Flogting Point Arithmetic_Package

The Floating Package is a group of arithmetic subroutines
in which numbers are represented in the formm £ x 2%, £ is a
one's complement 18 bit fraction with the binary point betueen
bits 0 and 1. g is a one's complement 18 bit integer exponent
of 2. The largest magnitude numbers that can be represented are
~ 1039,000.

A number 1is normalized when % < {f}f € 1. All the floating
routines, except the two floating unnormalized adds, return a
normalized answer. The fractlon appears in the ac, the exponent

in the 10. Description of routines:

Floating Add - jda fad
One argument should appear in the ac-io. The other

- argument should have the addresses, direct or indirect, of the

fraction and exponent 1in the two registers following the Jda fad.

lac f1 /Load first argument.
lio el
Jda fad /Call floating add.
2 /address of second fraction
e2 /address of exponent for second fraction
dac /Control returns to here with

/normalized answer in ac-io.

Floating Multiply - jda fmp

lac ft /Load multiplicand.
lio el
Jda fmp /Call floating multiply
£2 /address of fraction of multiplier
e2 /address of exponent of multiplier
dac /Control returns to here with normalized

/answer in ac-1io.



Floating Divide - jda fdv

lac 1 /Load first argument.

lio edl

Jda fav /Call divide.
£2 /addresses for divisor, hlt will occuvr
e2 /it £2=0.

dac /Control returns here with normalized

/answer in ac-io.

Floating Square Root - jda fsq
Execution time = 385 4 sec.

lac f /Load argument; argument must be normalized

lio e

Jda fsq /Call square root; hlt will occur unless
/£20.

dac /Control returns here with normalized
/ansver in ac-io. '

Floating lop, base 2 - Jda log

lac ¢ /Load argument.

lio e

Jda log /Call log; hlt will occur unlese £ > 0.
dac /Control returns here with normalized

/answer in ac-io.

Floating Reciprocal - jda rep

lac £ /load argument.

lio e

Jda rep /Call reciprocal; hlt will occur in f£dh
/if £=0.

dac /Control returns here with normalized

/answer in ac-io.



Floating Tnput -~ Jjda fip

Jda fip
Jsp

Legal characters for fip

X resets routine and

/Call input; ac-1o don't matter.

/This instruction is repeatedly
/executed (xct) in order to get the input
/characters. The jsp (or ida) could call
/a typewriter or reader listen loop
/subroutine which should return the
/input characters in the

/low bits of the 1o.

/Control returns here with the answer
/in the ac-io after the first illegal
/character,

starts forming a new number.

Spaces and code deleted characters are ignored.

legal characters are:

.; &, 0-9, -, x, and space.

The illegal character that terminated the number is in

register fip.

Input examples:

6.9e1
690 e-1234
6.9 e 17

Floating Output - jda fop

lac ¢
lio e
Jda fop
tyo

dac

/load argument.

/Call output.

/an executed instruction (xet) for output
/Control returns here with normalized -
/floating point input quantity.

The routine generates parity for each character, so the

executed output instruction could be a ppa or a call to an output

subroutine.



-4
The output format is ,.71000 e2, 5 signiflcant figures.

Floating Unnormalized Add - Jda fua

lac f1 ' /Load first argument.

iio el |

jda fua /Call unnormalized add.
£2 /addresses of second argument
e2

The subroutine returns with a 35 bit number in the ac-lio
with the binary point after the blt number equal to the larger
}exponent of the two arguments. If the addition produces an
overflow, the larger exponent is incremented by 4. In any case,
the larger exponent, perhaps incremented, appears in fac-+ti.
Examples for subroutine:

lac (200000 /3

110 (O

jda fua
(0 /zero with exponent to cause the number
(17, /to be fixed.

At return ac,io equals 0,400000,

lac (O /0

1io (16.

Jda fua
(200000 /A
(0

At return ac,io equals 1,0.

Floating Unnormalized Add and Round - jda fur

lac f1 /load argument
lio el
jda fur /Call unnormalized add and round




..'..5-.

2 /addresses of second argument
ee
dac /Control returns here with fraction

/in ac and exponent in io.

This routine is the same as fad except that the answer is
not normalized. The larger exponent returns in the io, unless
overflow occured. Then the larger exponent +1 rTeturns in the
io. Example:

lac (300000 /3

lio (2
jda fur /Call subroutine.
(0 /zero with exponent to
(a7. /cause the answer to be fixed.

At return, ac,io equals 3,17.

Floating Exponentiation - jda f£2x

This subroutine caleulates 2%, Execution time - 1.3 m sec,

lac 7 /load argument.

lio e

Jda fox /Call subroutine,

dac /Control returns to here with normalized

/answer in ac-io.

Bill Gosper and Tom Eggers



	01
	02
	03
	04
	05

