ESD TDR 64=390

ESTI FILE COPY

inical Documentary
it No. ESD-TDR-64-390

RETURN T0 oo
TIFIC & TECHNICAL \NFORM;\I\O ISTON
SO (ESTY), BUILDING 12

0of
COPYNR____— s

MILITRAN

ESTI PRO ESSED

[J ooc ram (J prous OFFICER

] ACCESSION MASTER FiLE
O

DATE

ESTI CONTROL NR—QLLL'LL 190
CY NR__/ o}._’Lc's

REFERENCE MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH

NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)

by

“—SYSTEMS RESEARCH GROUP,

1501 Franklin Avenue
Mineola, L. I., New York

JUNE 1964

INC.

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data 1s not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto,

Reproduction in whole or in part is permitted
for any purpose of the United States Government,

DDC _AVAILABILITY NOTICE

Qualified requesters may obtain ocopiles of this
report from the Defense Dooumentation Center (DDC), Cameron
Station, Alexandria, Va, 22314, Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC,

Technical Documentary
Report No. ESD-TDR-64-390

MILITRAN
REFERENCE MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)
by
~SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue
Mineola, L. I., New York

JUNE 1964

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data 1s not to be regarded by implication or
otherwise as 1in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented inventlon that
may in any way be related thereto.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

DDC AVAILABILITY NOTICE

Qualified requesters may obtailn coples of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 22314, Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

FOREWORD

This 18 one of three technical reports being
published simultaneously. The others are the MILITRAN

Operations Manual for IBM 7090-7094 (Technical Documentary

Report No, ESD-TDR-64-389) and the MILITRAN Programming

Manual (Technical Documentary Report No. ESD-TDR-64-320).
The three reports constitute a complete description and
instructions for using the MILITRAN language in computer

programming of simulation problems,

The MILITRAN 7090-709% Processor, which 1s used
to compile a problem written in MILITRAN source language
into a machine language program, will be available to pro-
spective users. Pending final arrangements, requests for
information about the MILITRAN Processor should be sent to
the Office of Naval Research (Code 491),

This report was prepared by the Systems Research
Group, Inc., under Contract Nonr-2936(00), which was 1initi-
ated by the Naval Analysis Group, Office of Naval Research,
and has been Jointly supported by the Office of Naval
Research and the Electronic Systems Division, Air Force

Systems Command,

ABSTRACT

MILITRAN is an algorithmic computer language
specirically‘oriented to the problems encountered in
simulation programming. In addition to providihg over-
all flexibility in expressing complex procedures, the
language contains features which greatly simplify the
maintainence of status lists, handling of numeric and
non-numeric data, and sequencing of events in simulated

2

time,

This report is intended as a reference summary

for those already familiar with MILITRAN.

REVIEW AND APPROVAL

~

This Technical Documentary Report has been
reviewed by the Electronic Systems Division, U. S. Air
Force Systems Command, and 18 approved for general distribu-

tion,

éi;;é:§%4%;L;URTIS(fi;i;:Zé:;F
ond L, , USAF

PROJECT OFFICER

TABLE OF CONTENTS

INTRODUCTION

CGENERAL LANGUAGE CHARACTERISTICS
Characters
Names
Constants
Punctuation Marks
Operators
Mnemonic Delimiters
Statement Type Identifiers

STRUCTURE
ObJject
Class -
Real, Integer, Loglcal, Program Object
Normal Mode
Vector, List
Contingent Event, Permanent Event
Common
Procedure

EXPRESSIONS
Expression Syntax
Functions
Standard FPunctions
Subscripts

PROCESSING
Substitution
List Processing
List Entriles
List Processing Conditions
Place, Place Entry
Remove, Remove Entry
Replace, Replace Entry
Reset Length
List Entry Locating Functions

INPUT/OUTPUT
Logical Unit Designations
Tape Control Statements
Input/Output Lists

rage

Vo~ nFHFwnn

Binary Read, Binary Write
Read, Write
Format

CONTROL
Go To
If, Unless
Pause, Stop
Execute, Return
Do, Continue
End, Next Event, Next Event Except
End Contingent Events, End File Return,
End Record Return

COMPILER
End Compilation
Suspend FAP Listing

- APPENDIX

INDEX

Page

by
45
51
51
51
53
53
59
2

60
62
62
63
68

INTRODUCTION

This manual is designed as a reference for
programmers working in MILITRAN. The description of the
MILITRAN language herein 18 more concise than that given
in the MILITRAN PROGRAMMING MANUAL, with which the reader

1s assumed to be familiar.

Various sections of this manual outline GENERAL
LANGUAGE CHARACTERISTICS, statements which define program
STRUCTURE, characteristics of EXPRESSIONS, and statements
whose major functions include PROCESSING, INPUT OUTPUT,
CONTROL, and operation of the COMPILER.

A summary of all MILITRAN forms 1s included in

the appendix.

GENERAL LANGUAGE CHARACTERISTICS

A MILITRAN source program 18 a series of
MILITRAN statements which specify a sequence of operations
to be performed by a digital computer, ‘A program is either
a main program or & procedure, A main program initiates
processing and may be devlised in such a way as to require
no procedures, A procedure cannot initiate processing and
must receive a signal from either a main program or another

procedure before its operation sequence can be executed,

[

A MILITRAN statement 18 a string of elements
arranged in a prescribed order which specifies one or more

of the following characteristics of the program:

1, STRUCTURE of the program
or its elements;
2. PROCESSING to be performed
within the computer;
3. INPUT/OUTPUT, or exchange
of data between the gomputer
and its external storage devices;
4, CONTROL of the sequence in
which various operations are

to te performed; and

5. COMPILER instructions, or
specification of the manner
in which the translation from
MILITRAN to machine language

is to be performed.

The elements which combine to form MILITRAN
'atatemente are names, constants, punctuation marks,
statement type identifiers, operators, and mnemonic
delimiters, These elements are in turn made up of

characters, which are the basit units of any language.

Characters

The MILITRAN Basic Language 18 expressed in terms

of the following character set:

ABCDEFGHIJKLMNZPQRSTUVW
XYZ 0123456789.(),=+-%/
The character "blank" i1s normally not significant
in the language. Except where specifically noted in this:
summary, blanks may be used in any part of a statement with-

out any effect on the statement.

"Alphabetic characters" include the letters A through
Z; "numeric characters” include the digits O through 9; alpha-
meric characters include both alphabetic and numeric characters,

A1l others are "special characters.,"

Names

A name is a string of one to sixty alphameric

characters, the first of which is alphabdetic,

Although

statement type identifiers and mnemonic delimiters are

alphabetic strings, thelr use within a statement distinguishes

them from names without ambiguity.

Certain names have a pre-defined meaning in

MILITRAN and may be used only in reference to that meaning.

These names are:

ATAN

ATTACKER

CARDS

cgs

EACH

END CZMPILATI@N
EPSIL@N

EXP

FALSE

FZRMAT

GST

INDEX
INTEGER
LENGTH

LgG

LST

MAX

MIN
MINIMUM INDEX
M@D

NEXT EVENT

PRINTER
RAND@M
RAND@M INDEX
REAL
SIGN
SIN
SQRT
TAN‘
TARGET .
TIME
TRUE

A1l names used in a MILITRAN source program are

either explicitly or implicitly assigned a type.

types of names are assigned a mode.

Some

The type of a name

indicates the nature of its use in the program. The mode

of a name 1ndicates the form of data referred to by the

name,

The following table 1ists all possible types of

names, whether or not they have modes, and short descrip-

tions of their use in a program.

Type
Single Variable

Array
Vector
List

Object
Class

Contingent Event
with List

Permanent Event

Permanent Event
with List

Vector Component

Symbolic Dimension
Statement Label
Procedure

Open Procedure

External Procedure

Mode?

Yes

Yes

Yes

Yes

No
No

Yes

No

Yes

Yes

Yes
No
Yes

Yes

Yes

Use in Program

Storage of single 1tems of data.

Storage'or several items of data
tinder a single name.

Storage of several arrays under
a single name.

Special form of vector which permits
automatic updating of data items.

Specification of basic ldentifiers.
Grouping of objects,

Assoclation of processing functions
with a 1llst of the same name.

Linking of processing functions
in a simulated time sequence.

Association of processing functions
with a 1ist of the same name.

