LISP 1.5 Programmer’'s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology




LISP 1.5 Programmer’s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

John McCarthy
Paul W. Abrahams
Daniel J. Edwards
Timothy P. Hart
Michael I. Levin

Cambridge, Massachusetts

The M. L. T. Press
Massachusetts Institute of Technology



The Research Laboratory of Electronics is an interdepartmental
laboratory in which faculty members and graduate students from
numerous academic departments conduct research.

The research reported in this document was made possible in part
by support extended the Massachusetts Institute of Technology, Re-
search Laboratory of Electronics, jointly by the U.S. Army, the
U.S. Navy (Office of Naval Research), and the U.S. Air Force
(Office of Scientific Research) under Contract DA36-039-sc-78108,
Department of the Army Task 3-99-25-001-08; and in part by Con-
tract DA-SIG-36-039-61-G14; additional support was received from
the National Science Foundation (Grant G-16526) and the National
Institutes of Health (Grant MH-04737-02).

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

SECOND EDITION Fifteenth printing, 1985

ISBN 0 262 13011 4 (paperback)



PREFACE

The over-all design of the LISP Programming System is the work of John McCarthy
and is based on his paper "Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine" which was published in Communications of the ACM, April 1960.

This manual was written by Michael 1. Levin.

The interpreter was programmed by Stephen B. Russell and Daniel J. Edwards.

The print and read programs were written by John McCarthy, Klim Maling,
Daniel J. Edwards, and Paul W. Abrahams.

The garbage collector and arithmetic features were written by Daniel J. Edwards.

The compiler and assembler were written by Timothy P. Hart and Michael I. Levin.

An earlier compiler was written by Robert Brayton.

The "LISP 1 Programmer's Manual," March 1, 1960, was written by Phyllis A. Fox.

Additional programs and suggestions were contributed by the following mem-
bers of the Artificial Intelligence Group of the Research Laboratory of Electronics:
Marvin L. Minsky, Bertram Raphael, Louis Hodes, David M. R. Park, David C. Luckham,

Daniel G. Bobrow, James R. Slagle, and Nathaniel Rochester.

August 17, 1962






Iv.

VI.

TABLE OF CONTENTS

THE LISP LANGUAGE

.1 Symbolic Expressions
Elementary Functions

List Notation

The LISP Meta-language
Syntactic Summary

A Universal LISP Function

S
o o W

THE LISP INTERPRETER SYSTEM
.1 Variables

Constants

Functions

Machine Language Functions
Special Forms

N DD DD
[« S I O VU

Programming for the Interpreter

EXTENSION OF THE LISP LANGUAGE

3.1 Functional Arguments
3.2 Logical Connectives
3.3 Predicates and Truth in LISP

ARITHMETIC IN LISP
4.1 Reading and Printing Numbers

4.2 Arithmetic Functions and Predicates

4.3 Programming with Arithmetic
4.4 The Array Feature

THE PROGRAM FEATURE

RUNNING THE LISP SYSTEM
6.1 Preparing a Card Deck
6.2 Tracing

6.3 Error Diagnostics

6.4 The cons Counter and errorset

© 00 U BN =

15
16
17
18
18
18
19

20
20
21
22

24
24
25
27
27

29

31
31
32
32
34



CONTENTS

VII. LIST STRUCTURES 36
7.1 Representation of List Structure 36
7.2 Construction of List Structure 38
7.3 Property Lists 39
7.4 List Structure Operators 41
7.5 The Free-Storage List and the Garbage Collector 42

VIII. A COMPLETE LISP PROGRAM - THE WANG ALGORITHM

FOR THE PROPOSITIONAL CALCULUS 44
APPENDIX A Functions and Constants in the LISP System 56
APPENDIX B The LISP Interpreter 70
APPENDIX C The LISP Assembly Program (LAP) 73
APPENDIX D The LISP Compiler 76
APPENDIX E OVERLORD - The Monitor 80
APPENDIX F LISP Input and Output 83
APPENDIX G Memory Allocation and the Garbage Collector 89
APPENDIX H Recursion and the Push-Down List 91
APPENDIX I LISP for SHARE Distribution 93
INDEX TO FUNCTION DESCRIPTIONS 100

GLOSSARY 103

vi



1. THE LISP LANGUAGE

The LISP language is designed primarily for symbolic data processing. It has been
used for symbolic calculations in differential and integral calculus, electrical circuit
theory, mathematical logic, game playing, and other fields of artificial intelligence.

LISP is a formal mathematical language. It is therefore possible to give a con-
cise yet complete description of it. Such is the purpose of this first section of the
manual. Other sections will describe ways of using LISP to advantage and will explain
extensions of the language which make it a convenient programming system.

LISP differs from most programming languages in three important ways. The
first way is in the nature of the data. In the LISP language, all data are in the form
of symbolic expressions usually referred to as S-expressions. S-expressions are of
indefinite length and have a branching tree type of structure, so that significant sub-
expressions can be readily isolated. In the LISP programming system, the bulk of
available memory is used for storing S-expressions in the form of list structures.
This type of memory organization frees the programmer from the necessity of
allocating storage for the different sections of his program.

The second important part of the LISP language is the source language itself which
specifies in what way the S-expressions are to be processed. This consists of recur-
sive functions of S-expressions. Since the notation for the writing of recursive func-
tions of S-expressions is itself outside the S-expression notation, it will be called the
meta language. These expressions will therefore be called M-expressions.

Third, LISP can interpret and execute programs written in the form of S-
expressions. Thus, like machine language, andunlike most other higher levellanguages,

it can be used to generate programs for further execution.
1.1 Symbolic Expressions

The most elementary type of S-expression is the atomic symbol.

Definition: An atomic symbol is a string of no more than thirty numerals and capital
letters; the first character must be a letter.

Examples
A
APPLE
PART2
EXTRALONGSTRINGOFLETTERS
A4B66XYZ2

These symbols are called atomic because they are taken as a whole and are not
capable of being split within LISP into individual characters. Thus A, B, and AB
have no relation to each other except in so far as they are three distinct atomic
symbols.

All S-expressions are built out of atomic symbols and the punctuation marks



"(", ")", and " .". The basic operation for forming S-expressions is to combine two
of them to produce a larger one. From the two atomic symbols Al and A2, one can
form the S-expression (Al . A2).

Definition: An S-expression is either an atomic symbol or it is composed of these
elements in the following order: a left parenthesis, an S-expression, a dot, an S-
expression, and a right parenthesis.

Notice that this definition is recursive.

Examples
ATOM
(A . B)
(A.(B.Q)

((A1 . A2) . B)
(U. V). (X.Y)
(U.V).(X.(Y.2Z)

1.2 Elementary Functions

We shall introduce some elementary functions of S-expressions. To distinguish
the functions from the S-expressions themselves, we shall write function names in
lower case letters, since atomic symbols consist of only upper caseletters. Further-
more, the arguments of functions will be grouped in square brackets rather than
parentheses. As a separator or punctuation mark we shall use the semicolon.

The first function that we shall introduce is the function cons. It has two argu-
ments and is in fact the function that is used to build S-expressions from smaller S-

expressions.

Examples
cons[A;B]=(A . B)
cons[(A . B);C]=((A . B) . C)
cons[cons[A;B];C]=((A . B) . C)

The last example is an instance of composition of functions. It is possible to build
any S-expression from its atomic components by compositions of the function cons.

The next pair of functions do just the opposite of cons. They produce the subexpres-
sions of a given expression.

The function car has one argument. Its value is the first part of its composite
argument. car of an atomic symbol is undefined.

Examples
car[(A . B)]=A
car[(A . (B1 . B2))]=A
car[((Al . A2) . B)]=(A1 . A2)
car[A] is undefined



The function cdr has one argument. Its value is the second part of its composite
argument. cdr is also undefined if its argument is atomic.

Examples

cdr|(A . B))=B

cdr[(A . (B1 . B2))]=(B1 . B2)
cdr[((A1l . A2) . B)|=B

cdr[A] is undefined
car|edr[(A . (Bl . B2))]|=B1
car|cdr[(A . B)]] is undefined
car[cons[A;B]J=A

Given any S-expression, it is possible to produce any subexpression of it by a
suitable composition of car's and cdr's. If x and y represent any two S-expressions,
the following identities are true:

car[cons[x;y|]=x
cdr[cons[x;y]]=y

The following identity is also true for any S-expression x such that x is composite
(non-atomic):

cons[car|x J;cdr[x]]=x

The symbols x and y used in these identities are called variables. In LISP, var-
iables areused to‘?epresznt S-expressions. In choosing names for variables and func-
tions, we shall use the same type of character strings that are used in forming atomic
symbols, except that we shall use lower case letters.

A function whose value is either true or false is called a predicate. In LISP, the
values true and false are represented by the atomic symbols T and F, respectively.
A LISP predicate is therefore a function whose value is either T or F.

The predicate eq is a test for equality on atomic symbols. It is undefined for

non-atomic arguments.
Examples
eq[A;A)=T
eq[A;B|=F
eq[A;(A . B)] is undefined
eq[(A . B);(A . B)] is undefined

The predicate atom .t true if its argument is an atomic symbol, and false if its
argument is composite.

Examples
atom| EXTRALONGSTRINGOFLETTERS =T

atom[(U . V)]=F
atom[car[(U . V)]]=T



1.3 List Notation

The S-expressions that have been used heretofore have been written in dot notation.
Itis usually more convenient tobe able to write lists of expressions of indefinite length,
such as (A B C D E).

Any S-expression canbe expressed interms of the dot notation. However, LISP has an
alternative form of S-expression called the list notation'. The list (ml m, ... mn) can be

defined in terms of dot notation. It is identical to (m1 . (m2 R PR (mn . NIL)...))).

The atomic symbol NIL serves as a terminator for lists. The null list ( ) is iden-
tical to NIL. Lists may have sublists. The dot notation and the list notation may be
used in the same S-expression.

Historically, the separator for elements of lists was the comma (,); however, the
blank is now generally used. The two are entirely equivalent in LISP. (A, B, C) is
identical to (A B C).

