
o >- <^ i.
ro ()

i O
--;
vO UJ

-1
-Y. i—(

a U-,
H
Q H inical Documentary
£ w >rt No. ESD-TDR-64-390

ESO RECORD COPY

SCIENTIFIC * WjSwHfi *«

COPY NR,
OF.

-ESILPROCESSED

• DDCTA. Dpnojoinc.il
• ACCESSION MAST.. „Lm

•ATE,

ESTI CONTROL HH^j2JcZ_±LL (T&

CY NR
cx»

MILITRAN
REFERENCE MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)

by

—SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue

Mineola, L. I., New York

JUNE 1964

•

,

When US Government drawings, speoifioationa
or other data are used for any purpose other than a
definitely related government proourement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the faot that the
government may have formulated, furnished, or in any
way supplied the said drawings, speoifioations, or
other data is not to be regarded by implioation or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto.

Reproduction in whole or in part is permitted
for any purpose of the United States Government,

DDO AVAILABILITY NOTICE

Qualified requesters may obtain oopies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va, 22314. Orders will be expedited
if plaoed through the librarian or other person designated
to request doouments from DDC.

Technical Documentary
Report No. ESD-TDR-64-390

MILITRAN
REFERENCE MANUAL

Prepared for the

OFFICE OF NAVAL RESEARCH
NAVY DEPARTMENT
WASHINGTON, D. C.

and the

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

L. G. HANSCOM FIELD, BEDFORD, MASS.

U. S. Navy Contract No. Nonr 2936(00)

by

SYSTEMS RESEARCH GROUP, INC.
1501 Franklin Avenue

Mineola, L. I., New York

JUNE 1964

When US Government drawings, specifications
or other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or
other data is not to be regarded by implication or
otherwise as in any manner licensing the holder or any
other person or conveying any rights or permission to
manufacture, use, or sell any patented invention that
may in any way be related thereto.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this
report from the Defense Documentation Center (DDC), Cameron
Station, Alexandria, Va. 2231^. Orders will be expedited
if placed through the librarian or other person designated
to request documents from DDC.

FOREWORD

This is one of three technical reports being

published simultaneously. The others are the MILITRAN

Operations Manual for IBM 7090-7094 (Technical Documentary

Report No. ESD-TDR-64-389) and the MILITRAN Programming

Manual (Technical Documentary Report No. ESD-TDR-64-320).

The three reports constitute a complete description and

instructions for using the MILITRAN language in computer

programming of simulation problems.

The MILITRAN 7090-7094 Processor, which is used

to compile a problem written in MILITRAN source language

into a machine language program, will be available to pro-

spective users. Pending final arrangements, requests for

information about the MILITRAN Processor should be sent to

the Office of Naval Research (Code 491).

This report was prepared by the Systems Research

Group, Inc.* under Contract Nonr-2936(00), which was initi-

ated by the Naval Analysis Group, Office of Naval Research,

and has been Jointly supported by the Office of Naval

Research and the Electronic Systems Division, Air Force

Systems Command.

ABSTRACT

MILITRAN is an algorithmic computer language

specifically oriented to the problems encountered In

simulation programming. In addition to providing over-

all flexibility In expressing complex procedures, the

language contains features which greatly simplify the

malntalnence of status lists, handling of numeric and

non-numeric data, and sequencing of events in simulated

time.

This report is intended as a reference summary

for those already familiar with MILITRAN.

REVIEW AND APPROVAL

This Technical Documentary Report has been

reviewed by the Electronic Systems Division, U. S. Air

Force Systems Command, and is approved for general distribu-

tion.

J. B. CURTIS
2nd Lt., USAP
PROJECT OFFICER

TABLE OP CONTENTS

INTRODUCTION

Page

\l

GENERAL LANGUAGE CHARACTERISTICS 2
Characters 3
Names 4
Constants 5
Punctuation Marks 7
Operators 7
Mnemonic Delimiters 9
Statement Type Identifiers 9

STRUCTURE 12
Object 12
Class , 13
Real, Integer, Logical, Program Object 14
Normal Mode 15
Vector, List 16
Contingent Event, Permanent Event
Common
Procedure 20

EXPRESSIONS 22
Expression Syntax 22
Functions 25
Standard Functions 26
Subscripts 29

PROCESSING 31
Substitution 31
List Processing 32
List Entries 32
List Processing Conditions 33
Place, Place Entry 35
Remove, Remove Entry 36
Replace, Replace Entry 3
Reset Length 3
List Entry Locating Functions 39

INPUT/OUTPUT 40
Logical Unit Designations 40
Tape Control Statements 40
Input/Output Lists 42

Page

Binary Read, Binary Write 43
Read, Write 44
Format 45

CONTROL 51
Go To 51
If, Unless 51
Pause, Stop 53
Execute, Return 53
Do, Continue 55
End, Next Event, Next Event Except 57
End Contingent Events, End Pile Return,

End Record Return 60

COMPILER 62
End Compilation 62
Suspend FAP Listing 62

APPENDIX 63

INDEX 68

INTRODUCTION

This manual is designed as a reference for

programmers working in MILITRAN. The description of the

MILITRAN language herein is more concise than that given

in the MILITRAN PROGRAMMING MANUAL, with which the reader

is assumed to be familiar.

Various sections of this manual outline GENERAL

LANGUAGE CHARACTERISTICS, statements which define program

STRUCTURE, characteristics of EXPRESSIONS, and statements

whose major functions include PROCESSING, INPUT OUTPUT,

CONTROL, and operation of the COMPILER.

A summary of all MILITRAN forms is Included in

the appendix.

GENERAL LANGUAGE CHARACTERISTICS

A MILITRAN source program is a series of

MILITRAN statements which specify a sequence of operations

to be performed by a digital computer. A program is either

a main program or a procedure. A main program Initiates

processing and may be devised in such a way as to require

no procedures. A procedure cannot initiate processing and

must receive a signal from either a main program or another

procedure before Its operation sequence oan be executed.
»

A MILITRAN statement Is a string of elements

arranged In a prescribed order which specifies one or more

of the following characteristics of the program:

1. STRUCTURE of the program

or its elements;

2. PROCESSING to be performed

within the computer;

3. INPUT/OUTPUT, or exchange

of data between the computer

and its external storage devices;

4. CONTROL of the sequence in

which various operations are

to be performed; and

5. COMPILER instructions, or

specification of the manner

in which the translation from

MILITRAN to machine language

is to be performed.

The elements which combine to form MILITRAN

statements are names, constants, punctuation marks,

statement type identifiers, operators, and mnemonic

delimiters. These elements are in turn made up of

characters, which are the basic units of any language.

Characters

The MILITRAN Basic Language is expressed in terms

of the following character set:

ABCDEPOHIJKLMN0PQRSTUVW
XYZ 0123456789.0,-+-*/

The character "blank" is normally not significant

in the language. Except where specifically noted in this

summary, blanks may be used in any part of a statement with-

out any effect on the statement.

"Alphabetic characters" include the letters A through

Z; "numeric characters" include the digits 0 through 9; alpha-

meric characters include both alphabetic and numeric characters,

All others are "special characters."

Names

A name la a string of one to sixty alphameric

characters, the first of which Is alphabetic. Although

statement type Identifiers and mnemonic delimiters are

alphabetic strings, their use within a statement distinguishes

them from names without ambiguity.

Certain names have a pre-defined meaning In

MILITRAN and may be used only In reference to that meaning.

These names are:

ABS GST PRINTER

ATAN INDEX RAND0M

ATTACKER INTEGER RAND0M INDEX

CARDS LENGTH REAL

C0S L0O SIGN

EACH LST SIN

END C0MPILATI0N MAX SQRT

EPSIL0N MIN TAN

EXP MINIMUM INDEX TARGET

FALSE M0D TIME

P0RMAT NEXT EVENT TRUE

All names used In a MILITRAN source program are

either explicitly or Implicitly assigned a type. Some

types of names are assigned a mode. The type of a name

Indicates the nature of Its use In the program. The mode

of a name indicates the form of data referred to by the

name.

The following table lists all possible types of

names, whether or not they have modes, and short descrip-

tions of their use in a program.

Type Mode?