An array which is associated with
a vector of 1ist,

Specification of array dimensions,
Designation of points 1n program.
Designation of subroutlne entry.

Designation of integral processing
codes.

Designation of separately coded pro-
cessing.

Constants
Constants are single items of data whose value is
unchanged throughout the execution of the program. In fact,

a constant might be thought of as a nameless single variabie,

Integer constants may take one of the following
forms:
1, A string of numeric characters,
2. A string of the form "nHxxxxxx"
where n is a digit not exceeding 6
and x is any chapracter including

the character "blank". The number

of characters (x) must be equal to

n,

Real constants may take one of the following
forms:

1, A string of numeric characters
which includes one and only one
period.

2. A string of numeric characters, which
may or may not include a period,
followed by E, En, Enn, E+n, or E+nn,

where n 18 a2 numeric character,

The distinction between real and integer constants

is significant only in arguments to procedures.

Logical constants include only the names TRUE and FALSE.

Punctuation Marks

The only punctuation marks used in MILITRAN

are the following:

. Period
(Open Parentheses
) Close Parentheses
5 Comma
S Ellipsis (Delimits comments)
Operators
The operators used in MILITRAN are the following:
= Substitution
+ Addition; plus

- Subtraction; minus

» Multiplication

/ Division

sk Exponentiation

s Comparison: Equal to

.G, Comparison: Greater than

.L; Comparison: Less than
.NE. Comparison: Not equal to

.GE, Comparison: Greater than or equal to
.LE, Comparison: Less than or equal to
IS, Object identity

.IN, Object inclusion

Logical

Logical
Logical
Logical
Logical

disjunction
negation

conjunction
equivalence

exclusive disJjunction

Mnemonic Delimiters

The delimiters BY, BY. ENTRY, C@NTAINS, F¢R,
PRgM, IN, T, and UNTIL are used within certain state-
ments, Use of theée alphameric combinations as names
is permitted, as the distinction between name and delimiter

is always contextually clear,

Statement Type Identifiers

The basic statement in MILITRAN involves substitu-
tion of one data item for another within the computer. Tle

substitution statement has the form
a=>»

where a8 18 a subscripted or unsubscripted variable name and

b 18 any expression whose value 18 sultable for storage in a.

All statements which are not substitution statements
are designated by alphabetic strings called statement type
identifiers. The‘rollowing table 1lists all statement types
and their primary uses. The form and characteristics of each
statement 1s summarized in later sections by primary use.
Primary functions are listed under GENERAL LANGUAGE CHARACTER-
ISTICS.

Statement Type

BACKSPACE
BACKSPACE FILE
BINARY READ
BINARY WRITE
CLASS

C@MM@N

CONTINGENT EVENT
CONTINUE

D@

END

END C@MPILATI@N
END C@NTINGENT EVENTS
END FILE

END FILE RETURN
END RECZRD RETURN
EXECUTE

FZRMAT

Gd Tg

IF

INTEGER

LIST

L@GICAL

NEXT EVENT

NEXT EVENT EXCEPT

10

Primary Function

INPUT/OUTPUT
INPUT/OUTPUT
INPUT/OUTPUT
INPUT/OUTPUT
STRUCTURE
STRUCTURE
STRUCTURE
CONTROL
CONTROL
CONTROL
COMPILER
CONTROL
INPUT/OUTPUT
CONTROL
CONTROL
CONTROL
INPUT/OUTPUT
CONTROL
CONTROL
STRUCTURE
STRUCTURE
STRUCTURE
CONTROL
CONTROL

Statement Type
NZRMAL M@DE
@BJECT

PAUSE

PERMANENT EVENT
PLACE

PLACE ENTRY
PRECEDURE
PREGRAM ZBJECT
READ
READWRITE
REAL

REM@VE

REMZVE ENTRY
REPLACE
REPLACE ENTRY
RESET LENGTH
RETURN

REWIND

ST@P

SUSPEND FAP LISTING
UNLESS

UNL@AD

VECTZR

WRITE

11

Primary Function

STRUCTURE
STRUCTURE
CONTROL
STRUCTURE
PROCESSING
PROCESSING
STRUCTURE
STRUCTURE
INPUT/OUTPUT
INPUT/OUTPUT
STRUCTURE
PROCESSING
PROCESSING
PROCESSING
PROCESSING
PROCESSING
CONTROL
INPUT/OUTPUT
CONTROL
COMPILER
CONTROL
INPUT/OUTPUT
STRUCTURE
INPUT/OUTPUT

15

STRUCTURE
Structure - defining statements are summarized in

this section. They include:

CLASS ZBJECT

CEMMEN PERMANENT EVENT
CZNTINGENT EVENT PRZCEDURE
INTEGER : PRZGRAM @BJECT
LIST REAL

LZGICAL VECT@R

NZRMAL M@DE

Object

The statement

¢BJECT n,(d;), ny(dy),.ee, n (d)

defines names Nys Npseee, ny to represent basic object types.
The names are preserved for use at running time in input/output

operations,.

Dimension d, designates the number of obJjects to be

b §
named n, . This dimension may be an expression of real or integer
mode. Names used in a dimension are defined by such use to be
symbolic dimensions, and no other declaration of type or mode 1is

permitted except subsequent use in dimensions,

13

Class
The statement

CLASS (n) C@NTAINS 81, 85500058

defines the name n to be that of a class, The name is not

preserved in its external form.

The members of the class are specified by elements

815 8preces8 where a, may have the following forms:

object name
EACH»object name
class name

EACH#class name

ObJject and class'names used in al, a2,...,am must
have been declared as such by statements appearing before the

current CLASS statement.

The use or absence of "EACH»" indicates whether or

not membership 1s individual as opposed to collective.

14

Real, Integer, Logical, Program Object

The statements

REAL 815 8ps00ey B

INTEGER a5 qg,..., am

L@GICAL 895 8pse0ey 8

PR@GRAM @BJECT 895 8pse0ey B

where element a, may have the form n, or ni(dl’ d2,...,dk),

defines names Nys Npseeesny to be of REAL, INTEGER, LOGICAL,
or PROGRAM OBJECT mode,

The appearance of dimensions (dl’ d2,...,dk) in the
element a, further defines name n, to be an array having k

dimensions,

Dimensions (dl’ d2,...,dk) may each assume the

following forms:
1. An expression of real or
integer mode;
2., An obJect name; or

3. A class name,

Any name which appears in 2 dimension is defined by
such appearance to be a symbolic dimension unless 1t 1s defined
elsewhere as an object or class, No other definition of symbolic

dimensions is permitted except subsequent use in another dimension.

15

Normal Mode

In the absence of explicit mode declarations, names
are assigned modes according to their initial letters as re-
quired. The correspondence of modes to initial letters is

known as the "normal mode".

The statement
NZRMAL M@DE ml(al’ 329000:31): m2(b1’ b2""’b‘j)’

m3(c13 c2)000’ck)’oo.’mr

is used to specify the normal mode. Mode designators m may
be the words REAL, INTEGER, L@GICAL, or PRZGRAM @BJECT .
Alphabetic characters a,, a2,...,b1, b2,...,ck indicate the
initial letters which are to correspond to the various mode
designators, Designator m, applies to all letters not ex-
plicitly mentioned in the statement, and is assumed REAL 1if

absent,

The normal mode so defined will prevail until
another NZRMAL MZDE statement is encountered. The initial

normal mode for all programs is REAL,

16

Vector, List

The statements

VECT@ZR n((cl,cz,...,cJ), dl,d2,...,dk), etc.

LIST .“((°1’°2"°”°J)’dl)’ ete.

define groups of arrays °1’°2”"’°J which have identical
dimensions dl’de"°”dk and are grouped together under the
name n, The name n is declared to be a vector or 1list, and
names °1’°2"”’°J are declared to be vector components,

The number of such name/component/dimension groups which
can‘be declared in oﬁe statement 18 limited only by the max-

imum statement length,

Unless the mode of name n 18 declared explicitly
in a REAL, INTEGER, L@GICAL, or PRZGRAM ¢BJECT statement, the
normal mode prevailing at the appearance of the VECTZR or LIST
statement will be assigned., Components whose modes are not

explicitly defined will be assigned the mode of the name n.

Dimensions dl’d2""’dk may assume the same form as

array dimensions previously described.