Examples

(ABC)=(A.(B.(C .NIL))

((AB)C)=((A . (B . NIL)) . (C . NIL))
(AB(CD))=(A . (B .((C . (D .NIL)) . NIL)))
(A)=(A . NIL)

((A))=((A . NIL) . NIL)
(A(B.C))=(A.((B.C).NIL))

It is important to become familiar with the results of elementary functions on
S-expressions written in list notation. These can always be determined by translating

into dot notation.
Examples

car[(A B C)]=A

cdr[(A B C)]=(B C)
cons[A; (B C)]J=(A B C)
car[((A B) C)J=(A B)
cdr[(A)]=NIL
car[cdr[(A B C)]]=B

It is convenient to abbreviate multiple car's and cdr's. This is done by forming

function names that begin with ¢, end with r, and have several a's and d's between
them.
Examples

cadr[(A B C)]=car[cdr|(A B C)]=B

caddr[(A B C)J=C

cadadr[(A (B C) D)]=C



The last a or d in the name actually signifies the first operation in order to be
performed, since it is nearest to the argument.

1.4 The LISP Meta-language

We have introduced a type of data called S-expressions, and five elementary func-
tions of S-expressions. We have also discussed the following features of the meta-
language.

1. Function names and variable names are like atomic symbols except that they
use lower case letters.

2. The arguments of a function are bound by square brackets and separated from
each other by semicolons.

3. Compositions of functions may be written by using nested sets of brackets.

These rules allow one to write function definitions such as
third[x]=car[cdr[cdr[x]]].
This function selects the third item on a list. For example,
third[(A B C D)}=C

third is actually the same function as caddr.

The class of functions that can be formed in this way is quite limited and not very
interesting. A much larger class of functions can be defined by means of the con-
ditional expression, a device for providing branches in function definitions.

A conditional expression has the following form:

[py~eyi py~eyi oo ~e

where each P; is an expression whose value may be truth or falsity, and each e is
any expression. The meaning of a conditional expression is: if Py is true, then the
value of e, is the value of the entire expression. If p, is false, then if p, is true
the value of e, is the value of the entire expression. The p; are searched from left
to right until the first true one is found. Then the corresponding e; is selected. If
none of the p; are true, then the value of the entire expression is undefined.

Each p; or e; can itself be either an S-expression, a function, a composition of
functions or may itself be another conditional expression.
Example

[eq[car[x];A]-»cons[B;cdr[x]]; T-x]

The atomic symbol T represents truth, The value of this expression is obtained

if one replaces car of x by B if it happens to be A, but leaving x unchanged if car of
it is not A.



The main application of conditional expressions is in defining functions recursively.
Example
ff[x]=[atom[x]—-x; T-—ff[car[x]]]

This example defines the function ff which selects the first atomic symbol of any
given expression. This expression can be read: If x is an atomic symbol, then x
itself is the answer. Otherwise the function ff is to be applied to car of x.

If x is atomic, thenthe first branchwhich is "x" willbe selected. Otherwise, the
second branch "ff[car[x]]" will be selected, since T is always true.

The definition of ff is recursive in that ff is actually defined in terms of itself. If
one keeps taking car of any S-expression, one will eventually produce an atomic sym-
bol; therefore the process is always well defined.

Some recursive functions may be well defined for certain arguments only, but in-
finitely recursive for certain other arguments. When such a function is interpreted in
the LISP programming system, it will either use up all of the available memory, or
loop until the program is halted artificially.

We shall now work out the evaluation of ff[((A . B) . C)]. First, we substitute the
arguments in place of the variable x in the definition and obtain

tf{((A . B).. C)J=[atom[((A . B) . C)]=((A . B) . C); T~ff[car[((A . B) . C)]]]
but ((A . B) . C) is not atomic, and so we have
= [T~tf[car[((A . B) . C)]I]

= ff[car[((A . B) . C)]]
= ff{(A . B)]
At this point, the definition of ff must be used recursively. Substituting (A . B)

for x gives

= [atom[(A . B)]=(A . B); T~ff[car[(A . B)]]]
= [T-ff[car[(A . B)]]]

= ff[car[(A . B)]]

=ff{A]

= [atom[A]-—A; T-—ff[car[A]_“

= A

The conditional expression is useful for defining numerical computations, as well

as computations with S-expressions. The absolute value of a number can be defined by
lx | =[x<0-—-x; T—-x].

The factorial of a non-negative integer can be defined by
n!=[n=0~1; T-n-[n-1]!]

This recursive definition does not terminate for negative arguments. A function that



is defined only for certain arguments is called a partial function.

The Euclidean algorithm for finding the greatest common divisor of two positive
integers can be defined by using conditional expressions as follows:

ged[x;y J=[x>y~ged[y;x )
rem[y;x]:O-—x;
T-ged[rem[y;x];x]]

rem!u;v] is the remainder when u is divided by v.

A detailed discussion of the theory of functions defined recursively by conditional
expressions is found in " A Basis for a Mathematical Theory of Computation" by
J. McCarthy, Proceedings of the Western Joint Computer Conference, May 1961
(published by the Institute of Radio Engineers).

It is usual for most mathematicians—exclusive of those devoted to logic—to use the
word " function" imprecisely, and to apply it to forms such as @ Because we
shall later compute with expressions that stand for functions, we need a notation that
expresses the distinction between functions and forms. The notation that we shall use
is the lambda notation of Alonzo Church.l

Let £ be an expression that stands for a function of two integer variables. It
should make sense to writei[ﬂand to be able to determine the value of this expres-
sion. For example, sum|3;4J=7. The expression_yiﬂc-does not meet this requirement.
It is not at all clear whether the value of y2+x[3;4] is 13 or 19. An expression such as
y_zilwill be called a form rather than a function. A form can be converted to a func-
tion by specifying the correspondence between the variables in the form and the argu-
ments of the desired function. |

If € is a form in the variables Xse - X, then the expression X[[xl;. . .;an;GJ

represents the function of n variables obtained by substituting the n arguments in

order for the variables x ;.. X, respectively. For example, the function x[[x;yj;

y2+x] is a function of two variables, and X[[x;y];y2+xj[3;4]=42+3=19. X[[y;x];y2+x][3;4j
=3%44=13,

The variables in a lambda expression are dummy or bound variables because sys-
tematically changing them does not alter the meaning of the expression. Thus )\[[u;vJ;
v2+u] means the same thing as x[[x;y];y2+x].

We shall sometimes use expressions in which a variable is not bound by a lambda.
For example, in the function of two variables k![x;yl;xn+yn] the variable n is not
bound. This is called a free variable. It may be regarded as a parameter. Unless
n has been given a value before trying to compute with this function, the value of the
function must be undefined.

1. A. Church, The Calculi of Lambda-Conversion (Princeton University Press,
Princeton, New Jersey, 1941).




The lambda notation alone is inadequate for naming recursive functions. Not only
must the variables be bound, but the name of the function must be bound, since it is
used inside an expression to stand for the entire expression. The function i was
previously defined by the identity

ff[x |=[atom[x J-x; T~ff[car[x]]].
Using the lambda notation, we can write
ff=\[[x]; [atom[x]=x; T~ff[car[x]]]]

The equality sign in these identities is actually not part of the LISP meta-language
and is only a crutch until we develop the correct notation. The right side of the last
equation cannot serve as an expression for the function ff because there is nothing to
indicate that the occurrence of If inside it stands for the function that is being defined.

In order to be able to write expressions that bear their own name, we introduce
the label notation. If € is an expression, and ¢ is its name, we write label[a;€].

The function ff can now be written without an equal sign:

label[ff;M[x]; [atom[x]~x; T~ff[car[x]]]]]

In this expression, x is a bound variable, and ff is a bound function name.

1.5 Syntactic Summaryl

All parts of the LISP language have now been explained. That which follows is a
complete syntactic definition of the LISP language, together with semantic comments.
The definition is given in Backus nota(:ion2 with the addition of three dots(...) to avoid
naming unneccessary syntactic types.

In Backus notation the symbols "::=", " <m #sn gpdn | " are used. The rule
<S-expression >::=<atomic symbol > | (<S-expression>. <S-expression >) means that
an S-expression is either an atomic symbol, or it is a left parenthesis followed by an
S-expression followed by a dot followed by an S-expression followed by a right paren-
thesis. The vertical bar means "or", and the angular brackets always enclose ele-
ments of the syntax that is being defined.

The Data Language

<LETTER>:=A|B|C|...|z

<number >::=0|1]2]...|9

<atomic-symbol >::=<LETTER ><atom part >

<atom part >::=<empty >| <LETTER ><atom part> | <number ><atom part >

Atomic symbols are the smallest entities in LISP. Their decomposition into char-
acters has no significance.

1. This section is for completeness and may be skipped upon first reading.

2. J. W. Backus, The Syntax and Semantics of the Proposed International Algebraic
Language of the Zurich ACM-Gamm Conference. ICIP Paris, June 1959.



<S-expression>::=<atomic symbol > |
(<S-expression>.<S-expression>) I
(<S-expression>...<S-expression>)

When three dots are used in this manner, they mean that any number of the given
type of symbol may occur, including none at all. According to this rule, () is a valid
S-expression. (It is equivalent to NIL.)

The dot notation is the fundamental notation of S-expressions, although the list

notation is often more convenient. Any S-expression can be written in dot notation.
The Meta-Language

<letter >::=alb|c| R 2
<identifier >::=<letter ><id part >
<id part >::=<empty > l <letter ><id part> | <number ><id part >
The names of functions and variables are formed in the same manner as atomic
symbols but with lower-case letters.

<form >::=<constant > |
<variable > |
<function >[< argument>; ... ;<argument >] |
[<form >=<form>; ... ;<form >=<form >]
<constant >::=<S-expression >
<variable >::=<identifier >

<argument >::=<form >

A form is an expression that can be evaluated. A form that is merely a constant
has that constant as its value. If a form is a variable, then the value of the form is
the S-expression that is bound to that variable at the time when we evaluate the form.

The third part of this rule states that we may write a function followed by a list of
arguments separated by semicolons and enclosed in square brackets. The expressions
for the arguments are themselves forms; this indicates that compositions of functions
are permitted.

The last part of this rule gives the format of the conditional expression. This is
evaluated by evaluating the forms in the propositional position in order until one is
found whose value is T. Then the form after the arrow is evaluated and gives the
value of the entire expression.

<function >::=<identifier > |
A[<var list > <form >]|

label[<identifier >;<function >]
<var list >::=[<variable>; ... ;<variable >]

A function can be simply a name. In this case its meaning must be previously
understood. A function may be defined by using the lambda notation and establishing
a correspondence between the arguments and the variables used in a form. If the

function is recursive, it must be given a name by using a label.



