A

UNCLASSIFIED

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

LOGICAL DESIGN OF CG24
(A GENERAL-PURPOSE COMPUTER)

G. P. DINNEEN
J. A. DUMANIAN
. L. LEBOW
l. S. REED
P. B. SEBRING

15 APRIL 1957

TECHNICAL REPORT NO. 139

UNCLASSIFIED

UNCLASSIFIED

The research reported in this document was supported
jointly by the Department of the Army, the Depart-
ment of the Navy, and the Department of the Air
Force under Air Force Contract No. AF 19(122)-458.

UNCLASSIFIED

UNCLASSIFIED
imM

LOGICAL DESIGN OF CG24
(A GENERAL-PURPOSE COMPUTER)

G. P. DINNEEN
J. A. DUMANIAN
1. L. LEBOW
P. B, SEBRING

Group 24

I.S. REED o . . -
This document has been prepared for intemal use only:

Group 47 It has not been reviewed by Office of Security Review;
Department of Defense, and therefore is not intended
for public release. Further dissemination or reproduction
in whele or in part of the material within this document
shcl not be made without the express written approval
of Lincoln Luboratory (Publications Office.)

TECHNICAL REPORT NO. 139

15 APRIL 1957

ABSTRACT

A detailed design is presented for a high-speed general-purpose digital
computer, The design considerations are governed by the assumption
that implementation of the machine is to be accomplished using only
solid state devices. Sections I through V describe the essential char-
acteristics, structure and method of design of the computer. Sections VI
through IX discuss its detailed logical structure.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY LEXINGTON, MASSACHUSETTS

UNCLASSIFIED

()

<>

{1}

)

UNCLASSIFIED

GLOSSARY

The parentheses denote the contents of a register. Thus (A)

represents the contents of A.

The square brackets denote a functional dependence upon a

register. Thus I[A] signifies the instruction part of A.

The angle brackets denote a selection of one register out of a
set of registers depending upon an address register. Thus
M<C> signifies the memory register depending upon or as
addressed by C.

The braces are used for algebraic punctuation wherever

parentheses, brackets or braces would normally be used.

Vertical bars denote a set of configurations of the computer
for which some function is true. Thus |a'f21P2| signifies

the set of configurations for which the function a'f21P2 is true.
The plus sign has two meanings:

(a) When used between Boolean functions it means the
"inclusive or" or "join" operation. Thus o + B is
a function that is true when either o or 8 (or both)
is true.

(b) When used between pairs of parentheses it signifies
the ordinary addition operation. Thus (A) + (R) rep-
resents the arithmetic sum of the contents of the
A- and R-registers.

The bar denotes the subtraction operation. Thus (A) — (R)
represents the arithmetic difference between the contents of

the A- and R-registers.

The plus sign enclosed by a circle denotes the "exclusive or"
or binary sum operation. Thus a ® 8 is a function that is true
if @ or B (but not both) is true.

The double arrow denotes a transfer of information between
registers. Thus (A) => B signifies that the contents of A are

transferred into B.

The prime represents the complement of a Boolean function.

Thus «' is the complement of o.

A comma between register symbols denotes that the registers
are to be considered as a single register ordered as written.
Thus A, B is a single register with A to the left of B.

The horizontal bar over a symbol in parentheses denotes the
"one's complement" of the contents of a register. Thus (A)
signifies the "one's complement" of the contents of A.

iii

UNCLASSIFIED

UNCLASSIFIED

GLOSSARY (Continued)

The semicolon followed by a horizontal bar over a symbol
signifies the exclusion of the symbol under the bar from the
symbol to the left of the semicolon. Thus A; Ko represents

the A-register exclusive of bit Ao'

. The dot represents binary multiplication. Thus @ - 8 is a
function that is true if both o and 8 are true. Usually the dot

is omitted entirely and a - 8 appears as af.

z The summation sign represents the "inclusive or" or join

operation between the functions included under the sum.
4
Thus i§1 Ai =AtA,+A A,
®Z The summation sign preceded by the circle sum symbol rep-

resents the "exclusive or" operation between the functions in-

4
cluded under the sum. Thus @ J Ai =A, @ A, ©) A, ® Ay
i=1

I The product sign represents the product or "and" operation

between the functions included under the product. Thus

4
igﬁ Ai = A1 : A2 . A3 : A4 = A1A2A3A4.

3'\ The subscript on a register symbol specifies a particular bit
of a register. Thus A3 is bit 3 of the A-register. In the com-
puter 25-bit registers are labeled 0 to 24 from left to right.

k The superscript on a register symbol specifies a particular
register or subset of registers from a set of registers having
the same symbol. Thus S3 is the third index counter and M°
is the first core-memory bank.

a The bit F12 used to designate instruction read-in cycles.

A The accumulator.

AOF The overflow flip-flop.

Ad[N] The address section (bits 10 to 24) of a register, here N.

B The B-register, an extension of the accumulator.

BB The busy bit controlling terminal equipment.

B[N})(The index section (bits O to 4) of a register, here N.

Ck The memory address registers. When used without super-

script, there is implied a parallel transfer into all C-registers.

iv

UNCLASSIFIED

SW
c

UNCLASSIFIED

GLOSSARY (Continued)

The control memory.

The program counter.

The one-~bit arithmetic register.

The j-th proposition from the F-register.

The control-memory output register.

The control-memory address register.

The address section (bits 1 to 6) of F.

The input-output register.

A front-panel toggle-switch register specifying a halt address.

Bits 0 to 5 of the B-register.

" The instruction section (bits 4 to 9) of a register, here N.

The start-stop control flip-flops.

The core-memory input registers.

The memory; the k-th memory bank.

A number when stored in the address part of a word.
The core-memory output registers.

The nine 3-bit sections of F, Oi[F] to 09[F] comprising bits
13 to 39.

The basic timing intervals P1 - P4.

The address parity bit.

The index-instruction parity bit.

The start-stop flip-flop.

An arithmetic register holding operands.
The index counters.

The computer clock pulses Sy —8y-

A register, here A, shifted left by one bit. A zero is inserted
in the rightmost digit unless otherwise specified.

A register, here A, shifted right by one digit. A zero is in-
serted in the leftmost digit unless otherwise specified.

A proposition true if computer operates for one memory cycle
and then halts.

UNCLASSIFIED

SW
SW
SWor
SW

X o5 <

X

A
BI

Ad

UNCLASSIFIED

GLOSSARY (Continued)

A propositiontrue if computer is tostop ataddress in HA-register.

A proposition true if identity alarm is suppressed.

A proposition true if overflow alarm is suppressed.

truc
A proposition time if computer operates for one order and then halts.

The counter in control.

A register in display holding a number to be displayed.
A counter in display.

The horizontal deflection register in display.
The vertical deflection register in display.
The index criterion registers

The three flip-flop registers in MZ.

A memory location.

The multiplication algorithm.

A variation of X.

The divide algorithm.

Variations of Z.

The addition proposition.

Bits 11 and 12 of C2 used to address the memory banks and

their associated registers.
The control advancing function.

A proposition true if a new index and instruction section of a

word is to be written in memory.

A proposition true if a new address section of a word is to be

written in memory.

A proposition true if (G) = 26 or 27.

A proposition true if (G) = 40, 41, 42, 43, 44 or 45.
The subtraction proposition.

The shift-left and shift-right operations.

The add-subtract function.

The carry functions n = 0,1...24.

The cycle-left and cycle-right operations.

vi

UNCLASSIFIED

UNCLASSIFIED

LOGICAL DESIGN OF CG24 (A GENERAL-PURPOSE COMPUTER)

I. INTRODUCTION

A logical description of the Group 24 computer (CG24), a high-speed general-purpose digital
computer, is presented in this report. The design of the computer has been governed by the
following considerations:

(a) The high-speed storage is to be provided by two coincident-current

ferrite-core memory banks each containing 4096 words, 27 bits in
length.

(b) Transistor circuits are to be used throughout, including the memory
driver circuits.

(c) A speed of about 40,000 add-type single-address operations per second
is required.
Emphasis was placed on obtaining reliability of operation. With the exception of display, the
computer is all solid state. Consequently, the physical size of the machine will be roughly the
size of the console of machines of similar speed and capacity (see Fig.1).

The control of this machine is a fixed-diode 'memory with a 6-bit memory address register
which may be modified conditionally, either by the instruction section of a computer word or for
iterative instructions by the address section of the control word. This static memory could be
replaced by a dynamic memory with no necessary logical changes in the control. With the present
control memory and its associated address and output registers, the creation of new computer
instructions is conceptually equivalent to programming where a computer instruction is now re-
placed by a program of microinstructions.

For real-time data processing, three input buffer registers are provided. Two of these have
direct access to the core memory. The necessary computer instructions for reading-in these
input words, either one at a time or two at a time, have been provided.

Sections II, III and IV present a general description of the machine and its design techniques.
Table I gives a general outline of the computer characteristics, and the remainder of the report

discusses the detailed structure of the computer.

