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Abstract

We review the successes and failures of the Macsyma algebraic manip-
ulation system from the point of view of one of the original contributors.
We provide a retrospective examination of some of the controversial ideas
that worked, and some that did not. We consider input/output, language
semantics, data types, pattern matching, knowledge-adjunction, mathe-
matical semantics, the user community, and software engineering. We also
comment on the porting of this system to a variety of computing systems,
and possible future directions for algebraic manipulation system-building.

1 Introduction

2 Overview: The achievements, the problems

The Macsyma1 algebraic manipulation system grew in part from observing the
shortcomings of Mathlab [7], and other earlier systems. Macsyma prospered by
incorporating the new algebraic algorithms of the late sixties and seventies, and
by taking advantage of better and lower-cost computer hardware and software.
Looking back nearly two decades towards its first appearance, we feel that it is
appropriate to go beyond the stage of summarizing or advertising its capabilities,
and judge its success.2 This paper is intended to be a selective discussion: an
appreciation of the achievements as well as the shortcomings of Macsyma. Our
purpose is to provide a perspective on Macsyma so that, as new systems are

1(An acronym for “Project MAC’s Symbolic MAnipulator”). Macsyma is a registered
trademark. This paper is a lightly edited version of a paper of the same name first published
in IEEE Trans. Knowl. Eng. vol 1 no 1.

2This paper is not a substitute for a general survey (see, for example, [30]).
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created, they re-create the successes, but not the mistakes, of the Macsyma
design.

Comments in this paper are necessarily opinions and observations of the au-
thor, who was involved in the “Mathlab Group” at the Massachusetts Institute
of Technology from 1968-71 as a researcher/graduate student, and from 1971-
74 as faculty, and has been active in using algebraic manipulation systems at
the University of California at Berkeley, since 1974. Other participants in the
Macsyma effort may not share these opinions, but we hope these notes will be
thought-provoking to persons involved with building or using Macsyma or other
algebraic systems.

After a brief overview of the achievements and problems, we proceed by
itemizing various features: within each sub-section we try to give an appraisal
of how those features worked. In general when we refer to the Macsyma system
it is the version defined by the code released by MIT to the National Energy
Software Center in 1982; the same code was also released to Symbolics, Inc.
for commerical development. Since various changes have been made to each
of these systems, some minor details may differ. On the other hand, the basic
outlines and most of the code in all of the Macsyma descendants appears to
be the same; indeed, most of it appears to be largely unaltered since 1974 or
earlier.

We believe that the single major achievement of Macsyma was in making
such a large number of features available in one system. This was composed of
many detailed implementations of algorithms or other features in which Mac-
syma represented the state of the art at the time. In many instances, newer
or alternative systems (e.g. Reduce, SAC-2/ALDES, Mumath, Scratchpad-II,
SMP, Maple, etc.) have adopted the same approaches and algorithms. Occa-
sionally the new systems have exceeded Macsyma’s capabilities within selected
subsets of problems.

It would seem reasonable to expect the successes to be easily observable
from the literature on Macsyma. (The major reference for Macsyma, the Mac-
syma Reference Manual [25] is a compendium of most of the commands in the
system. Another useful paper is Joel Moses’s early survey [28]. A collection
of application areas and a summary of the system is provided by Pavelle and
Wang ([30])) Unfortunately, published descriptions of Macsyma tend to be only
partial characterizations of the underlying complex programs. One cannot gen-
erally tell from the manual or survey articles or solved examples, if Macsyma
will find a closed form for a particular difficult integral, or if solve will solve
some problem, or, for nearly any algorithm, how the run-time is related to the
size or complexity.

In fact, these inadequate characterizations can cause confusion when (as
happens occasionally), someone presents a program, perhaps using a new pro-
gramming language or “rule-based expert system” technology, and demonstrates
that for some sample problems, the simple program has the same apparent docu-
mented capability as Macsyma. Does it exceed in all respects the corresponding
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facility in Macsyma? It is difficult to tell.

The areas of failure in Macsyma are harder to write about because they
often are associated with problems which appear to have no simple resolutions.
For the most part, more recently developed systems have not been impressively
successful in solving these same problems either. To that extent, the failures
of Macsyma point to frontiers for system builders. For this reason, many of
the issues, such as the design methodologies (or lack of them), the “artificial
intelligence” goals, the mathematical communication issues, and others, are
worthy of some analysis. It has seemed too easy for others – for lack of such
analysis – to adopt Macsyma’s approach without re-appraisal.

In summary, for this review we are not going to attempt to correct defi-
ciencies in the descriptive literature on Macsyma: we will not give a detailed
characterization of Macsyma or even an enumeration of features. We will con-
centrate on a few significant Macsyma components which have not received
much detailed attention in the open literature; we hope to provide a survey of
the lessons of their successes and failures.

3 Comments on selected features

In each of the sections below we describe a group of features which appear to
us as distinguished either in success, failure, or surprisingly often, both.

3.1 Input

The parser and the user language

Macsyma ’82 had a top-level user programming language which was intended to
be Algol-60-like, and was supported by an elaborate interpreter, which provided
the users’ window into the system capabilities. The language implementation
was based on a top-down precedence parser due to Vaughan Pratt. This tech-
nique is exhibited in a purer form in the CGOL [31] system, which is itself
implemented in LISP. I believe the current Reduce parser uses a similar strat-
egy. It is an appealing technology and was used in the “Mellowspeak/Scarab”
parser written by Soiffer at UCB, and used by Harlan Seymour’s “Conform”
conformal mapping system [32].

It supported the appealing concept of making the parser extensible by the
user. With some modest effort, it could provide parsing of a variety of new
syntactic constructions. In practice, syntactic extension was not attempted by
most users. I believe that the conceptual burden on the user of converting
his notation to the usual functional notation supported by Macsyma was not
a major barrier. Most users who believed that Macsyma would solve a hard
problem if they adapted their notation slightly, were generally willing to do
so. (One mathematician who believed that without proper notation nothing
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could be done, found the use of an ASCII keyboard an insurmountable problem.
He was, fortunately, an exception.) When a complete “package” was written,
sometimes it would be re-engineered for a user community by providing a special
syntax.

Although common prefix, postfix, and binary infix operators could be added,
some kinds of extensions could not be handled by the parser-extension tech-
nique. Probably the bigesst limitation was that expressions which consisted of
several key words or symbols interspersed among operands could not be added.
Other syntactic extensions, including optional and unevaluated arguments to
functions, and macro-style definitions were added over the years.

A rather useful feature of the parser scheme was that extensions which were
made available for input, were also made available for output. This is described
in the section on the display.

While the parser had fulfilled its major requirement of handling routine
programming requests of users, the language and parser design had some major
failings.

Some failings were caused by the relatively naive parser implementation.
These were not inherent in the design, and may have been corrected by re-
cent developments in Macsyma versions available from NESC and Symbolics
Inc. Among these complaints were the mediocre error diagnosis, the difficulty
in correcting typing errors, and inconsistencies in usage of input from various
sources.