Only two differences obtain between vectors and lists:

1. Lists may have only one dimensilon;
vectors may have any number.

2. Lists may be operated on by special
processing statements; vectors may not.

17

Contingent Event, Permanent Event

The statements

C@NTINGENT EVENT n((cl,cg,...,cj),dl)
PERMANENT EVENT n((cl,cz,...,cj),dl)

PERMANENT EVENT n

declare the name n to be a contingent event with list, permanent
event with 1ist, or permanent event. Forms with a list create

storage assignments exactly as would a LIST statement.

The event statement 1s always followed by a series of
one or more statements, the last of which must be an END state-
ment, (See CONTROL.) This series of statements embodies the

processing assocliated with the event named n.

Standard event processing algorithms require the
components Cq1sCps and c3 of a C@NTINGENT EVENT 1ist to have modes
of REAL, PR@ZGRAM OBJECT, and PR@GRAM (¢BJECT respectively. Any

other construction may be used where standard processing is not.

18

Common

The statement

cmgN nl)n2) [] Ot,nk

céuses storage required by data items named NysNpyeeeshy to
be pléced in a special area of the computer so that‘it can
be directly accessed by procedures. Additions to this com-
mon store are cumulative, items from one common statement

being added to those from any previous common statement.

Access to common data by more than one program
requires that each program have identical common structure,
1. Each item in common must be
identically defined in both pro-

grams;

2. Common statements in both programs
must specify these items in identi-

cal order.

Identical definition and order suggest the following

rules for common structure:

1, If an item in common has symbolic
dimensions, the dimension names

should also be in common:

19

2., If an item in common has dimensions
which are object or class names, those

names should also be in common;

3. If a PERMANENT EVENT with 1list 1is
in common, the corresponding item 1in
all programs except that containing
the event processing should be declared

as a LIST,

4, If a CONTINGENT EVENT with list is in
common, the corresponding item in all
programs except that containing the
event processing should be declared as
a LIST and preceded in common by a
single variable which 1s otherwise
unused, This extra variable does not
appear 1n the common statements of the

program containing the event processing.

Only certain types of names may appear in a common

statement, and these types are:

Single variable
Array
Vector

List

20

ObJect
Class
Contingent event with 1list
Permanent event with 1list

Symbolic dimension

The names TIME, ATTACKER, TARGET, or INDEX may not
appear in a common statement. Appearance of the name NEXT
EVENT in a common statement will place all of the above names

in common.

Procedure

The statement
PRECEDURE n(al,aa, Sk ,am)

designates the entire program in which 1t appears to be a
procedure whose name corresponds to the first six (or less)
characters of. the name n, Neither the name n nor another

PRECEDURE statement may appear elsewhere in the same program,

The names al,ae,...,am and their enclosing parentheses
are optional, and designate the dummy arguments to the procedure
if present, The following types of names may be used as dummy
arguments:

Single variable
Array |
Vector

List

Object

Class

Contingent Event with 1list
Permanent Event with list
Symbolic dimension
Statement label,

21

22

EXPRESSIONS

As many MILITRAN statements depend upon the use
of éxpressions, a2 brief summary of expression forms and
types 1s presented in this section, A short discussion of

retrieval forms 4is also included,

Expression Syntax

The overall syntax of expressions 1s presented

here in the familiar Backus type notation,

Brackets < >u’sed below enclose terms designating
elements; the sign ::= may be read as "takes the form"; ver-
tical lines may be read as "or"; and all.other characters

represent themselves,

éxpression> HEE <arithmetic expression> <logica1 expressior>

<program object expressiod}

<arithmetic expression> $i= real > ‘ <1nteger >
expression expression

<arithmetic operator> tim +| -]* l Z | P

(@rithmetic comparator) ::= .E. |.G. |.L. .GE. | .LE.

(logical operator) ::= .gR. | .AND. | .EQV. | .EX¢R.

<rea1 expressién> 3w <rea1 data iteﬁ> ’ + (real expression>

!

\
-<rea1 expression)l (<real expression>)
real \\ arithmetic real
expression / operator expression

integer arithmetic real
expression Qoperator expression

real <hrithmetic "integer
expression operator \\expression
<integer expression> $im integer data integer
item \expression
integer (integer)
expression expression

integer arithmetic integer
expression <\operator expression
.N@T. <1ogical)
expression
logical > logical > <1ogica1
expression operator expression

arithmetic arithmetic arithmetic
expressio comparator,> expression

ﬁogical expressiod> :

program obJject IN /object or
expression S class name

program object 18 program obJject
expression ceme expression

(<1ogica1 expression>)
<program obJect expression> = <program object data ite@> I
object or (arithmetic)
class name expression

< program obJject expression>)

24

<data 1tem> 3= <single variable name>|
éymbolic dimension name>
<subscr1pted array name>|

<subscr1pted vector name>
<function> l <constant>

<subscr1pted array name> t:= <array-type> (<subscr1pt)

name 1ist
subscripted tim vector-type> (subscript arithmetic)
vector name name list ’\expression
<array-type riame> L <array name> ‘ <vector component name>

<vector-type name> $i= éector name> <list name> I

<cont1ngent-event-w1 th-1ist name> I

<permanent-event-with-list name>

<::g:cript> , <aubscr1pt>

<subscr1p€> HEE arithmetic program object
expressio expression

<subscr1pt 113t> $im <subscr1pt>

<function> $im <external procedure name> (<argument 113t>)
open procedure name> (<argument 113t>),

external procedure name> I <open procedure name

25

<argument list> gim <argument> l <argument list> s <argument>

<argument> $im <expresaion> ‘ <vector-type name>
<§rray-type nam€> ' <BbJect or class nam€>

<?tatement label name>

Functions

A function 1s a procedure whose execution 1s implied
by its use in an expression. Execution of the function always
returns a single value which replaces the function in the

expression,

Arguments to a function must correspond in type and

order to those expected by the procedure,

A name whose type 18 not otherwise declared 1s
implicitly declared to ts an external procedure (function) when

it appears with an argument list in an expressilon.

26

Standard Functions

Several functions are pre-defined in MILITRAN,
and reference to thelr names automatically produces elther
open coding or calling sequences to library subroutines,
These functions are described below, Values are returned
in the same mode as the arguments except where noted.

Arguments must be REAL except where noted,

ABS (v) returns |v| . The
argument v may be elther

REAL or INTEGER.

ATAN (vl,va) returns the angle
0L whose tangent is vl/vz.
(o< o < 21).

CO0S (v) returns cos v,

EPSILON (v) returns (v+ ¢)

where € 1s the smallest increment
physically recognizable in v. Argument
v may be elther REAL or INTEGER.

(€ =1 when v is integer)

EXP (v) returns e’ where e is

the Naperian base.

27

INTEGER (v) returns the
largest integer 1 such

that |1| < |v| . Argument v
may be eilther REAL or INTEGER.
Result 1 1s returned in INTEGER

mode.

LOG (v) returns the natural

logarithm of v.

MAX (vl,v2,...,vJ) returns
the maximum value among
the arguments (vl,...,vJ).
Arguments may be REAL

or INTEGER.

MIN (vl,vz,...,93) returns
the minimum value among
the arguments (Vl""’vj)'
Arguments may be REAL or
INTEGER.

RANDOM returns a REAL
pseudo-random value, v,

(0o=v<l).

REAL (v) returns the value
of v in REAL mode, The
argument v may be elther

REAL or INTEGER, (|v|<2%7.)

SIGN (vl,ﬁe) returns the value

|va|
Y2

if v, +0,

Ivllo vll if vy, = 0.

SIN (v) returns sin v,
SORT (v) returns /|v]
TAN (v) returns tan v,
(values exceeding the maximum

possible REAL value are

truncated to that maximum,)

28

29

Subscripts

Retrieval of specific data items from arrays and
vectors 1s accomplished by means of subscripts. Types of

names requiring subscripts fall into two groups as follows:

Array-type Vector-type
Array Vector
Vector component List

Contingent event with list

Permanent event with 1list

Array-type names require exactly as many subscripts

as they have dimensions. Consider the statement

REAL n(dl,...,di,-.-,dm)

which defines the name n to be an m-dimensional array. Re-
trieval of a single member of n would be accomplished by the

expression

n(el"...)eiyoto"em)

occurring elsewhere in the program. The expressions el,...,em

are subject to the following rules:

1, Any expression ey may be
an arithmetic expression.