II. TERMINOLOGY AND CONVENTIONS

A register, physically, is a set of one or more bistable devices. In this report a register
will be designated by an upper case, Roman letter. Parentheses are used to denote the contents
of a register. Thus (A) signifies the contents of the A-register. Parts of registers are again
registers that are functionally dependent upon the register of which they are a part, as well as
upon the meaning to be attached to a particular part of a register. An abbreviation denotes the
significance of part of a register and brackets describe the functional dependence upon the entire
register. Thus Ad[R] signifies the address part of the R-register. This notation makes it pos-
sible to refer to the corresponding sections of several registers. For example Ad[R], Ad[A]
and Ad[N] refer to the address parts of the R-, A- and N-registers, respectively. To refer to
a register except for one bit, the symbol [A; KZ 4] is used, which means the A-register excluding

A,y

UNCLASSIFIED

UNCLASSIFIED

2

UNCLASSIFIED

Fig. 1. Console of CG24.

UNCLASSIFIED

TABLE |
COMPUTER CHARACTERISTICS

General System

Application — general purpose
Timing — synchronous

Operation — sequential concurrent
. Numerical System

Internal number system — binary

Binary digits per word — 25

Binary digits per instruction — 25 (includes address and index bits)
Additional binary digits per word or instruction for parity check — 2
Instructions per word — 1

Instructions written now — 38

Arithmetic system — fixed point

instruction type — one address

Number range — 1<ng 1 - 2_24

Arithmetic Unit
Addition time — 24 psec (including memory access)
Multiplication time — 84 psec (")
Division time — 84 psec (")
Square root time — 300 psec (")

Construction — transistors, crystal diodes

Basic pulse repetition rate — 330 keps
Storage

Media — magnetic cores
Words — 8192

Access time (to any word) — 12 psec

Checking Features

Parity checking for words going into and out of the memory is made
up of two checks, one for instruction and index bits, one for address
section.

UNCLASSIFIED

UNCLASSIFIED

It is often necessary to use a single symbol to refer to a set of registers, one of which is
to be selected on the basis of the contents of another register that addresses the set of registers.
To illustrate, the symbol M<C> means the memory register determined by the contents of reg-
ister C, the memory address register.

Often, two or more registers are treated as a single register. The symbol (A, B) signifies
the contents of A- and B-registers in tandem from left to right; furthermore let ((A) + (R), B)
represent a tandem register containing the sum of (A) and (R) together with B.

Another convenient symbol is Shr A which denotes a transformed A-register with all digits
shifted right by one, with a zero inserted in the leftmost digit unless otherwise specified. Sim-~
ilarly Shl A denotes the A-register with all digits shifted left by one, with a zero inserted into
the rightmost digit unless otherwise specified.

The individual bits of a register are designated by the letter denoting the register, together
with a subscript referring to the bit in question. The bit numbers run from zero at the left to
N-1 at the right where N is the register length (in this case 25). The complement or negation
of an individual bit is denoted by the prime. Thus A, is the leftmost bit of the A-register and
A(‘) is its complement.

The complement of a register is denoted as A, and defined to be the transform of the register
A obtained by complementing or negating each of the bits of the register. Thus (Ki) = (A{). This
is often referred to as the "one's" complement. Hence the following identity holds:

(A) + (&) = 2~®-1

where + means the arithmetic sum.
In referring to two-valued functions of the machine, we employ the notation of Boolean al-

gebra summarized below:

a B atp @8 2@ o
0 0 0 0 0 1
0 1 1 0 1 1
1 0 1 0 1 0
1 1 1 1 0 0

where a and 8 represent two-valued functions. The function @ or B indicated by « + 8 is true if
and only if a or 8 (or both) is true. The function « and 8 indicated by ap is true if and only if
both a and 8 are true. The function o "exclusive or" B indicated by a @ 8 is true if and only if
either @ or B (but not both) is true. a'is true if and only if @ is false. The "exclusive or"
function may be expressed as a @ 8 = af' + @' in terms of the "and", "or" and prime operations.
In referring to arithmetic operations between registers we use conventional notation. Thus
(A) + (R) symbolizes the sum of the contents of the A- and R-registers and {(A) — (R) represents
the difference. There should be no confusion due to the use of the + to represent both the sum
of the contents of two registers and the "inclusive or" operation between two-valued functions.
For the most part, the functions of the machine are described in terms of elementary op-
erations between various registers. Basically, these operations are all transfers. We use the
double arrow => to represent the transfer operation. Thus (A) => B means that the contents of

UNCLASSIFIED

UNCLASSIFIED

the A-register are transferred into the B-register. Implied in this notation is (An) = Bn’ or the
contents of the n-th bit of A is transferred into the n-th bit of B. Similarly, (A) => Shl B implies
that (An+1) = Bn’ n=04...N—1and 0 = B24.

Conditional transfers are symbolized by defining Boolean functions specifying conditions.
Suppose that A is a two-valued function of one or more flip-flops of the computer, then A(F) +
A'(G) => G means that if A is one (true) the contents of F are transferred to G, or if A is zero
(false) the contents of G are transferred to G or G remains unchanged.

In referring to the operations between registers, we shall always define a time interval be-
tween clock pulses during which the operations take place. One way of defining a time interval
between two specific successive clock pulses is by a Boolean function ¢ which is "one" during
this particular time interval and "zero" at all other times. Since the function ¢ is generated
within the machine, it is a function of the contents of the various registers of the machine. This
means that intervals of time for which ¢ = 1 are determined by sets of configurations of the
machine.

Let the set of configurations of the machine for o = 1 be denoted by |¢|. Then the symbolism
]0| : (A) + (R) = A means that at the end of the time interval between successive clock pulses for
which ¢ = 1, the sum of the contents of A and R at the beginning of the interval is transferred in-

to A. For further remarks on the above nomenclature, see the references given in the footnotes

below.

III. STRUCTURE OF THE COMPUTER

Figure 2 shows a block diagram of the computer. For the purposes of this description we
have divided the computer into five large blocks: (1) the memory and its associated registers,
(2) the program registers, (3) the arithmetic registers, (4) the control and (5) terminal equipment.

A. Memory

The memory of the computer consists of two coincident-current ferrite-core banks each
containing 212 registers, 27 bits in length, and a third memory bank containing 18 front-panel
toggle-switch registers, 76 plug-board registers, and three flip-flop registers, each 25 bits long.
The two extra bits in the core-memory registers are used for parity checking. We label the two
core memories Mo and M1 and the noncore memory, MZ. Each of the core memories Mj (j =0,4)
has associated with it an output register Nj, an input register Lj and an address register Cj con=-
taining 12 bits. The noncore memory M2 has an address register CZ containing 14 bits. Input
and output buffer registers are unnecessary for the noncore memory.

When any register, say N1, contains a number, the left-hand bit N0 stores the sign bit and
the rest of the register stores the number with the binary point always located between Ng and
N 11 . Negative numbers are stored as the "two's" complement of the corresponding positive
numbers. That is, to obtain the negative of a number we complement every bit of the number

x1.S. Reed, Technical Memorandum=-23, Lincoln Laboratory, M.1.T. (19 January 1953).
t1.S. Reed, Group Report 312-2, Lincoln Laboratory, M.1.T. (January 1956).

UNCLASSIFIED

d3IHISSVYIONDN

‘ CORE MEMORY (27 bits) ‘

MO (4096 words)
4 6 1 spare 14 1 I,/‘PM[NOI
[] NG] AdINO) [T]ne
27 BITS Py N
[e
27 BT

CORE MEMORY (27 bits)
‘ M (4096 words) ‘

[It

27 BITS

L Ju

27 BITS

MEMORY ADDRESS REGISTER

C
12 BITS

MEMORY ADDRESS REGISTER

c
12 BITS

MEMORY ADDRESS REGISTER

0

TOGGLE AND FIXED MEMORY (25 bits)
2 =
m 2
‘
25 BITS 14 BITS
—-{ive Register No. 1 ‘ W0
Information 25 BITS
in
from —’| Live Register No. 2 w!
external 25 BITS
equipment
> Live Register No. 3 | w2
25 BITS
0 R-register 24|
25 BITS 6 BITS 19 BITS
{0 Accumulator 2q IO H{B] 5| B-register
25 BITS 25 BITS

6 BITS

19 24 T
6 BITS

ALARM FLIP-FLOPS

0

]
ﬁ

DIODE CONTROL MEMORY

Cm

39 BITS
p o 5];7.....rn[o,[F1|02[F]]osiFﬂo‘(r]bs[r]]obirl\%[FlloalrﬂgTr]]F

START-STOP START-STOP CONTROL

[e g

CONTROL

INDEX COUNTERS

DI TR —

AoF
ARITHMETIC
H
6 BITS
Photoelectric
Display Flexowriter Pu;che(:‘-Pa er
ape Reader

TERMINAL

Fig.2. Block diagram of CG24.