More significant problems were present, though. One was the substantial
hazard that any extension of the syntax would run into difficulties if used in
conjunction with other unanticipated user-written extensions. In particular,
given the bounds of the ASCII character set and the limited number of unused
single-character operator-like symbols, most users chose the same symbols for
“new” operations (e.g. @, %, ˜). Multi-character symbols could be used, how-
ever. Macsyma’s language being inherently type-less, made the overloading of
existing symbols (say + or *) quite difficult. Use of overloading and generic
operators sometimes could be accomplished by pattern matching, but the much
deeper understanding that we have of such issues today was not available in
1968. The advantages obtained by assigning types (and hence sets of opera-
tions) to values, was not made available to the user. In fact, the kind of data-
directed programming that has been advocated by (for example) Abelson and
Sussman [1], was just barely implicit in some of the system programs. I feel that
object-oriented programming languages of today, and even aspects of the Ada
language design should be influential in further algebra-system developments.
(see, for example, The Scratchpad-II [5] language design.)
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The language semantics

The semantics of programming languages are usually nominally treated sepa-
rately from the syntax. In the case of Macsyma, this was certainly the case.
There are many variations possible in a language which has to deal with sym-
bols, values, indeterminates, types, and a substrate in which programs and data
are interchangeable. The semantics of Lisp are still under discussion, and Mac-
syma’s semantics include Lisp’s as a subset.

In its favor, Macsyma’s language worked for simple commands and simple
expressions. It did not require non-intuitive (non-mathematically relevant) no-
tations in these cases. For more ambitious tasks, the mathematical style was
generally lost in the need to construct an imperative-style program.

For those familiar with Macsyma, we provide the following itemization:

• There are, tangled within the language semantics, various pieces of math-
ematical semantics, and parts of LISP: in particular, the use of lists as
primary data structures meant that cons, first, and rest and dynamic
scoping of variables fell out of the LISP heritage. As the result of lengthy
group discussions (some led by Eric Osman, Jeffrey Golden, and Joel
Moses, I believe) an attempt was made to separate language names into
‘nouns’ and ‘verbs’. An overly simple explanation by way of an example,
may suffice: Consider diff in the command diff(y,x) the derivative of
y with respect to x. Here diff is a verb: the command results in the
value 0, since y apparently does not depend on x. The noun form of diff
used in the command ’diff(y,x) is a way of expressing the form of a
derivative ∂y

∂x , as might appear in a differential equation. In the context of
the discussions in the Macsyma group, the idea of having different noun
and verb forms for essentially all commands carried the day, and led to the
introduction of name-conversion declaratives and functions like nounify
or verbify. Most of these distinctions do not appear in the printed form
of the expressions.

• The structure of type declarations (optional and haphazard) was difficult
to explain, or for the system to make correct use of. These declarations
were supposed to be used by an optimizing compiler which would make
Macsyma’s language suitable even for floating-point computation. Be-
cause of the complex operational semantics of Macsyma, this translator
and compiler were complicated and unreliable3.

• Dealing with operators in a uniform way was never incorporated in the
language model. The default technique for handling any notation that
looked like functional application was to treat it as functional application.
Any other formalization of operators led into uncharted syntactic and
semantic territory. (Notation for “differentiation by x” is in this category).

3They have been refined by recent activity (post-1984), however.
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This is an important and non-obvious issue about which several papers
have been written (see the papers by Golden and Gonnet [14, 15], for recent
work). The massaging of expression trees which Macsyma was expert in,
was not, in the case of operator calculations, the mathematically most
appropriate model for computation.

Several papers in the 1977 Macsyma Users Conference Proceedings [29, 13]
provide more discussion of the options for semantics than is possible here. Mac-
syma suffered from having so much of a system’s semantics controlled by global
flags, many of which control different parts of the same operation. Since the
setting of flags may have been changed by packages loaded in by a hapless user,
libraries had to be developed and used with great caution. Indeed, because
the syntax was extensible, the syntactic and semantic correctness of a program
could be altered by a previously loaded file4.

Another problem with semantics was documentation. Perhaps one could
argue that in the early days, the inadequate documentation of some commands
was a feature of the system: when a program was changed it was unnecessary to
update the documentation. Put another way, any undocumented feature could
be changed without notice. Thus by not saying how factoring, integration, or
simplification was done, one could change the algorithm without warning. By
being imprecise about how certain simplifications would turn out, the programs
could be made more (or less) powerful than they were in the past, without
warning. This sometimes caused consternation on the the part of users, who
found that in the newest version of Macsyma, their programs either work much
better, or much worse, than before.

The tradition of incomplete system documentation continues in The MIT-
LCS Macsyma Reference Manual [25] (version 10) of 1983, and its descendents
such as the Symbolics (version 11, of 1985) still have numerous only-partially-
described programs including those for limit calculations, Taylor series, integra-
tion (definite and indefinite), solve, and simplification. By saying almost nothing
about space or time performance of algorithms, arbitrarily (in)expensive drop-
in replacements for modules in common use, could, and on a few occasions,
were, inserted. Part of my own experience in working at MIT included inserting
variations of the modular polynomial GCD algorithm. In the case of the GCD
algorithm, a switch was installed to select the method used. What was changed
from time to time was the default setting.

Prospects for the future: the Language

In fact, the major problem that should have been addressed by the input sys-
tem was How do we add mathematical knowledge to a symbolic mathematics

4There are, of course, people who love this kind of environment, and many of them use
LISP.
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system? The answer which was provided followed along the lines that an ad
hoc language based on an Algol-ish notation, with associated pattern-matching
facilities (discussed later) and a complex semantics, would do. The answer was,
in my view, a shotgun approach which could serve only at a relatively superficial
level, for communicating serious mathematics.5 It did not scale up efficiently.
Persons using Macsyma as a base for adding serious new mathematics to a com-
puter system either got bogged down in the user-level language, or broke free
(somewhat) by writing in Lisp. The user-level language represented, for many,
a barrier.

Is there a better answer? Several possibilities come to mind, including a
model of communicating “active agents” encoding information as procedures or
data [1]. I also believe that it would help to pay more attention to application
needs: to emphasize tools for expression of applied mathematics in semanti-
cally clear notations, rather than superficially “user-friendly” programs with
heuristic-based semantics. An example of this approach is the FIDIL (Finite
Difference Language) work of P. Colella and P. Hilfinger at UC Berkeley. Finally,
Macsyma, and similar systems tend to emphasize a view of mathematics as the
formal manipulation of prefix Lisp-encoded expression trees. A more modern
view is that we reconsider and treat our work as the manipulation of elements
of an algebraic hierarchy. For this purpose we define and use generic operations
based on the “modern algebra” of the data/mathematics we compute with [12].
We believe that this is generally an overly-simplified view, unable to easily rep-
resent important concepts from analysis, geometry, multi-valued functions, etc.
and their inter-relationships. Yet it is a step in the right direction.

3.2 Display

Macsyma’s display program underwent several revisions since its first proto-
type in 1967. Its latest version embodied about the best layout we have seen
for fixed-width font typesetting at an acceptable cost. The program was suffi-
ciently flexible that it could handle, in principle, multiple font sizes and higher
resolution positioning, although in deference to the large number of users on
conventional terminals, nothing much was done with variable size characters,
except for a few experiments and an ‘offline’ phototypesetter system by Foderaro
[foder78] using the UNIX operating system’s “eqn” program. It has only been
relatively recently (post-1984) that reasonable-speed 2-D variable-font interac-
tive typeset display on workstations has been incorporated in Macsyma-based
systems. (For example, [Foster, 84], describes such a system for a SUN Mi-
crosystems computer). Symbolics Inc. now advertises a type-setting capability
similar to Foderaro’s but using the TeX [knuth84] text-processing system. An
independently developed TeX system has also been used here at UC Berkeley.