2. Expression e1 may be a pro-

gram obJect expression 1if
and only if dimension d1

is an obJject or class name.

30

Vector-type names require one more subscript

than they have dimensions. Consider the statement
VECTm n((cl,...,cd,...,ck), dl’...’di'...’dm)

which defines the name to be an m-dimensional vector having
k components. Retrieval of a single member of n would be

accomplished by either of the expressions

n (el,...,ei,...,em,em+1)

cJ(el,...,ei,..Q,em)
occurring elsewhere in the program. The expressions
€1se00,8, are subject to the same rules as are subscripts

for array-type names, The expression e+l must be arithmetic

and equal to J.

31

PROCESSING

Processing statements are sumarized in this

section., They 1nc1ﬁde:

PLACE REPLACE

PLACE ENTRY REPLACE ENTRY
REM@VE RESET LENGTH
REMZVE ENTRY Substitution

Substitution

All substitution statements take the form
a=>»
where 2 1s a subscripted or unsubscripted name and b is an
expressions. The name "a" may not be an obJject, class,
permenent event without list, statement label, procedure,

external procedure, or open procedure,

The following processing may be accomplished
through a substitution statement:
1, If a and b are of the same mode, the value

of expression b replaces the value of a,

2, If a and b are both subscripted vector-type
names, the contents of b replace the contents
of & without regard to mode, ("Contents"
a8 used above refers only to a single value,

not the entire array.)

3., If a 15 real and b is integer, the value of

expression b 1is converted to a real number

32

and replaces the value of a,

4, If & i1s integer and b is real, the value of
expression b 18 truncated to an integer and

replaées the value of b,

Conditions 3 and 4 above apply only when condition 2 does

not.

List Processing
Vector-type names defined in LIST, CZNTINGENT
EVENT, and PERMANENT EVENT statements represent groups of values

which may be processed by means of special "1list processing

statements."

In the discussion of 1list processing statements
which follows, all descriptions willl refer to the generalized
lists defined by

LIST m((m-l, ...,mi,. oo,mJ),dm),n((nl,oco,n1, ...,nk)dn)

The symbols designating the lists and components defined

above will be maintained throughout the discussion.

List Entriles

The 11st m may contain d_ entries. The e entry

in 1list m 18 the set of values,
ml(e)!mg(e)) ooo,mJ(e)

The current number of entries in list m 1s represented by

the function

LENGTH(m)

33

which is initially equal to zero for all lists.
Any value in the group represented by the name
m may be altered by means of a substitution statement.
However, substitution statements do not maintain the
LENGTH function and list processing statements consider the

el entry valid only 4f 1< e < LENGTH(m).

List Processing Conditions

Several statements and functions 4involved 4in list

processing depend upon logical conditions of the form
(bljbas--oskabx)

where k 18 the number of components in the list.

The e! entry of 11st n 1s said to meet the

condition (bl,...,bk,bx) if an only if
1. b,.EQV.TRUE for 1< 1< k; and
2. b .EQV.TRUE

The logical expression bi may involve the current value of
ni(e), which value 1s represented in b1 by an asterisk.
The logical expression bx may involve e, which value 1is
represented in bx by an asterisk., Since more than one
entry in 118t n may meet the condition (bl"“’bk’bx)’ the

entry number "e" 18 never used explicitly.

The following abbreviations are permitted in the
construction of 1list processing conditions:

1, Omitted expressions are assumed to be TRUE;
e.g., the conditions (TRUE,TRUE) and (,) are

34

equivalent.

2. Commas separating identically true
expressions at the end of the condition
may be omitted; e.g., the conditlions
(by,0,, TRUE, TRUE) and (bl,b2) are

equivalent,

3. The expression "#.E.,a," where a is an

arithmetic expression, may be represented

"

by "a.

b, The expression "#.,IS.a", where a is a
program object expression, may be re-
presented by "a,"

5. The expression "IN.a," where a is an

object or class name, may be represented by

"a 5 "

A condition may be restricted by the use of the
functions GST and LST. One and only one expression in a
condition may be subjected to a GST/LST restriction. Every
condition containing GST or LST is met by no more than one
entry in list n.
1. (by,...,65T(by),..0,b,,b) refers to that
entry whose n, is the greatest n, among all
entries meeting condition (byseeesDyseeesbp,b).
2. (by5000,L8T(by),.00,b),b) Tefers to that

entry whose ny is the least n, among all

35

entries meeting condition

(bl’...’bi’...’bk’bx).

3. (bl,...,bk,GST(bx)) refers to the
highest numbered entry meeting
condition (bl’...’bk’bx).

y, (bl”"’bk’LST(bx)) refers to the

lowest numbered entry meeting

condition (bl,ooo’bk,bx)o

Where expression b1 18 subjected to a GST/LST
condition, component n, must be of real or integer mode,
Where duplicate minima or maxima occur, the lowest numbered

entry 1s chosen.

Place, Place Entry

Execution of the statement

PLACE(cl,...,ci,...,cp) IN n

causes the current value of LENGTH(n) to be increased by one
and the values °1’°"’°J to replace current values of
nl(LENGTH(n)),...,np(LENGTH(n)). The number of expressions
(p) may not exceed the number of components (k) in 118t n.
Expression Cy must be of the same mode as component n, for

1= 1< p.

36

Execution of the statement
PLACE ENTRY m(e) IN n
is identical in a processing sense to execution of

PLACE(mi(e),...,mp(e)) IN n

where p 18 equal to the smallest number of components

contained in either 1ist (m or n).

Remove, Remove Entry

Execution of the statement
REM@VE (by,...,b,,b.) FREM n

will cause all entries meeting condition (bl"“’bk’bx)

to be removed from l1list n.
Execution of the statement

REM@VE ENTRY n(e)

will cause the eﬁh entry in 1list n to be removed.

For every entry removed from 1list n, the value
of the function LENGTH(n) 4s reduced by 1. Rearrangement
of the 1list to eliminate blank entries is performed where

necessary.

3

Replace, Replace Entry

Execution of the statement

REPLACE ENTRY n(e) BY (cl,...,cp)

causes the values of nl(e),...,np(e) to be replaced by

the values of expressions CyseeesC The number of ex-

p.
pressions. (p) may not exceed the number of components (k)

in 1list n, Modes of expression ¢y and compohent n, must
matech for 1< 1 < p., The value of ni(e) before replacement
may be represented in expression Cy by an asterisk.
Execution of the statement
REPLACE ENTRY n(el) BY ENTRY m(e2)
causes values ml(e2),...,mp(e2) to replace the current

values nl(el),...,np(el), where p is the smallest number

of components contained in either 1list (m or n).
The two statements
REPLACE ENTRY n(el) BY ENTRY (32)

REPLACE ENTRY n(el) BY ENTRY n(e2)

are identical in a processing sense,

38

Execution of the statements

REPLACE(bl,QQQ’bk,bx) BY (cl’ooo’cp) IN n
REPLACE(bl,...,bk,bx) BY ENTRY m(e) IN n

REPL‘ACE(bl,...,bk,bx) BY ENTRY (e) IN n

cause replacement of every entry in list n which meets

condition (bl"“’bk’bx)‘ Replacement is accomplished

in exactly the same manner as by corresponding REPLACE
ENTRY statements,

Reset Length

Execution of the statement
RESET LENGTH (n) TF e

will arbitrarily reset the value of function LENGTH(n)

to the positive integer value of arithmetic expression e,

Use of this statement 1s required only when non-
list-processing statements have been used to enter values in
1ist n or when the programmer wishes to ignore entries beyond

the e entry.

39

List Entry Locating Functions

Two MILITRAN functions operate directly upon
1ist processing conditions. These functions are used
within the context of an expression as are the functions

discussed under EXPRESSIONS.
The functions

MINIMUM INDEX (n(b,,...,b,,b),s)
RANDOM INDEX (n(by,...,b,b),s)

return an integer value designating an'entry in the 1list
n which meets the condition (bl"“’bk’bx)° If no such
entry exists, control transfers immediately to the state-

ment labelled s,

The distinction between MINIMUM INDEX and RANDOM
INDEX obtains only when more than one entry in 1list n
satisfies condition (by,...,b,,b). MINIMUM INDEX chooses
the lowest numbered entry meeting the condition; RANDOM
INDEX chooses one entry at random from all those meeting

the condition.