Single Variable Yes

Array Yes

Vector Yes

List Yes

Object No

Class No

Contingent Event Yes
with List

Permanent Event No

Permanent Event Yes
with List

Vector Component Yes

Symbolic Dimension Yes

Statement Label No

Procedure Yes

Open Procedure Yes

External Procedure Yes

Use in Program

Storage of single items of data.

Storage of several items of data
Under a single name.

Storage of several arrays under
a single name.

Special form of vector which permits
automatic updating of data items.

Specification of basic identifiers.

Grouping of objects.

Association of processing functions
with a list of the same name.

Linking of processing functions
in a simulated time sequence.

Association of processing functions
with a list of the same name.

An array which is associated with
a vector of list.

Specification of array dimensions.

Designation of points in program.

Designation of subroutine entry.

Designation of integral processing
codes.

Designation of separately coded pro-
cessing.

Constanta

Constants are single Items of data whose value Is

unchanged throughout the execution of the program. In fact,

a constant might be thought of as a nameless single variable,

forms:

Integer constants may take one of the following

1. A string of numeric characters.

2. A string of the form "nHxxxxxx"

where n Is a digit not exceeding 6

and x Is any character Including

the character "blank". The number

of characters (x) must be equal to

n.

Real constants may take one of the following

forms:

1. A string of numeric characters

which Includes one and only one

period.

2. A string of numeric characters, which

may or may not Include a period,

followed by E, En, Enn, E+n, or E+nn,

where n Is a numeric character.

The distinction between real and Integer constants

is significant only in arguments to procedures.

Logical constants include only the names TRUE and FALSE.

Punotuatlon Marks

The only punotuatlon marks used In MILITRAN

are the following:

Period

(Open Parentheses

) Close Parentheses

, Comma

... Ellipsis (Delimits comments)

Operators

The operators used In MILITRAN are the following:

• Substitution

+ Addition; plus

Subtraction; minus

* Multiplication

/ Division

.P. Exponentiation

,E. Comparison: Equal to

.0. Comparison: Greater than

.L. Comparison: Less than

.NE. Comparison: Not equal to

.OE. Comparison: Greater than or equal to

.LE. Comparison: Less than or equal to

.IS. Object Identity

.IN. Object Inclusion

8

.0ft. Logical disjunction

.N0T. Logical negation

.AND, Logical conjunction

.EQV. Logical equivalence

.EX0R, Logical exclusive disjunction

Mnemonic Delimiters

The delimiters BY, BY ENTRY, C0NTAINS, F0R,

FR0M, IN, T0, and UNTIL are used within certain state-

ments. Use of these alphameric combinations as names

Is permitted, as the distinction between name and delimiter

Is always contextually clear.

Statement Type Identifiers

The basic statement in MILITRAN Involves substitu-

tion of one data Item for another within the computer. The

substitution statement has the form

a » b

where a Is a subscripted or unsubscrlpted variable name and

b is any expression whose value Is suitable for storage In a.

All statements which are not substitution statements

are designated by alphabetic strings called statement type

identifiers. The following table lists all statement types

and their primary uses. The form and characteristics of each

statement is summarized In later sections by primary use.

Primary functions are listed under GENERAL LANGUAGE CHARACTER-

ISTICS.

10

Statement Type

BACKSPACE

BACKSPACE PILE

BINARY READ

BINARY WRITE

CLASS

C0MM0N

C0NTING-ENT EVENT

C0NTINUE

D0

END

END C0MPILATI0N

END C0NTINQENT EVENTS

END PILE

END FILE RETURN

END REC0RD RETURN

EXECUTE

F0RMAT

G0 T0

IP

INTEGER

LIST

L0OICAL

NEXT EVENT

NEXT EVENT EXCEPT

Primary Function

INPUT/OUTPUT

INPUT/OUTPUT

INPUT/OUTPUT

INPUT/OUTPUT

STRUCTURE

STRUCTURE

STRUCTURE

CONTROL

CONTROL

CONTROL

COMPILER

CONTROL

INPUT/OUTPUT

CONTROL

CONTROL

CONTROL

INPUT/OUTPUT

CONTROL

CONTROL

STRUCTURE

STRUCTURE

STRUCTURE

CONTROL

CONTROL

11

Statement Type

N0RMAL M0DE

0BJECT

PAUSE

PERMANENT EVENT

PLACE

PLACE ENTRY

PR0CEDURE

PR0GRAM 0BJECT

READ

READWRITE

REAL

REM0VE

REM0VE ENTRY

REPLACE

REPLACE ENTRY

RESET LENGTH

RETURN

REWIND

ST0P

SUSPEND PAP LISTING

UNLESS

UNL0AD

VECT0R

WRITE

Primary Function

STRUCTURE

STRUCTURE

CONTROL

STRUCTURE

PROCESSING

PROCESSING

STRUCTURE

STRUCTURE

INPUT/OUTPUT

INPUT/OUTPUT

STRUCTURE

PROCESSING

PROCESSING

PROCESSING

PROCESSING

PROCESSING

CONTROL

INPUT/OUTPUT

CONTROL

COMPILER

CONTROL

INPUT/OUTPUT

STRUCTURE

INPUT/OUTPUT

12

STRUCTURE

Structure - defining statements are summarized In

this section. They Include:

Object

CLASS

C0MM0N

CONTINGENT EVENT

INTEGER

LIST

L0GICAL

N0RMAL M0DE

The statement

0BJECT

PERMANENT EVENT

PR0CEDURE

PR0GRAM OBJECT

REAL

VECTOR

OBJECT n^d^, n2(d2),..., nm(dm)

defines names n., n2,..., n_ to represent basic object types.

The names are preserved for use at running time In Input/output

operations.

Dimension d, designates the number of objects to be

named n,. This dimension may be an expression of real or Integer

mode. Names used In a dimension are defined by such use to be

symbolic dimensions, and no other declaration of type or mode Is

permitted except subsequent use In dimensions.

13

Clasa

The statement

CLASS (n) C0NTAINS a,, a2,,,,,ara

defines the name n to be that of a class. The name Is not

preserved In its external form.

The members of the class are specified by elements

a,, a?,...,a , where a. may have the following forms:

object name

EACH*object name

class name

EACH»class name

Object and class names used In a., a2>...,a must

have been declared as such by statements appearing before the

current CLASS statement.

The use or absence of "EACH»" Indicates whether or

not membership Is Individual as opposed to collective.

14

Real, Integer, Logical, Program Object

The statements

REAL a., &p,,•., a

INTEGER a-, *2,..., am

L0QICAL a1# a2,..., am

PR0GRAM 0BJECT a., a2,..., a

where element a. may have the form n. or n.fd^, d2»...»dk)*

defines names n,, n2'««»*nm
to be of REAk, INTEGER, LOGICAL,

or PROGRAM OBJECT mode.

The appearance of dimensions (d,, d2,...,djc) In the

element a, further defines name n* to be an array having k

dimensions.

Dimensions (d,, d2,...,d.) may each assume the

following forms:

1. An expression of real or

Integer mode;

2. An object name; or

3. A class name.

Any name which appears In a dimension Is defined by

such appearance to be a symbolic dimension unless It Is defined

elsewhere as an object or class. No other definition of symbolic

dimensions Is permitted except subsequent use In another dimension.

15

Normal Mode

In the absence of explicit mode declarations, names

are assigned modes according to their Initial letters as re-

quired. The correspondence of modes to Initial letters Is

known as the "normal mode".

The statement

N0RMAL M0t>E m^a^ a2,...,a1), m2(b1, b2,...,bj,

•"o^i* **2,.. • ,c. },... ,m

Is used to specify the normal mode. Mode designators m may

be the words REAL, INTEGER, L0OICAL, or PR0ORAM 0&JECT .

Alphabetic characters a-, a2,...,b., b2,...,c. Indicate the

Initial letters which are to correspond to the various mode

designators. Designator m applies to all letters not ex-

plicitly mentioned In the statement, and Is assumed REAL If

absent.

The normal mode so defined will prevail until

another N0RMAL M0DE statement Is encountered. The Initial

normal mode for all programs Is REAL.