5One could argue that this system was “Turing-equivalent” to any other method, but that
is hardly convincing. If it were, we could consider writing in Turing machine code, too.
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The real problem in display turns out to be the breaking-up of large ex-
pressions over multiple lines. Methods for computing appropriate break-points
are partly based on typesetters’ rules of thumb that are not clearly formulated.
The algorithm behind the Macsyma ’82 program avoided the potentially expo-
nential costs in finding an absolutely optimal break-up, at the (slight) risk of
non-optimal layout. This problem has been studied in other contexts in refor-
matting the listings of nested programs written LISP, PL/I and Pascal. See also
the discussion and references in section 18 of [23] for mathematical typesetting
specifically.

As mentioned in the previous section, the display program also takes signif-
icant advantage of the parsing mechanism cited earlier. The same information
used by the Pratt parser for parsing the user text input into an internal LISP
tree is used to reverse the process and display the expressions in the user-defined
syntax.

The principal failure in the display technology is one of omission: not taking
advantage of developments since 1968 in hardware and user-interfaces. Even us-
ing the highly-interactive mouse-based MIT-LISP Machine version of Macsyma,
by 1982 no interactive system was released for general use.

Projects in improved algebra system interfaces have surfaced in the a num-
ber of places, but none “officially” associated with Macsyma. One notable
development is the Mathscribe project, a front-end to REDUCE, at Tektronix
Research Lab (Beaverton, OR). Mathscribe is in some ways similar to work un-
dertaken at Berkeley. For example, a recent MS project at Berkeley provides for
a menu-based command structure on top of typeset-display-based local version
of Macsyma. Selection of subexpressions from the screen is based on pointing
with a mouse. The contents of the menu depends on the items selected by
the user. Unfortunately, MIT has interposed a barrier to sharing of such user-
interface code among Macsyma users, and hence such projects are difficult to
pursue.

3.3 Internal structures

Conjunction of data types

Macsyma was probably unique in the extent to which a multiplicity of data types
were used together. Conjunction of functional forms, mathematical expressions,
canonical forms for polynomials (factored, expanded, recursive), rational func-
tions, Poisson series, Taylor series, floating-point and big-float numbers, exact
integer and exact rational numbers, were all possible. This made it possible to
express some rather esoteric algorithms as merely translations from one form to
another. Macsyma’s major precursor in this regard was Mathlab 68, in which a
canonical rational form was used for some internal routines, but not made ex-
plicitly available to the user. One of Mathlab’s most powerful routines was the
rational simplication function, which converted an expression into and then out
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of a canonical internal form. This was preserved in Macsyma as the RATSIMP
command.

Other systems past and present, generally used only one form for canonical
simplification; celestial mechanics systems often use some variation of Poisson
series; various systems used rational or polynomial canonical forms as their sole
representation.

Surprisingly useful were some of the simpler functionalities in this hierarchy.
Exact rational and integer arithmetic facilities were widely used for applica-
tions, but more importantly, they had a pervasive influence on the design of
Macsyma’s algorithms because they were implemented rather efficiently in the
underlying LISP dialects. The fact that Macsyma (and for that matter most
of its contemporaries) supported rational arithmetic (without the introduction
of truncation or round-off error) meant that it was sometimes unnecessary to
consider error analysis at all. In some cases, the error analysis was removed
from the center-stage of computations, and left to some subsequent stage: For
example, one might evaluate an indefinite integral exactly, and only then use
approximate floating-point arithmetic in evaluating the resulting formula. For
good or ill, the cost for this exactitude was rarely made clear to the user, some of
whom had no means of assigning a cost to a computation performed on a remote
timeshared computer (the MIT Macsyma Arpanet host). Many relatively naive
users did not realize that a huge (and perhaps unnecessary) superstructure was
also present during their computations; for example, some users made use of
exact arithmetic for computing points in crude plots. The arbitrary precision
floating-point numbers were also heavily used in a few applications, we suspect
in part as a computation-intensive substitute for some numerical analysis.

The big-floats were relatively more convenient to use in Macsyma than other
supporting environments: There were several such as the Fortran subroutine
libraries (e.g. MP by Richard Brent [brent78], Super Precision by William T.
Wyatt, Jr. [Wyatt76]). They were generally batch-oriented, and were either
called from Fortran or used from a pre-processed language that is translated to
Fortran.

How has this multiple-representation paradigm affected current thinking?
It has not been followed by two more recent systems, SMP and Maple. SMP
chose a single representation because the designers thought (wrongly, I believe)
that one representation was best; I believe Maple chose a single representation
initially for considerations of overall size of the system, uniformity of notation,
ease of explanation, and a concern for exploiting relatively straightforward mod-
ern software engineering techniques for portability and modularity. Recently
reported work in Maple on computation of Grobner bases suggests that re-
searchers are willing to consider alternative data representations if they provide
important benefits [czapor86].

On the other hand, a logical outgrowth of this multiple-representation idea
is present in the recent work at Berkeley, and the Scratchpad group at IBM
Yorktown Heights.
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If one looks at the canonical forms in Macsyma as implementations of ab-
stract data types with operations and properties, then the abstraction and math-
ematical categorization present in Newspeak [foder83], Capsules (R. Zippel) and
Andante (D. R. Barton) can be seen as a systematic approach to bringing more
order into a larger realm. The properties of the Macsyma canonical forms were
never made very explicit, partly because some of the properties were removed
by the display program; partly because some of the operations were never de-
scribed to the user or even the system programmer. Thus the Macsyma code,
in some instances, is a precursor to these abstraction techniques.

A reasonably accessible description of an approach very similar to that in
Macsyma for this multiple-data type/ algebraic hierarchy can be found in the
discussion of generic arithmetic and coercion in chapter 2 of [1]. The discussion
in this text simplifies and explains what was done, but falls short of describing
the kind of approach taken by the more advanced systems mentioned above. The
imposition of compile-time types and polymorphic algorithms as in Scratchpad
or Newspeak is a step further.

On the down-side of data structuring, at various times during the develop-
ment of Macsyma, critics claimed that alternative data representations (gen-
erally coded in non-LISP languages) would have led to substantial efficiencies.
Most speedups were presumably linear in time and space over encodings in LISP,
since they were generally linked-list based anyway. Yet factors of 10 or much
more have been demonstrated as achievable, in restricted carefully chosen cases,
by recoding in ‘C’ or assembler.

One aspect of representation that was a major contributor to efficiency is a
tag on data to avoid unnecessary resimplification. The LISP-prefix data used
as the general internal representation of Macsyma was marked with a SIMP flag
as being “already simplified”. Unfortunately, this technique, (somewhat simpli-
fied for presentation here) represented (say) x + y as ((MPLUS SIMP) X Y) was
not as easy to evolve as was hoped. The SIMP tags were intended to prevent
re-simplification of sub-expressions (here, X and Y) except in special circum-
stances. Although it would appear that this tagging would avoid an exponential
amount of computation, the notion of “already-simplified” was illusive with re-
spect to changing circumstances. A single bit signifying “simplified” could not
carry sufficient information to describe the context under which the expression
was simplified. Additional tags representing “factored” or other assertions, were
even more difficult to preserve. An alternative approach with generally superior
results is to make simplified expressions “unique” by hash-coding, and thus keep
the complexity of branching in expressions, down. Among others, the Maple
system has used this to good advantage. Experiments at Berkeley by graduate
student Carl Ponder have demonstrated that hash coding can be added to some
of Macsyma’s internal routines to convert them to “memo” functions (Maple’s
option “remember”). These functions remember their argument-value mapping
rather than recomputing the function each time. Two particularly attractive
functions for this are differentiation and simplification. Early experiments in
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Macsyma along these lines were abandoned perhaps prematurely. (One experi-
ment remembered factors, in an attempt to speed up polynomial factorizations).