1.6 A Universal LISP Function

An interpreter or universal function is one that can compute the value of any given
function applied to its arguments when given a description of that function. (Of course,
if the function that is being interpreted has infinite recursion, the interpreter will
recur infinitely also. )

We are now in a position to define the universal LISP function evalguote[fn;args].
When evalquote is given a function and a list of arguments for that function, it computes
the value of the function applied to the arguments.

LISP functions have S-expressions as arguments. In particular, the argument
"fn" of the function evalquote must be an S-expression. Since we have been writing
functions as M-expressions, it is necessary to translate them into S-expressions.

The following rules define a method of translating functions written in the meta-
language into S-expressions.

1. If the function is represented by its name, it is translated by changing

all of the letters to upper case, making it an atomic symbol. Thus gar is translated
to CAR.

2. If the function uses the lambda notation, then the expression )\[[xl; .. .;xnl;e_]
is translated into (LAMBDA (X1 ... XN) €*), where €* is the translation of €.

3. If the function begins with label, then the translation of label[a;€] is (LABEL
a* €*),

Forms are translated as follows:

1. A variable, like a function name, is translated by using uppercase letters.
Thus the translation of varl is VAR1.

2. The obvious translation of letting a constant translate into itself will not work.
Since the translation of x is X, the translation of X must be something else to avoid
ambiguity. The solution is to quote it. Thus X is translated into (QUOTE X).

3. The form fn[argl; .. .;argn] is translated into (fn* argl* .. argn*)

4. The conditional expression [pl-el;. . .;pn-—enj is translated into (COND (pl*

e ) ... (o, e,

Examples
M-expressions S-expressions
X
car CAR
car(x] (CAR X)
T (QUOTE T)
ff [car [x]] (FF (CAR X))
[atom[x]-x; T-ff[car[x]]] (COND ((ATOM X) X)
((QUOTE T) (FF (CAR X))))
label[ff;\[[x];[atom[x]~x; T-ff[car[x]]]]] (LABEL FF (LAMBDA (X) (COND

((ATOM X) X)
((QUOTE T) (FF (CAR X))))))

Some useful functions for handling S-expressions are given below. Some of them

10



are needed as auxiliary functions for evalquote.

equal[x;y]

This is a predicate that is true if its two arguments are identical S-expressions,

and is false if they are different. (The elementary predicate_eg_is defined only for
atomic arguments.) The definition of egual is an example of a conditional expression
inside a conditional expression.

equal[x;y]=[atom[x]~[atom[y]—eq[x;y]; T-FJ;
equa%l[car[x];car[y]]-»equal[cdr[x];cdr[y]];
T-F
This can be translated into the following S-expression:
(LABEL EQUAL (LAMBDA (X Y) (COND

((ATOM X) (COND ((ATOM Y) (EQ X Y)) ((QUOTE T) (QUOTE F))))
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
((QUOTE T) (QUOTE F)) )]

subst[x;y;z]
This function gives the result of substituting the S-expression x for all occurrences
of the atomic symbol y in the S-expression z. It is defined by

subst[x;y;z] = [equally;z] = x;atom[z] = z;T = cons[subst
[x:y;car[z]};subst[x;y;cdr[z]]]]

As an example, we have

subst[(X .A);B;((A.B). C)] =((A.(X.A)).C)
null[x]

This predicate is useful for deciding when a list is exhausted. It is true if and
only if its argument is NIL.

The following functions are useful when S-expressions are regarded as lists.
1. append[x;y]

append[x;y] = [null[x]~y; T~cons[car[x];append[cdr[x];y]]]
An example is

append[(A B);(CD E)] = (ABCDE)

2. member[x;y]

This predicate is true if the S-expression x occurs among the elements of the
list y. We have

member[x;y] = [null[y J~F;
equal[X; car[y]]-’T;
T-member[x;cdr[y]]]
3. pairlis[x;y;a]

11



This function gives the list of pairs of corresponding elements of the lists x and
Yy, and appends this to the list a. The resultant list of pairs, which is like a table with
two columns, is called an association list. We have

pairlis[x;y;a] = [null[x]—oa;T-—cons[cons[car[x]; car[y]}

pairlis[cdr(x]cdr[y];a]]]

An example is

pairlis[(A B C);(U V W);((D . X) (E . Y))] =

(A.U)(B.V)(C.W)(D.X)(E.Y))
4. assoc[x;a]
If a is an association list such as the one formed by pairlis in the above example,

then assoc will produce the first pair whose first term is x. Thus it is a table searching
function. We have

assoc[x;a] = [equal[caar[a]; x]~car[a]; T-assoc[x; cdr[a]]]

An example is

assoc[Bi((A . (M N)), (B. (CAR X)), (C . (QUOTE M)), (C . (CDR xX)]
= (B . (CAR X))
5. sublis[a;y]

Here a is assumed to be an association list of the form ((u1 . vl) ... (un . vn)),
where the u's are atomic, and y is any S-expression. What sublis does, is to treat
the u's as variables when they occur in y, and to substitute the corresponding v's

from the pair list. In order to define sublis, we first define an auxiliary function.
We have

sub2[a;z] = [null[a]-—Z;eq[caar[a];z]-ocdar[a];T—-
sub2[cdr[a];z]]
and
sublis[a;y] = [atom[y]-subz[a;y];T—ocons[sublis[a;car[y]];
sublis[a;cdr(y]]]]

An example is

sublis[((X . SHAKESPEARE) (Y . (THE TEMPEST)));(X WROTE Y)] =
(SHAKESPEARE WROTE (THE TEMPEST))

The universal function evalquote that is about to be defined obeys the following
identity. Let f be a function written as an M-expression, and let fn be its translation.
(fn is an S-expression.) Let f be a function of n arguments and let args=(arg1 ce

argn), a list of the n S-expressions being used as arguments. Then

evalquote[fn;args Ftlarg,;. .. sarg, ]

12



if either side of the equation is defined at all.
Example

f: M[x;y]);cons[car[x]y]]

fn: (LAMBDA (X Y) (CONS (CAR X) Y))
arg,: (A B)

arg,: (C D)

args: ((A B) (C D))

evalquote[(LAMBDA (X Y) (CONS (CAR X) Y)); ((AB)(CD))]=

A[[x;y];cons[car[x];y]][(A B);(C D)J=
(A CD)

evalquote is defined hy using two main functions, called eval and apply. apply
handles a function and its arguments, while eval handles forms. Each of these func-

tions also has another argument that is used as an association list for storing the val-

ues of bound variables and tunction names.
evalquote[fn;x] = apply[fn;x;NIL]
where

apply[fn;x;a] =
[atom[fn] = [eq[fn;CAR| - caar(x];
eq[fn;CDR] - cdar[x];
eq[fn; CONS] —~ cons[car[x]; cadr[x]};
eq[fn; ATOM] - atom[car[x]};
eq[fn; EQ] — eq[car[x];cadr[x]};
T -apply[eval[fn;a];x;a]];
eq[car[fn]; LAMBDA] - eval[caddr[fn];pairlis[cadr[fn];x;a]];
eq[car[fn]; LABEL] - apply[caddr[fn];x;cons[cons[cadr[fn];
caddr[fn]];a]]]
evalle;a] = [atom[e] - cdr[assoc[e;a]];
atom[car[e]] =~
|ea[car[e].QUOTE] ~ cadr[e];
eq[car[e];COND] - evcon[cdr[e];a];
T - apply[car[e];evlis[cdr[e];a];a]];
T - apply[car[e];evlis[cdr[e];a];a]]

pairlis and assoc have been previously defined.

evcon[c;a] = [eval[caar[c];a] - eval[cadar[c];a];
T - evcon[cdr[c];a]]
and
evlis[m;a] = [null[m] = NIL;

T - cons[eval[car[m];a];evlis[cdr[m];a]]]

13



We shall explain a number of points about these definitions.

The first argument for apply is a function. If it is an atomic symbol, then there
are two possibilities. One?t;at it is an elementary function: car, cdr, cons, eq,
or atom. In each case, the appropriate function is applied to the argument(s). If it is
not one of these, then its meaning has to be looked up in the association list.

If it begins with LAMBDA, then the arguments are paired with the bound variables,
and the form is given to eval to evaluate.

If it begins with LABEL, then the function name and definition are added to the as-
sociation list, and the inside function is evaluated by apply.

The first argument of eval is a form. If it is atomic, then it must be a variable,
and its value is looked up on the association list.

If car of the form is QUOTE, then it is a constant, and the value is cadr of the form
itself.

If car of the form is COND, then it is a conditional expression, and evcon evaluates
the propositional terms in order, and choses the form following the first true predicate.

In all other cases, the form must be a function followed by its arguments. The ar-
guments are then evaluated, and the function is given to apply.

The LISP Programming System has many added features that have not been de-
scribed thus far. These will be treated hereafter. At this point, it is worth noting the
following points.

1. In the pure theory of LISP, all functions other than the five basic ones need to
be defined each time they are to be used. This is unworkable in a practical sense.

The LISP programming system has a larger stock of built-in functions known to the in-
terpreter, and provision for adding as many more as the programmer cares to define.

2. The basic functions car, and cdr were said to be undefined for atomic arguments.
In the system, they always have a value, although it may not always be meaningful.
Similarly, the basic predicate eq always has a value. The effects of these functions
in unusual cases will be unders;od after reading the chapter on list structures in the
computer.

3. Except for very unusual cases, one never writes (QUOTE T) or (QUOTE F),
but T, and F respectively.

4. There is provision in LISP for computing with fixed and floating point numbers.
These are introduced as psuedo-atomic symbols.

The reader is warned that the definitions of apply and eval given above are pedagogi-
cal devices and are not the same functions as those built into the LISP programming
system. Appendix B contains the computer implemented version of these functions and
should be used to decide questions about how things really work.