16

Vector, List

The statements

VECT0R n((c1,c2,...,e,),
di*d2* *•**dk^* etc*

LIST n((c1,Cg,...,Cj),d1), etc.

define groups of arrays c.,c2,..,,c, which have Identical

dimensions d.,d2,.<»*\ and are grouped together under the

name n. The name n Is declared to be a vector or list, and

names c-,c2,...,o. are declared to be vector components.

The number of such name/component/dlmenslon groups which

can be declared In one statement Is limited only by the max-

imum statement length.

Unless the mode of name n Is declared explicitly

In a REAL, INTEGER, L0OICAL, or PR0ORAM tfBJECT statement, the

normal mode prevailing at the appearance of the VECT0R or LIST

statement will be assigned. Components whose modes are not

explicitly defined will be assigned the mode of the name n.

Dimensions d«,d2,...,d. may assume the same form as

array dimensions previously described.

Only two differences obtain between vectors and lists

1. Lists may have only one dimension;
vectors may have any number.

2. Lists may be operated on by special
processing statements; vectors may not.

17

Contingent Event, Permanent Event

The statements

CONTINGENT EVENT n^O^Og, .. .,0J),d1)

PERMANENT EVENT n((c-,c2, ...jC,),^)

PERMANENT EVENT n

declare the name n to be a contingent event with list, permanent

event with list, or permanent event. Forms with a list create

storage assignments exactly as would a LIST statement.

The event statement Is always followed by a series of

one or more statements, the last of which must be an END state-

ment. (See CONTROL.) This series of statements embodies the

processing associated with the event named n.

Standard event processing algorithms require the

components c1,c2, and c~ of a C0NTINGENT EVENT list to have modes

of REAL, PR0GRAM OBJECT, and PR0GRAM 0BJECT respectively. Any

other construction may be used where standard processing Is not.

18

Common

The statement

C0MM0N n1,n2,...,nk

causes storage required by data Items named n.,n2,...,nk to

be placed In a special area of the computer so that It can

be directly accessed by procedures. Additions to this com-

mon store are cumulative, Items from one common statement

being added to those from any previous common statement.

Access to common data by more than one program

requires that each program have Identical common structure,

I.e.:

1. Each Item In common must be

Identically defined In both pro-

grams ;

2. Common statements In both programs

must specify these Items In Identi-

cal order.

Identical definition and order suggest the following

rules for common structure:

1. If an Item In common has symbolic

dimensions, the dimension names

should also be In common;

19

2. If an Item In common has dimensions

which are object or class names, those

names should also be In common;

3. If a PERMANENT EVENT with list Is

In common, the corresponding Item In

all programs except that containing

the event processing should be declared

as a LIST.

4. If a C0NTINGENT EVENT with list Is In

common, the corresponding Item In all

programs except that containing the

event processing should be declared as

a LIST and preceded In common by a

single variable which Is otherwise

unused. This extra variable does not

appear In the common statements of the

program containing the event processing.

Only certain types of names may appear In a common

statement, and these types are:

Single variable

Array

Vector

List

20

Object

Class

Contingent event with list

Permanent event with list

Symbolic dimension

The names TIME, ATTACKER, TARGET, or INDEX may not

appear in a common statement. Appearance of the name NEXT

EVENT In a common statement will place all of the above names

In common.

Procedure

The statement

PR0CEDURE n(a1,ag,...,am)

designates the entire program In which It appears to be a

procedure whose name corresponds to the first six (or less)

characters of> the name n. Neither the name n nor another

PR0CEDURE statement may appear elsewhere In the same program.

The names ai*a2',,,'am
and thelr enclosing parentheses

are optional, and designate the dummy arguments to the procedure

If present. The following types of names may be used as dummy

arguments:

Single variable

Array

Vector

List

Object

21

Class

Contingent Event with list

Permanent Event with list

Symbolic dimension

Statement label.

22

EXPRESSIONS

As many MILITRAN statements depend upon the use

of expressions, a brief summary of expression forms and

types Is presented In this section. A short discussion of

retrieval forms Is also Included.

Expression Syntax

The overall syntax of expressions Is presented

here In the familiar Backus type notation.

Brackets () used below enclose terms designating

elements; the sign ::• may be read as "takes the form"; ver-

tical lines may be read as "orM; and all other characters

represent themselves.

Expression) ::» (arithmetic expression) (logical expression/

(program object expresslor\)

(arithmetic expression/ ::» /real
\expresslon

Integer
expression

(arithmetic operator) ::• + | - I * | / | .P.

Arithmetic comparato^> ::• .E. | .G. |.L. | .NE. | ,0E. I .LE.

(logical operator) ::- .0R. | .AND. | .EQV. | .EX0R.

(real expression/

(integer expression/

(logical expression/

(real data item)

-(real expression/

real \ /arithmetic
(expression/ \operator

/integer \ /arithmetic
1/ \operator

arithmetic

\expression

real
expression <

+ *\real expression/

((real expression)*)

integer \
ion/

V

real
expression,

real
expression,

integer data
item

integer
expression/

operator / \ express

integer
expression

(
integer
expression)

/integer \ /
\expression/ \

(logical data item)

'arithmetic
operator

.N0T.

integer \
expression/

logical
expression

/logical \ /logical \ /logical \
\expression/ \operator/ \expression/

arithmeticX /arithmetic \ /arithmetic\|
expression/ \comparator / \expression/j

/program obJect\ IN /object or \ I
\expression / * * \class name/

/program obJect\ IS
\expression /

(\logical expression/)

program obJect\
expression /

(program object expression) /program object data itemN

object or \ //arithmeticX \ I
class name/ * \ expression/ '

((program object expression/)

24

/data itemN ::- /single variable name/

symbolic dimension name/

/subscripted array name/

^subscripted vector name/

/function^ ^constant/

subscripted array name) ::• /array-type\ / /subscrlpt\ \
> ' \name / v \list / ;

< subscripted\ ::• /vector-type\ / /subscript \ /arithmetlc\ \
vector name/ \name / v \list / '\expression/ '

/array-type name\ ::- /array name\ /vector component name)

/vector-type name/ ::- Aector name/ /list name\

/contingent-event-with-list name\

/permanent-event-with-list name)

(subscript list) ::- (subscript) /subscript^ /8ub8Cript)

/subscript) ::« /arithmetic) /program obJect\
/ \expression/ ^expression /

^function/ ::• /external procedure name/ (/argument list/)

/open procedure name/ (/argument list))

/external procedure name/ /open procedure name/

25

/argument list\ «:• /argument^ /argument llsty , /argument^

<•
argument} /expreaslonS /vector-type name\

/array-type naraeS /object or class name\

/statement label name\

Functions

A function Is a procedure whose execution Is Implied

by Its use In an expression. Execution of the function always

returns a single value which replaces the function In the

expression.

Arguments to a function must correspond In type and

order to those expected by the procedure.

A name whose type Is not otherwise declared Is

Implicitly declared to b»> an external procedure (function) when

It appears with an argument list In an expression.

26

Standard Functions

Several functions are pre-defined in MILITRAN,

and reference to their names automatically produces either

open coding or calling sequences to library subroutines.

These functions are described below. Values are returned

in the same mode as the arguments except where noted.

Arguments must be REAL except where noted.

ABS (v) returns |v| . The

argument v may be either

REAL or INTEGER.

ATAN (v,,v2) returns the angle

OL whose tangent is v,/vp.

(0 < a < 2TT).

COS (v) returns cos v.

EPSILON (v) returns (v+ £)

where £ is the smallest increment

physically recognizable in v. Argument

v may be either REAL or INTEGER.

(Eel when v is integer.)

EXP (v) returns e where e is

the Naperlan base.

27

INTEGER (v) returns the

largest Integer 1 such

that |l| < |v| . Argument v

may be either REAL or INTEGER.

Result 1 Is returned In INTEGER

mode.

LOG (v) returns the natural

logarithm of v.

MAX (v^Vg*.. .,v.) returns

the maximum value among

the arguments (v1,...,v.).

Arguments may be REAL

or INTEGER.

MIN (v1,Vg,...,v .) returns

the minimum value among

the arguments (v,,...,v,).

Arguments may be REAL or

INTEGER.

RANDOM returns a REAL

pseudo-random value, v,

(0 < v < 1).

