ; 2 + �k2�+ r ��k2��� if k > 60 if k � 6

Lemma 7: r(k) � k + 4blog(k � 6)c � 1
Proof: Can be veri�ed immediately through a straightforward induction.

The randomness complexity also allows us a way to bound the proof size, because S(n) � 2r(n)q(n)where S(n) is the proof size and q(n) is the query complexity. So, once again, S(n) = O(n log4 n).
2.3.2 Running Time of the Verifier

Let tV (k) denote the running time for the veri�er. Then, we have that:
Lemma 8: tV (k) = O(k3).

15

Proof: From inspecting the algorithm given in Proposition 8 of [BSS04], q(x), the linearized poly-nomial, has k terms and can be computed in time O(k3). It can be evaluated in time O(k2). Thuscomputing the basis for L1 takes time O(k3) and similarly for computing the basis for L~� given ~�.Therefore, we can write the following recursion:
tV (k) = O(k3) + max(tV (bk=2c+ 3); tV (dk=2e))= O(k3) + tV (bk=2c+ 3)

since tV is monotonically increasing. A simple induction shows that tV (k) = O(k3).
3 Conclusion

Our tight bounds on the complexity parameters related to Reed-Solomon PCPPs show that it is indeedfeasible in practice to create PCPPs as a semantic analog to error-correcting codes. The question of improvingthe time performance of the prover remains open.
4 Acknowledgements

I am greatly thankful to Madhu Sudan for introducing me to the theory of probabilistically checkable proofsand for discussing the subject of this paper with me. I have learnt a lot from talking to him and fromlistening to his understanding of complexity theory.
References

[BSS04] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with Poly-log rate and Query Complexity.Unpublished manuscript, 2004.
[BSS05] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with Poly-log rate and Query Complexity. InProceedings of the 37th STOC, 2005.
[PS94] A. Polischuk and D. Spielman. Nearly-linear size holographic proofs. In Proceedings of the 26thSTOC, pages 194{203, 1994.
[Sho] Victor Shoup. NTL: A library for doing number theory, version 5.4. http://www.shoup.net .
[vzGG99] Joachim von zur Gathen and J�urgen Gerhard. Modern computer algebra. Cambridge UniversityPress, New York, NY, USA, 1999.

16