MINIMUM INDEX may be shortened to INDEX without

loss of meaning.

4o

INPUT/OQUTPUT

Input/output statements are summarized in this

section, They 1hc1ude:

BACKSPACE READ
BACKSPACE FILE READWRITE
BINARY READ REWIND
BINARY WRITE UNL@ZAD
END FILE WRITE
FZRMAT

Logical Unit Designations

Input/output units are designated in MILITRAN

source programs as follows:

Tape Units by positive integers;
Line printer by the name PRINTER;
Card reader and punch by the name CARDS.

Tape Control Statements

Statements whose execution causes tape units to
perform operations not involving transfer of data are tabu-
lated below, In all cases, the designation t is an arithme-

tic expression,

Statement

BACKSPACE (t)

BACKSPACE (t)

END FILE (t)

REWIND (t)
UNLZAD (t)

41

Effect

Designated tape unit
backspaces one record.*

Designated tape unit :
backspaces until an end-of-file
mark is passed,*

An end-of-file mark is
written on the designated
tape.

Designated tape unit rewinds.,*

Designated tape unit rewinds
and becomes inoperative,

Statements marked with an asterisk have no effect

if designated tape unit is fully rewound,

b2

Input/Output Lists
Input/output statements which involve transfer of

data between the computer and external devices require a list
of those items which are to be transferred, All such lists
are identically constructed, The summary below utilizes the

notation previously used to describe expressions,

<;/0 113€> o <%xpressio€>| (<I/0 113€>)|
(1/0 118ty , (1/0 113€>|
((<?/o 1is€>) <§mp11ed DO 1ooé>)|

(3/0 118ty , <§oi§>

implied \ .._ FER program obJject IN obJject or
DO loop/ *° single variable name e class name
<term1nat1ng cond1t10n>| _
<%erm1nat1ng cond1c104> , <1nde%>|

<:§§§igigﬁn€>'. <}nGGX> = <expressio€>|
<§§§2§2§§§“§> ’ <1nde%> = <§xpressio€> > <%xpressio€>

<%erm1nat1ng oonditio€> ee= UNTIL <logical expressio€>

<1ndex> - <any expression permitted on the 1eft>
°° side of a substitution statement

43

Binary Read, Binary Write

The statements

BINARY READ (t) data
BINARY WRITE (t) data

where the "data" is any input/output 1list, cause reading
or writing in binary form on magnetic tape, The expression

t must designate a tape unit,

Binary reading and writing are performed without
conversion, i.e., items are handled in their exact internal
form, Each BINARY WRITE statement writes a logical block
of data on tape whose length is dependent upon the number
of items in the input/output list. A BINARY READ statement
may read only one logical block, If fewer items are read
than are contained in the block, the remaining items in the

block are skipped,

Ly

Read, Write

The statements
READ (t,s) data
WRITE (t,s) data
cause reading or writing of information on the input/output
unit designated by the expression t according to a format
specified in a FORMAT statement which has the label s, Data
must be specified by an input/output list,

The statement

READWRITE(tl,sl,t2,32) data
is identical in a processing sense to the statements
READ_(tl,sl) data
WRITE (te,se) data

executed in the order shown,

45

Format

Formats for data transferred by READ, WRITE, AND
READWRITE statements are specified by statements of the form

s FZRMAT (Specification)

The label s is required, since it is the only link between
the READ or WRITE and its associated FZRMAT,

The specification portion of a FZRMAT statement
consists of a series of fields and punctuation marks which

indicate the form and placement of data in external records,

Fields are of two types: data and non-data,
Data fields specify transmission of data to or from items
in the input/output list, Non-data items involve transfer
only between the FZRMAT statement and external records, Data
fields must be separated from succeeding fields by commas,

while non-data fields need not be,

Fleld groups may be repeated through the use of
parentheses, The notation "n(sub-specification)" will cause
the group in parentheses to be repeated n times, If n 1is
absent, the group is repeated indefinitely. The sub-specifica-

tion may not contaln parentheses,

The end of any parentheses without a specific number
of repetitions (n) normally signifies the end of a record,

The specification for the next record starts from the corres-

46

ponding open parentheses, Additional changes of record may
be specified by a slash (/). Tvo consecutive slashes indicate

a blank record.

During execution of a READ, WRITE, or READWRITE
statement, input/output lists and FZRMAT specifications
are simultaneoﬁsly scanned from left to right., Each data
item in the input/output 1list corresponds to a data field
in the F@ZRMAT specification, correspondence being established
solely by order of occurrence, Transmission ends when the

input/output list is satisfied.

Voids in the input/output list cause the corres-
ponding data fields to be skipped (input) or filled with
blanks (output). An input/output 1ist which consists solely
of an implied "DO-loop" will cause tape motion only if at
least one item of data is transferred. If an input/output
1ist results in reading of a partial record, the remainder
of the record is skipped.

Non-data fields are designated by the letters
X or H, The specification wX causes W characters to be
ignored on input or assumed blank on output., The specifica-
tion wH must be followed immediately by W characters which
will be copied literally from FZRMAT statement to record

(output) or vice-versa (input).

b7

Dat;a fields are designated by specifications
of the form ncw.d where n is the number of fields, ¢ is
an ldentifier designating field type, w is the field width,
and d is a supplementary width., The supplementary width 1is
not required for some fields, The number of fields is
assumed to be 1 if absent, Basic fileld types are summarized
below, Source and target addresses referred to in the table
are items in the input/output list and are discussed in de-
tail immediately following the table, The number of charac-
ters in the external record covered by any field is always

equal to the field width,

Field
Specification

Aw

Lw

48

Interpretation

External fleld contains alphameric data;
internal representation will be BCD code,
Input: The rightmost six characters from
the field replace data at the target address,
If w 1s less than six, w characters are left
Justified and filled to six characters with
blanks,

Output: Six characters from the source
address are right justified in the field,
Remaining characters are blank, If w 1s
less than s8ix, the leftmost w characters
from the source address are used,

External field contains decimal integer;
internal representation 1s integer data,
Input: All blanks are considered zero,
Output: Leading zeroes are replaced by
blanks,

External field contains octal integer;
internal representation 1is integer data,
Input: All blanks are considered zero,
Output: Leading zeroes are replaced by
blanks,

External field contains word beginning
with T or F; internal form is logical,
Input: T or F in field results in trans-
fer of TRUE or FALSE to target address,
Output: TRUE or FALSE at source address
causes T or F to be right Justified in
field, Remainder of fileld is filled with
blanks,

Field
Specification

Jw.d

Pw.d

Ew.d

49

Effect

External form is the name of an object

and its ordinality; internal form is

a program object value,

Input: Fileld is scanned from left to

right until w-d characters are read or

a left parenthesis appears, Scanned
characters (blanks ignored) are com-

pared with names of all @BJECT types in
program, Digilts following a left parenthe-
s8is, or the rightmost d characters, are
assumed to be the ordinality. Program
object value constructed and transmitted

to target address,

Output: Ordinality of source address value
18 converted to decimal integer, enclosed
in parentheses, and placed in rightmost d+2
characters of field. ObJect name is right
adjusted in leftmost w-d-2 characters, Re-
mainder of fileld is blank,

Input: Ordinality 1s assumed unity if no
left parenthesis appears.
Output: Only obJject name appears in fileld,

External form is declimal number; internal
form is real.

Input: Decimal point 1s assumed 4 characters
from the right unless present, th
Output: Declimal point 1s inserted as d—
character from the right,

External form 1s decimal number and exponent,
Internal form 1s real,

Input: Number 18 assumed to have the form
xxxx+xx where sign separates base value and
exponent, Base value times ten to exponent
value 1s transmitted in real mode to target
address, Exponent is assumed unity if absent,
Decimal point in base value is assumed such
that d diglits are fractional unless decimal
point appears explicitly. Exponent may have
one or two digits.

Output: Field has the form .xxxxE+xx, where
decimal point falls to the left of the dth
character in the base value,

50

Data flelds of type E,F,I, and & may be signed,
Missing sign s assumed plus on input; plus sign 1is not

written on oufiput,

Sourrce and target addresses are determined by
items in the input/output 1list, A source address is a value
to be written; a target address 1s a position into which a

value is to be read,

All source addresses yield either the value of
an expression or a void, Filelds corresponding to volds in

the input/output 1ist will be blank,

A target address is implicitly vold if the expression
corresponding to 1t contains any operator, external procedure,
or open procedure outside of its subscripts. Filelds corres-

ponding to voilds are ignored.