28

REAL (v) returns the value

of v In REAL mode. The

argument v may be either

REAL or INTEGER. (| v | < 227.)

SIGN (v^Vg) returns the value

i i N i i v, . l-£i If v« *o, v, if v9 = 0. Ill Vg 2 |1| 2

SIN (v) returns sin v.

SORT (v) returns y\v\

TAN (v) returns tan v.

(Values exceeding the maximum

possible REAL value are

truncated to that maximum.)

29

Subscripts

Retrieval of specific data items from arrays and

vectors is accomplished by means of subscripts. Types of

names requiring subscripts fall into two groups as follows:

Array-type Vector-type

Array Vector

Vector component List

Contingent event with list

Permanent event with list

Array-type names require exactly as many subscripts

as they have dimensions. Consider the statement

REAL n(d,,...,d^,...,d)

which defines the name n to be an m-dlmenslonal array. Re-

trieval of a single member of n would be accomplished by the

expression

n \ e« f... 16j g t • • $ e)

occurring elsewhere in the program. The expressions e«,•••*em

are subject to the following rules:

1. Any expression e, may be

an arithmetic expression.

2. Expression e, may be a pro-

gram object expression if
and only if dimension d.

Is an object or class name.

30

Vector-type names require one more subscript

than they have dimensions. Consider the statement

VECT0R n((c1,...,Cj,...,cJc), d^ .. .,d1,.. .>dm)

which defines the name to be an m-dimenslonal vector having

k components. Retrieval of a single member of n would be

accomplished by either of the expressions

n («1#...*e1,...,em,eBH.1)

11'*' *i' * * * * *m

occurring elsewhere in the program. The expressions

el"**'em are sub«Ject t° the same rules as are subscripts

for array-type names. The expression e+. must be arithmetic

and equal to J.

31

PROCESSING

Processing statements are summarized In this

section. They Include:

PLACE REPLACE

PLACE ENTRY REPLACE ENTRY

REM0VE RESET LENGTH

REM0VE ENTRY Substitution

Substitution

All substitution statements take the form

a - b

where a Is a subscripted or unsubscrlpted name and b Is an

expressions. The name "a" may not be an object, class,

permanent event without list, statement label, procedure,

external procedure, or open procedure.

The following processing may be accomplished

through a substitution statement:

1. If a and b are of the same mode, the value

of expression b replaces the value of a.

2. If a and b are both subscripted vector-type

names, the contents of b replace the contents

of a without regard to mode. ("Contents"

as used above refers only to a single value,

not the entire array.)

3. If a is real and b Is Integer, the value of

expression b Is converted to a real number

32

and replaces the value of a.

4. If a Is Integer and b Is real, the value of

expression b Is truncated to an Integer and

replaces the value of b.

Conditions 3 and 4 above apply only when condition 2 does

not.

List Processing

Vector-type names defined In LIST, C0NTINOENT

EVENT, and PERMANENT EVENT statements represent groups of values

which may be processed by means of special "list processing

statements."

In the discussion of list processing statements

which follows, all descriptions will refer to the generalized

lists defined by

LIST m((m»,... ,m,, ...,raw,d),n((n.,...,nj,...,n.)d)

The symbols designating the lists and components defined

above will be maintained throughout the discussion.

List Entries

The list ra may contain d_ entries. The e-^ entry m

in list m is the set of values.

m,(e),mp(e),,..,m,(e)

The current number of entries In list m Is represented by

the function

LENGTH(m)

33

which Is initially equal to zero for all Hats.

Any value in the group represented by the name

m may be altered by means of a substitution statement.

However, substitution statements do not maintain the

LENGTH function and list processing statements consider the

e^ entry valid only if 1 < e < LENOTH(m).

List Processing Conditions

Several statements and functions involved in list

processing depend upon logical conditions of the form

where k is the number of components in the list.

The e^"- entry of list n is said to meet the

condition (b,,...,b^,b) if an only if

1. b1#EQV.TRUE for 1< i < k; and

2. bx.EQV.TRUE

The logical expression b. may involve the current value of

n,(e), which value is represented in b, by an asterisk.

The logical expression b may involve e, which value is

represented in b by an asterisk. Since more than one

entry in list n may meet the condition (b.,...,b. ,b), the

entry number "e" is never used explicitly.

The following abbreviations are permitted in the

construction of list processing conditions:

1. Omitted expressions are assumed to be TRUE;

e.g., the conditions (TRUE,TRUE) and (,) are

3*

equivalent.

2. Commas separating Identically true

expressions at the end of the condition

may be omitted; e.g., the conditions

(b^bg, TRUE,TRUE) and (b^bg) are

equivalent.

3. The expression "*.E.a," where a Is an

arithmetic expression, may be represented

by "a."

4. The expression "*.IS.an, where a Is a

program object expression, may be re-

presented by "a,"

5. The expression '.'IN.a," where a Is an

object or class name, may be represented by

n_ ii a.

A condition may be restricted by the use of the

functions GST and LST. One and only one expression In a

condition may be subjected to a GST/LST restriction. Every

condition containing GST or LST Is met by no more than one

entry In list n.

1. (b1,...,GST(b1), ...,bk,bx) refers to that

entry whose n^ is the greatest n, among all

entries meeting condition (b.,...,b.,...,b. ,b)

2. (b1,...,LST(b1),...,bk,bx) refers to that

entry whose n* is the least n. among all

35

entries meeting condition

\ Om , • • . ,b* , • • • fVy-l D) .

3. (b.,...,b..QST(b)) refers to the

highest numbered entry meeting

condition (b1, ...,bJc,bx).

4, (b1,,,.,bjc,LST(b)) refers to the

lowest numbered entry meeting

condition (b-,. ••»blc,bx),

Where expression b. Is subjected to a OST/LST

condition, component n* must be of real or Integer mode.

Where duplicate minima or maxima occur, the lowest numbered

entry Is chosen.

Place, Place Entry

Execution of the statement

PLACE(c1,...,c1,...,c) IN n

causes the current value of LENOTH(n) to be Increased by one

and the values c.,...,c* to replace current values of

n1(LENOTH(n)),...,n^(LENOTH(n)). The number of expressions

(p) may not exceed the number of components (k) In list n.

Expression c, must be of the same mode as component n. for

l< 1< p.

36

Execution of the statement

PLACE ENTRY m(e) IN n

is identical In a processing sense to execution of

PLACER(e),...,mp(e)) IN n

where p Is equal to the smallest number of components

contained In either list (m or n).

Remove, Remove Entry

Execution of the statement

REM0VE (b1,...,bk,bx) FR0M n

will cause all entries meeting condition (b.,...,bk,b)

to be removed from list n.

Execution of the statement

REM0VE ENTRY n(e)

fch
will cause the e— entry In list n to be removed.

For every entry removed from list n, the value

of the function LENGTH(n) Is reduced by 1. Rearrangement

of the list to eliminate blank entries Is performed where

necessary.

37

Replace, Replace Entry

Execution of the statement

REPLACE ENTRY n(e) BY (c1#...,c)

causes the values of n,(e),.,.,n^(e) to be replaced by

the values of expressions c,,...,c . The number of ex-

pressions (p) may not exceed the number of components (k)

in list n. Modes of expression c. and component n. must

match for 1< i < p. The value of n^fe) before replacement

may be represented in expression c. by an asterisk.

Execution of the statement

REPLACE ENTRY n(ex) BY ENTRY m(e2)

causes values m^(e-),...,nr(e2) to replace the current

values n^(e1),...,n (e^^), where p is the smallest number

of components contained in either list (m or n).

The two statements

REPLACE ENTRY n(e1) BY ENTRY (e2)

REPLACE ENTRY n(e1) BY ENTRY n(e2)

are identical in a processing sense.

38

Execution of the statements

REPLACE^, ...,bk,bx) BY (e1,...,0_) IN n

REPLACE(b^...,\,\) BY ENTRY m(e) IN n

REPLACE(b1,...,bk,bx) BY ENTRY (e) IN n

cause replacement of every entry In list n which meets

condition (b,,...,b. ,b). Replacement Is accomplished

In exactly the same manner as by corresponding REPLACE

ENTRY statements.

Reset Length

Execution of the statement

RESET LENGTH (n) T0 e

will arbitrarily reset the value of function LENGTH(n)

to the positive Integer value of arithmetic expression e.