Others discouraging facets of the Macsyma data structuring techniques are
quite historical in origin: Macsyma was written when vectors and strings were
not part of the underlying LISP system. The benefits of functional arguments
(now often termed closures), and object-oriented programming were not gen-
erally appreciated in 1968. Modular programming techniques, now much in
evidence in the Common LISP design, were not widely practiced; information
hiding and “packages” could have been used to assist in assembling the efforts
of numerous programmers over many years into a single system.

Summary: Data structuring

In summary, then, what Macsyma demonstrated was that multiple representa-
tions can work, but that some overall structure for controlling their documenta-
tion, use, and inter-relationships (such as coercion to a displayable form) would
be a good idea. Some of this is better understood now, and we believe that much
of it may be accomplished with object-oriented or type-centered programming
systems with a mathematical framework. We expect that of the systems now un-
der development, Scratchpad II will provide the best evidence for (and against)
the new kinds of type systems.

Hash-coding and “memo” functions are nearly essential, it appears, for ex-
ploiting certain efficiencies. Breaking out of the “everything is a linked list”
model of concrete representation is also of interest: with better abstraction
mechanisms, it should not matter.

3.4 Pattern Matching

There were at least three different pattern matchers in Macsyma ’82. The
first and oldest one was Schatchen (Yiddish for match-maker) written by Joel
Moses, for use with his symbolic indefinite integration program, SIN, and then
modified, along with SIN, by R. Grabel, to use Macsyma’s internal “tagged”
expression-tree forms. This system was later used for other problems, for ex-
ample by Richard Zippel in programs for the recognition of certain classes of
closed-form summations. This pattern matcher was quite flexible, but appeared
to be useful only for relatively small patterns designed for matching (in some
cases) fairly devious instances of generally small expressions. It was potentially
very expensive, since it could require backtracking in the course of matching.
Commutativity and collection of terms based on mostly syntactic criteria pro-
vided important simplifications of integrand-patterns, and the cost to collect
such terms and permute objects was not significant in practice, even though in-
herently exponential-cost algorithms were used. I believe that because one could
rely on seeing small expressions, and the number of patterns used was small,
it was practical to use Schatchen uniformly and effectively. The problem of

11



scaling up to large expressions was not significant because large integrands were
unlikely to occur (but when they did, results might be rather slow in arriving).
The problem of scaling up to large tables of integrals with hundreds or thou-
sands of patterns did not occur because just a handful of rather general patterns
were used. The scope of integrals for which Macsyma was appropriate was not
expanded by incorporation of tables, but by extension of the Risch algorithm or
other algorithmic methods. Althought significant inroads were made into the
the integration of some special functions, the vast majority of such expressions,
and forms requiring reduction with parameters, were never included.

It is interesting to note that the earlier symbolic integration program by
Slagle (SAINT), also relied heavily on pattern matching, a program named
ELINST (for elementary instance).

Unfortunately, programmers using these pattern matchers must have a fairly
sophisticated understanding of the data representations for the algebra systems,
and specifically required that the patterns be written as LISP symbolic expres-
sions.

The second pattern matcher was written by Richard Fateman in an attempt
to provide, for the user, a language and support system for augmenting the
simplification and general manipulation facilities of Macsyma. This matcher
relied less on syntax and more on the semantic nature of rational expressions
and components which might involve more complicated “kernels”. This program
demonstrated that it was possible to add certain kinds of user-written rules into
an existing framework in a relatively efficient fashion, by using the same kind of
indexing on the main operators as used by Macsyma’s simplifier. It appears that
at least one version of SMP’s matcher (see [greif85]) used a similar approach.
Since the matching did not so much depend on the syntactic vagaries of the
input form, there was a chance of the pattern working even without detailed
access to the data representation. By comparison with matching capabilities in
other systems, the facility generally used fewer but more powerful patterns to
distinguish members of a complicated class from non-members. As the designer
and implementor of this system, I found it disappointing that making good use
of this system required substantial effort. This was for several reasons, probably
the most significant being the difficulty in understanding the limitations of the
semantic matching. A secondary problem was probably related to the complex
scoping rules for variables in patterns and predicates.

A compatible but apparently unreleased alternative pattern recognition pro-
gram written by Michael Genesereth attempted to change the compiled/interpreted
balance proposed by Fateman’s program (which was intended to produce com-
piled patterns).

The third matching program was inspired by the Reduce algebraic manip-
ulation system’s LET matching. The external description was largely copied
because it seemed to be a different and in some ways better balance between
utility (efficiency, applicability), and user comprehensibility than either of the
other two. This was written by Keith Nishihara as a class project, and is
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described in the Macsyma manual. Some users found this more appealing, es-
pecially if they had working Reduce programs to use as models.

Judging from the difficulties experienced by most Macsyma users in using
pattern matching, the existing facilities were not successful in alleviating certain
preconceived and built-in assumptions of the simplification process, nor in al-
tering the system behavior completely. Efficiency was also a problem, since
non-terminating or extremely repetitive and ineffective pattern/replacement
programs could be constructed. Yet there were a few nice demonstrations of
pattern usage and perhaps this is all we can expect.

Certainly a number of people have pounded on this aspect of algebraic
manipulation, including Martin Griss (in Reduce), advocating hash-coding,
Richard Jenks (in Scratchpad [21]), advocating compilation and tree-structured
combination of related rules, and the SMP group, which has provided an inter-
esting language design combining aspects of indexed sets, arrays, functions, and
resolution of missing elements by pattern matching.

3.4.1 Summary of matching

Matching is perennially a topic of discussion. (See [3].) For example, the appeal
of Prolog as a language for Artificial Intelligence (and in some peoples’ view,
algebraic manipulation), is probably based, so far as it is possible to make the
choice of a programming language rationally, on the power of (mostly syntactic)
pattern match and replacement schemes. Since Prolog seems to be missing a
number of useful features (any of which can be simulated, though at some cost),
it is not clear if Prolog will provide benefit. Some people are hopeful that
parallel execution of Prolog will more than recover the efficiency. This remains
to be seen.

The importance of pattern matching is well recognized: it seems to be one
of the most popular ways of adding non-procedural information to an algebra
system. In fact, to many people, the ease with which one can incorporate varied
information efficiently into an existing system is the premier test of so-called
“expert system” “shells”. Treating Macsyma as such a framework, it would
seem that it has a variety of partially useful techniques, but it is apparent
that the final resolution of pattern-matching has not been found. In particular,
papers continue to be written about matching as done, for example, in the
SMP system [16], alternatives in Macsyma [3], and in the massive literature
on unification, theorem proving, the programming language Prolog, and the
consequences of matching, backtracking, etc. (see, for example, [26]). The
solution is not in sight, but perhaps pattern matching is just a short-sighted
approach. For others, see the next section.