25 BITS 8 BITS 8 BITS

8 BITS 8 BITS

PROGRAM

d3HISSVIONN

UNCLASSIFIED

and add "1" to the least significant bit. Thus if a number is stored in N1 such that (Nki) = ay,

then 24 N
= (-1) o, + T akZ s
k=1

=0or 1, k=0,1...24.

o
k
When any register, say N2 contains an instruction, the index code is stored in the first four

bits N0 N labeled B[2], the binary code for the instruction is stored in the next six bits
‘f’ N9 labeled I[N] and the address is stored in the last fifteen bits Ni'z0 labeled Ad[N]

BI[N)] denotes the tandem register B[NJ], I[N’].

Because of physical considerations it is desirable for each core memory to be operative at
all times, whether or not the rest of the computer is using the information. Thus when a 15-bit
memory address is specified, the 12 least significant bits are transferred into each of the mem-
ory address registers CJ(J 0,1,2), wh1le blts 11 and 12 go into C and bit 10 is reserved as a
spare. We label bits 14 and 12 of C , I‘[C] or more simply I'. It is the state of T which de-
termines which of the three memory banks is being referred to. We use the symbol N<I'> to

specify which memory output register will be used by the computer at a given time. By definition,

(ry=20 N<I> = N0
(r)=1 N<T> = N1
(r)=2 N<T> = M%<C%>

Corresponding definitions apply to L<I™>.

B. The Program Registers

The program register block of Fig.2 contains the program counter D, a 25-bit register,
the last 14 bits of which keep track of the address of the succeeding instruction and the index
registers V;i and Sj j=A,B...E, which are used for indexing iterative programs. Each pair of
reglsters VJ and SJ is addressed by the index portion of an instruction. Thus the symbol
V<B[N]> means the V-register depending upon the index part of register N The V-registers
are called index-criterion registers. They store the number of times a program is to be iterated.
We call the S-registers, index counters. They are used to count the number of times the program

has currently been iterated.

C. The Arithmetic Registers

The arithmetic section consists of three 25-bit registers, A, Band R, and a 1-bit register,
E. The A-register is the accumulator which is used to store partial arithmetic results. The B-
register may be regarded as an extension of the accumulator. The two registers together form
a 50-bit shift register. For example, the 49-bit product, resulting from the multiplication of
two 25-bit numbers (24 bits plus sign), appears in the accumulator plus bits 0 to 23 of the B-
register. The R-register is used mostly to store operands, i.e., the addend, multiplicand,
divisor, etc. Numbers entering the arithmetic section from memory always transfer into the

R-register according to the command (N<I'>) => R. All arithmetic operations are done between

UNCLASSIFIED

UNCLASSIFIED

TABLE 1l
LIST OF ORDERS

Operation Time
Orders (12-psec units) Orders
1 Add X 2 22 Store X
2 Subtract X 2 23 Replace address X
3 Clear and add X 2 24 Transfer X
4 Clear and subtract X 2 25 Transfer on negative X
5 Multiply nonroundoff X 7 26 Transfer on index X
6 Multiply roundoff X 7 27 Index n
7 Multiply shift X 7 30 Return from X
10 Divide X 7 31 Hait
11 Square root 25 32 ClearB
12 Subtract magnitudes X 2 33 Store one X
13 Extract X 2 34 Store both X
14 ldentify X 3 35 Shift and add X
. n+7 36 Transfer on busy bit X
15 Shift left n [T] 37 Transfer on overflow X
o nt7 40 Display X
16 Shift right n [—4—] 41 Display word X
n+7 42 Index camera
17 Cycle left n [—4—] 43 Read-in
) n+7 44 Punch
20 Cycle right n [y}] 45 Print
21 Scale factor X 4t08 77 Exchange X

Operation Time
(12-psec units)

N ¥ % ¥ % % % N NN WNNNDMNNNN-=NN

* Asynchronous orders.

UNCLASSIFIED

UNCLASSIFIED

R and A. Thus between R and A is an adder-subtractor network.
Communication between the computer and terminal equipment such as tape reader and
Flexowriter is accomplished by a 6-bit register H feeding into the B-register. The 1-bit reg-

ister E is used for the multiplication and division algorithms.

D. Control

Each order of the computer takes one or more memory cycles for execution. The subin-
structions or microinstructions that occur during each memory cycle are coded and stored in
a set of registers called the control memory Cm. The 6-bit instruction code from an order in
the main memory is transferred to a 6-bit control register G that addresses the control memory.
We thus refer to the control memory as Cm<G>. The F-register is the output buffer register
of Cm<G>. The word length of Cmn<G> and F is 39 bits.

The first six bits G[F] specify the address in Cm<G> of the control word for the succeed-
ing memory cycle. The next six bits are used individually to specify the most widely used sub-
instructions {microinstructions) or groups of subinstructions. The other 27 bits are arranged
in nine groups of three each Oi[F] - 09[F), each group specifying up to seven microinstructions.

Some orders, like multiplication, call for the repetition of a single memory cycle several
times. To accomplish this, the register T is provided, which counts the number of times a
control word is repeated. A function of T is used to "stick" the control on a single control-
memory word.

Also in the control section are the start-stop flip-flop Q, the alarm flip-flops and several

additional flip-flops associated with the start-stop control circuitry.

E. Terminal Equipment

Program input to the computer is from a photoelectric punched paper tape reader (PETR)
via the in-out buffer register H.

Data may be supplied to the computer through the three flip-flop registers Wo, W1 and W2
that are part of MZ. Provision is also made to transfer the contents of W1 and W2 directly into
the core memory.

Output from the computer is obtained from a Flexowriter, again via H, and from two display
oscilloscopes fed directly from the arithmetic registers. One display scope has a camera for
recording results; the other is for the use of the operator. The scopes may be used to display

either points or octal representations of computer words.

IV. TABULATION OF MACHINE ORDERS

Thirty-eight orders have been designed for the computer. Most of these are the usual arith-
metic and logical orders found in computers such as Whirlwind I. In addition, the orders "store
one X" and "store both X" provide the mechanism for direct storage of real-time data into the
high-speed memory.

The orders with their code numbers and execution times are presented in Table II.

UNCLASSIFIED

UNCLASSIFIED

V. DESCRIPTION OF MACHINE ORDERS

A. Basic Timing

The computer timing is based upon that of the core-memory cycle, i.e., all of the basic
microoperations occur at 3-psec intervals, corresponding roughly to the memory subintervals
shown in Fig.3. In reference to the memory cycle, zero time is defined by the read clock. The
other clocks, i.e., write, and the post-write disturbs occur at 3.5, 6 and 9psec, respectively.
A memory pulse occurring 2.5usec after the read clock serves as the basic timing pulse for the

computer. We label this pulse s,. Pulses s,, s, and s, are generated 3, 6 and 9psec from s,,
1 2 %3 4 g 1

thus defining the four pulse intervals P1 through P4 as shown in Fig. 3.

POST- POST-WRITE
READ WRITE WRITE DISTURB
cLOCK CLOCK DISTURB C-REGISTER CLOCK
| I !
(] 6 12 8
A MEMORY CYCLE ——

TIME (psec)

S, 52 53 S, S,
IRPZA'RPS““’v P“‘L P.—J

Fig. 3. Computer timing.

A timing function o as defined in Sec.II is described by specifying a proposition f]. from the
control output register, together with a timing proposition Pk‘ In addition, it is convenient to
treat one bit of the F-register separately. This bit, designated "a", specifies whether or not
the state represents a memory cycle during which an instruction is being read out of memory.
If a = 1, an instruction is being read out; if a = 0, no instruction is being read out. An instruc-
tion is always read out of memory during the last memory cycle of the preceding order. This
overlap feature shortens some orders by 12psec. Therefore, the timing function ¢ may be rep-
resented by a‘ijk during all memory cycles, except the final one of each order which is labeled
aijk.

B. Description of Transfers Common to All Cycles

The following sequence of microinstructions occurs during every memory cycle. The states

are labeled simply f.P, .
ik On All Cycles
|£,P, | : (Ml<c>) =N, j=0,1

P, | AL N + A (BILY) = BIIMI<C>]

A AdNT]) + A] (Ad[LY) = AdiMi<eo)

10

UNCLASSIFIED

UNCLASSIFIED

a(I[N<IT>]) + a'{A (G[F]) + A'(G)} = G

4 4
A={(T)=0,1,2, 3} +{(G[F]) = 64, 65} { 5 _Z;1 A+ Al z Ai}
1= 1=1

P3]:

P4| : (Cm<G>) = F
9 Q 24)
{1 =01 {® I N<I>@PpIN<I>] = 5 qjapm ppi @ T Ni<T>
i=0 BI i=10
Q
® Pyy[N<I>] = p g 2larm FF}

V(BB) = Q, vBB'{1 =>BB}, v=/{(G)=40,41,42,43, 44, 45}

The statement at P1 and the first two at P2 refer to the core memories alone. By the end
of the P1 interval each core-memory register as determined by its address register is read,
the number from each appearing in its output register. The P2 interval represents the write
period of the memories. Either the old word in N or a new word in L or part of each is written
back into each memory, depending upon the functions ABI and AAd' The first statement at Pz
says, therefore, that if ABI = 0, the instruction and index section of N are written into memory
and if ABI
refers to the address portion of the word.