Use of this statement Is required only when non-

11st-processing statements have been used to enter values In

list n or when the programmer wishes to Ignore entries beyond

the e^ entry.

39

Llat Entry Locating Functions

Two MILITRAN functions operate directly upon

list processing conditions. These functions are used

within the context of an expression as are the functions

discussed under EXPRESSIONS.

The functions

MINIMUM INDEX (n(b1,...,bk,bx),s)

RANDOM INDEX (n^, ... ,bk,bx) ,s)

return an Integer value designating an entry In the list

n which meets the condition (b.,...,b, ,b). If no such

entry exists, control transfers Immediately to the state-

ment labelled s.

The distinction between MINIMUM INDEX and RANDOM

INDEX obtains only when more than one entry In list n

satisfies condition (b-,...,b. ,b). MINIMUM INDEX chooses

the lowest numbered entry meeting the condition; RANDOM

INDEX chooses one entry at random from all those meeting

the condition.

MINIMUM INDEX may be shortened to INDEX without

loss of meaning.

40

INPUT/OUTPUT

Input/output statements are summarized In this

section. They Include:

BACKSPACE READ

BACKSPACE PILE READWRITE

BINARY READ REWIND

BINARY WRITE UNLOAD

END PILE WRITE

FORMAT

Logical Unit Designations

Input/output units are designated In MILITRAN

source programs as follows:

Tape Units by positive Integers;

Line printer by the name PRINTER}

Card reader and punch by the name CARDS.

Tape Control Statements

Statements whose execution causes tape units to

perform operations not Involving transfer of data are tabu-

lated below. In all cases, the designation t is an arithme-

tic expression.

41

Statement

BACKSPACE (t)

BACKSPACE (t)

END PILE (t)

REWIND (t)

UNLOAD (t)

Effect

Designated tape unit
backspaces one record.*

Designated tape unit
backspaces until an end-of-flle
mark Is passed.*

An end-of-flle mark Is
written on the designated
tape.

Designated tape unit rewinds.*

Designated tape unit rewinds
and becomes Inoperative.

Statements marked with an asterisk have no effect

If designated tape unit Is fully rewound.

42

Input/Output Lista

Input/output statements which Involve transfer of

data between the computer and external devices require a list

of those items which are to be transferred. All such lists

are identically constructed. The summary below utilizes the

notation previously used to describe expressions.

(l/O list) :> (expression) I ((i/O list)) I

(i/o list) , (l/O list)!

((/l/0 list)) /implied DO loop)) I

/l/0 list) , /void)

/implied\.. wo*_ /program object \ ->. /object or \
\D0 loop/" rjon \slngle variable name/ 'JSi' \class name/

/terminating condition)

/terminating condition) , /index)

/termlna
\conditlon on"8/ * /index) • /expression) , /expression)

/terminating condition) ::• UNTIL /logical expression)

AnA»\ •• /any expression permitted on the left\
VnaeV *•" \ side of a substitution statement /

43

Binary Read. Binary Write

The statements

BINARY READ (t) data

BINARY WRITE (t) data

where the "data" Is any Input/output list, cause reading

or writing In binary form on magnetic tape. The expression

t must designate a tape unit.

Binary reading and writing are performed without

conversion, i.e., items are handled in their exact internal

form. Each BINARY WRITE statement writes a logical block

of data on tape whose length is dependent upon the number

of items in the input/output list. A BINARY READ statement

may read only one logical block. If fewer items are read

than are contained in the block, the remaining items in the

block are skipped.

44

Read, Write

Th« statements

READ (t,s) data

WRITE (t,s) data

cause reading or writing of Information on the Input/output

unit designated by the expression t according to a format

specified In a FORMAT statement which has the label s. Data

must be specified by an Input/output list.

The statement

READWRITE(t1,s1,t2,s2) data

Is Identical In a processing sense to the statements

READ (t1,s1) data

WRITE (t2,s2) data

executed In the order shown.

45

Format

Formats for data transferred by READ, WRITE, AND

READWRITE statements are specified by statements of the form

s FORMAT (Specification)

The label s is required, since it is the only link between

the READ or WRITE and its associated F0RMAT.

The specification portion of a FORMAT statement

consists of a series of fields and punctuation marks which

indicate the form and placement of data in external records.

Fields are of two types: data and non-data.

Data fields specify transmission of data to or from items

in the input/output list. Non-data items involve transfer

only between the FORMAT statement and external records. Data

fields must be separated from succeeding fields by commas,

while non-data fields need not be.

Field groups may be repeated through the use of

parentheses. The notation "n(sub-specification)" will cause

the group in parentheses to be repeated n times. If n is

absent, the group is repeated indefinitely. The sub-specifica-

tion may not contain parentheses.

The end of any parentheses without a specific number

of repetitions (n) normally signifies the end of a record.

The specification for the next record starts from the corres-

46

ponding open parentheses. Additional changes of record may

be specified by a slash (/). Two consecutive slashes Indicate

a blank record.

During execution of a READ, WRITE, or READWRITE

statement, Input/output lists and FORMAT specifications

are simultaneously scanned from left to right. Each data

item in the input/output list corresponds to a data field

in the FORMAT specification, correspondence being established

solely by order of occurrence. Transmission ends when the

input/output list is satisfied.

Voids in the input/output list cause the corres-

ponding data fields to be skipped (input) or filled with

blanks (output). An input/output list which consists solely

of an implied "DO-loop" will cause tape motion only if at

least one item of data is transferred. If an input/output

list results In reading of a partial record, the remainder

of the record is skipped.

Non-data fields are designated by the letters

X or H. The specification wx causes w characters to be

ignored on input or assumed blank on output. The specifica-

tion wH must be followed Immediately by w characters which

will be copied literally from FjzfRMAT statement to record

(output) or vice-versa (input).

*7

Data fields are designated by specifications

of the form ncw.d where n Is the number of fields, c Is

an Identifier designating field type, w is the field width,

and d Is a supplementary width. The supplementary width Is

not required for some fields. The number of fields Is

assumed to be 1 If absent. Basic field types are summarized

below. Source and target addresses referred to In the table

are Items In the Input/output list and are discussed In de-

tail Immediately following the table. The number of charac-

ters In the external record covered by any field is always

equal to the field width.

48

Field
Specification Interpretation

Aw External field contains alphameric data;
internal representation will be BCD code.
Input: The rightmost six characters from
the field replace data at the target address.
If w is less than six, w characters are left
Justified and filled to six characters with
blanks.

Output: Six characters from the source
address are right Justified in the field.
Remaining characters are blank. If w is
less than six, the leftmost w characters
from the source address are used.

Iw External field contains decimal integer;
internal representation is integer data.
Input: All blanks are considered zero.
Output: Leading zeroes are replaced by
blanks.

ft* External field contains octal integer;
internal representation is integer data.
Input: All blanks are considered zero.
Output: Leading zeroes are replaced by-
blanks.

Lw External field contains word beginning
with T or P; internal form is logical.
Input: T or F in field results in trans-
fer of TRUE or FALSE to target address.
Output: TRUE or FALSE at source address
causes T or F to be right Justified in
field. Remainder of field is filled with
blanks.

*9

Field
Specification Effect

JVr.d External form is the name of an object
and its ordinalityj internal form is
a program object value.
Input: Field is scanned from left to
right until w-d characters are read or
a left parenthesis appears. Scanned
characters (blanks ignored) are com-
pared with names of all 0BJECT types in
program. Digits following a left parenthe-
sis, or the rightmost d characters, are
assumed to be the ordinality. Program
object value constructed and transmitted
to target address.
Output: Ordinality of source address value
is converted to decimal integer, enclosed
in parentheses, and placed in rightmost d+2
characters of field. Object name is right
adjusted in leftmost w-d-2 characters. Re-
mainder of field is blank.

JW Input: Ordinality is assumed unity if no
left parenthesis appears.
Output: Only object name appears in field.

Fw.d External form is decimal number; internal
form is real.
Input: Decimal point is assumed d characters
from the right unless present. th
Output: Decimal point is inserted as d—
character from the right.