13



3.5 Paradigms of Knowledge-adjunction

The use of grand phrases in so-called “Expert System” technology inspired the
title of this section. The issue, however, was real for Macsyma, and still remains
important: how could users insert new information into Macsyma? Other than
by associating values and algorithms to various names, or hooks in the system,
perhaps by pattern-matching, a facility was implemented to store information
in a less program-oriented data base.

Macsyma’s “assume” facility allowed users to insert the answers to antic-
ipated questions which would, from time to time, be asked by some compu-
tational routine. For example, declaring assume(x>0), in anticipation of some
algorithm’s asking “is x positive, negative, or zero” would allow Macsyma to con-
tinue without user intervention past the point of the query. A modest deductive
facility would allow Macsyma program to infer from that same assumption that
x=0 is false. This was a first step in a direction rife with hazards. Clearly the
mechanism required to compute needed inequalities derivable from the possible
statements was not algorithmic, (not decidable, that is), but another compli-
cation appeared: the assumptions held only in certain contexts which had to
be layered upon each other and interspersed in the binding of names and val-
ues throughout Macsyma. Michael Genesereth provided the initial approach to
this difficult task in Macsyma. To some extent it worked silently and protected
the user from being asked (redundantly) some easy questions. The user of-
ten was nevertheless occasionally asked inappropriate (easy, hard, or irrelevant)
questions. This may have been caused by not hooking up all programs to the
facility, or by the inability of the facility to decide the answers. Probably no
other algebraic manipulation system approached this level of sophistication. A
careful study of the extent to which this assume facility accomplished its desired
objectives has not been done.

On the negative side, the facility provided in Macsyma was, in a word,
annoying. It was unreliable both in the sense of having bugs, and also in the
sense of being hard to understand. It was good at inferring that if x were an
integer, x + 1 would be an integer. It did not know that if x > 1 and x were an
integer, then 1/x would not be an integer. It was good on deductions entirely
based on a type hierarchy or entirely based on simple linear inequalities. To
the user, it was not clear what would be inferred. Furthermore, the cost for
inferences was not easily bounded. Because it appeared to be more powerful at
determining the truth of inequalities, the facility for dealing with comparisons
in general was adopted by some programmers as the facility of choice where
much simpler, perhaps bug-free facilities could be used. Imagine the use of the
elaborate “assumption” database in computing comparisons in the course of
processing a ‘for’ loop: each time the increment is added to the index variable,
the end-test is of essentially unbounded expense.

By merging the semantics for mathematical indeterminates and program
variables, deductions were sometimes quite puzzling. For example, n is not an
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integer, but a symbol. In
∑10

n=1 n, n assumes only integer values.
It is clear that accumulating knowledge in some form is vital to contin-

ued growth in capabilities of symbolic computation systems. Activities at UC
Berkeley to incorporate more external data-base information may provide some
indications of possible approaches. One which we are experimenting with, in-
volves the use of a large read-only file of definite integrals and a special-purpose
lookup mechanism based on hash-coding. Undoubtedly other possibilities are
worth pursuing.

3.6 Algorithm collection and evaluation

A large number of algorithms for basic algebraic operations were adapted,
tested, and in some cases originally constructed, for use by Macsyma. These
included programs for numerous polynomial greatest-common-divisor (GCD)
routines, polynomial factorization, computation of limits, summations, canon-
ical forms, Taylor series, definite integration, and several versions of indefi-
nite integration. In many cases, algorithms which originated elsewhere (e.g.
for fast sparse determinant calculation, resultants, summation, manipulation
of factored-form polynomials) were incorporated in Macsyma shortly after (or
sometimes before) being described in the literature. This reflected the fact that
most of the underlying structure for these algorithms was already present, and
the programming personnel were rarely inhibited from inserting new algorithms
into the system.

In the evaluation of algorithms, there was often a natural bias toward the
most recently written program: it was, after all, the brainchild of an active
programmer; it was this one which was still being developed and would be refined
until it was faster than the others. It was, however, often the one exhibiting
the most bugs: firstly, it was the newest and most experimental, and secondly,
the other algorithms, benefitting from non-use, did not reveal their bugs at all!
Some variations of algorithms may therefore continue to have harmless bugs
indefinitely.

4 User community

In the early days (1968-71) the community consisted almost entirely of Project
MAC and the MIT Artificial Intelligence Group faculty, staff and visitors. It
grew rapidly when the ARPANET communication network blossomed in the
mid-seventies.

The unique-to-MIT DEC-PDP-10 operating system (ITS) although very ad-
vanced in some respects, was difficult to fathom outside the local environment.
In spite of this and a number of others barriers that remained in the way of “seri-
ous users” outside the MIT geographical area, several users produced prodigious
amounts of code, both in LISP and in the Algol-60-style top-level language.
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Some of these resulted in contributions to the “SHARE” library. These were of
uneven quality, and the documentation was often inadequate. While some con-
tributions combined questionable mathematics, algorithms, and programming,
others contained useful and original ideas, cleverly implemented and carefully
described.

5 Software Engineering

In 1969, in order to put together all pieces of a Macsyma system, it was necessary
to get a group of people together to type in commands to a newly created
large LISP system, to laboriously assemble in place the numerous files which
constituted the system. The files constituting Macsyma did not fit on the small
random-access disk, and therefore constructing the system required mounting
and dismounting magnetic tapes.

While larger disks played an important role in simplifying system construc-
tion, subsequent innovations included a specially constructed compiler script file
which could be fed into a LISP system to direct the compilation and loading of a
fresh system. Systems for the automated compiling and loading of large systems
from LISP scripts may have been inspired by the efforts (primarily by Jeffrey
Golden) to accomplish with a few keystrokes, a sequence of system-construction
tasks. This facility predated software engineering utilities in the Lisp machines
(defsys) as well as the “make” facility in the UNIX operating system. Macsymas
constructed at UC on UNIX-based systems make extraordinarily heavy use of
the ‘make’ utility.

When the early Macsyma system grew too large for the virtual address space
of the PDP-10, the LISP system was augmented by an automatic loading mech-
anism to call in the definitions of commands from files. The techniques allowed
the sum total of programs written for Macsyma to exceed the 1.2 megabyte
PDP-10 system limits. Given the limits of the PDP-6/10 machine architecture
at that time, very effective use was made of the address space and between-
user sharing. This was not painless. In fact, substantial intellectual effort was
needed to partition Macsyma in an appropriate fashion. Although most ma-
chines running Macsyma subsequent to the PDP-10 have had very large virtual
paged address spaces, the auto-loading facility continues to be used on some
systems where the use of address space, even if filled with unused code, has a
higher cost than file-system space.

These features contributed to the software engineering movement by pro-
viding ideas for software development environments supportive of large Lisp
systems, and perhaps other projects.

On the other hand, another goal of software engineering, that of promoting
portable software, was not high on the list of objectives for Macsyma.