The third statement at P2 refers to control. If a = 1, the computer is in a memory cycle in

which a new instruction is being accepted. Thus the instruction portion of N is transferred into

= 4, the corresponding sections of L are written into memory. The second statement

the control address register G. If a = 0, either the contents of the address section of F, G[F], are
transferred to G or G remains the same, depending upon the control-advancing function A. We
shall explain the makeup of A later. As was explained in Sec.III, G[F] contains the address of
the control memory word for the next memory cycle of the current order.

At P4 the control word is transferred from memory into F in preparation for the next mem-
ory cycle. Also the parity of the word read out of memory is checked and if an error has been
made, the start-stop flip-flop Q is set, turning off the machine, and the appropriate alarm is
given. For checking parity, the word is broken into two sections, 10 and 15 bits in length, re-
spectively. The parity bit for the first 10 bits is labeled PBI[N] and that for the last 15 bits,
PAd[N]. PBI of the word is by definition the sum modulo 2 of the first 10 bits of the word when
it was inserted in memory. Thus if the sum modulo 2 of digits 0 to 9 plus PBI is one when the
word is read out, then a single error (or more exactly an odd number of errors) was made. The
same holds true for the address section of the word.

The final statements at P 4 2re concerned with orders involving asynchronous terminal equip-

ment. These transfers will be discussed later in this section.

C. Instruction Read-In Cycles

The above transfers take place during every memory cycle. We next consider the additional
transfers which occur during all cycles during which instructions are taken from memory.

11

UNCLASSIFIED

UNCLASSIFIED

Depending upon the particular instruction, the address part of the instruction contains either an

address X, a number n or "nothing".

On Instruction Read-In Cycles (a = 1)

|at;P, | - (c?) =D

P2| :(D)+1 =D
P3| : {(G) = 37} SWyp {(Agp) = oF 2™ FF} | {G) = 37} {0 = A}
P,| : k(Ad[N<I>]) + u'{ (Ad[N<I>]) + (S<B[N<I>]>)} => %

L' (R) + p(N<KI>) =R , 0= E

p = {(G) = 26, 27}

During P, the contents of C are transferred to D and at PZ‘ D is counted up by one. At the
begmnmg of the P, interval, the number in the memory address register C is the address at
which the current mstructlon is stored. This is transferred to the program counter D and the
address number is increased by one in preparation for the next instruction. It will be recalled
from Sec.III that each memory bank has associated with it its own address register; C0 and C1
going with the core-memory banks have 12 bits, while C2 has the full 14 bits.

The transfers during P, refer to the overflow alarm. The proposition {(G) = 37} refers to
the order "transfer on overflow". SWOF is a proposition stating that the overflow alarm is
suppressed and AOF is the overflow flip-flop. An overflow occurring in a previous order will
have caused AOF to be set to "one". The first transfer says, therefore, that if the current order
is anything but "transfer on overflow" and if the alarm is not suppressed, the computer is halted
and the alarm is given. The second transfer states that AOF is cleared if the order is not
"transfer on overflow".

The first statement at P, interprets the proper information to be transferred intothe memory
address register in preparation for the next memory cycle. The function p is true if and only if
the instruction in question is either "index" or "transfer on index". Thus if the instruction is
one of the two above or if it is any other instruction that is not being indexed, the address part
of the word from memory is transferred into C. If an indexed instruction is referred to, then the
sum of the contents of the selected index counter and the address part of the word from memory
is transferred into C. If the instruction is unindexed or (B[N<I'>]) = 0, then (S<B[N<I>]>) is de~
fined to be zero so that the address of the instruction is left unmodified. The scheme just out-
lined makes it possible to employ the same word structure for indexed instructions as well as
for the orders "index" and "transfer on index". It is evident that only for the case of indexed in-
structions do we want to modify the address that is transferred into memory address register C.

In the transfer described above we describe inputs to register C with no superscript. We
shall use this same notation below. The notation implies a parallel transfer into all three ad-
dress registers, CO, C1 and CZ. At this point it should be emphasized that the timing notation
means that by the end of the interval in question, the stated transfers shall be completed. It

12

UNCLASSIFIED

UNCLASSIFIED

does not specify precisely when during the interval the actual clocking takes place. Practically
speaking, all the transfers into registers other than those associated with the core memories
occur at the pulse times S5 Thus, with reference to Fig. 3, the transfer |a'ij4| :(A)=>B
occurs with clock pulse s, . But in the case of the transfer into the memory address registers,
described above as occurring in the P4 interval, it is only the transfer into CZ which occurs on
the clock Sy The transfers into the core address registers C~ and C1 occur midway between
S3 and Sy This is a constraint imposed by hardware considerations of the memory. But the
statement of the transfer is still accurate within the definition of the timing proposition.

The same number transferred into C is also placed in T. This is in reference to the shift
and cycle orders and will be described below.

The second transfer occurring at P4 of instruction read-in cycles states that for the orders

"index" and "transfer on index" the memory word just obtained is placed in R. Otherwise R re-

mains unchanged. Also at P4 the 1-bit E-register is cleared.

D. Specific Operations

We shall now consider the operations peculiar to each machine order. We emphasize that

the operations that follow occur in addition to the ones already described in this section.

01 Add X

|a'f1Pi| 0= T

P,| : (N<T>) => R
P3| :
P,/ :(D)=>C; (A)+(R)=>A;
onéRé + x:)AoRo = AOF
00
|a.f2P1]:
|
Pyl:

The addition order adds the contents of memory register X to those of the accumulator, the
result appearing in A. It takes two memory cycles (24usec). During the first memory cycle,
labeled by the octal instruction code 01 (binary 000001) the actual addition takes place. During
the second memory cycle labeled 00, nothing occurs other than obtaining the next instruction.

The first cycle is therefore labeled with a' and the second with a.

During the P1 interval of the first cycle, the T-register is cleared. This must be done to
make the advancing function A true, thus insuring that at PZ’ (G[F']) is transferred to G. During
this cycle G[F] must evidently be 00, since the next memory cycle is labeled 00. Also during P1
the contents of the selected memory register are transferred into the memory output register and

13

UNCLASSIFIED

UNCLASSIFIED

during P2 this number is transferred into R. During P4, the actual addition occurs. The final
statement at P4 is the overflow condition. The function Xn is defined as the carry into the n-th
bit of the sum. Thus if An['r] is the state of Arl after the addition, then

An[ﬂ = An ® Rn ® Xn
and
xn—i = Xn(An + Rn) + Aan
X240 - (1)

The overflow statement says, therefore, that if both (A) and (R) are initially positive, then®
a carry into the sign bit specifies an overflow, or if both (A) and (R) are negative, then the ab-
sence of a carry into the sign bit specifies an overflow.

It may be well to mention at this point that, in general,

An[ﬂ = An® (I)n @ X1’1

and

"

Xp o1 xn(An + <1>n) tA S, (2)

where <I>n is defined by

& = aR_+ oR!
n n n

and

X249 - (3)

The functions « and ¢ are propositions denoting addition and subtraction, respectively.
Thus if a@ = 1 (addition), <1>n = Rn' X4 = 0 and Egs. (2) are the same as Egs.(1).

During the P4 interval the contents of D (the address of the next instruction) are transferred
into the memory address registers in preparation for the next cycle, during which time the next

instruction is obtained.

02 Subtract X

|a¥f,P,| : 0=T
374

P,| : (N<I>) =R

P, :

P, :(D)=>C; (A)-(R)=A

1 1 —

onoRo + onoRc') = AOF

00
[afZPil :
P4| :

14

UNCLASSIFIED

UNCLASSIFIED

In the subtraction order the number in memory register X is subtracted from the number
in A, the result appearing in A. This order is essentially the same as addition, except the arith-
metic operation subtraction is performed. InEgs.(2) ¢ =1, o = 0. Thus in Eqgs.(3), <I>n = R;l and
= 4. The overflow condition is the same as that in addition with RO replaced by Rg.

b ,

X24
03 Clear and Add X

la't,P,|: 0=>T; 0=>A

P,|: (N<I>) = R
Ps]
P4| : (D)= C;(A)+(R)= A
onZ)R:) + XE)AORO = AOF
00
|af2P1| :
|
Pyl:

The clear and add order transfers the contents of memory register X into A. It is identical

to addition with the A-register cleared during P, .

04 Clear and Subtract X

la't,P,|: 0=>T; 0=>A

PZI : (N<I>) => R
P3| :
P4| :(D)=C; (A)-(R)= A
oné)Ro * XI)AOR:) = AOF
00
laf,P, | :
P4| :

The clear and subtract order transfers the negative of the number in the memory register

X into A. It is identical to subtraction with A cleared during P e

15

UNCLASSIFIED

UNCLASSIFIED

05 Multiply Nonroundoff X

|a'f6P1| :0=>T; 0=A; (A)=B
P,| : (N<I>) => R
P3| : X
P, :x; D)=>C; 24, =T
50

|a'f7P1[:x; {(T)Y# 0} {(T)—-1= T}

P,|:" "
P,l:" "
51
Iaf8P1| . X
P,|: X
Pl :Y, (R)) =E
P4| : A0B24E {1 = g/l-D alarm FF}

x:{B,, ® E}'{A,B,E) = Shr A,B,E; (A_) => A}
+B,,E8{((a) - (R), B,E) = Shr A,B,E; (A) - (R,) = A}
+ B24‘E{((A) +(R),B,E) = Shr A, B,E ; (A)+ (R) = AO}

Y:{B,, ® E}'{(A,B,E) = A, B, E}
+8,,8{((a) - (R), B,E) = A,B,E}
+B,,B{((A) + (R), B,E) = A, B,E}

In this order the number in memory register X is multiplied by the number in the A-register,
the 49-bit product (48 bits plus sign) appearing in A and bits 0 to 23 of B. The time for this order
is 7 memory cycles or 84psec. During the operation, the A-, B- and E-registers are treated as
a single 51-bit shift register.