Ew.d External form Is decimal number and exponent.
Internal form Is real.
Input: Number is assumed to have the form
xxxx+xx where sign separates base value and
exponent. Base value times ten to exponent
value is transmitted in real mode to target
address. Exponent is assumed unity If absent,
Decimal point in base value is assumed such
that d digits are fractional unless decimal
point appears explicitly. Exponent may have
one or two digits.
Output: Field has the form .xxxxE+xx, where
decimal point falls to the left of the dth
character in the base value.

50

Data fields of type E,F,I, and 0 may be signed.

Missing sign is assumed plus on input; plus sign is not

written on output.

Source and target addresses are determined by

items In the Input/output list. A source address is a value

to be written; a target address is a position into which a

value is to be read.

All source addresses yield either the value of

an expression or a void. Fields corresponding to voids in

the Input/output list will be blank.

A target address is implicitly void if the expression

corresponding to it contains any operator, external procedure,

or open procedure outside of its subscripts. Fields corres-

ponding to voids are ignored.

51

CONTROL

Statements whose major function 1B the control

of program operating sequence are summarized in this section.

They includes

CONTINUE

D*

END

ENI) CONTINGENT EVENTS

ENI) PILE RETURN

ENI) RECORD RETURN

EXECUTE

G0 Ttf

IP

NEXT EVENT

NEXT EVENT EXCEPT

PAUSE

RETURN

ST0P

UNLESS

Go To

Execution of the statement

0^8

causes the program to continue from the statement whose

label is s. In the discussions which follow, this opera-

tion will be described as: "Control is transferred to s."

If, Unless

Execution of either of the statements

IF(b),x,y

UNLESS (b),y,x

52

will transfer control to x If logical expression b has

the value TRUE, to y if b is FALSE, The second comma

and label may be omitted, in which case the statement

immediately following the IF or UNLESS is assumed.

53

Pause, Stop

Execution of the statement

PAUSE n

causes the computer to stop with the ootal number n

displayed. Execution may be restarted by manual means.

Number n may not exceed 30000 octal.

Execution of the statement

ST0P

causes execution of the program to be terminated. Restart

cannot be effected.

Execute, Return

The PROCEDURE statement, described under STRUCTURE,

Is used to define MILITRAN programs whose operation Is to be

controlled by other programs. The control statements EXECUTE

and RETURN Implement control of such programs.

Execution of the statement

EXECUTE n(a1,a2,...,am)

will cause control to be transferred to the PROCEDURE whose

name corresponds to the first six characters of the name n.

Arguments a^a.^, ...,am must correspond In mode, type, and

order to the dummy arguments of the procedure. The name n Is

54

declared by its appearance In an EXECUTE statement to be

an external procedure name.

In a program which is a procedure, execution of

the statement

RETURN

will return control to the program in which the EXECUTE

statement appears.

Procedures which are used as functions (see under

EXPRESSIONS) must return a value to the executing program.

The statement

RETURN e

where e is an expression accomplishes transfer of both con-

trol and the value of e.

55

Do, Continue

Execution of the statement

D0 (s) UNTIL b, i » e^eg

causes Iterative execution of statements following the D0 up

to and including the statement labelled s. Before the first

iteration, index i will be set to the value of expression e-^j

before subsequent iterations, index i will be incremented by

the value of expression e2# Index 1 may be any unsubscripted

or subscripted name of type single variable, array, vector,

list, or event with list.

If at the beginning of any iteration the value of

logical expression b is TRUE, control transfers immediately

to the statement following s.

Execution of the statement

D0 (s) F0R a.IN.b

causes iterative execution of statements following the D0

up to and including the statement labelled s. The single

variable a must be of program object mode and will successively

assume the identity of all members of the object or class b.

When all members of b have been represented by a,

control transfers immediately to the statement following s.

56

In both forms of the D0 statement above It Is

necessary that the statement labelled s permit control to

pass through It to the next statement. Thus the statements

Q& T0, NEXT EVENT, and IP or UNLESS with two labels are

prohibited as terminal statements of a D0 loop.

Restrictions on statements terminating D# loops

do not limit the variety of processing arrangements possible,

since the statement

C(2fNTINUE

can be used at any point in a program. This statement per-

forms no operations and requires no space in the computer.

Its label, however, may be used to terminate a D0 loop.

Other D0 statements may appear between one D0 and

its terminating statement, but the "inner" loop must terminate

at or before the end of the "outer" loop.

57

End, Next Event, Next Event Except

A group of executable statements beginning with

one of the statements

CjZfNTINaENT EVENT nCfo^Cg,. ..,c,),d)

PERMANENT EVENT n^c^Cg, . ..,Cj),d)

PERMANENT EVENT n

and ending with the statement

END

Is known In MILITRAN as an "event." Depending upon the

Initial statement, the event is either a "contingent event"

or a "permanent event."

Everts are processed In a sequence determined by

the structure of the MILITRAN source program. The "natural"

or unmodified sequence is;

1. The first permanent event in the

program.

2. Subsequent permanent events in

the order of their appearance in

the program.

3. The last permanent event In the

program.

4. The "next contingent event".

58

This sequence Is repeated until terminated by either failure

to select a "next contingent event" or transfer of control

to a portion of the program not In any event.

It Is not required that a program have any minimum

number of permanent or contingent events. In the discussion

which follows, we will assume that Irrelevant Items In the

natural sequence are Ignored.

Selection of the "next contingent event" Is depend-

ent upon the current value of TIME. Of all entries In all

contingent event lists, one Is selected whose first component

exceeds TIME by the smallest positive value. The first compo-

nent Is assuned to be of real mode; duplicate minima within

one event cause the entry of least Index to be chosen; dupli-

cate minima :.n more than one list cause an entry to be chosen

from the event which appears earliest In the natural sequence.

Execution of the statement

NEXT EVENT

causes control to be transferred to the next event in the

natural sequence. If the* NEXT EVENT statement is not itself

contained in an event, control is passed to the first permanent

event.

59

The statements

NEXT EVENT (n^ng,.. .,1^)

NEXT EVENT EXCEPT (n1#n2, .. .,1^)

behave exactly as does the NEXT EVENT statement, but modify

the natural sequence. NEXT EVENT EXCEPT will assume that

events n1,n2,...,nTn do not exist. NEXT EVENT (n1,n2, ...,nni)

will assume that only the events named in parentheses exist

and that they occur in the order listed.

When control is transferred to a contingent event

by means of an event sequencing statement, the values of

TIME, ATTACKER, TARGET, and INDEX are automatically set.

Assuming that control has been transferred to CONTINGENT

EVENT n (above) because its i— entry contains the minimum

first component, then:

TIME - c^i)

ATTACKER - Cg(i)

TARGET - c3(l)

INDEX - i

Transfer of values above is made without respect to modes,

e.g., ATTACKER is not valid unless cg is of program object

mode.

60

End Contingent Events, End File Return, End Record Return

Certain eonditlons occurring during the running

of a program are detected as errors by the program. Three

of these conditions are:

1. In attempting to choose a "next

contingent event," the program

finds no entries whose values

equal or exceed the current value

of TIME.

2. In reading from magnetic tape, the

program encounters an end-of-file

mark on the tape before the input/

output list is satisfied,

3. In executing a BINARY READ, the end

of a logical block is encountered

before the Input/output list is

satisfied. (See under BINARY READ)

In all of the above cases, control is normally

wrested from the program and execution is terminated. How-

ever, execution of the statements

END CONTINGENT EVENTS (S)

END PILE RETURN (S)

END RECjdRD RETURN (S)

61

causes the program to be modified in such a way as to

return control to the statement labelled s if and when

the appropriate error condition occurs.

62

COMPILER

Statements whose function is providing informa-

tion to the processor are summarized in this section.

These essentially machine-dependent statements are:

END COMPILATION

SUSPEND PAP LISTING

End Compilation

The statement

END COMPILATION

signals the end of a MILITRAN source program. The statement

may not contain comments and may not occupy more than one

card.

Columns 73-75 of the END COMPILATION card will be

preserved and used to identify the translated program.

Suspend FAP Listing

The statement

SUSPEND PAP LISTING

appearing anywhere in a MILITRAN source program will cause

listing of the translated program to be omitted by the

processor.