For a number of years it was hard enough to run Macsyma on its origi-
nal development system, much less consider porting it to other computers. A
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successful porting of Macsyma to a Honeywell Multics mainframe was done,
however, by bringing up a nearly identical MacLisp system on that computer,
and consequently providing a hospitable environment for Macsyma. Even so, a
number of features were not simulated. In many ways the original PDP-6/10
system contained unique concessions to the needs of the Macsyma program and
these could not be easily ported elsewhere. This was recognized at MIT, and
for many programmers the unique features were thought of as the common en-
vironment. This lead to very non-portable constructions, including absolute
path-names to files, tendrils into programmers’ own personal directories, sub-
process activation requiring specific ITS editors, compilers, etc.

Starting in about 1980, the Berkeley “vaxima” system, based on a UNIX
operating system environment and a LISP system written primarily in the C
programming language, demonstrated that more common, lower-cost general
purpose systems could run Macsyma. Developing vaxima forced the re-learning
of some of the lessons of the Multics port: it was necessary to decide where
to differ from the ITS system. When no entirely common solution could be
found, conditional compilation switches were inserted into the source code for
Macsyma. With the hope that diversity would allow for creativity on a variety
of topics, programmers at Berkeley and MIT worked to identify critical sections
for the VAX and what by 1980 included several other systems: LISP Machine
LISP, NIL, and the old Multics MacLISP.

Macsyma’s source code at Berkeley was kept under a revision control system
(RCS). Since the MIT programmers did not subscribe to this system, occasional
rather painful merges of MIT changes had to be made. Since the organization
of the Macsyma source code was in many files with dependencies on macro-
definition files, making coordinated changes was difficult.

Once the code was largely stabilized, the UNIX-based version, at least, could
be ported to a variety of machines. In particular, following the porting of a
MacLisp-like dialect (Franz Lisp) to the Motorola 68000 machine, Macsyma
was demonstrated on machines of several different manufacturers at UC. Now
Macsyma also runs on IBM-370 compatible computers (e.g. IBM 370) and
several other architectures.

It is interesting to ask, is Macsyma really portable? If so, how did it get
that way?

No one looking at the code prior to 1979 would consider it written for porta-
bility; yet in retrospect, it seemed to move more easily, on its base of compatible
Lisps, than one would expect for over 100,000 lines of code. Although more at-
tention might have been paid in the early days to making it portable (as was
done with Reduce), this might have inhibited experimentation on the one pri-
mary machine. The trade-off was that the portable Reduce system grew a larger
community of system-programming and algorithm contributors; the Macsyma
programmers had only one machine, but it was a good one. We believe that
those who were fortunate enough to get quality access to the ITS system were
able to get more done in less time than more isolated persons with their own
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private copies of Reduce.
Now, with the widespread availability of large-address-space machines ca-

pable of running Macsyma, most of the merits of the ITS system are avail-
able on small systems; with high-speed networking, the difference between two
researchers working on one system, and two researchers working on separate
systems has largely vanished.

A further step toward portability of Macsyma (or any other large LISP
system) seems to be a tasteful conversion to the Common LISP dialect. Not
everything in Macsyma can be supported in the currently defined portable core
of Common LISP, nor do most Common LISP implementations make as efficient
use of machine resources as Macsyma’s current host languages. Nevertheless, it
is prudent for any programmer working in LISP in Macsyma-related facilities
to maintain an eye towards compatibility with Common LISP.

6 Software Engineering

Over the years, the Macsyma software situation was repeatedly, to use the
vernacular, ‘wedged’. By this we mean the source code and compiler information
was left in an inconsistent state, so that a new system “binary” could not be
generated, until some subtle bug could be found. The source code was, from the
earliest days, written with macro-expansion for open-coding of functions. In the
years after about 1974, data abstraction was somewhat non-uniformly inserted
into the existing LISP source code, and placed in separate files which the LISP
compiler had to read in, to become ‘customized’ for the Macsyma-compilation
environment. Dilemmas occurred when, for example, the macro definitions for
the data abstractions were themselves compiled, in an environment which itself
required that those abstractions be loaded in a compiled form.

The sensitivity of such an arrangement of bootstrapping to bugs is notorious.
Moving to the UNIX operating system at Berkeley, which forced a new commu-
nity to provide a more systematic control on source code and on programmers,
improved the situation somewhat, but did not cure it entirely. Coordination
between sites (MIT and Berkeley principally, but also Kent State and to some
extent about 50 others) was difficult for technical reasons: except for MIT and
Berkeley, most sites were not on the arpa network. Continued modification of
the MIT code, sometimes without regard to the operating environment on UNIX
systems, caused some difficulties too. It is interesting to observe that deriving
a ‘complete’ listing of just the names of all files relevant to the MIT Macsyma
system was not at all trivial in 1978, and was probably not done accurately for
several years, if, indeed, it has ever been done!

The PDP-10 was designed with a larger address space than most other ma-
chines of its generation, but one that turned out to be filled up in about 5 years
of serious programming. This lead to substantial restructuring and tinkering
with design of overlays or auto-load files to maintain the possibility of growth
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in program space. The lack of user work-space was never really solved on the
PDP-10, and many problems could not be run to completion on that machine.
The Multics version of Macsyma provided a potentially larger space, yet alloca-
tion of sufficient space and time to run large jobs was generally quite expensive
(especially considering the subsidized time available on the MIT-MC PDP-10
computer). Obscured by the move between the PDP-10 and Multics was the
fact that many computations of a symbolic sort do not scale up comfortably.
Improving the computation by one unit might mean doubling the size of mem-
ory and multiplying the CPU time by much more. I have a feeling that moving
to Multics salvaged very few computations. The MIT LISP Machines also were
potential successors to the PDP-10 for running Macsyma, but (at least the early
versions) did not perform well for long jobs, for reasons perhaps associated with
their lack of adequate garbage collection algorithms. Early tests showed that
the performance of Lisp Machines was quite poor unless there was substantial
real memory.

The operating system, MIT’s ITS time-sharing system, was a mixed blessing.
The original flat, and limited-size directory structure of ITS meant that multiple
directories had to be used to store the collections of Macsyma source files, ob-
ject files, backup copies, data, etc; the six-letter file names (with a six-letter or
number second name) were also uncomfortable. ITS was in other respects quite
advanced, including probably the earliest “transparent” multiple-machine net-
worked file system. It also accomodated to other user requests rather well, and
hosted numerous software projects (e.g. the EMACS editor) which benefitted
residents of the system.

The lack of security was generally harmless; the installation of new features
overall, probably led to a higher level of synergy, but without adequate discus-
sion, warning, or testing, was sometimes counterproductive. Keeping one or two
backup copies avoided some of this distress, but did not provide a convenient
test-bed for multiply-dependent modules that had to be debugged simultane-
ously.

Future systems should clearly take advantage of the last 15 years of software
engineering and operating system improvements. Separating out the modules
and identifying interdependencies could retro-fit some technologies to Macsyma,
but to date, most changes have been fairly conservative in this respect.

7 Documentation

User documentation for Macsyma grew to a bulky three-volume set in the ver-
sion 11 manual written at MIT. Unfortunately much of it was originally written
in some haste and not kept up-to-date. A subsequent revision by Symbolics,
Inc. remedies a few faults, but still suffers from the “operational semantics”
view: the exact meaning of commands is hard to guess without trying them
out.
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The system documentation is largely lacking, and with the exception of
a very few papers, consists of sparse comments in the Lisp source code. In
the early days the tools used for editing did not support re-formatting of any
comments, reinforcing the natural inclination of programmers to neglect docu-
mentation.