Initially the multiplier in A is transferred into B, and A is cleared. E was cleared during
the previous "a" cycle. The multiplicand is held in R. The algorithm represented by X is per-
formed 24 times and a variation of the algorithm Y is done once. The number 24 octal (or 20
decimal) is inserted in T. This is done to make the advancing function A false during the next

16

UNCLASSIFIED

UNCLASSIFIED

memory cycle. During this next cycle X is performed 4 times and each time T is counted down
by one. Thus the cycle 50 is performed 5 times. At the end of P1 of the fifth time T has been
counted down to 3, A becomes true, and memory cycle 54, the last cycle, is performed. This
cycle is designated by "a", hence the next instruction is interpreted during this cycle.

The algorithm states that if B24 and E are alike, the 51-bit register A, B, E is shifted right
by one bit, the sign of A being preserved. If B24 =41 and E = 0, the number in R is subtracted
from that in A; this difference, together with B and E, is shifted right by one bit and the sign
bit of the difference is preserved in Ao' If B24 = 0 and E = 41, the same occurs with a sum be-
tween R and A. The last time, the same occurs with no shifting.

The final transfer states that if both the multiplier and multiplicand are negative and the
product is negative, the computer is halted and the multiply-divide alarm is given. This con-
dition will occur only if the multiplier and multiplicand are both —1 (1.000...0). The algorithm
gives as a product for this case the number —1, since +1 is not representable in the number sys-

tem used.
06 Multiply and Roundoff X

|21 TPy |+ = la'tP, |
| |
P, P,
60
lat TP, | = |a'f,P, |
| |
P4| P,
61
lafgP, | : X
P,|:x
P,|:Y; 0=>[R; R,,], (B))=>R,, (R)=>E
P4| : A(‘){(A) +(R)} + A(A)=>A; A0B24E{1 = g-D alarm FF}

0=B

This order is performed in the same way as nonroundoff multiply. The 24-bit (plus sign)
roundedoff result is obtained during P, of the final cycle by adding 1 to A if the product is pos-
itive and if the digit in Bo is "one". A negative product is automatically rounded off. Finally
the B-register is cleared.

07 Multiply and Shift X

|a'?6P1[1= |a' P, |
Pl : P,

17

UNCLASSIFIED

UNCLASSIFIED

70
larEop, |« = |a't,P,|

| |

Pyl Py

71

laf3,Py | X

P2| : X

P3| .Y, (Ro) = E

Pl (B = A (A) =>4, . {AB,E {1=>F 1 o pwl

0=B

This order is to be used only when it is known ahead of time that all of the significant bits
of the product lie in the B-register, i.e., in the 24 least significant bits. During the final pulse

interval, these 24 bits are transferred into A while B is cleared.
10 Divide X
1 . —
|af10P1| :0=>T

P '(N<I‘>)=>R;0=>B;(Ao)=>E

2l

P3| 1 Zy
Py:D)=>C; 24, ,=>T; Z

24) Q
t =
{E D <B24 + Ro iI=TO Ai)} M-D alarm FF

52

|a'f11P1‘ 1 Z; {(T)?é o} {(T)—1 =T}

Pl "
Pyl " "
Pl "
laf, ,Py| : Z
le : Z
Pyl :Zg; (B)=>A _,; 0=>[R;R,,1; R)=>R,,

Pyl :R'ZA(K)+R24{(A) +(R)} =A; 0=B

18

UNCLASSIFIED

UNCLASSIFIED

Z,:{A ®R} (B, (A) + (R)) +{A, @R} (B, (A) - (R)) => Sh1 B, A
z:{B,, ®R} (B, (A)+ (R)) +{B,, ®R_}'(B, (A) - (R)) => Shl B, A
ZB:{B24®RO} {(A)+(R)}0+{B24@Ro}'{(A)—(R)}O=>A24

In the divide order, the number in A is divided by the number in register X. The divisor is
stored in R and the quotient finally appears in A with B cleared.

During the operation A and B are used as a 50-bit shift register B, A. The algorithm is de-
scribed by the statements ZA’ Z and ZB’ the first and last applied once and the second 23 times.
Initially B is cleared, then ZA is performedduring P, of the first cycle. If the signs of the divi-
dend and divisor are different (alike), the number in R is added to (subtracted from) that in A,
the result being shifted left by one digit and B shifted left accordingly. At this point a check is
made to determine if the dividend and divisor are such that the quotient is a representable number

in the machine. The criterion for this is
signs alike IR| > |A]
- signs different |R| > | A]

If this criterionis notmet, the machine is stopped and the multiply-divide alarm is activated.

The statement Z is then performed 23 times. During P, of the last cycle, the 24 digits al-
ready computed are transferred into A and the final digit is computed by ZB and inserted in A24.
It will be noted that the calculation in ZB is the same as that in Z, except that only ihe sign bit
of the result is used. At this point R is cleared and the sign bit of R is inserted in R, ,. During
P 4 the quotient is obtained by complementing the number in A if the sign of the divisor is positive
or by adding 1 into the least significant bit of A if the sign of the divisor is negative.

11 Square Root X
Q

square-root alarm FF

‘alf3SP1| :0=T, 0=>A, (Ao) =

(A)=>B_ _,, 0=B,,
P2| :(A,B)=>Shl A,B, 0=>R
P,|: (A,B)=>Shl A, B, {A,,+B} 1=>R,,
P,|: (D)=>C, 0=>D;D,,, (R,,) =>D,,

((A) = (R), B)=>Shl A, B, 32, =>T

55
|a‘f39P1| :(A,B)=>Shl A,B, (D))=>R__,, 1=>R,,, (T)-1=>T

P,|:(A)-(R)=>A
P,|: (D) =>Shl D, (AL) =>D,,, Ao((A) +(R),B) + Al (A,B)=> Shl A, B
P,l:

19

UNCLASSIFIED

UNCLASSIFIED

|a'f41P1| : (D)) => B 0= A

n-1’

P4| ((B)=> A

1’ (Ao) = Ao’ 0=B

In this order the number in A is replaced by its positive sciuare root. We employ the con-
ventional algorithm where the number is examined two digits at a time. At each step the partial
result is doubled then shifted left and, together with a trial number inserted in its least signifi-
cant place, forms a trial divisor. This becomes particularly simple in binary arithmetic since
the trial number can only be "1". We store the number at first in B and shift it left into A, two
bits at a time. The partial result is stored in D and the trial divisor is held in R.

During the a‘f38P1 interval, A1-24 is transferred to BO-23’ A is cleared and }324 is cleared.
If the number is negative, an alarm is displayed and the computer is stopped. During P2 and P3,
two shifts are made placing the two most significant bits in A23 and AZ4' During PZ’ R is cleared
and in P3 a "4" is placed in R,y if either of the first two digits is a "1". In this case the first
bit of the result is a "4" and this is inserted in D2.4 during P4. Also during P4, the rest of D is
cleared, the first subtraction of R from A occurs and the result is shifted left by one bit. The
next cycle is to be performed 23 times, hence 26 decimal (32 octal) is placed in T.

In the next memory cycle during P 1 another shift occurs leaving the second pair of digits
in A23 and A24. The number in D (the partial result) is transferred to R but shifted left by
2 bits and the trial number 1 is inserted in R24. During a'f39P2 the trial divisor in R is sub-
tracted from A. If the difference is positive, the next digit in the result is a "1" and this is in-
serted in D24; the rest of D is shifted left by one. Also the A- and B-registers are shifted by
one. If the result of the subtraction is negative, the next digit in the result is "0". Also the
accumulator must be corrected by adding R to A and shifting. This cycle occurs 23 times. At
the end of the 23rd time, a 24-digit result appears in D1 - D24.

During the final cycle, this result is transferred to A via B. The result is accurate to at
least one part in 222.

12 Subtract Magnitudes X

|a'f13P1| :0=T; (A)=B
P,| : (N<I>) =R
Pyl : {A, ® R} {(A) - (R) = A}
+{A, @ R} {(A) + (R) = A}

P :BO(K)+BB(A) = A; (D)=C

4l

20

UNCLASSIFIED

UNCLASSIFIED

54
|a.t‘14P1| :
PZI :
Pyl : 0=>[R;Ry,l; (B)) =Ry,
P, :(A)+(R)=>A;
XALRL + xLA R => Agp

In this order, the magnitude of the number in memory register X is subtracted from the
magnitude of the number in A, the result appears in A and the original contents of A are pre-
served in B. During the first cycle, if the two numbers have the same sign, a subtraction is
performed. If the signs are different, an addition is performed, the result inserted in A. If
the original number in A was positive, the desired result is obtained. However, if the original
number in A was negative, then the negative of the desired result is in A, and hence the number

in A is negated during the final memory cycle.