14



II. THE LISP INTERPRETER SYSTEM

The following example is a LISP program that defines three functions union, inter-

section, and member, and then applies these functions to some test cases. The functions

union and intersection are to be applied to "sets," each set being represented by a list

of atomic symbols. The functions are defined as follows. Note that they are all recur-
sive, and both union and intersection make use of member.

member[a;x] = [null[x]~F;eq[a;car[x]]=-T;T~
member[a;cdr[x]]]

union[x;y] = [null[x]~y;member[car[x];y]——union
[cdr[x];y); T~cons[car[x];union[cdr[x];y]]]

intersection[x;y] = [null[x]-NIL;member[car[x];y]
- cons[car[x];intersection[cdr[x];y]]; T~

intersection[cdr[x];y]]

To define these functions, we use the pseudo-function define. The program looks like
this:
DEFINE ((
(MEMBER (LAMBDA (A X) (COND ((NULL X) F)
((EQ A (CAR X)) T) (T (MEMBER A (CDR X))) )))
(UNION (LAMBDA (X Y) (COND ((NULL X) Y) (MEMBER
(CAR X) Y) (UNION (CDR X) Y)) (T (CONS (CAR X)
(UNION (CDR X) Y))) )
(INTERSECTION (LAMBDA (X Y) (COND ((NULL X) NIL)
( (MEMBER (CAR X) Y) (CONS (CAR X) (INTERSECTION
(CDR X) Y))) (T (INTERSECTION (CDR X) Y)) )))
)
INTERSECTION ((Al1 A2 A3) (Al A3 A5))
UNION ((X Y Z) (UV W X))

This program contains three distinct functions for the LISP interpreter. The first
function is the pseudo-function define. A pseudo-function is a function that is executed
for its effect on the system in core memory, as well as for its value. define causes
these functions to be defined and available within the system. Its value is a list of the
functions defined, in this case (MEMBER UNION INTERSECTION).

The value of the second function is (Al A3). The value of the third function is
(Y Z U VW X). An inspection of the way in which the recursion is carried out will show
why the "elements" of the "set" appear in just this order.

Following are some elementary rules for writing LISP 1.5 programs.

1. A program for execution in LISP consists of a sequence of doublets. The first
list or atomic symbol of each doublet is interpreted as a function. The second is a list

15



of arguments for the function. They are evaluated by evalquote, and the value is printed.

2. There is no particular card format for writing LISP. Columns 1-72 of any number
of cards may be used. Card boundaries are ignored. The format of this program, in-
cluding indentation, was chosen merely for ease of reading.

3. A comma is the equivalent of a blank. Any number of blanks and/or commas can
occur at any point in a program except in the middle of an atomic symbol.

4. Do not use the forms (QUOTE T), (QUOTE F), and (QUOTE NIL). Use T, F, and
NIL instead.

5. Atomic symbols should begin with alphabetical characters to distinguish them
from numbers.

6. Dot notation may be used in LISP 1.5. Any number of blanks before or after the
dot will be ignored.

7. Dotted pairs may occur as elements of a list, and lists may occur as elements
of dotted pairs. For example,

((A.B)X(C.(EFQG)))
is a valid S-expression. It could also be written

((A.B).(X.{C.(E.(F.(G.NIL))) . NIL))) or

((A.B)X(CEFQG))

8. A form of the type (A B C . D) is an abbreviation for (A . (B . (C . D))). Any
other mixing of commas (spaces) and dots on the same level is an error, e.g. (A.BQ).

9. A selection of basic functions is provided with the LISP system. Other functions
may be introduced by the programmer. The order in which functions are introduced
is not significant. Any function may make use of any other function.

2.1 Variables

A variable is a symbol that is used to represent an argument of a function. Thus one
might write "a + b, where a = 341 and b = 216." In this situation no confusion can result
and all will agree that the answer is 557. In order to arrive at this result, it is neces-
sary to substitute the actual numbers for the variables, and then add the two number (on
an adding machine for instance).

One reason why there is no ambiguity in this case is that "a" and "b" are not accept-
able inputs for an adding machine, and it is therefore obvious that they merely represent
the actual arguments. In LISP, the situation can be much more complicated. An atomic
symbol may be either a variable or an actual argument. To further complicate the sit-
uation, a part of an argument may be a variable when a function inside another function
is evaluated. The intuitive approach is no longer adequate. An understanding of the
formalism in use is necessary to do any effective LISP programming.

Lest the prospective LISP user be discouraged at this point, it should be pointed out
that nothing new is going to be introduced here. This section is intended to reinforce
the discussion of Section I. Everything in this section can be derived from the rule for

16



translating M-expressions into S-expressions, or alternatively everything in this section
can be inferred from the universal function evalquote of Section I.

The formalism for variables in LISP is the Church lambda notation. The part of the
interpreter that binds variables is called apply. When apply encounters a function be-
ginning with LAMBDA, the list of variables is paired with the list of arguments and added
to the front of the a-list. During the evaluation of the function, variables may be encountered.
They are evaluated by looking them up on the a-list. If a variable has been bound several
times, the last or most recent value is used. The part of the interpreter that does this
is called eval. The following example will illustrate this discussion. Suppose the inter-

preter is given the following doublet:

fn: (LAMBDA (X Y) (CONS X Y))
args: (A B)

evalquote will give these arguments to apply. (Look at the universal function of
Section I.)

apply[(LAMBDA (X Y) (CONS X Y)); (A B);NIL]

apply will bind the variables and give the function and a-list to eval.
eval[(CONS X Y); ((X . A) (Y . B))]

eval will evaluate the variables and give it to cons.

cons[A;B] = (A . B)

The actual interpreter skips one step required by the universal function, namely,
apply[CONS;(A B);((X . A) (Y . B))].

2.2 Constants

It is sometimes assumed that a constant stands for itself as opposed to a variable
which stands for something else. This is not a very workable concept, since the student
who is learning calculus is taught to represent constants by a, b, c... and variables by
X,y,z... . It seems more reasonable to say that one variable is more nearly constant
than another if it is bound at a higher level and changes value less frequently.

In LISP, a variable remains bound within the scope of the LAMBDA that binds it.
When a variable always has a certain value regardless of the current a-list, it will be
called a constant. This is accomplished by means of the property lis’c1 (p-list) of the
variable symbol. Every atomic symbol has a p-list. When the p-list contains the in-
dicator APVAL, then the symbol is a constant and the next item on the list is the value.
eval searches p-lists before a-lists when evaluating variables, thus making it possible
to set constants.

Constants can be made by the programmer. To make the variable X always stand
for (A B C D), use the pseudo-function cset.

1. Property lists are discussed in Section VII.

17



cset[X;(A B C D)]

An interesting type of constant is one that stands for itself. NIL is an example of
this. It can be evaluated repeatedly and will still be NIL. T, F, NIL, and other constants
cannot be used as variables.

2.3 Functions

When a symbol stands for a function, the situation is similar to that in which a symbol
stands for an argument. When a function is recursive, it must be given a name. This
is done by means of the form LABEL, which pairs the name with the function definition
on the a-list. The name is then bound to the function definition, just as a variable is
bound to its value.

In actual practice, LABEL is seldom used. It is usually more convenient to attach
the name to the definition in a uniform manner. This is done by putting on the property
list of the name,the symbolEXPR followed by the function definition. The pseudo-function
define used at the beginning of this section accomplishes this. When apply interprets
a function represented by an atomic symbol, it searches the p-list of the atomic symbol
before searching the current a-list. Thus a define will override a LABEL.

The fact that most functions are constants defined by the programmer, and not vari-
ables that are modified by the program, is not due to any weakness of the system. On the
contrary, it indicates a richness of the system which we do not know how to exploit very
well.

2.4 Machine Language Functions

Some functions instead of being defined by S-expressions are coded as closed machine
language subroutines. Such a function will have the indicator SUBR on its property list
followed by a pointer that allows the interpreter to link with the subroutine. There are
three ways in which a subroutine can be present in the system.

1. The subroutine is coded into the LISP system.

2. The function is hand-coded by the user in the assembly type language, LAP.

3. The function is first defined by an S-expression, and then compiled by the LISP
compiler. Compiled functions run from 10 to 100 times as fast as they do when they

are interpreted.

2.5 Special Forms

Normally, eval evaluates the arguments of a function before applying the function
itself. Thus if eval is given (CONS X Y), it will evaluate X and Y, and then cons them.
But if eval is given (QUOTE X), X should not be evaluated. QUOTE is a special form
that prevents its argument from being evaluated.

A special form differs from a function in two ways. Its arguments are not evaluated

before the special form sees them. COND, for example, has a very special way of

18



evaluating its arguments by using evcon. The second way which special forms differ
from functions is that they may have an indefinite number of arguments. Special formis
have indicators on their property lists called FEXPR and FSUBR for LISP-defined forms
and machine language coded forms, respectively.

2.6 Programming for the Interpreter

The purpose of this section is to help the programmer avoid certain common errors.
Example 1

fn: CAR

args: ((A B))

The value is A. Note that the interpreter expects a list of arguments. The one argu-
ment for car is (A B). The extra pair of parentheses is necessary.

One could write (LAMBDA (X) (CAR X)) instead of just CAR. This is correct but
unnecessary.

Example 2

fn: CONS
args: (A (B . C))

The value is cons[A;(B . C)] = (A . (B . C)).
The print program will write this as (A B . C).

Example 3

fn: CONS
args: ((CAR (QUOTE (A . B))) (CDR (QUOTE (C . D))))

The value of this computation will be ((CAR (QUOTE (A . B))). (CDR(QUOTE (C . D)))).
This is not what the programmer expected. He expected (CAR (QUOTE (A . B))) to
evaluate to A, and expected (A . D) as the value of cons.

The interpreter expects a list of arguments. It does not expect a list of expressions

that will evaluate to the arguments. Two correct ways of writing this function are listed
below. The first one makes the car and cdr part of a function specified by a LAMBDA.
The second one uses quoted arguments and gets them evaluated by eval with a null a-list.

fn: (LAMBDA (X Y) (CONS (CAR X) (CDR Y)))

args: ((A . B) (C . D))

fn: EVAL

args: ((CONS (CAR (QUOTE (A . B))) (CDR (QUOTE (C . D)))) NIL)

The value of both of these is (A . D).

19



III. EXTENSION OF THE LISP LANGUAGE

Section I of this manual presented a purely formal mathematical system that we

shall call pure LISP. The elements of this formal system are the following.

1. A set of symbols called S-expressions.

2. A functional notation called M-expressions.

3. A formal mapping of M-expressions into S-expressions.

4. A universal function (written 1s an M-expression) for interpreting the application
of any function written as an S-expression to its arguments.