8 Inconsistency, Wrongness

If a system allows you to express several inconsistent ideas, it is asking for
trouble. Macsyma asks for trouble. It has a very naive idea about how to
compute with infinities, multiple-valued functions, and other boundary type
conditions such as 00 or log(−1). For example, if one believes that 00 is 1, then
0k (which Macsyma simplifies to 0) is a “delta function” (e.g. if k=0 then
1 else 0. If

√
xsup2 is to be anything other than x (say, ±x or |x|), then

one must deny the otherwise somewhat useful notion that (xa)b is equivalent to
xab. Here are some other commands which can be run through Macsyma, or
in slightly changed syntax, through other systems. These demonstrate various
pieces of mathematical nonsense. (note that % is a shorthand for “the previous
expression”)

Fallacies and paradoxes, with apologies to Kasner and Newman,[22]
(c1) b+a = c;

(d1) b + a = c

Multiply both sides by a + b
(c2) expand(%*(b+a));

(d2) b2 + 2 a b + a2 = b c + a c

Subtract the same quantity from each side.
(c3) -a*c-b^2-a*b+%;

(d3) −a c + a b + a2 = b c− b2 − a b

Now factor each side.
(c4) map(factor,%);

(d4) −a (c− b− a) = b (c− b− a)

Now divide each side by the same quantity.
(c5) %/(c-b-a);
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(d5) −a = b

Now add a to each side.
(c6) a+%;

(d6) 0 = b + a

QED: the sum of any two numbers a + b is zero.
A proof that x = x + 1
The following equation is valid for all n.

(c7) eq2:(-(2*n+1)/2+n+1)^2 = (n-(2*n+1)/2)^2;

(d7)
(
−2 n + 1

2
+ n + 1

)2

=
(

n− 2 n + 1
2

)2

We can show it is valid by expansion:
(c8) expand(eq2);

(d8)
1
4

=
1
4

Now substitute the same value on each side.
(c9) subst(-a,(2*n+1)/2,eq2);

(d9) (n + a + 1)2 = (n + a)2

Take square roots of each side.
(c10) sqrt(%);

(d10) n + a + 1 = n + a

Since n + a is arbitrary, let us give it a name, say x.
(c11) subst(x-a,n,%);

(d11) x + 1 = x

QED: x = x + 1.
Here’s a proof that log(−1) = 0.

(c12) expand((y-1)^2) = (y-1)^2;
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(d12) y2 − 2 y + 1 = (y − 1)2

(c13) map(log,%);

(d13)
(
log y2 − 2 y + 1

)
= 2 (log y − 1)

(c14) subst(x,log(y-1),%);

(d14)
(
log y2 − 2 y + 1

)
= 2 x

Now let y = 0.
(c15) subst(0,y,%);

(d15) 0 = 2 x

QED: x, which is the same as log(−1), is zero.
Here’s a final example that shows that for any function f(z) analytic at the

origin (i.e. representable as a power series in z), f(0) = 0.
(c16) subst(0,z,sum(a[i]*z^i,i,0,inf));

(d16) 0

Many additional examples can, of course, be constructed from any of these
anomalies. Here is one more: Macsyma responds to the command solve(x^n-1=0,x)
with [x=1] with multiplicity 1. It is unfortunate that this answer (which is pro-
duced for arbitrary unspecified n) is incorrect unless n = ± 1.

9 Non-modularity, non-extensibility

Compared to recent efforts at (for example) IBM Yorktown Heights, on the
Scratchpad II project, or at UC Berkeley on the SCARAB project, most of the
data choices made by Macsyma programmers were cast in concrete. Data ab-
straction as a technique was not as well appreciated or prevalent. Some choices
of data structure were made at a macro-expansion phase of LISP interpretation
or compilation: for example, the determination of coefficient arithmetic in the
polynomial package. However, other choices were interwoven in the program
text dealing with polynomials: that the coefficients commute, and have no zero
divisors, for example, was made at several unmarked places. Introduction of
“weighted” variables, as used in the ratweight facilities: a simple form of
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truncated power series, required more than just re-definition of the coefficient
macros.

Common concepts were not implemented in shared modules; for example
several predicates to test if an expression depends on a variable were indepen-
dently constructed. The programs free, freevar, freeof, and depends all
are quite similar. Surprisingly, because of the interactions of various larger
modules, the integration program uses all of these.

10 Inefficiency on large expressions

At various times it had been proposed that a suitable project for a student would
be the development of a systematic technique for the storage and manipulation
of expressions which exceed by orders of magnitude the physical memory of the
host computer. This turns out to hinge in part, on simplification questions:
how does one identify expressions which might be combined (e.g. 3x and 5x) by
some “closeness” metric? Macsyma tried very hard to make this metric corre-
spond to some intuitive one. It judged sinx and cos x closer than sin x and sin y.
Because of this attention to arguments in ordering, some algorithms in simpli-
cations were relatively slow. Hash coding, used in SMP and Maple, is much
faster, although it provides only an artificial closeness based on non-intuitive
criteria for grouping common terms. Although the Macsyma design included
techniques for avoiding the repeated simplification of subexpressions by the use
of an “already simplified” flag, and attempted to share common subexpressions,
the intent of the design was sometimes circumvented by programmers who felt
that the changes wrought by their algorithms required resimplification from
scratch. Programmers were usually not immediately concerned with efficiencies
on large problems, since most test examples were small in size, and the gross
sizes of the expressions needed to reveal the waste were probably difficult to deal
with on the PDP-10. Some categories of bugs could not be exhibited on the
PDP-10, because the appropriate programs could not all be loaded into memory
at the same time.

Although large problems could sometimes be solved by deliberate “staging”
of pieces on disk files, Macsyma never really exploited an efficient external model
of data such as has been used by typical celestial mechanics programs (hand-
packing of disk records, etc). The possible external forms: straight text “batch
files”, LISP data as ASCII text (with some recognition of shared components)
and “fasl” or fast-loading object-code files, were all mirrors of the internal LISP
linked-list data format. Additional techniques for saving and restoring of strings,
vectors, arrays, and other kinds of packed data were not generally not exploited.
Well-known data-base techniques (B-trees, etc.) did not play any role.

One can hope that a more general approach, based on a suitable level of
abstraction, perhaps on communication of messages between objects whose rep-
resentation is not easily altered, will emerge for the future.
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11 Input and Output

Macsyma’s language was inadequate to deal with the various issues of multi-
ple files used for input and for output. For example, the writefile command
opened an (un-named) port, and printing produced by any of the display pro-
grams went to that file. No mechanism was available other than descending
to the LISP level, for multiple-file output. This would have been convenient
for applications which simultaneously wrote Fortran commands to one file, pro-
duced a transcript of the screen on another, and wrote backup expressions on
a third, and plotting data on another. Macsyma ’82 provided several separate
output streams, but not under direct user control. Advanced use of input (e.g.
a stream from light-pen or mouse) had not been directly made available in the
user language, although some experiments suggested this would be a useful fea-
ture. Indeed, menus and mouse selection of options has appeared in recent
additions to Macsyma at UC Berkeley (on Sun workstations) and at Symbolics
(for Lisp machines).