13 Extract X

|a'f15P1| :0=>T

P2| : (N<I>) = R
Pyl : (AR)=>A, k=0,1...24
Pyl :(D)=C
00
|aI2P1|:
P4|:

In this order, the logical product of the number in X and that in A is taken, and the result

is placed in A.
14 Identify X

la'f16P1| :0=>T
P,|: (N<r>) = R

P3|:(A)—(R)=>A

|
n A'}(D)+ I A'} {(D)+1} =D

- Q
SWi{H A{}l 1= ID alarm FF

21

UNCLASSIFIED

UNCLASSIFIED

Ia‘f35P1| :

PZI:

P3|:

P,| : (D)= C

4l

|af2P1I :

|

P4|:

In this order the number in X is subtracted from that in A. If the result is zero, the pro-
gram proceeds in sequence. Otherwise the program counter D is advanced by one. Thus if
there is no identity and the identify alarm is suppressed, the program jumps one order. If the

alarm is not suppressed the computer is halted and the alarm is activated.

15 Shift Left n

2t P (M # 0 (-1 =T, 2, {8, @4} {1 = Al

P, | "
P, "
P, " ; D)= cC
00
|af2P1|:
Pyl :

Z,|: (A, B)=>Shl A,B (A)) = A

The shift-left order shifts the contents of the A- and B-registers in regular shift-register
fashion, one shift per subinterval. The sign of A is preserved. The number of shifts n is trans-
ferred to T during the instruction read-in cycle and during cycle 15, T is counted down as each
shift occurs. When the count reaches zero, no more shifting takes place. This cycle is used
repetitively until T reaches zero. The control "advancing" function operates so as to continue
shifting until total shifting requirements can be fuifilled in the current memory cycle, then the
succeeding cycle is allowed to come up. If a significant digit is shifted out, the overflow flip-

flop is set.

22

UNCLASSIFIED

UNCLASSIFIED

16 Shift Right n

la't, P, | : {(T) # 0} {(T)=1=>T; =}

" ; (D)= C

Er : (A,B)=>Shr A,B; (Ao) = A0

Shift right operates in the right direction in the same way that shift left does in the left di-

rection. The sign of A is preserved.

17 Cycle Left n

|a‘f19P1| T # 0} {(T)-1=>T; ¢}

P2| "
P, "
P4| " ; (D)= C
00
|af, P, | :
P4|:

lpl :(A,B)=Shl A,B; (Ao) = B24

Cycle left is a closed-loop shift-register operation. As in the case of shift left, shift right
and cycle right, the T-counter becomes preset to the desired number of shifts. In cycle left,

the contents of A1 are transferred into A0 and Ao is shifted into B24.
20 Cycle Right n
la'f,)Py | s {(T)# 0} {{T) -1 =T; ¥}

P

2l
P3|:

P,|: " ; (D)=>C

23

UNCLASSIFIED

UNCLASSIFIED

IafZP

|

P4| :

Nk

zpr : (A,B)=>Shr A, B ; (B24) = AO
Cycle right is the closed loop shifting right of the contents of the A- and B-registers.

24 Scale Factor X

|a'f21P1| :(D)=> Ad[R]; 0=>D; 0=>T

P,|:{A, ®A;}'{Z, (D)+1=D}

P,| "

P4| "o 6Ooctal— T
64

|a'f22P1|:{A0@A1}'{21, D)+1 =D} , {(T)=0}'{(T)~1 =T}
PZ|:

P3|:

P4|:
65

k
la'f, 5P, | : (D) => Ad[L"], A, <T>, 0=>T k=0,1

24

k
@ 12(:) D, = P, 4[L"]
PZI: A, <T>
P3|

P, | : (Ad[R]) = C

| af, P, |:

P4l:

In the scale-factor order, the number in A, B is shifted left until the first "one" ("zero") for

positive (negative) numbers appears in Ai‘ The number of shifts required is tabulated and then

24

UNCLASSIFIED

UNCLASSIFIED

stored in the address part of memory register X. The D-register is used to count the shifts.
The second term in the expression for A (see operations for all memory cycles) is used here to
repeat cycle 64, except for the special case where the A- and B-registers initially contain 0.
Here the first term in the expression for A causes the advance from 64 to 65 and the number

63 octal (51 decimal) is stored in register X. The original contents of D are stored temporarily

in R during the shifting. 22 Store X

— T. — k.
]a'f24P1| 0= T;(A)= L ; ABI<I‘>, AAd<1“>

9 K 24 K
@%}Ai=>PBI[L 1; @i=210Ai=>PAd[L] ., k=01
P2| :ABI<r>, AAd <>
P, :

P4|:(D)=>C

|af,P, | :

|

P4|:

The contents of the A-register are transferred to memory register X via the memory input
register L, designated by T'. The function A is made true, causing new information to be written

into memory. The parity bits are calculated and are stored along with the contents of the A-register.

23 Replace Address X

k
la't, P, |: 0=>T, (A)= L k=01
A 24 Kk
AG<T>; @122) A = [PAdL]
P2 :AAd<I">
P3
P4 : (D)= C
00
]af2f1|:
P4|:

Replace address stores the address section of the A-register in register X. The instruction

section of X in this order remains unchanged. Only the address parity bit is recalculated.

25

UNCLASSIFIED

UNCLASSIFIED

24 Transfer X

|af, P, | : (D) = Ad[R]

P2|:

P3|:

P4|:

This order is an unconditional transfer of control to the register X. It may be used in con-
junction with the return from order, and at fZéPi time, the address of the next order is stored
in the address section of the R-register. The return from order then picks up this address and

stores it at the returning point.

25 Transfer on Negative X

|a',,P,|: 0=T

le:

P3‘:

P,|: A:){(D) = C} + Ao{(D) => Ad[R]}

4l

This order is a conditional transfer. If the number in the A-register is positive, the pro-
gram continues in order. If the number is negative, the transfer to the point designated by trans-
fer order is performed while the advance location D is stored in the address section of R for use

with the return-from order.

26 Transfer on Index X

la'f : 0 =>T ; (S<B[R]>) + 1 = S<B[R]>

28P1 |
P, | : RO(S<B[R]>)-+ R:){ (S<B[R]>) + 1} => S<B[R]>

P3[:

P,|: {(S<B[R]>) = (V<B[R]>)} {(D) = C}

00

| af

2 1|"

E

al:

26

UNCLASSIFIED

UNCLASSIFIED

This order is a conditional transfer which transfers to a point within an index loop whenever
a particular referenced index counter S has not reached a count equal to that which is stored in
an index criterion register V, which is the mate of the S under reference. Provision is made to
index by either one or two. Bits 1 to 3 are used to determine the proper pair of index registers.
If the sign bit (bit 0) contains a "1", then the selected S-register is counted up by one. If the
sign bit contains a "0", then S is counted up by two. It will be recalled that during the instruc-
tion read-in cycle, the instruction is transferred into R in preparation for this operation. When
the counts become equal, the transfer action is stopped and the computer goes on to the next
order. A transfer-on-index order must always be preceded, although not immediately, in the

program by an index order.

27 Index n
|a'f3OP1| : 0 => T ; (Ad[R]) = V<B[R]>
0 = S<B[R]>
P2|
P,]|
P4| : (D)= C
00
|at,P, |

The index order is useful for the repetitive use of a simple subroutine, and for the repetitive
use of a subroutine that has monotonically increasing register locations. When the index order
is introduced in the program, a particular pair of index registers is prescribed, as well as the
number of cyclings requested in the index loop. In the index-order operation, the address sec-
tion of R, which is holding the number of cyclings requested, is transferred to the particular
index criterion register selected by the index bit number that is located in the index section of
the R-register. At the same time the index counter S, selected by the index bit number, is re-

set to zero.
30 Return from X

|a',oP, | : 0 => T : (Ad[R]) = AdiLY) , k=01
24 .
AAd<r>;@1Z(:)Ri=>PAd[L]
P2|:AAd<I‘>
P3|:
Pyl:(D)=>C
27

UNCLASSIFIED

UNCLASSIFIED

This is the introductory order of a subroutine. It must be immediately preceded by a trans-
fer order in the main program which stores the location of the succeeding order of the main pro-
gram in R. The address X is that of the final instruction of the subroutine (a transfer order).
Thus the return-from order replaces the address of the final transfer order of the subroutine

with the address of the instruction in the main program to which the subroutine returns.

31 Halt

|a‘f31P1| :0=T

P4|:

The halt order is used at the end of the program and in interior check points of the program.
After f31P4 time the Q flip-flop is placed in the "4" state stopping the machine.
32 Clear B

a'fyP,|: 0=>T

P,|:0=>B; (A))=>E
P,l
P, :(D)=>C
00
af, P, |

The clear-B order clears the B-register during the P2 interval. The sign of A is transferred
to the E-register only because this operation was used in conjunction with the clearing of the B-

register in previous orders.