51

CONTROL

Statements whose major function is the control

of program operating sequence are summarized in this sectlion,

They ineclude:
CZNTINUE IF
g NEXT EVENT
END NEXT EVENT EXCEPT
END C@NTINGENT EVENTS PAUSE
END FILE RETURN RETURN
END REC@ZRD RETURN STEP
EXECUTE UNLESS
G¢ ¥
Go To

Execution of the statement

Gf ¢ s

causes the program to continue from the statement whose
label is s, In the discussions which follow, this opera-

tion will be described as: "Control is transferred to s."

If, Unless

Execution of either of the statements
IF(v),x,y
UNLESS(b),y,x

52

will transfer control to x if logical expression b has
the value TRUE, to y if b is FALSE, The second comma
and label may be omitted, in which case the statement
immediately following the IF or UNLESS 1s assumed,

53

Pause, Stop

Execution of the statement
PAUSE n

causes the computer to stop with the octal number n
displayed, Execution may be restarted by manual means,

Number n may not exceed 30000 octal.
Execution of the statement
ST@P

causes executilon of the program to be terminated, Restart

cannot be effected,

Execute, Return

The PR@CEDURE statement, described under STRUCTURE,
is used to define MILITRAN programs whose operation 1s to be
controlled by other programs, The control statements EXECUTE
and RETURN implement control of such programs,

Execution of the statement

EXECUTE n(al,az,...,am)

Will cause control to be transferred to the PROCEDURE whose
name corresponds to the first six characters of the name n,

Arguments 81s8pr 0008 must correspond in mode, type, and

order to the dummy arguments of the procedure, The name n 1is

54

declared by its appearance in an EXECUTE statement to be

an external procedure name,

In a2 program which is a procedure, execution of

the statement
RETURN

will return control to the program in which the EXECUTE

statement appears,

Procedures which are used as functions (see under

EXPRESSIONS) must return a value to the executing program,

The statement

RETURN e

where e i8 an expression accomplishes transfer of both con-

trol and the value of e.

55

Do, Continue

Execution of the statement

DZ (s) UNTIL b, 1 = e,,e,

causes iterative execution of statements following the DZ up
to and including the statement labelled s, Before the first

iteration, index 1 will be set to the value of expression ey3

before subsequent iterations, index 1 will be incremented by

the value of expression €5 Index i may be any unsubscripted

or subscripted name of type single variable, array, vector,

list, or eveni!: with list,

If at the beginning of any iteration the value of
logical expression b is TRUE, control transfers immediately

to the statement following s.
Execution of the statement

DF (s) FZR a.IN.b

causes iterative execution of statements following the D¢
up to and including the statement labelled s, The single
varliable a must be of program object mode and wlll successively

assume the identity of all members of the object or class b,

Wheri all members of b have been represented by a,

control transfers immedlately to the statement following s.

56

In both forms of the DZ statement above it is
necessary that the statement labelled s permit control to
pass through it to the next statement, Thus the statements
GZ T¢, NEXT EVENT, and IF or UNLESS with two labels are
prohibited as terminal statements of a DZ loop.

Restrictions on statements terminating D¢ loops
do not 1limit the variety of processing arrangements possible,

since the statement
CZNTINUE

can be used at any point in a program, This statement per-
forms no operations and requires no space in the computer,

Its label, however, may be used to terminate a DZ loop.

Other D@ statements may appear between one DZ and
its terminating statement, but the "inner" loop must terminate

at or before the end of the "outer" loop.

57

End, Next Event, Next Event Except

A group of executable statements beginning with

éne of the stztements
CZNTINGENT EVENT n((ol,ce,...,oJ),d)
PERMANENT EVENT n((°1’°2""’°3)’d)
PERMANENT EVENT n

and ending with the statement
END

is known in MILITRAN as an "event." Depending upon the
initial statement, the event is either a "contingent event”

or a "permanernt event,"

Events are processed in a sequence determined by
the structure of the MILITRAN source program, The "natural"

or unmodified sequence is:

l, The first permanent event in the

program,

2. Subsequent permanent events in
the order of theilr appearance i1n

the program,

3. The last permanent event in the

program,

y, The "next contingent event",

58

This sequence is repeated until terminated by either failure
to select a "next contingent event" or transfer of control

to a portion of the program not in any event,

It 1s not required that a program have any minimum
number of permanent or contingent events, In the discussion
which follows, we will assume that irrelevant items in the

natural sequence are ignored,

Selection of the "next contingent event" is depend-
ent upon the current value of TIME, Of all entries in all
contingent event lists, one 1s selected whose first component
exceeds TIME by the smallest positive value, The first compo-
nent 1s assuried to be of real mode; duplicate minima within
one event cause the entry of least index to be chosen; dupli-
cate minima In more than one list cause an entry to be chosen

from the event which appears earlliest in the natural sequence,
Executlion of the statement
NEXT EVENT

causes control to be transferred to the next event in the
natural sequence, If the NEXT EVENT statement is not itself
contained in an event, control is passed to the first permanent

event,

59

The statements

NEXT EVENT (ny,np,...,n)

NEXT EVENT EXCEPT (n,,n,,...,n_)

behave exactly as does the NEXT EVENT statement, but modify
the natural sequence, NEXT EVENT EXCEPT will assume that
events n,,N,,...,0, do not exist, NEXT EVENT (nl,ng,...,nm)

will assume that only the events named in parentheses exist

and that they occur in the order listed,

When control is transferred to a contingent event
by means of an event sequencing statement, the values of
TIME, ATTACKER, TARGET, and INDEX are automatically set,

Assuming that control has been transferred to CONTINGENT

EVENT n (above) because its 1th entry contains the minimum

first component, then:

TIME = cl(i)

ATTACKER = c2(1)

TARGET = c3(1)

INDEX = 1
Transfer of values above 1s made without respect to modes,
€.8., ATTACKER 1s not valid unless s is of program object

mode,

60

'End Contingent Events, End File Return, End Record Return

Certain conditions occurring during the running
of a program are detected as errors by the program., Three

of these conditions are:

1. In attempting to choose a “"next
contingent event," the program
finds no entries whose values
equal or exceed the current value

of TIME.

2. In reading from magnetilc tape, the
program encounters an end-of-file
mark on the tape before the input/
output list is satisfled,

3. In executing a BINARY READ, the end
of a logical block 1s encountered
before the input/output list 1is
satisfied, (See under BINARY READ)

In all of the above cases, control is normally
wrested from the program and execution is terminated, How-

ever, executicn of the statements

END CZNTINGENT EVENTS (S)
END FILE RETURN (S)
END RECZRD RETURN (S)

causes the rrogram to be modified in such a way as to
return control to the statement labelled s if and when

the appropriate error condition occurs.

61

62

COMPILER

Statements whose function is providing informa-
tion to the processor are summarized in this section,

These essentially machine-dependent statements are:

END C@MPILATI@ZN
SUSPEND FAP LISTING

End Compilation

The statement

END C@MPILATIZN

signals the end of a MILITRAN source program, The statement
may not contain comments and may not occupy more than one

card,

Columns T73-75 of the END C@MPILATIZN card will be

preserved and used to identify the translated program,

Suspend FAP lListing

The statement
SUSPEND FAP LISTING

appearing anywhere in a MILITRAN source program wWilll cause
listing of the translated program to be omitted by the

processor,

63

APPENDIX

Environment Ileclarations

REAL 0y (17,35, 00esdy)secsny(1y,15,.0.0,1)

INTEGER 0y (11,35, 0005y)se0esnp(iy,1p,..0,1y)
LOGICAL ny (11,455 eeesdp)seeesny(17,15,.000,1y)

OBJECT nq (1,),n,(15), 00,0, (1)

PROGRAM OBJECT nj (17,315,000)seeesnp(ly,15,000,14)

CLASS (¢) CONTAINS 845805 000,87

NORMAL MODE ml(al,az,...,8k),m2(b1:b2,oo-:br)

VECTOR n ((81’82’""ai)’dl’dQ""’di)
COMMON nl,nz,...,n1

Arithmetic

A =B

Logical
A =8B

Control Staterients

GO TO s
PAUSE]