Section II introduced the LISP Programming System. The basis of the LISP Pro-
gramming System is the interpreter, or evalquote and its components . A LISP program
in fact consists of pairs of arguments for evalquote which are interpreted in sequence.

In this section we shall introduce a number of extensions of elementary LISP. These
extensions of elementary LISP are of two sorts. The first includes propositional con-
nectives and functions with functions as arguments, and they are also of a mathematical
nature; the secondis peculiar to the LISP Programming System on the IBM 7090 computer.

In all cases, additions to the LISP Programming System are made to conform to the
functional syntax of LISP even though they are not functions. For example, the command
to print an S-expression on the output tape is called w . Syntactically, print is a
function of one argument. It may be used in composition with other functicE and will
be evaluated in the usual manner, with the inside of the composition being evaluated first.
Its effect is to print its argument on the output tape (or on-line). It is a function only in
the trivial sense that its value happens to be its argument, thus making it an identity
function.

Commands to effect an action such as the operation of input-output, or the defining
functions define and cset discussed in Chapter II, will be called pseudo-functions. It
is characteristic of the LISP system that all functions including psuedo-functions must
have values. In some cases the value is trivial and may be ignored.

This Chapter is concerned with several extensions of the LISP language that are in
the system.

3.1 Functional Arguments

Mathematically, it is possible to have functions as arguments of other functions.
For example, in arithmetic one could define a function operate [op;a;b], where op is a
functional argument that specifies which arithmetic operation is to be performed on a
and b. Thus

operate[+;3;4]=7 and
operate[x;3;4]=12

In LISP, functional arguments are extremely useful. A very important function with
a functional argument is maplist. Its M-expression definition is

20



maplist[x;fn]=[null[x]-NIL;
T-cons[fn[x];maplist[cdr[x];fn]]]

An examination of the universal function evalquote will show that the interpreter can
handle maplist and other functions written in this manner without any further addition.
The functional argument is, of course, a function translated into an S-expression. It is
bound to the variable fn and is then used whenever fn is mentioned as a function. The
S-expression for maplist itself is as follows:

(MAPLIST (LAMBDA (X FN) (COND ((NULL X) NIL)
(T (CONS (FN X) (MAPLIST (CDR X) FN))) )))

Now suppose we wish to define a function that takes a list and changes it by cons-ing

an X onto every item of the list so that, for example,

change[(A B (C D)]=((A . X) (B. X) ((C . D) . X))

Using maplist, we define change by
change[a]=maplist[a;\[[j];cons[car[j];X]]]
This is not a valid M-expression as defined syntactically in section 1.5 because a

function appears where a form is expected. This can be corrected by modifying the rule

defining an argument so as to include functional arguments:

<argument>:: = <form >|<function>

We also need a special rule to translate functional arguments into S-expression. If
fn is a function used as an argument, then it is translated into (FUNCTION fn¥*).
Example

(CHANGE (LAMBDA (A) (MAPLIST A (FUNCTION
(LAMBDA (J) (CONS (CAR J) (QUOTE X))) )))

An examination of evalquote shows that QUOTE will work instead of FUNC TION,
provided that there are no free variables present. An explanation of how the interpreter
processes the atomic symbol FUNCTION is given in the Appendix B.

3.2 Logical Connectives
The logical or Boolian connectives are usually considered as primitive operators.
However, in LISP, they can be defined by using conditional expressions:

pAQ=[p-q;T~F]
pv q=[p=-T;T~q]
~q=[q=F;T-T]

In the System, not is a predicate of one argument. However, and and or are pred-

icates of an indefinite number of arguments, and therefore are special forms. In

21



writing M-expressions it is often convenient to use infix notation and write expressions
such as aVbvc for or[a;b;c]. In S-expressions, one must, of course, use prefix no-
tation and write (OR A B C).

The order in which the arguments of and and or are given may be of some significance
in the case in which some of the arguments may not be well defined. The definitions of
these predicated given above show that the value may be defined even if all of the argu-
ments are not.

and evaluates its arguments from left to right. If one of them is found that is false,
then the value of the and is false and no further arguments are evaluated. If the argu-
ments are all evaluated and found to be true, then the value is true.

or evaluates its arguments from left to right. If one of them is true, then the value
of the or is true and no further arguments are evaluated. If the arguments are all eval-
uated and found to be false, then the value is false.

3.3 Predicates and Truth in LISP

Although the rule for translating M-expressions into S-expressions states that T is
(QUOTE T), itwas stated thatinthe system one mustalways write T instead. Similarly,
one must write F rather than (QUOTE F). The programmer may either accept this
rule blindly or understand the following Humpty-Dumpty semantics.

In the LISP programming system there are two atomic symbols that represent truth
and falsity respectively. These two atomic symbols are *T* and NIL. It is these sym-
bols rather than T and F that are the actual value of all predicates in the system. This
is mainly a coding convenience.

The atomic symbols T and F have APVAL's whose values are *T* and NIL, re-
spectively. The symbols T and F for constant predicates will work because:

eval[ T;NIL]=*T*

eval[F;NIL]=NIL

The forms (QUOTE *T*) and (QUOTE NIL) will also work because

eval[(QUOTE *Tx*);NIL]=%T5

eval[(QUOTE NIL);NIL]=NIL

*T* and NIL both have APVAL's that point to themselves. Thus *T* and NIL are
also acceptable because ’

eval[*T#;NIL]=*T*

eval[NIL;NIL]}=NIL

But

eval[(QUOTE F);NIL]=F

which is wrong and this is why (QUOTE F) will not work. Note that

22



eval[(QUOTE T);alist]=T

which is wrong but will work for a different reason that will be explained in the
paragraph after next.

There is no formal distinction between a function and a predicate in LISP. A pred-
icate can be defined as a function whose value is either *T* or NIL. This is true of all
predicates in the System.

One may use a form that is not a predicate in a location in which a predicate is called
for, such as in the p position of a conditional expression, or as an argument of a logical
predicate. Semantically, any S-expression that is not NIL will be regarded as truth in
such a case. One consequence of this is that the predicates null and not are identical.
Another consequence is that (QUOTE T) or (QUOTE X) is equivalent to T as a constant
predicate.

The predicate eq has the following behavior.

1. If its arguments are different, the value of eq is NIL.

2. If its arguments are both the same atomic symbol, its value is *T*.

3. If its arguments are both the same, but are not atomic, then the value is *T* or
NIL depending upon whether the arguments are identical in their representation in core
memory.

4. The value of eq is always *T% or NIL. It is never undefined even if its arguments
are bad.

23



IV. ARITHMETIC IN LISP

Lisp 1.5 has provision for handling fixed-point and floating-point numbers and log-
ical words. There are functions and predicates in the system for performing arithmetic
and logical operations and making basic tests.

4.1 Reading and Printing Numbers

Numbers are stored in the computer as though they were a special type of atomic
symbol. This is discussed more thoroughly in section 7.3. The following points should
be noted :

1. Numbers may occur in S-expressions as though they were atomic symbols.

2. Numbersare constants that evaluate to themselves. They do not need to be quoted.

3. Numbers should not be used as variables or function names.

a. Floating-Point Numbers

The rules for punching these for the read program are:

1. A decimal point must be included but not as the first or last character.

2. A plus sign or minus sign may precede the number. The plus sign isnotrequired.

3. Exponent indication is optional. The letter E followed by the exponent to the
base 10 is written directly after the number. The exponent consists of one or two digits

that may be preceded by a plus or minus sign.

128 128 3

and 27128 (1038 and 10”
5. Significance is limited to 8 decimal digits.

4. Absolute values must lie between 2 38

).

6. Any possible ambiguity between the decimal point and the point used in dot no-
tation may be eliminated by putting spaces before and after the LISP dot. This is not
required when there is no ambiguity.

Following are examples of correct floating-point numbers. These are all different
forms for the same number, and will have the same effect when read in.

60.0
6.E1
600.00E-1
0.6E+2

The forms .6E+2 and 60. are incorrect because the decimal point is the first or last
character respectively.

b. Fixed-Point Numbers
These are written as integers with an optional sign.
Examples

-17
32719

24



c¢. Octal Numbers or Logical Words

The correct form consists of

1. A sign (optional).

2. Up to 12 digits (0 through 7).
3. The letter Q.
4

An optional scale factor. The scale factor is a decimal integer, no sign allowed.

Example
a. 7717Q
b. 777Q4
c. -3Ql11
d. -7Q11
e. +7Q11

The effect of the read program on octal numbers is as follows.

1. The number is placed in the accumulator three bits per octal digit with zeros
added to the left-hand side to make twelve digits. The rightmost digit is placed in bits
33-35; the twelfth digit is placed in bits P, 1, and 2.

2. The accumulator is shifted left three bits (one octal digit) times the scale factor.
Thus the scale factor is an exponent to the base 8.

3. If there is a negative sign, it is OR-ed into the P bit. The number is then stored
as a logical word.

The examples a through e above will be converted to the following octal words.
Note that because the sign is OR-ed with the 36th numerical bit ¢, d, and e are equiv-

alent.
a. 000000000777
b. 000007770000
c. 700000000000
d. 700000000000
e. 700000000000

4.2 Arithmetic Functions and Predicates

We shall now list all of the arithmetic functions in the System. They must be given
numbers as arguments; otherwise an error condition will result. The arguments may
be any type of number. A function may be given some fixed-point arguments and some
floating-point arguments at the same time.

If all of the arguments for a function are fixed-point numbers, then the value will
be a fixed-point number. If at least one argument is a floating-point number, then the
value of the function will be a floating-point number.

plus[x ;... ;xn] is a function of any number of arguments whose value is the alge-
braic sum of the arguments.

25



difference[x;y] has for its value the algebraic difference of its arguments.

minus[x] has for its value —x. '

tim;es[xl;. .o ;xn] is a function of any number of arguments, whose value is the product
(with correct sign) of its arguments.

a_dd_i[x] has x+1 for its value. The value is fixed-point or floating-point, depending
on the argument.

subi[x] has x-1 for its value. The value is fixed-point or floating-point, depending
on the argument.

max[xl;. . .;xn] chooses the largest of its arguments for its value. Note that
max[3;2.0] = 3.0.
min[xl;. .. ;xn] chooses the smallest of its arguments for its value.

recip[x] computes 1/x. The reciprocal of any fixed point number is defined as zero.

q_uc;;i—ent[x;y] computes the quotient of its arguments. For fixed-point arguments,
the value is the number theoretic quotient. A divide check or floating-point trap will
result in a LISP error.

remainder[x;y] computes the number theoretic remainder for fixed-point numbers,
and the floating-point residue for floating-point arguments.

divide[x;y] = cons[quotient[x;y]; cons[remainder[x;y];NIL]]

expt[x;y] = x7. If both x and y are fixed-point numbers, this is computed by iter-
ativmltiplication. Otherwise the power is computed by using logarithms. The first
argument cannot be negative.