28

UNCLASSIFIED

UNCLASSIFIED

33 Store One X

lat,. P,| : 0=>T, (W)=>1F @g wl=r_(1Y, @ 224 wl=p, [LK], k=0,1
47711 ¢ ’ TS b BI™ ™ Tisie ! Ad ’
A A
pr<T> 8, 4<r>
DA
P,|: B <> AAd<r>
P3[
P, : (D)=cC
00
|af21I1|
P4|

This order transfers the contents of live register 1 (Wi) into memory location X. Its op-

eration is the same as the "store" order.

34 Store Both X

la'%,.P,|:0=T, (WH=LF @ % wlsp_ L5, @ 25 wl=p, [L¥, k=01
agPy ! , =L, ® L Wo=PglL], ® 2 Wy adlll k=0,
i=0 i=10
2, _, .
Agp<r>, Ay4<r>, (C*) = D, (D) = Ad(R]
le tAp<T> A, <I> (D)+1=>D
P3|
p,l:D)y=cC

67

P, | (W) = LE ®§w2=>1D Lk @224 wZ=rp, (LY, k=01
|a'f4q Pyl : PO W pittl © 2 W agttl k=0,

ABI<r>, AAd<r>

2|t Ap<T> Apy<r>

P3|
P,|: (AdR]) = C

29

UNCLASSIFIED

UNCLASSIFIED

| af

2?‘ :
P4| :

In this order the contents of live registers 1 and 2 are stored in registers X and X + 4, re-
spectively. The operation is similar to the previous order with two "store" type memory cycles.
The program counter is used to advance the memory from X to X + 1 while the program address

is stored in R.
35 Shift and Add X

la'fg,P,| : 0=>T, 0= A, (A) =B

P,| : (N<I>) = R

2|

P,3| :

P,| : (D)=>C, (A) + (R) = A, x _A!R! +x'A R = Ayp

4| oo o o oo

00

|af,P,| :

|

P,l:

In this order the number in A is transferred to B and the contents of memory register X are

inserted in A.
36 Transfer on Busy Bit X

|a‘f50P1| :0=>T

P,|
P,
P,| : BBY{(D) = C} + BB{(D) => Ad[R]}
00
laf,Py |

This is a branching order depending upon the state of BB, the busy bit. Its operation is
identical to "transfer on negative". The function of the busy bit will be described below in con-

nection with the "display" order.

30

UNCLASSIFIED

UNCLASSIFIED

37 Transfer on Overflow X

|a'f44P1| :0=T
P,|
P,
Pl : App{ (D) = C} + AgR{(D) = Ad[R]}
00
|af2P1|

This, again, is a branching order identical in operation to "transfer on negative" and

"transfer on busy bit" with the decision based upon the state of AOF’ the overflow flip-flop.

40 Display X

|a'f42P1| :0 =T

P,| : (N>) = U¥, (A) = U
P,| :
P, :@=cC
00
laf, P, |

The "display" order causes a point to be displayed on the oscilloscope with abscissa given
by the number in register X and ordinate by the numberin A. U* and UY are the horizontal and
vertical deflection registers of the scope. Time of deflection is roughly 50usec.

Now referring to the transfers common to all cycles at the beginning of this section, we ob-
serve a pair of transfers during P 4 conditional on a function v that is true for this and the five
succeeding orders. All of these orders are concerned with terminal equipments that have op-
eration times independent of the timing of the computer proper. The first transfer says that if
v is true, the state of the busy bit is transferred to Q. Thus if the busy bit is in the "one" state,
signifying that one of the terminal devices is in use, the computer is halted. If the busy bit is
in the "zero" state, the computer is started if it had previously been halted. The second trans-
fer says that if v is true and the busy bit is in the "zero" state, the busy bit is set to a "one".
The busy bit is set to "zero" by one of the terminal devices when its operation is concluded.

31

UNCLASSIFIED

UNCLASSIFIED

Thus if, say two, consecutive "display" orders appear in a program, the computer will be halted
at the end of the cycle during which the second order is taken from memory, and will restart in

cycle 40 after the first display has been completed.

44 Display Word X

laf P, | : 0=>T

le : (N<>) = U¥, (A) = W, (B) = s, 1 octal = u®
P, :
P,l:(@=>C
00
|af,P, | :

During this order the octal content of the word in B is displayed at (x,y) given, respectively,
by the contents of registers X and A. UCis a register in the display unit holding the word to be
displayed. U® is step counter in the display unit.

The order takes about 300pusec for execution and is under control of the busy bit.

42 Index Camera

|a‘f53Pi| : 0 => T, index camera

: (D)= C

|af P, | :

P4|:

This order causes the film in the oscilloscope camera to be advanced one frame. The
shutter is closed just before the film advance and opened after the film advance. It is under

control of the busy bit.
43 Read-In from H

|a'f32P1| : (H) = H[B]

32

UNCLASSIFIED

UNCLASSIFIED

This order is still incomplete. A 6-bit word from the tape reader appears in H, whence it

is transferred to bits 0 to 5 of B.

44 Punch
|a‘f33P1| :
P2| : (H[B}) = H

P, | : punch

3
P4|:

This order is incomplete. A word to be punched out on Flexowriter tape is transferred

from H[B] to H and from there to the Flexowriter.
45 Print
|a‘f34P1 |
P,|: (H[B]) = H
P3| : print
P4| :

This order is like the preceding one with a print command given to the Flexowriter. It is

incomplete.
77 Exchange X
|at P, | :0=>T, 0=> A, (A)=>L], j=0,1
9 § 24 i
@%: A; = PglL7], ® 120 A, = P, L7, ABI<r>, Ap ST
P2| : (NKI>) = R, ABI<I‘>, AAd<r>
P,

P4| : (D)= C, (A)+ (R)=> A, xOAE)RE) + xBAoRO = AOF

00

|af,P, | :

P,|:

In this order the contents of the accumulator and register X are exchanged. The order is

simply a combination of the orders "store X" and "clear and add X".

33

UNCLASSIFIED

UNCLASSIFIED

VI. THE CONTROL ORGANIZATION

The 39-bit code of the control-memory output register F defines singly the happenings that
are part of the various f. states. In addition to this control command, appropriate clock pulses
during P:l’ P, Py and P, intervals are needed to execute the command. To each network proper
$458,,84 and Sy pulses must be directed. It should be recalled that the various iji statements
imply that the indicated transfers take place by the end of a particular 3-psec period. Each fj
produces a unique state in the 39-bit control register F, which holds this for 12psec. After this
time it may be repeated, depending upon the function A. F is grouped in an 141-number code.
The first six bits of the F-code make up a 6-bit order code for the next memory cycle, barring
repetition of the present memory cycle. This number is designated as G[F]. The next six bits
of F make up the first number; actually these are individual bits since there are only six con=-
figurations needed to be resolved. The next three bits of F make up octal number OilF]‘ The
following three make up octal number OZ[F]' This continues up to Og[F]'

Table III is a list of the representation used in the F-register and Table IV presents the

control-memory representation code.

VII. CONSOLE CONTROL

Several modes of starting and stopping the computer and of inserting information into the
computer are provided. Information may be read in via punched paper tape or manually with
the aid of two front-panel toggle-switch registers one of which holds the word to be stored and
the other, the address in memory at which it is to be stored. A separate start button is pro-
vided for each of these modes. Both read-in programs are stored in a fixed memory that forms
part of the third memory bank ((1") = 2) .

Sixteen toggle-switch registers are provided on the front panel for general use. These also
comprise a portion of the third memory bank (registers 20,000 to 20,017 octal). A start button
is provided which takes the first instruction from the first toggle-switch register.

Provision is made to start the computer at a preselected address Y written into the program
tape. The read-in program inserts the order "transfer to Y" into register 0 of the first core
bank. The start button start program takes the first instruction from address 0.

A starting mode is available enabling one to start a program from some previous stopping
point. This button is labeled "restart".

A program may be halted in one of three ways. First, the halt may be programmed. Sec-
ond, depressing a halt button stops the program at its current point. Third, a toggle-switch
panel register labeled "halt address" may be used to stop the program at the address in the
register.

For test purposes, a program may be run one instruction at a time, one memory cycle at

a time, or one pulse at a time.

A. Starting the Computer

We have indicated five different starting modes: (1) restart, (2) start program, (3) start
at 20,000 (first toggle-switch register), (4) start tape read-in and (5) start manual read-in.

34

UNCLASSIFIED

UNCLASSIFIED

For the first starting mode, the assumption is made that the computer has been in operation
and has been stopped for some reason. All that is necessary is to reset the start-stop flip-flop
Q or 0 => Q. For the other starting modes represented by start at X, the following sequence

of events must occur:
X=C; 0=G
(Cm<G>) = F
0= Q

During the first interval, the proper starting address is inserted in the memory address
register. Also G is cleared, selecting the control word represented by fz which denotes an in-
struction read-in only. After this control word has been transferred to F, Q is cleared and the
program begins. The address X is for mode 2, register 0; for mode 3, register 20,000; for

mode 4, register 20,040; for mode 5, register 20,021.