63

APPENDIX

Environment Iteclaratlons

REAL n^(i^,ig, ...,1^),..,,n^i-^ig, ...,!,)

INTEGER n^i^ig,...,^),...^(i-^ig,.. .,1^)

LOaiCAL n^i^ig, . ..#i|c),...,x^i|(±1,i2, ...,i,)

OBJECT n^i^ngCig),...,!^^)

PROGRAM OBJECT ^(i^ig, ,..,l|c), .. .^(l^lg, . ..,lj)

CLASS (c) CONTAINS a^Sg,.•.,am

NORMAL MODE m-^a^ag,.. .#ak),mg(b1,bg, . ..,t>r)

VECTOR n ((a^ag,.. .^M^dg,.. #,d±)

COMMON n^ng,...,^

Arithmetic

A - B

Logical

A - B

Control Statenents

GO TO 8

PAUSE j

64

STOP

IP (b) »t,sf

UNLESS (b) 8f,»t

DO (s) UNTIL b, n - ei»e2

DO (s) FOR a.IN.b

CONTINUE

List Processing Statements

LIST n((c1,c2,...,c1),d)

LENGTH (n)

RESET LJNGTH (n) to p

PLACE (e^eg,...,e±) IN n

REMOVE ENTRY n(k)

PLACE ENTRY m(j) IN n

REPLACE ENTRY n(k) BY (e^Cg, .. .,e±)

REPLACE ENTRY n(tc) BY ENTRY m(j)

REMOVE (b1,b2,#..,bjL) PROM n

REPLACE (b1,b2,...,b1) BY (e^eg,.. .,e±) IN n

REPLACE (b^bg,...,^) BY ENTRY m(j) IN n

MINIMUM INDEX (nfb^bg, .. .,b±),s)

RANDOM INDEX (n(b1,b2,...,bjL),8)

OST

LST

65

Event Statements

PERMANENT EVENT n((a,,a2,...,a^),&)

CONTINQISNT EVENT n((a^Bg, . ..,a1),d)

NEXT EVISNT

NEXT EVENT (n^i^, ...,n±)

NEXT EVI!NT EXCEPT (n^I&g, ...,1^)

END

END CONTINGENT EVENTS (s)

Procedure Statements

PROCEDURE n

PROCEDURE nfa^ag,...#an)

EXECUTE n

EXECUTE n (a1,a2,..,,an)

RETURN

RETURN a

Input-Output Statements

FORMAT (Format Specification)

READ (t,s) List

WRITE (t,s) List

READWRITE (t1,81,tg,82) List

BINARY READ (t) List

66

BINARY WRITE (t) List

END FILE RETURN (a)

END RECORD RETURN (s)

BACKSPACE (t)

BACKSPACE PILE (t)

END PILE (t)

REWIND (t)

UNLOAD (t)

67

Standard Functions

ABS(v)

ATAN(v1,v2)

CJZfS(v)

EPSIL0N(v)

EXP(v)

INTEGER(v)

L0Q (v)

MAX(v1,v2,..,,vJ)

MIN(v1,v2,...,,Vj)

MlZto(v1,v2)

RANDOM

REAL(v)

SION(v)

SIN(v)

SQRT(v)

TAN(v)

68

INDEX

"A" Fields In F0RMAT 48

ABS 26, 4, 67

addition (+) 7, 22

.AND. 8, 22

arrays 5, 14

as procedure arguments 20

In C0W10 statements 19

In expressions 24

subscripts of 29

asterisk (*) 7

as multiplication symbol 22

In list processing conditions 33-34

ATAN 26, 4, 67

ATTACKER 4

automatic updating 59

In C0MM0H statements 20

BACKSPACE 41, 10, 40, 66

BACKSPACE PILE 4l, 10, 40, 66

BINARY READ 43, 10, 40, 65

BINARY WRITE 43, 10, 40, 66

blanks 3, 6"

BY 9, 37-38, 64

BY ENTRY 9, 37-38, 64

card punch 40

card reader 4^0

CARDS 40, 4

characters, alphabetic 3, 4, 9

characters, alphameric 3, 4, 6, 46, 48

characters, numeric 3» 6

69

characters, set of 3

characters, special 3, 7, 6, 46, 48

CLASS 13, 10, 12, 63

classes 5

as class members 13

as dimensions 14, 19

as D#-loop parameters 55

as procedure arguments 21

defining statement 13

in CgfaMgfsr statements 19, 20

in expressions 23, 25

in substitution statements 31

comma (,) 7

C0MM0N 18-20, 10, 12, 63

comparators 7, 22, 23

constants 6, 3, 24

OBTAINS 9, 13, 63

CONTINGENT EVENT 17, 57, 10, 12, 65

contingent events 5

as procedure arguments 21

automatic processing of 57-59

defining statements 17, 57

in C0MM#tf statements 19, 20

in expressions 24

in substitution statements 31

subscripts of 29

CONTINUE 56, 10, 51, 64

C0S 26, 4, 57

dimensions 14

in C$m$$ statements 18, 19

of array;3 14

of lists 16

70

of objects 12

of vector components 16

of vectors 16

related to subscripts 29-30

division (/) 7, 22

D0 55-56, 10, 51, 64

.E. 7, 22
Implied In list processing conditions 34

"E" fields In F0RMAT 49

EACH 13, 4

ellipsis (...) 7

END 17, 57, 10, 51, 65
END C0foPILATI0N 62, 4, 10

END CONTINGENT EVENTS 60-61, 10, 51, 65 '

END FILE 41, 10, 40, 66

END FILE RETURN 60-6l, 10, 51, 66

END REC0RD RETURN 60-6l, 10, 51, 66

EPSIL0N 26, 4, 67

.EQV. 8, 22

EXECUTE 53-54, 10, 51, 65

.EXOR. 8, 22

EXP 26, 4, 67

exponentiation (.P.) 7, 22

expressions 22-25

as dimensions 12, 14

as Dgf-loop parameters 55

as logical unit designators 40

as subscripts 29-30

In Input/output lists 42

In RETURN statements 54

in substitution statements 9, 31-32

external procedures 5, 24, 31, (see also "procedures")

71

"F" fields in F0RMAT 49

FALSE 4, 6

F0R 9, 42, 55, 64

F0RMAT 45-50, 44, 4, 10, 40, 65

FR0M 9, 36, 65

functions 25-28 (see also "procedures")

for locating list entries 39

in expressions 24

standard in MILITRAN 26-28

use of RETURN statement 54

.G. 7, 22

,0E. 7, 22

GJ2T T0 51, 10, 63

restriction in Dgf-loops 56

GST 34-35, 4, 64

"K" fields in F0RMAT 46

"I" fields in F0RMAT 48

IF 51-52, 10, 64

restriction in D0-loops 56

implied D0f-loops in input/output lists 42

IN 9, 35, 36, 38, 64

.IN. 7, 22, 23

implied in list processing conditions 34

INDEX 4

as abbreviation for MINIMUM INDEX 39

automatic updating 59

in C0MM0N statements 20

input/output lists 42-46, 50

INTEGER 14, 27, 4, 10, 12, 16, 67

.IS. 7, 22, 23

implied in list processing conditions 34

72

HJ" fields In F0fcMAT 49

.L. 7, 25?