We shall now list all of the arithmetic predicates in the System. They may have
fixed-point and floating-point arguments mixed freely. The value of a predicate is *T*
or NIL.

lessp[x;y] is true if x < y, and false otherwise.

gr_&aterp[x;y] is true if x > y.

zerop[x] is true if x=0, or if | x|< 3 x 1076,

onep[x] is true if |x-1] < 3 x 1078,
minusp[x] is true if x is ‘hegative.
"-0" is negative.

numberp[x] is true if x is a number (fixed-point or floating-point).

fixp[x] is true only if x is a fixed-point number. If x is not a number at all, an
errg;vill result.

floatp[x] is similar to fixp[x] but for floating-point numbers.

;1.11:1-[x;y] works on any arguments including S-expressions incorporating numbers
inside them. Its value is true if the arguments are identical. Floating-point numbers
must satisfy | x-y| <3 X 1076,

The logical functions operate on 36-bit words. The only acceptable arguments are
fixed-point numbers. These may be read in as octal or decimal integers, or they may
be the result of a previous computation.

logor[xl;. .. ;xn] performs a logical OR on its arguments.

26



logand[xl;. oo ;xn] performs a logical AND on its arguments.
logxor[xl;. .o ;xn] performs an exclusive OR
(OXO=O, lvo=0vl1=1, lzl=0),
leftshift[x;n] = xX2". The first argument is shifted left by the number of bits spec-

ified by the second argument. If the second argument is negative, the first argument
will be shifted right.

4.3 Programming with Arithmetic

The arithmetic functions may be used recursively, just as other functions available
to the interpreter. As an example, we define factorial as it was given in Section I.
n!=[n=0=1; T=n.(n-1)!]
DEFINE ((
(FACTORIAL (LAMBDA (N) (COND
((ZEROP N) 1)
(T (TIMES N (FACTORIAL (SUB1 N)))) )))
)

4.4 The Array Feature

Provision is made in LISP 1.5 for allocating blocks of storage for data. The data
may consist of numbers, atomic symbols or other S-expressions.

The pseudo-function array reserves space for arrays, and turns the name of an
array into a function that can be used to fill the array or locate any element of it.

Arrays may have up to three indices. Each element (uniquely specified by its co-
ordinates) contains a pointer to an S-expression (see Section VII).

array is a function of one argument which is a list of arrays to be declared. Each
item is a list containing the name of an array, its dimensions, and the word LIST. (Non-
list arrays are reserved for future developments of the LISP system.)

For example, to make an array called alpha of size 7 X 10, and one called beta of
size 3 X 4 X 5 one should execute:

array[((ALPHA (7 10) LIST) (BETA (3 4 5) LIST))]
After this has been executed, both arrays exist and their elements are all set to
NIL. Indices range from 0 to n-1.

alpha and beta are now functions that can be used to set or locate elements of these
respective arrays.

To set alphai j to x, execute —
’

alpha[SET;x;i;j]

To set alpha3 4 to (A B C) execute —
alpha[SET;(A B C);3;4]

27



Inside a function or program X might be bound to (A B C), I bound to 3, and J bound
to 4, in which case the setting can be done by evaluating —

(ALPHA (QUOTE SET) X 1J)

To locate an element of an array, use the array name as a function with the coordi-
nates as axes. Thus any time after executing the previous example —

alpha[3;4] = (A B C)

Arrays use marginal indexing for maximum speed. For most efficient results,
specify dimensions in increasing order. Beta[3;4;5] is better than beta[5;3;4].

Storage for arrays is located in an area of memory called binary program space.

28



V. THE PROGRAM FEATURE

The LISP 1.5 program feature allows the user to write an Algol-like program con-
taining LISP statements to be executed.

An example of the program feature is the function length, which examines a list and
decides how many elements there are in the top level of the list. The value of length is
an integer.

Length is a function of one argument £. The program uses two program variables
u and v, which can be regarded as storage locations whose contents are to be changed
by the program. In English the program is written:

This is a function of one argument £.
It is a program with two program variables u and v.
Store 0 in v.
Store the argument £ in u.
A If u contains NIL, then the program is finished,
and the value is whatever is now in v.
Store in u, cdr of what is now in u.
Store in v, one more than what is now in v.
Go to A.

We now write this program as an M-expression, with a few new notations. This
corresponds line for line with the program written above.

length[2] = prog[[u;v];
vi=0;
u:=4;
A [null[u] =return[v]];
cdr[ul;
vi= vtl;
go [A]]

Rewriting this as an S-expression, we get the following program.

u:

DEFINE ((
(LENGTH (LAMBDA (L)
(PROG (U V)
(SETQ V 0)
(SETQ U L)
A (COND ((NULL U) (RETURN V)))
(SETQ U (CDR 1))
(SETQ V (ADD1 V))
(GO A) ) )
LENGTH ((A B C D))

29



LENGTH (((X - Y) A CAR (N B) (X Y 2Z)))

The last two lines are test cases. Their values are four and five, respectively.

The program form has the structure —

(PROG, list of program variables, sequence of statements and atomic. symbols...)
An atomic symbol in the list is the location marker for the statement that follows. In
the above example, A is a location marker for the statement beginning with COND.

The first list after the symbol PROG is a list of program variables. If there are
none, then this should be written NIL or (). Program variables are treated much like
bound variables, but they are not bound by LAMBDA. The value of each program vari-
able is NIL until it has been set to something else.

To set a program variable, use the form SET. To set variable PI to 3.14 write
(SET (QUOTE PI) 3.14). SETQ is like SET except that it quotes its first argument. Thus
(SETQ PI 3.14). SETQ is usually more convenient. SET and SETQ can change variables
that are on the a-list from higher level functions. The value of SET or SETQ is the value
of its second argument.

Statements are normally executed in sequence. Executing a statement means eval-
uating it with the current a-list and ignoring its value. Program statements are often
executed for their effect rather than their value.

GO is a form used to cause a transfer. (GO A) will cause the program to continue
at statement A. The form GO can be used only as a statement on the top level of a
PROG or immediately inside a COND which is on the top level of a PROG.

Conditional expressions as program statements have a useful peculiarity. If none
of the propositions are true, instead of an error indication which would otherwise occur,
the program continues with the next statement. This is true only for conditional expres-
sions that are on the top level of a PROG.

RETURN is the normal end of a program. The argument of RETURN is evaluated,
and this is the value of the program. No further statements are executed.

If a program runs out of statements, it returns with the value NIL.

The program feature, like other LISP functions, can be used recursively. The

function rev, which reverses a list and all its sublists is an example of this.

rev[x] = prog[[y;z];

A [null[x]-return[y];
z:= car[x];
[atom(z]~go[B]];

rev[z];

z:
B y:
x:= cdr[x];
go[A]]
The function rev will reverse a list on all levels so that
rev[(A ((B C) D))] = ((D (C B)) A)

"

cons[z;y];

30



VI. RUNNING THE LISP SYSTEM
6.1 Preparing a Card Deck

A LISP program consists of several sections called packets. Each packet starts
with an Overlord direction card, followed by a set of doublets for evalquote, and ending
with the word STOP.

Overlord direction cards control tape movement, restoration of the system memory
between packets, and core dumps. A complete listing of Overlord directions is given
in Appendix E.

Overlord direction cards are punched in Share symbolic format; the direction starts
in column 8, and the comments field starts in column 16. Some Overlord cards will
now be described.

TEST: Subsequent doublets are read in until the word STOP is encountered, or until

a read error occurs. The doublets are then evaluated and each doublet with its value
is written on the output tape. If an error occurs, a diagnostic will be written and the
program will continue with the next doublet. When all doublets have been evaluated,
control is returned to Overlord which restores the core memory to what it was before
the TEST by reading in a core memory image from the temporary tape.

SET: The doublets are read and interpreted in the same manner as a TEST. However,
when all doublets have been evaluated, the core memory is not restored. Instead, the
core memory is written out onto the temporary tape (overwriting the previous core
image), and becomes the base memory for all remaining packets. Definitions and
other memory changes made during a SET will affect all remaining packets.

Several SET's during a LISP run will set on top of each other.

A SET will not set if it contains an error. The memory will be restored from the
temporary tape instead.

SETSET: This direction is like SET, except that it will set even if there is an error.
FIN: End of LISP run.

The reading of doublets is normally terminated by the word STOP. If parentheses
do not count out, STOP will appear to be inside an S-expression and will not be recog-
nized as such. To prevent reading from continuing indefinitely, each packet should end
with STOP followed by a large number of right parentheses. An unpaired right paren-
thesis will cause a read error and terminate reading.

A complete card deck for a LISP run might consist of:

a: LISP loader

b: ID card (Optional)

c: Several Packets

d: FIN card

e: Two blank cards to prevent card reader from hanging up

The ID card may have any information desired by the computation center. It will be

31



printed at the head of the output.

6.2 Tracing

Tracing is a technique used to debug recursive functions. The tracer prints the
name of a function and its arguments when it is entered, and its value when it is finished.
By tracing certain critical subfunctions, the user can often locate a fault in a large pro-
gram.

Tracing is controlled by the pseudo-function trace, whose argument is a list of func-
tions to be traced. After trace has been executed, tracing will occur whenever these
functions are entered.

When tracing of certain functions is no longer desired, it can be terminated by the
pseudo-function untrace whose argument is a list of functions that are no longer to be
traced.

6.3 Error Diagnostics

When an error occurs in a LISP 1.5 program, a diagnostic giving the nature of the
error is printed out. The diagnostic gives the type of error, and the contents of certain
registers at that time. In some cases a back-trace is also printed. This is a list of
functions that were entered recursively but not completed at the time of the error.

In most cases, the program continues with the next doublet. However, certain er-
rors are fatal; in this case control is given to the monitor Overlord. Errors during
Overlord also continue with Overlord.

A complete list of error diagnostics is given below, with comments.