B. Manual Read-In

The manual read-in program is given below.

20,021 Index (A) 377
20,022 Transfer to 20,024
20,023 Halt -
20,024 Clear and add 20,020
20,025 Store (A) in -
20,026 Transfer on index to(1A) 20,023

Registers 20,021 to 20,024 and 20,026 are in the fixed memory. Register 20,020 is the front
toggle-switch register in which the word to be read in is stored. Register 20,025 is a hybrid
front-panel register. The address part is in toggle switches; the index and instruction parts
are wired in. Ad[20,025] is the register that contains the address into which (20,020) is stored.
Registers 20,020 and Ad[20,025] may be converted from toggle switches to a keyboard without
affecting the rest of the computer.

C. Stopping

To stop the computer during operation, the halt button is depressed, which inserts a "1" in-
to Q. To stop at a specified address, this address is set up on the front-panel, halt-address,
toggle-switch register which we label HA. A switch is provided with this register which deter-
mines whether or not the computer is to stop at the indicated address. We define a proposition
SWH that is true if this switch is in the state requiring the computer to stop at the address in
HA. Then we have

|af;P | : SWy{ (HA) = (CH} 1 = 3, + SW{(HA) # (T} 057, (3,)=>Q

During all instruction read-in cycles (a = 1) at P 4 if there is match between the contents of
HA and those of Cz, a flip-flop J2 is set. Then during the next cycle with a = 1, the computer
is stopped and J 2 is reset.

35

UNCLASSIFIED

UNCLASSIFIED

To run the computer one instruction at a time, a switch is thrown making a function SW1
true. Then Iaij4| 1 SW, = Q.

To run the computer one memory cycle at a time, another switch is thrown making a function
SW_ true. Then lij4| 1 SW_ = Q.

ACKNOWLEDGMENT

The authors are grateful to the following members of Group 24 for their
suggestions and criticisms: B. Jensen, J. Henry, F. Nagy, E.W. Bivans,

J.S. Arthur, F.G.Popp, R.E.McMahon, F.L. McNamara and R.H. Baker.

36

UNCLASSIFIED

UNCLASSIFIED

TABLE 1t
F-REGISTER REPRESENTATION

Individual Bits Fs - F]2

2, .
Py D)y+1=D
E {(0) = 37} sWipg {lagp =55 *'°™ FTL{(G) = 371 {0=> A
Py p(AdIN<T>]) + p-{(Ad[r\1<r>]) + (S(B[N<r>]>)} =>$
P'R) + p(N<I>)=>R , O0=>E
2 F] 1 P2 (N<T>) =>R
4 Flo Ps (0)y=C
20 Fg P, 0=>A
40 F7 P4 24octa| =T
o, IF]
. 24 ,
L P (AdRD=> AdI)] ; ® 7 R, =>P,, (L]
10 !
P] —P4 /\Ad<l">
2 Py WhH=U, @ T w! =yl @ 2 wl=py
P] -Py AAd<r> "
= i M = j
3 P, (D) => Ad[l] ; @]%Di > P g lLl]
P—P, A
Py (AdIR]) => C
4 Pi-Py {M=0p{M-1=T}
i 9 i 24 i
> P WU, @ 2 A =Ry L), © Z A =>Pyyl)
Py—Py Apg<r>
6 P (W) =L ;®%Wi =>PB|[L],@]z(j)wi =>P 411
Pl=Py Apg<D>
Ps (AdR]) =>C
7

37

UNCLASSIFIED

UNCLASSIFIED

TABLE 11t (Continued)

N O A~

0,[F]

0=>8
0=>8, (A)=>E

1 => camera, SW:: {no film => Q}

{A, @RI {(A-R}+{A @R} {(A)+R)}=A
BO(K) + B (A)=> A

(D) = AdRR], (€3 =>D

(D)+1=D

O,4[F]
Q

(An) =>B P 0=>Bay (Ao) = square-root alarm FF

n-1 7/
(A,B)y=>Shl A,B, 0=>R
(A,B) =>Shl A,B, (A24 + Bo) = R24

=T

(Ryg) => D,y ; 0=>D;Dyy ;((A) = (R),B) =>Shi A,B ; 32

24) octal
(A,B)=>Shl A,B ; (Dn) = Rn-2' 1=> R24
(A)-QR) = A

(D) =>Shi D, (AL) =>D,,, A_((A) + R),B) + A!(A,B) =>Shl A,B
AL {D)=>C}+ A {(D)=> Ad[R]}
(D) = AdIR]

(Ad[RD=> V<B[R]>, 0 => S<B[R]>

0=>R; Ry, (Bo)=> Ro4

38

UNCLASSIFIED

UNCLASSIFIED

TABLE il (Continued)

0,IF]
Mm-1=T

(Dn) = Bn—l

(H) = H[B]

{n A}{(D)+1} {n Alh (D)=>D ;

SW; H A.} (1= Id alarm FF}

(H[B]) => H
Ag<T>

05[F]
(A) - R)=> A, on;RO + x:)AOR; = AOF
(A) + R)=> A, on:)Rc') + x:)AORO = AOF
A'OF{(D) =C}+ AOF{(D) = Ad[R]} ; 0= Aok

BB' {(D) => C} + BB{(D) => Ad[R]}
(S<B[R]>) + 1 => S<BRR]>
Ro(s< BIR]>) + R:){ (S<B[R]>) + 1} = S<B[R]>

{(S<BRI]>) = (V<BR]>)} {(D) = C}

39

UNCLASSIFIED

UNCLASSIFIED

TABLE Il (Continued)

O,[Fl

1 P] 0=D
Py 60oci‘al =T

2 Py AL{(A) + R)} + A (A)=> A
3 Py (Bn) =>A (Ao) = A
4 Pa (A) - (R)=> A
5 P3 print
6 Py punch
7

o, IF]
1 P,-P, {A @A} {D)+1}=D,
2 Pi=Py
3 Py AR)=>A k= 0,1...24
4 Pl (A)=>8
5 Py 1=Q

T 1S
6 Py (8)=U", Nt =V
7
40

UNCLASSIFIED

UNCLASSIFIED

TABLE 11l (Continued)

OglF]

(N<T>) = U, (A) =>UY

{m=o {z,, (A, @A} 1 =45}
{m=o}z

{m=oy4,

{m=o}y,

OglF]
X

X

X

Y, (Ro) =E

_Q
{AB24E} {1=> M alarm FF

ZA

_.Q
Z;{E® (B24 + RonAi.)}' 1= divide alarm FF
V4
Z
Zg, B)=>A 1, 0=>RRyy, R)=>Ryy

R34 (A) + Ry, {(A) + R => A

41

UNCLASSIFIED

UNCLASSIFIED

TABLE IV
CONTROL-MEMORY CODE
G Code Order f No. GIF] Fo—Fio O,F) O,[F] O,4lF} Oy, IF1 O5lFl O, [FI O,[F} OglFl OglF]
01 Add X 1 16 2
02 Subtract X 3 16 1
03 Clear and add X 4 36 2
04 Clear and subtract X 5 36 1
05 Multiply nonroundoff X 6 50 76 4 1
06 Multiply roundoff X g 60 76 4 1
07 Multiply and shift X 6 70 76 4 1
10 Divide X 10 52 56 2 4
n Square root 38 55 34 1
12 Subtract magnitudes X 13 54 16 4 4
13 Extract X 15 16 3
14 Identify X 16 62 12 4 4
15 Shift left n 17 4 4 2
16 Shift right n 18 4 4 3
17 Cycle left n 19 4 4 4
20 Cycle right n 20 4 4 5
21 Scale factor X 21 64 10 4 1 1
22 Store X 24 14 5 6
23 Replace address X 25 14 5
24 Transfer X 26 1 4
25 Transfer negative X 27 10 3
26 Transfer index X 28 10 5
27 Index n 30 14 5
30 Return from X 29 14 1
31 Halt 31 14 5
32 Clear B 36 14 2
33 Store one X 47 14 2 6
34 Store both X 48 67 14 2 5 6
35 Shift and add X 51 36 2 4
36 Transfer busy bit X 50 10 4
37 Transfer overflow X 44 10 3
40 Display X 42 14 1
41 Display word X 52 14 6 1
42 Index camera 53 14 3
43 Read-in from H 32 3
44 Punch 33 5]
45 Print 34 5 5
46
47
50 7 51 4 2
51 8 1 3
52 n 53 4 5
53 12 1 1 6
54 14 1 6 2
55 39 57 2 1
56
57 41 2] 1 2 3
60 7 61 4 2
61 9 1 1 6 2 3
62 35 4
63
64 22 65 4 2
65 23 10 3
66
67 49 6 6
70 7 7 4 2
Al 37 1 1 3 3
72
73
74
75
76
77 Exchange X 54 36 5 6 2
00 2 1
42

UNCLASSIFIED

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