12 Model of user

Macsyma ’82 had no consistent, dependable, generally useful model of the user:
the closest we can come to characterizing the intent of the designers was that
Macsyma should have a structure to support and connect various “parlor trick”
programs like the symbolic integrator, factorization, application of the distribu-
tive law (expansion), and so forth. For many interesting applications, this is
sufficient. In fact, one could ask, why raise this issue of a model of the user? Is
this an issue in other programming languages or systems? Actually, I think it is:
modern dialects of Fortran, C, Pascal, and probably Lisp, all have an underlying
model of what is to be accomplished. In some cases, BASIC, for example, the
model has changed over the years. Operating systems such as VM/370, UNIX,
and MS/DOS have expected user audiences. Languages without a focus (PL/I
comes to mind), tend to be less satisfactory.

Macsyma tended not to follow through on the mathematical ideas that
should permeate it. A mathematically attentive reader of the manual would
probably be stymied by explanations like that of the logarithm “function” which,
one is told, is “the natural logarithm function”. The 5 flags which control sim-
plification of the logarithm provide some guidance as to how an expression
containing the function name “log” can be manipulated, but leaves unanswered
a number of very fundamental questions. For example, is the log multi-valued?
What is log(0)? If x is a complex number, or is a variable which ranges over the
complex plane, how is its logarithm defined? If x is a floating-point number,
will its log be computed? How accurate will a floating-point answer be?

Notions pertaining to domains of computation, (e.g. real, complex), had
been included in some isolated areas, but not integrated into the system. The
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approach, as it developed over the years, was “If you don’t like the behavior,
set a flag.” This works, for a while, until the interactions of the flags become
too burdensome computationally or too daunting for the user to grasp.

13 Interactivity

Macsyma was designed to be interactive, although the initial human interface
would undoubtedly shock people today. The display terminals available at MIT
in 1968 were extremely primitive by current standards. Eventually the system
had to accomodate various printing terminals and use features like tabulation,
cursor addressing etc. Especially after the Arpanet community, and its host
of TI Silent-700 terminals, came to have a major impact, most efforts to use
graphics were constrained to be purely local. At MIT, impressive curve drawing
capabilities were possible on the display system used for Prof. A. Bers’ plasma
physics group.

The idea of pointing at expressions using a light pen was demonstrated
in the late 60s by W.A. Martin but was not picked up again until the 1980s
when “mice” became popular as workstation input devices. Still, the “official”
Macsyma 82 system failed to use this. Subseqent development has included use
of such features, but differing hardware and software bases, combined with a
divergent of code, has led to a divergence in approaches.

14 Conclusions

Some features in Macsyma worked out fairly well and might be emulated in
future systems, or maintained in future versions of Macsyma. Other features
should be changed. Absolute objectivity in system design is rarely possible,
and in a system as multi-faceted as Macsyma, there are too many influences to
easily find a consensus in some matters.

We hope that this sketch of the history of Macsyma, and some admittedly
subjective experience and opinions as given in this paper may be useful in de-
ciding future directions in system building.

15 Epilog

In the years after 1979 when the development of VAX Macsyma at Berkeley
first made it feasible and inexpensive to run Macsyma off the Arpanet, the
community lost some of the cohesion that resulted from the central site. The
UNIX ‘use-net’ and mail through the Arpanet and CSnet was used for the
reporting of some bugs electronically. Other bug reporting was done via US mail
to the University of California, Berkeley. Reports were relayed, if appropriate,
to MIT.
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While some users were able to get only occasional updated code on the VAX,
others were able to update copies every few months, usually through Berkeley.

In 1982, when MIT sold its rights to Macsyma to Arthur D. Little, Inc., which
then contracted with Symbolics, Inc. for distribution and support, aspects of
the community changed substantially. The newly proprietary nature of the
code provided an impediment to casual interchanges amongst users. The MIT
Macsyma Consortium PDP-10 went “off the air” in October, 1983 for users
outside MIT.

Between 1983 and the present, in spite of the distribution arrangement be-
tween MIT and Symbolics, the Department of Energy pressured MIT to place
a copy of the source code for Macsyma in a government distribution center: the
National Energy Software Center (NESC) Library at Argonne National Labo-
ratory. The initial version of this code, an implementation of Macsyma in the
NIL Lisp dialect, was named DOE-Macsyma. It requires a large VAX/VMS
computer system to run, and was restricted, by agreement with MIT, to be
available for purchase by end-users only. Modifications of this code were later
placed in NESC to run on various Lisp machines running ZetaLisp or TI Ex-
plorer Common LISP. Another version of Macsyma, referred to as VAXIMA,
and based on joint work of MIT and UC Berkeley, was deposited by UC in
the NESC in July, 1986. This copy, an implementation of Macsyma in Franz
Lisp, includes source code and executable images for VAX UNIX or ULTRIX
systems. Companies including Paradigm Associates of Cambridge, Mass., and
Franz Inc., of Berkeley, Calif. have been improving the usability of the NESC’s
Macsyma code, and providing support for these versions.

By virtue of the availability of Franz LISP on a wide range of processors,
VAXIMA has been demonstrated on numerous Motorola 680x0-based systems:
SUN Microsystems workstations, Tektronix 4400 systems, Masscomp, Pixel and
similar computers since 1983. Franz Inc. supports Macsyma on IBM 370 main-
frame systems and a variety of other machines. Pyramid Computers has also
demonstrated a Macsyma running on Pyramid’s own version of Franz Lisp.

Macsyma runs now on machines which cost under $15,000, where it has per-
formance far superior to its original development environment (A PDP-6/PDP-
10 KA system). It also runs on multi-million dollar computers at substantial
speeds. It would be beneficial if system developers had low-cost access to the
code as well as a working version of the system, since it appears that contempo-
rary system builders are repeating some of the same mistakes we saw Macsyma,
and sometimes painfully reproducing its successes. Research in algorithms and
system interfaces are hampered by the clumsy distribution mechanism imposed
on users by MIT (via NESC or Symbolics). It is unclear to what extent the
legacy of Macsyma will emerge in new systems or revisions of Macsyma; we
hope this paper helps designers and users of systems distinguish the wheat from
the chaff.

(more recently: October, 2001). For some period in the 1990s Macsyma Inc,
an independent company acquired the rights to Macsyma from Symbolics, and
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revised the code in various ways, including providing a graphical front end for
Microsoft Windows machines, enhancing numerical code, and adding various
modules and fixing bugs. The program on UNIX was running under a version
of Kyoto Common Lisp, and under Windows, CLOE, a Common Lisp originally
produced by Symbolics. The company appeared to be losing money steadily, in
spite of various papers suggesting its technical superiority to the competition,
principally Mathematica and Maple. In early 2001, the assets of the company
changed hands, and the new owner seems to have closed the company and taken
the software off the market.

Prof. W. Schelter, a mathematics professor at the University of Texas (Austin)
who over the years had been supporting a free Macsyma system (called Max-
ima), received clearance from the US Department of Energy to enhance and dis-
tribute the source code of Macsyma. He packaged the system in various ways to
use Tcl/Tk as a front end and GCL (Gnu Common Lisp, a system he helped de-
velop from Kyoto Common Lisp). Various additions that were executed and in
the planning stages were not completed at the time of Prof. Schelter’s untimely
death in July, 2001. His project and code continue to be available, and various
efforts to form a working group to further enhance the code are operating under
the auspices of the University of Texas and/or Sourceforge.
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