Interpreter Errors:
Al APPLIED FUNCTION CALLED ERROR
The function error will cause an error diagnostic to occur. The argument
(if any) of error will be printed. Error is of some use as a debugging aid.
A 2 FUNCTION OBJECT HAS NO DEFINITION- APPLY
This occurs when an atomic symbol, given as the first argument of apply,

does not have a definition either on its property list or on the a-list of apply.

A 3 CONDITIONAL UNSATISFIED — EVCON

None of the propostiions following COND are true.
A 4 SETQ GIVEN ON NONEXISTENT PROGRAM VARIABLE — APPLY
A 5 SET GIVEN ON NONEXISTENT PROGRAM VARIABLE — APPLY
A 6 GO REFERS TO A POINT NOT LABELLED — INTER
A7 TOO MANY ARGUMENTS — SPREAD

The interpreter can handle only 20 arguments for a function.
A 8 UNBOUND VARIABLE — EVAL

The atomic symbol in question is not bound on the a-list for eval nor does it
have an APVAL.

32



A 9 FUNCTION OBJECT HAS NO DEFINITION — EVAL
Eval expects the first object on a list to be evaluated to be an atomic symbol.
A 8 and A 9 frequently occur when a parenthesis miscount causes the wrong
phrase to be evaluated.

Compiler Errors:
C 1 CONDITION NOT SATISFIED IN COMPILED FUNCTION

Character-Handling Functions:

CH 1 TOO MANY CHARACTERS IN PRINT NAME — PACK
CH 2 FLOATING POINT NUMBER OUT OF RANGE — NUMOB
CH 3 TAPE READING ERROR — ADVANCE

The character-handling functions are described in Appendix F.

Miscellaneous Errors:

F 1 CONS COUNTER TRAP
The cons counter is described in section 6. 4.
F 2 FIRST ARGUMENT LIST TOO SHORT — PAIR
F 3 SECOND ARGUMENT LIST TOO SHORT — PAIR

Pair is used by the interpreter to bind variables to arguments. If a function

is given the wrong number of arguments, these errors may occur.

F 5 STR TRAP — CONTINUING WITH NEXT EVALQUOTE
When the instruction STR is executed, this error occurs.
If sense switch 6 is down when an STR is executed,
control goes to Overlord instead.
G 1 FLOATING POINT TRAP OR DIVIDE CHECK
G 2 OUT OF PUSH — DOWN LIST
The push-down list is the memory device that keeps track of the level of re-
cursion. When recursion becomes very deep, this error will occur. Non-

terminating recursion will cause this error.

Garbage Collector Errors:

GC 1 FATAL ERROR — RECLAIMER
This error only occurs when the system is so choked that it cannot be restored.
Control goes to Overlord.

GC 2 NOT ENOUGH WORDS COLLECTED — RECLAIMER
This error restores free storage as best it can and continues with the next
doublet.

Arithmetic Errors:
I1 NOT ENOUGH ROOM FOR ARRAY
Arrays are stored in binary program space.

33



FIRST ARGUMENT NEGATIVE — EXPT
BAD ARGUMENT — NUMVAL
BAD ARGUMENT — FIXVAL

Errors I 3 and I 4 will occur when numerical functions are given wrong argu-

T e B ]
oW

ments.

Lap Errors:

L1 UNABLE TO DETERMINE ORIGIN
L2 OUT OF BINARY PRUGRAM SPACE

L 3 UNDEFINED SYMBOL

L 4 FIELD CONTAINED SUB — SUBFIELDS

Overlord Errors:

1 ERROR IN SIZE CARD — OVERLORD

INVALID TAPE DESIGNATION — OVERLORD

NO SIZE CARD — OVERLORD

BAD DUMP ARGUMENTS — OVERLORD

BAD INPUT BUT GOING ON ANYHOW — OVERLORD
OVERLAPPING PARAMETERS — SETUP

O O0Oo0O0O0OO0
N oo W

Input-Output Errors:

P 1 PRIN1 ASKED TO PRINT NON-OBJECT

R 1 FIRST OBJECT ON INPUT LIST IS ILLEGAL — RDA

This error occurs when the read program encounters a character such'as
") or "." out of context. This occurs frequently when there is a parenthesis
miscount.

CONTEXT ERROR WITH DOT NOTATION — RDA

ILLEGAL CHARACTER — RDA

END OF FILE ON READ-IN — RDA

PRINT NAME TOO LONG - RDA

Print names may contain up to 30 BCD characters.

R 6 NUMBER TOO LARGE IN CONVERSION — RDA

v =< I I
o W

6.4 The Cons Counter and Errorset

The cons counter is a useful device for breaking out of program loops. It automat-
ically causes a trap when a certain number of conses have been performed.

The counter is turned on by executing count [n], where n is an integer. If n conses
are performed before the counter is turned off, a trap will occur and an error diagnos-
tic will be given. The counter is turned off by uncount [NIL]. The counter is turned
on and reset each time count [n] is executed. The counter can be turned on so as to
continue counting from the state it was in when last turned off by executing count [NIL].

The function speak [NIL] gives the number of conses counted since the counter was
last reset.

34



errorset is a function available to the interpreter and compiler for making a graceful
retreat from an error condition encountered during a subroutine.

errorset[e;n;m;a] is a pseudo-function with four arguments. If no error occurs, then
errorset can be defined by

errorset[e;n;m;a] = list[evalle;a]]

n is the number of conses permitted before a cons trap will occur. The cons counter
is always on during an errorset; however, when leaving the errorset the counter is al-
ways restored to the value it had before entering the errorset. The on-off status of the
counter will also be restored.

When an error occurs inside an errorset, the error diagnostic will occur if m is
set true, but will not be printed if m is NIL.

If an error occurs inside of an errorset, then the value of errorset is NIL. If vari-
ables bound outside of the errorset have not been altered by using cset or set, and if no
damage has been done by pseudo-functions, it may be possible to continue computation
in a different direction when one path results in an error.

35



VII. LIST STRUCTURES

In other sections of this manual, lists have been discussed by using the LISP input-
output language. In this section, we discuss the representation of lists inside the com-
puter, the nature of property lists of atomic symbols, representation of numbers, and
the garbage collector.

7.1 Representation of List Structure

Lists are not stored in the computer as sequences of BCD characters, but as struc-
tural forms built out of computer words as parts of trees.

In representing list structure, a computer word will be depicted as a rectangle
divided into two sections, the address and decrement.

bdd. | dec. I

Each of these is a 15-bit field of the word.

We define a pointer to a computer word as the 15-bit quantity that is the complement
of the address of the word. Thus a pointer to location 77777 would be 00001.

Suppose the decrement of word x contains a pointer to word y. We diagram this as

[ T = T 1

x y

We can now give a rule for representing S-expressidns in the computer. The repre-
sentation of atomic symbols will be explained in section 7.3. When a computer word
contains a pointer to an atomic symbol in the address or decrement, the atomic symbol

will be written there as

[omon |-

The rule for representing non-atomic S-expressions is to start with a word containing
a pointer to car of the expression in the address, and a pointer to cdr of the expression
in the decrement.

Following are some diagrammed S-expressions, shown as they would appear in the
computer. It is convenient to indicate NIL by T IZ] instead of | NIL

(a8 LLATs ]
wse) L AT {3}

((M.N)X(M.N))

)
o N 0 N S B

36



It is possible for lists to make use of common subexpressions. (M. N) X (M.N))
could also be represented as

Circular lists are ordinarily not permitted. They may not be read in; however, they
can occur inside the computer as the result of computations involving certain functions.
Their printed representation is infinite in length. For example, the structure

(A | s [ c] TI

will print as (A BC ABC A...
That which follows is an actual assembly listing of the S-expression (A (B (C . A))
(C . A)) which is diagrammed:

[
|
\

The atoms A, B, and C are represented by pointers to locations 12327, 12330, and
12331, respectively. NIL is represented by a pointer to location 00000.

10425 0 67352 0 65451 -A,, %1
10426 0 67351 0 67350 —%=2,, =%=1
10427 0 00000 0 67346 —%=3

10430 0 67347 0 65450 -B,,-#%-1
10431 0 00000 0 67346 —%¥=1

10432 0 65451 0 65447 -C,,-A

The advantages of list structures for the storage of symbolic expressions are:
1. The size and even the number of expressions with which the program will have
to deal cannot be predicted in advance. Therefore, it is difficult to arrange blocks of

37



storage of fixed length to contain them.

2. Registers can be put back on the free-storage list when they are no longer
needed. Even one register returned to the list is of value, but if expressions are stored
linearly, it is difficult to make use of blocks of registers of odd sizes that may become
available.

3. An expression that occurs as a subexpression of several expressions need be
represented in storage only once.

7.2 Construction of List Structure

The following simple example has been included to illustrate the exact construction
of list structures. Two types of list structures are shown, and a function for deriving
one from the other is given in LISP.

We assume that we have a list of the form
ﬂl =((ABC) DEF),...,(XY2Z)),

which is represented as

N N Sy B

Lx] Myl K z[ 7]
(o] M el H{FL -]
Al e[ F{c[—]

and that we wish to construct a list of the form

L, =((A(BC)) (D(EF)),...,(X(YZ))

which is represented as

L i
L (T T T
s T H T 1F L

Al = L[] ML~

S )

38



We consider the typical substructure, (A (B C)) of the second list 22. This may be
constructed from A, B, and C by the operation
cons[A;cons[cons[B;cons[C;NIL]];NIL]]
or, using the list function, we can write the same thing as
list[A;list[B;C]]
In any case, given a list, x, of three atomic symbols,
x=(ABC),
the arguments A, B, and C to be used in the previous construction are found from
A

n

car[x]
B = cadr[x]
C = caddr[x]
The first step in obtaining 22 from ﬁl is to define a function, grp, of three arguments
which creates (X (Y Z)) from a list of the form (X Y Z).
grplx] = list[car[x];list[cadr[x];caddr[x]]]
Then grp is used on the list ll, under the assumption that il is of the form given.

u

(]

For this purpose, a new function, mltgrp, is defined as

miltgrp[£] = [null[¢] = NIL;T = cons[grp[car[£]];mitgrp[cdr[£]]]]

So mltgrp applied to the list ﬁl takes each threesome, (X Y Z), in turn and applies grp
to it to put it in the new form, (X (Y Z)) until the list ‘Ql has been exhausted and the new
list 12 achieved.