"L" fields in F0&MAT 48

,LE. 7. -?2

LENGTH 32-33, 4, 35, 36, 38, 64

line printer 40

LIST 16, 10, 12, 64

list entries 32

as basils for NEXT EVENT selection 58-59
conditions specifying 33

functions for locating 39

list processing 32-39, 64

lists 5

as procedure arguments 20

associated with events 17, 58-59

defining statements l6, 17

In C0^1M(?N statements 19

In expressions 24

in substitution statements 31

processing of 32-39

subscripts of 29

L0Q 27, 4, 67

LOGICAL 14, 10, 12, 16, 63

logical block 43, 60-61

logical unit designations 40, 43, 44

LST 34-35, 4, 64

main program 2

MAX 27. 4, 67

MIN 27, 4, 67

MINIMUM INDEX 39, 4, 64

minus (-) 7, 23

mnemonic delimiters 9, 3

73

M0t> 4, 67
modes 4-5

declaration of 14-16

multiplication (*) 7, 22

names 3-*

.NE. 7, 22

NEXT EVENT 57-59, 4, 10, 51, 65

In C014M0N statements 20

restriction In D0-loops 56

NEXT EVENT EXCEPT 57-59, 10, 51, 65

N0RMAL M0DE 15, 11, 12, 16

.N0T. 8, 23

"0" fields In F0RMAT 48

OBJECT 12, 11, 63

objects 5

as class members 13

as dimensions 14, 19

as D0-Loop parameters 6l

as procedure arguments 21

defining statement 12

In C0MM0N statements 19, 20

In expressions 23

in substitution statements 31

open procedures 5, 24, 31 (see also "procedures")

operators 3, 7-8, 22-23

.0h. 8, 22

.P. 7, 22

parentheses () 7, 23-24, 45

PAUSE 53, 11, 51, 63
period (.) 7, 6

PERMANENT E7ENT 17, 11, 12, 57, 65

74

permanent events 5

as procedure arguments 21

automatic processing of 57-59

defining statements 17, 57

In C0MM0N statements 19, 20

In expressions 24

In substitution statements 31

subscripts of 29

PLACE 35, 11, 31, 64

PLACE ENTRY 36, 11, 31, 64

plus (+) 7, 23, 51

PRINTER 4, 40

PROCEDURE 20, 11, 12, 53, 65

procedures 2, 5

arguments of 20-21, 24, 25, 53

as functions 25

C0MM0N statements in 18

control statements 53-54

defining statements 20-21, 53-54

implicit declaration of 25

in expressions 24

in substitution statements 31

program 2

PROGRAM OBJECT 14, n, 12, 16, 63

punctuation 3, 7, 22-25

RAND0M 27, 4, 67

RANDOM INDEX 39, 4, 64

READ 44, 11, 40, 45-1*6, 65

READWRITE 45, 11, 40, 45-46, 65

REAL 14, 28, 4, 11, 12, 16, 67

REM0VE 36, 11, 31, 64

REM0VE ENTSY 36, 11, 31, 64

REPLACE 33, 11, 31, 64

75

REPLACE ENTRY 37, 11, 31, 64

RESET LENGTH 38, 11, 31, 64

RETURN 53-54, 11, 51, 65

REWIND 4:., 11, 40, 66

SIGN 28, 4, 67

SIN 28, 4, 67

single variables 5

as procedure arguments 20

In C0toM0N statements 19

In expressions 24

source program 2

source address 50, 47-49

SORT 28, 4, 67

statement labels 5

as procedure arguments 21

defined by CONTINUE statements 56

defining range of D(2f-loops 55

in ENE CONTINGENT EVENTS statements 60-6l

in ENE PILE RETURN statements 60-6l

in END REC0RD RETURN statements 60-61

in G0 T0 statements 51

in IP statements 51-52

in substitution statements 31

in UNLESS statements 51-52

required for F0RMAT statements 45

statement type identifiers 9-11, 3

ST0P 53, 11, 51, 64

subscripts 29-30

substitution statement 31-32, 7, 9, 63

subtraction (-) 7, 22

SUSPEND PAP LISTING 62, 11

symbolic dimensions 5

as procedure arguments 21

in C0MM0N statements 18, 20

76

in expressions 24

of arrays, vectors, lists, etc. 14

of objects 12

TAN 28, 4, 67

tape units 40-41, 43

TARGET 4

automatic updating 59

In C0MM0N statements 20

target address 52, 47-49

TIME 4

as basis for NEXT EVENT selection 58

automatic updating 59

In C0MM0N statements 20

T0 9, 38, 64

TRUE 4, 6

implied In list processing conditions 33-34

UNLESS 51-52, 11, 64

restriction in D0-loops 56

UNL0AD 41, 11, 42

UNTIL 9, 42, 55, 64

VECT0R 16, 11, 12, 63

vector components 5

defining statements 16

In expressions 24

subscripts of 29

vectors 5

as procedure arguments 20

defining statement 16

In C0MM0N statements 19

77

In expressions 24

in substitution statements 31

subscripts of 29

voids in input/output lists 42, 46, 51

WRITE 44, 11, 40, 45-47, 65

"X" fields in F0RMAT 46

Unclassified
Security CJMgifjggtjgg

DOCUMENT CONTROL DATA • R&D
(3*curity clmmmlllcmllon of Mffa. baity ol mbmlrmcl mud indexing mnnotmtlon mutt h» •ntwnd wftajn tfia onnll raporr la rfaaai/ir f

1. ORIGINATING ACTIVITY 'Corpora,/, iiuthor;

Systems Research Group, Inc.
1501 Franklin Avenue
Mineola, Long Island, N. Y.

2* REPODT ICCUKIT* C L ASS1 ' I .". a * 1 ON

Unclassified
2b CROUP

J. REPORT TITLE

MILITRAN REFERENCE MANUAL

4. DESCRIPTIVE NOTE! (Typm 0/ raporf mnd /nclua/v. daiaa.)

Technical Report
S AuTHORfSJ (Xaal n«m. ftral nama, ir, Uml)

Systems Research Group, Inc.

• REPORT DATE
June, 1964

7«- TOTAL NO. OP PASES

77
7*. NO. OP ni'i

8a. CONTRACT OR ORANT NO.

Nonr 2936(00)
6 PROJECT NO.

Navy NR 276-001

AF ProJ. 2801,
- Task 280101

• a. ORISINATOR'S REPORT NUMBtnfS;

9 6 OTHER REPORT NOfSJ (Any olhmr numb»n thml may 6. attlgnmd

*" ""^USAF Technical Documentary
Report No. ESD-TDR-64-390

10 AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from
the Defense Documentation Center (DDC)

11. SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY
Office of Naval Research,Wash.,D.C.
& Electronic Systems Division, Air
Force Systems Command, Bedford, Mass

IS. ABSTRACT

MILITRAN is an algorithmic computer language specifically oriented to the

problems encountered in simulation programming. In addition to providing

overall flexibility in expressing complex procedures, the language contains featujres

which greatly simplify the maintainenae of status lists, handling of numeric

and non-numeric data, and sequencing of events in simulated time.

This report is intended as a reference summary for those already familiar

with MILITRAN.

DD .OK. 1473 Unclassified

Unclassified
Security Classification

U.
KEY WORDS

LINK A LINK B

"OLE

LINK C

WOUI

Militran
Language
Simulation
Computers
Programming Languages
Data Processing Systems
Information Retrieval
Instruction Manuals
Compiler
Systems Analysis
War Gaming

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the nan* and address
of the contractor, subcontractor, grant**, Department of De-
feme activity or other organisation (corporal* author) Issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
ell security classification of the report. Indicate whether
"Restricted Data" is Included. Marking Is to be In accord-
ance with appropriate eecurlty regulations.

26. GROUP: Automatic downgrading Is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
marking* have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title clasaification In all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., Interim, progreas, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author<a) aa shown on
or in the report. Enter test name, first name, middle Initial.
If military, show rank and branch of service. The name of
the principal «jthor in an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appeara
on the report, uae date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8c, fts 8d. PROJECT NUMBER: Enter the appropriate
military department Identification, such ss project number,
subproject number, system numbers, tssk number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. Thle number muat
be unique to this report.

96. OTHER REPORT NUMBER(S): If the report hss been
assigned any other report numbers (either by (he originator
or by the sponsor), alao enter this numbers).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemlnstion of the report, other thsn those

Imposed by security classification, using standard atatementa
such as:

(1) "Qualified requesters may obtain copiea of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copiea of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(S) "All distribution of this report is controlled. Qual-
ified DDC uaers shall request through

ii

If the report has been furnished to the Office of Technlcsl
Services, Depsrtment of Commerce, for sale to the public, Indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory aponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may alao appear elaewhere in the body of the technical re-
port. If additional space la required, s continuation sheet shall
be attached.

It la highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abatract shall end with
an indication of the military security claasification of the In-
formation in the paragraph, repreaented as (TS) (5). (C). or <l>)

There is no limitation on the length of the abatract. How-
ever, the suggested length is from ISO to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phraaes that characterize a report and may be uaed aa
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such ss equipment model designation, trsde nsme, military
project code nsme, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, snd weights is optional.

Unclassified