List

STOP

IF (b) By 580
UNLESS (b) Bps8;
DO (s) UNTIL b, n = e sep
DO (s8) IFOR a.IN.D
CONTINUE

Processing Statements

LIST n((cl,ce,...,ci),d)

LENGTH (n)
RESET LENGTH (n) to p
PLACE (el,ee,...,ei) INn

REMOVE ENTRY n(k)

PLACE ENTRY m(J) IN n

REPLACE ENTRY n(k) BY (el,ee,...,ei)
REPLACE ENTRY n(k) BY ENTRY m(J)
REMOVE (bl,be,...,bi) FROM n

REPLACE (b1,b5,404,b4) BY (ey,e5,...,€,) IN n
REPLACE (bl,be,...,bi) BY ENTRY m(J) IN n
MINIMUM INDEX (n(by,bp,...,b,),8)

RANDOM INDEX (n(bl,be,...,bi),s)

GST

LsT

64

Event Statements

PERMANENT EVENT n((al,ae,...,ai),d)
CONTINGENT EVENT n((al,ae,...,ai),d)

NEXT EVENT
NEXT EVENT (nl,ne,...,ni)

NEXT EVENT EXCEPT (nl,na,...,ni)
END

END CONT'INGENT EVENTS (s)

Procedure Statements

PROCEDUFE n
PROCEDURE n(al,ae,...,an)

EXECUTE n
EXECUTE n (81’82"“’°n)

RETURN
RETURN a

Input-Output Statements

FORMAT (Format Specification)
READ (t,s) List

WRITE (t,s) List

READWRITE (tl,sl,ta,sa) List

BINARY READ (t) List

BINARY WRITE (t) List
END FILE RETURN (s)
END RECORD RETURN (s)
BACKSPACE (t)
BACKSPACE FILE (t)
END FILE (t)

REWIND (t)

UNLOAD (t)

66

Standard Functions

ABS(v)
ATAN(vl,ve)

cas (v)

EPSIL@N(v)

EXP(v)

INTEGER (v)

LEG (v)
MAX(vl,vg,...,vJ)
MIN(vl,ve,..m,vJ)
MﬁD(vl,ve)

RANDZM

REAL(v)

SIGN(v)

SIN(v)

SQRT(v)

TAN(v)

67

INDEX

"A" Plelds in FZRMAT 48
ABS 26, 4, 67
addition (+) 7, 22
LAND, 8, 22
arrays 5, 14
as procecure arguments 20
in CZMM@N statements 19
in expressions 24
subscripts of 29
asterisk (*) 7
as multirlication symbol 22
in 1ist processing conditions 33-34
ATAN 26, 4, 67
ATTACKER &4
automatic updating 59
in C@MM@N statements 20

BACKSPACE 41, 10, 40, 66
BACKSPACE FILE 41, 10, 40, 66
BINARY READ 43, 10, 40, 65
BINARY WRITE 43, 10, 40, 66
blanks 3, 6

BY 9, 37-38, 64

BY ENTRY 9, 37-38, 64

card punch 40

card reader 40

CARDS 40, 4

characters, alphabetic 3, 4, 9
characters, alphameric 3, 4, 6, 46, 48
characters, numeric 3, 6

characters, set of 3
characters, special 3, 7, 6, 46, u8
CLASS 13, 10, 12, 63
classes 5
as class members 13
as dimensions 14, 19
as D@-loop parameters 55
as procedure arguments 21
defining statement 13
in COMMZN statements 19, 20
in expressions 23, 25
in substitution statements 31
comma (,) 7
CgMMZN 18-20, 10, 12, 63
comparators 7T, 22, 23
constants 6, 3, 24
CENTAINS 9, 13, 63
CZNTINGENT EVENT 17, 57, 10, 12, 65
contingent events 5
as procedure arguments 21
automatic processing of 57-59
defining statements 17, 57
in CZMM@ZN statements 19, 20
in expressions 24
in substlitution statements 31
subscripts of 29 '
C#NTINUE 56, 10, 51, 64
cgs 26, 4, 57

dimensions 14
in CgMMZN statements 18, 19
of arrays 14
of lists 16

69

of objects 12

of vector components 16

of vectors 16

related ;0 subscripts 29-30
division (/) 7, 22
D¢ 55-56, 10, 51, 64

+E, T, 22
implied in 1list processing conditions
"E" fields in F@ZRMAT 49
EACH 13, 4
ellipsis (...) 7
END 17, 57, 10, 51, 65
END C@MPILATIZN 62, 4, 10
END C@NTINGENT EVENTS 60-61, 10, 51, 65
END FILE 41, 10, 40, 66
END FILE RETURN 60-61, 10, 51, 66
END RECZRD RETURN 60-61, 10, 51, 66
EPSILN 26, 4, 67
.EQV, 8, 22
EXECUTE 53-54, 10, 51, 65
.EXOR, 8, 22
EXP 26, 4, 67
exponentiatioa (.P.) 7, 22
expressions 22-25
as dimenslons 12, 14
as D@-loop parameters 55
as logical unit designators 40
as subscripts 29-30
in input/output lists 42
in RETURN statements 54
in substitution statements 9, 31-32

external procedures 5, 24, 31, (see also "procedures")

34

70

"F" fields in FPRMAT 49
FALSE &4, 6
FZR 9, 42, 55, 64
FPRMAT 45-50, 44, 4, 10, 40, 65
FREM 9, 36, 65
functions 25-28 (see also "procedures")
for locating list entries 39
in expressions 24
standard in MILITRAN 26-28
use of RETURN statement 54

B, T, 22
.GE, T, 22
6 ¥ 51, 10, 63
restrictlon in DZ-loops 656
GST 34-35, i, 64

"H" fields in FPRMAT 46

"I" fields in FZRMAT 48
IF 51-52, 10, 64
restriction in DZ-loops 56
implied D@-loops in input/output lists 42
IN 9, 35, 36, 38, 64
~AN, T, 22, 23
implied in 1list processing conditions
INDEX 4
as abbreviation for MINIMUM INDEX 39
automatic updating 59
in COMM@ZN statements 20
input/output 1lists 42-46, 50
INTEGER 14, 27, 4, 10, 12, 16, 67
+I8: T. 22, £3
implied 1n list processing conditions

34

34

T1

"J" fields in FZRMAT 49

0L0 7’ :2
"L" fields in FZRMAT 48
JLE, 7. 22

LENGTH 32-33, 4, 35, 36, 38, 64

line printer 40

LIST 16, 10, 12, 64

1ist entries 32
as basis for NEXT EVENT selection 58-59
conditions specifying 33
functions for locating 39

list processing 32-39, 64

lists 5
as prccedure arguments 20
associated with events 17, 58-59
defining statements 16, 17
in COMMZN statements 19
in expressions 24
in substitution statements 31
processing of 32-39
subscripts of 29

LG 27, 4, 67

LOGICAL 1%, 10, 12, 16, 63

logical bloeck 43, 60-61

logical unit designations 40, 43, ul

LST 34-35, 4, 64

main program 2

MAX 27. 4, 67

MIN 27, 4, 67

MINIMUM INDEX 39, 4, 64
minus (=) 7, 23

mnemonic delimiters 9, 3

MZD 4, 67
modes U4-5
declaration of 14-16
multiplication (*) 7, 22
names 3-4
NE, T, 22
NEXT EVENT 57-59, 4, 10, 51, 65
in CIM@N statements 20
restriction in D@-loops 56
NEXT EVENT EXCEPT 5T7-59, 10, 51, 65
NZRMAL MZDE 15, 11, 12, 16
NgT. 8, 23

"@" flelds in FZRMAT 48
OBJECT 12, 11, 63
objects 5
as class members 13
as dimensions 14, 19
as DZ-loop parameters 61
as procedure arguments 21
defining statement 12
in CZMM@ZN statements 19, 20
in expressions 23
in subsititution statements 31
open procecures 5, 24, 31 (see also "procedures")
operators 3, 7-8, 22-23
2R, 8, 22