7.3 Property Lists

In other sections, atomic symbols have been considered only as pointers. In this
section the property lists of atomic symbols that begin at the appointed locations are
described.

Every atomic symbol has a property list. When an atomic symbol is read in for
the first time, a property list is created for it.

A property list is characterized by having the special constant 777'778 (i.e., minus 1)
as the first element of the list. The rest of the list contains various properties of the
atomic symbol. Each property is preceded by an atomic symbol which is called its
indicator. Some of the indicators are:

PNAME - the BCD print name of the atomic symbol for input-output use.

EXPR - S-expression defining a function whose name is the atomic symbol
on whose property list the EXPR appears.

SUBR - Function defined by a machine language subroutine.

APVAL - Permanent value for the atomic symbol considered as a variable.

The atomic symbol NIL has two things on its property list - its PNAME, and an
APVAL that gives it a value of NIL. Its property list looks like this:

39



L, VY7V e I B S VYT R R

00000 0 00134 0 77777 -1,,-NIL
77644 0 00133 0 11741 -APVAL, , -%-1
77645 0 00131 0 00132 —%=1,, *=2
77646 0 00000 0 00000 0

77647 0 00130 0 10236 -PNAME, , -%-1
77650 0 00000 0 00127 —%=1

77651 0 00000 0 00126 —%=1

77652 453143777777 BCD NIL???

The print name (PNAME) is depressed two levels to allow for names of more than
six BCD characters. The last word of the print name is filled out with the illegal BCD
character 778 (?). The print name of EXAMPLE would look like this:

S 71 N S I SO

l | Hl L]
EXAMPL — |——f E27272 |

The property list of a machine-language function contains the indicator SUBR

followed by a TXL instruction giving the location of the subroutine and the number of
arguments. For example

i [ [ [ -

TXL 37721, ,2 ]

The indicator EXPR points to an S-expression defining a function. The function define
puts EXPR's on property lists. After defining ff, its property list would look like this

T 0 S
L(LAMBDAI —{ l L l L]
(X~ [ -

40



The function get[x;i] can be used to find a property of x whose indicator is i. The
value of get[FF;Eﬁ’R] would be (LAMBDA (X) (COND...

A property with its indicator can be removed by remprop[x;i].

The function deflist[x;i] can be used to put any indicator on a property list. The
first argument is a list of pairs as for define, the second argument is the indicator to
be used. define[x] = deflist[x;EXPR].

An indicator on a property list that does not have a property following it is called
a flag. For example, the flag TRACE is a signal that a function is to be traced. Flags
can be put on property lists and removed by using the pseudo-functions flag and remflag.

Numbers are represented by a type of atomic symbol in LISP. This word consists
of a word with -1 in the address, certain bits in the tag which specify that it is a number
and what type it is, and a pointer to the number itself in the decrement of this word.

Unlike atomic symbols, numbers are not stored uniquely.

For example, the decimal number 15 is represented as follows:

[ -1]1] }—+{000000000017

7.4 List Structure Operators

The theory of recursive functions developed in Section I will be referred to as ele-
mentary LISP. Although this language is universal in terms of computable functions of
symbolic expressions, it is not convenient as a programming system without additional
tools to increase its power.

In particular, elementary LISP has no ability to modify list structure. The only
basic function that affects list structure is cons, and this does not change existing lists,
but creates new lists. Functions written in pure LISP such as subst do not actually mod-
ify their arguments, but make the modifications while copying the original.

LISP is made general in terms of list structure by means of the basic list operators
rplaca and rplacd. These operators can be used to replace the address or decrement

or any word in a list. They are used for their effect, as well as for their value, and
are called pseudo-functions.

rplaca[x;y] replaces the address of x with y. Its value is x, but x is something
different from what it was before. In terms of value, rplaca can be described by the
equation

rplaca[x;y] = cons[y;cdr[x]]

But the effect is quite different: there is no cons involved and a new word is not created.

rplacd[x;y] replaces the decrement of x with y.

These operators must be used with caution. They can permanently alter existing

definitions and other basic memory. They can be used to create circular lists, which
can cause infinite printing, and look infinite to functions that search, such as equal and
subst.

As an example, consider the function mltgrp of section 7.2. This is a list-altering

41



function that alters a copy of its argument. The subfunction grp rearranges a subgroup

(AL {5 J{<c"] w

LAl =~ [~
B | - c[ ]

The original function does this by creating new list structures, and uses four cons's.
Because there are only three words in the original, at least one cons is necessary, but
grp can be rewritten by using rplaca and rplacd.

The modification is

LAl

e I
o _B—l__l.Jl
e S |

B
T
|
L

The new word is created by cons[cadr[x];cddr[x]]. A pointer to it is provided by
rplaca[cdr[x];cons[cadr[x];cddr[x]]].
The other modification is to break the pointer from the second to the third word.
This is done by rplacd[cdr[x];NIL].
pgrp is now defined as
pgrp[x] = rplacd[rplaca[cdr[x];cons[cadr[x];cddr[x]]];NIL]

The function pgrp is used entirely for its effect. Its value is not useful, being the
substructure ((Ba Therefore a new mltgrp is needed that executes pgrp and ignores
its value. Since the top level is not to be copied, mltgrp should do no c_?ging.

pmitgrp[¢] = [null[¢] - NIL;
T - prog2[pgrp[car[¢]];pmitgrp[cdr[e]]]]
prog2 is a function that evaluates its two arguments. Its value is the second argument.
-_The value of pmltgrp is NIL. pgrp and pmltgrp are pseudo-functions.

7.5 The Free-Storage List and the Garbage Collector

At any given time only a part of the memory reserved for list structures will actually
be in use for storing S-expressions. The remaining registers are arranged in a single
list called the free-storage list. A certain register, FREE, in the program contains the
location of the first register in this list. When a word is required to form some addi-
tional list structure, the first word on the free-storage list is taken and the number in
register FREE is changed to become the location of the second word on the free-storage

42



list. No provision need be made for the user to program the return of registers to the
free-storage list.

This return takes place automatically whenever the free-storage list has been
exhausted during the running of a LISP program. The program that retrieves the storage
is called the garbage collector.

Any piece of list structure that is accessible to programs in the machine is consid-
ered an active list and is not touched by the garbage collector. The active lists are
accessible to the program through certain fixed sets of base registers, such as the reg-
isters in the list of atomic symbols, the registers that contain partial results of the
LISP computation in progress, etc. The list structures involved may be arbitrarily
long but each register that is active must be connected to a base register through a car-
cdr chain of registers. Any register that cannot be so reached is not accessible to any
program and is nonactive; therefore its contents are no longer of interest.

The nonactive, i.e., inaccessible, registers are reclaimed for the free-storage list
by the garbage collector as follows. First, every active register that can be reached
through a car-cdr chain is marked by setting its sign negative. Whenever a negative
register is reached in a chain during this process, the garbage collector knows that the
rest of the list involving that register has already been marked. Then the garbage col-
lector does a linear sweep of the free-storage area, collecting all registers with a posi-
tive sign into a new free-storage list, and restoring the original signs of the active
registers.

Sometimes list structure points to full words such as BCD print names and numbers.
The garbage collector cannot mark these words because the sign bit may be in use. The
garbage collector must also stop tracing because the pointers in the address and decre-
ment of a full word are not meaningful.

These problems are solved by putting full words in a reserved section of memory
called full-word space. The garbage collector stops tracing as soon as it leaves the

free-storage space. Marking in full-word space is accomplished by a bit table.

43



VIII. A COMPLETE LISP PROGRAM — THE WANG ALGORITHM FOR THE
PROPOSITIONAL CALCULUS

This section gives an example of a complete collection of LISP function definitions
which were written to define an algorithm. The program was then run on several test
cases. The algorithm itself is explained, and is then written in M-expressions. The
complete input card deck and the printed output of the run are reprinted here.

The Wang Algori'chm1 is a method of deciding whether or not a formula in the prop-
ositional calculus is a theorem. The reader will need to know something about the prop-
ositional calculus in order to understand this discussion.

We quote from pages 5 and 6 of Wang's paper:

"The propositional calculus (System P)

Since we are concerned with practical feasibility, it is preferable to use more logical
connectives to begin with when we wish actually to apply the procedure to concrete cases.
For this purpose we use the five usual logical constants ~ (not), & (conjunction), V (dis-
junction), D(implication),= (biconditional), with their usual interpretaﬁons.

"A propositional letter P, Q, R, M or N, et cetera, is a formula (and an "atomic
formula"). If ¢, ¢ are formulae, then ~ ¢, ¢ & y, ¢V, ¢DO Y, ¢ = ¢ are formulae.
If w, p are strings of formulae (each, in particular, might be an empty string or a
single formula) and ¢ is a formula, then w, ¢, p is a string and m - p is a sequent
which, intuitively speaking, is true if and only if either some formula in the string «
(the "antecedent") is false or some formula in the string p (the "consequent") is true,
i.e., the conjunction of all formulae in the antecedent implies the disjunction of all for-
mulae in the consequent.

"There are eleven rules of derivation. An initial rule states that a sequent with only
atomic formulae (proposition letters) is a theorem if and only if a same formula occurs
on both sides of the arrow. There are two rules for each of the five truth functions —
one introducing it into the antecedent, one introducing it into the consequent. One need
only reflect on the intuitive meaning of the truth functions and the arrow sign to be con-
vinced that these rules are indeed correct. Later on, a proof will be given of their com-
pleteness, i.e., all intuitively valid sequents are provable, and of their consistency,
i.e., all provable sequents are intuitively valid.

"Pl. Initial rule: if N\, { are strings of atomic formulae, then A = { is a theorem if

some atomic formula occurs on both sides of the arrow.

"In the ten rules listed below, \ and { are always strings (possibly empty) of atomic
formulae. As a proof procedure in the usual sense, each proof begins with a finite set

of cases of P1 and continues with successive consequences obtained by the other rules."

1. Wang, Hao. "Toward Mechanical Mathematics, " IBM J. Res. Develop., Vol.4,
No. 1. January 1960.

44



"As will be explained below, a proof looks like a tree structure growing in the wrong
direction. We shall, however, be chiefly interested in doing the step backwards, thereby
incorporating the process of searching for a proof.

"The rules are so designed that given any sequent, we can find the first logical con-
nective, and apply the appropriate rule to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>