B s 22

parentheses () 7, 23-24, 45

PAUSE 53, 11, 51, 63

period (.) T, 6

PERMANENT EVENT 17, 11, 12, 57, 65

73

Th

permanent events 5
as procedure arguments 21
automatie processing of 57-59
defining statements 17, 57
in CAMM@N statements 19, 20
in expressions 24
In substitution statements 31
subscripts of 29
PLACE 35, 11, 31, 6%
PLACE ENTEY 36, 11, 31, 64
plus (+) 7, 23, 51
PRINTER 4, 40
PRZCEDURE 20, 11, 12, 53, 65
procedures 2, 5
arguments of 20-21, 24, 25, 53
as functions 25
COMMPN statements in 18
control statements 53-54
defining statements 20-21, 53-54
implicit declaration of 25
in expressions 24
in substitution statements 31
program 2
PRZGRAM @BJECT 14, 11, 12, 16, 63
punctuation 3, 7, 22-25

RAND@M 27, 4, 67

RANDZM INDEX 39, 4, 64

READ 44, 11, 40, 45-46, 65
READWRITE 45, 11, 40, 45-46, 65
REAL 14, 28, %, 11, 12, 16, 67
REMZVE 136, 11, 31, 64

REM@VE ENTRY 36, 11, 31, 64
REPLACE 33, 11, 31, 64

REPLACE ENTRY 37, 11, 31,
RESET LENGTH 38, 11, 31,
RETURN 53-54, 11, 51, 65
REWIND 41, 11, 40, 66
SIGN 28, 4, 67
SIN 28, 4, 67
single variables 5
as procedure arguments
in CPMMZN statements
in expressions 24
source program 2
source sddress 50, 47-49
SQRT 28, 4, 67
statement labels 5
as prccedure arguments
defined by C@NTINUE st
defining range of D¢-1

64
64

20
19

21
atements

oops 55

56

in ENT' CZNTINGENT EVENTS statements 60-61

In END FILE RETURN sta
in END RECZRD RETURN s
in GF T statements 5
In IF statements 51-5

tements
tatements
L

2

in substitution statements 31

iIn UNLESS statements

required for FZRMAT st
statement type identifiers
sSTgP 53, 11, 51, 64
subscripts 29-30

51-52
atements
9-11, 3

60-61
60-61

45

substitution statement 31-32, 7, 9, 63

subtraction (-) 7, 22
SUSPEND FAP LISTING 62, 1
symbolie dilmensions 5
as procedure arguments
in COMM@N statements

1

21
18, 20

75

in expressions 24
of arrays, vectors, lists, etc. 14
of objects 12

TAN 28, 4, 67
tape units 40-41, 43
TARGET &4
automatic updating 59
in CZMM@ZN statements 20
target address 52, 47-49
TIME 4
as basis for NEXT EVENT selection 58
automatiec updating 59
in COMM@ZN statements 20
™™ 9, 38, 64
TRUE 4, 6
implied in 1ist processing conditions 33-3%4

UNLESS 51-52, 11, 64
restriction in D@-loops 56

UNLZAD 41, 11, 42

UNTIL 9, 42, 55, 64

VECTZR 16, 11, 12, 63

vector components §
defining statements 16
in expressions 24
subscripts of 29

vectors 5
as procedure arguments 20
defining statement 16
in CZMMPN statements 19

76

in expressions 24

in substitution statements 31

subscripts of 29
voids in input/output lists

WRITE 44, 11, 40, 45-47, 65

"X" fields in FZRMAT 46

42, 46, 51

7

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security olanllleailcn of titie, body of abetract and indexing annotation muet be entered when the overel! report ia claesilict:

1. ORIGINATIN G ACTIVITY (Corporate suthor) 28 RCPORT SECURITY C LASS!IFICATION
Systems Research Group, Inc. Unclassified
1501 Franklin Avenue TR
Mineola, Long Island, N, Y,

3. REPORT TITLE

MILITRAN REFERENCE MANUAL

4. DESCRIPTIVE NOTES (Type of report and inclueive detes)

Technical Report

8. AUTHOR(S) (L.aet name. firet name, Ini'tiel)

Systems Research Group, Inec.

6. REPORT DATE 78 YTOYAL NO. OF PAGKS 75. NO. OF REFS
June, 1964
8e. CONTRACY OR GRANT NO. 9a. ORIGINATOR'S REPORY NUMBER(S)

b PROJECY NO.

d.

Nonr 2936(00)

Navy NR 276-001
0. 3”?:0':'! :JPORT NO(S) (Any other numbere that may be seeigned
AF Proj. 2801, Por) JSAF Technical Documentary
Task 280101 Report No., ESD-TDR-64-390

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from
the Defense Documentation Center (DDC)

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research,Wash,,D.C.
& Electronic Systems Division, Alr
Force Systems Command, Bedford, Mass

13. ABSTRACT

MILITRAN is an algorithmic computer language specifically oriented to the
problems encountered in simulation programming. In addition to providing
overall flexibility.in expressing complex procedures, the language contains featy
which greatly simplify the maintainenee of status lists, handling of numeric

and non-numeric data, and sequencing of events in simulated time.

This report is intended as a reference summary for those already familiar

with MILITRAN.

res

DD ."2*. 1473 . Unclassified

Unclassified

Security Classification

14. LINK A LINK B LINK C
KEY. WORDS noLE wY nNOLE WY ROLE wT
Militran
Language
Simulation
Computers

Programming Languages
Data Processing Systems
Information Retrieval
Instruction Manuals
Compiler

Systems Analysis

War Gaming

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issulng
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
"Restricted Data’’ 1s included Msrking is to be in accord-
ance with appropriate security regulstions.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective $200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
;mrk'mgl have been used for Group 3 and Group 4 sa author-
zed. :

3. REPORT TITLE: Enter the complete report title in all
capits] ietters. Titles in sll cases should be unclsssified.
If a mesningful title csnnot be seiected without classifice-
tion, show title classificstion in all cspitals in parenthesis
immediately following the title,

4, DESCRIPTIVE NOTES: If appropriste, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered,

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last nsme, first name, middle initlal,
If military, show rank and brsnch of service. The name of
the princips! «uthor iv an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date sppears
on the report, use dste of publication.

7a. TOTAL NUMBER OF PAGES: The total psge count
should follow normal psginstion procedures, i.e., enter the
number of psges containing information

7b. NUMBER OF REFERENCES Enter the total number of
references cited in the report,

8a. CONTRACT OR GRANT NUMBER: 1f sppropriate, enter
the sppiicsble number of the contract or grant under which
the report was written

8b, &, & 8d. PROJECT NUMBER: Enter the appropriate
milltary department identification, such as project number,
subproject number, system numbers, tssk number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity, This number must
be unlque to this report.

95. OTHER REPORT NUMBER(S): If the report has been
assigned sny other report numbers (either by the originator

or by the sponsor), slso enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classificstion, using standard statements
such as:

(1) “‘Quallfied requesters msy obtsin copies of this
report from DDC. "’

(2) ''Foreign announcement and dissemination of this
report by DDC is not suthorized.*’

(3) “U. S. Government agencies msy obtsin copiea of
this report directly from DDC, Other qualified DDC
users shsl] request through

"

(4) ''U. S. military sgencies may obtain copies of thia

report directly from DDC., Other qusiified users
shall request through

(S) *All distribution of this report is controlled. Quai-
ified DDC users shall request through

If the report hss been furnished to the Office of Technicsl
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1. SUPPLEMENTARY NOTES: Use for additional explane-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or iaboratory sponsoring (pay~
ing for) the research and development. Include sddress.

13. ABSTRACT: Enter sn sbstract giving a brief snd factus!
summary of the document indicative of the report, even though
it msy also appear eisewhere in the body of the technicsi re-
port. If additions! spsce is required, a continuation sheet shall
be sttached.

1t is highly desirsble thst the ahstrsct of classified reporta
be unclassified. Esch paragraph of the abstract shali end with
an indication of the militsry security cisssificstion of the in-
formstion in the paragrsph, represented as (TS). (S) (C). ar (U)

There is no limitation on the iength of the abstract.
ever, the suggested length is from 150 to 225 words.

How-

14. KEY WORDS: Key words are technically mesningful terms
or short phrasses that charscterize s report snd msy be used sa
index entries for cstsloging the report. Key words must be
selected so thst no security classificstion is required. Identi-
fiers, such ss equipment mode! designation, trade name, militsry
project code nsme, geogrsphic iocstion, msy be used as key
words but will be followed by sn indicstion of technical con-
text. The sssignment of links, rules, and weights is optional.

Unclassified

