PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
M.I.T.

CAMBRIDGE 39, MASSACHUSETTS

PDP-19

THE MIDAS ASSEMBLY PROGRAM

This preliminary memorandum on the MIDAS Assembler 1s
intended to explain the main features and usage of
MIDAS; it is not 400 per cent accurate.

February 12, 1964

Thils memorandum describes an assembler which has been in use on
the TX-0 computer at MIT for a year, and has recently been translated
for use on the PDP-1. Since the MIDAS language includes most of
MACRO, 1t is hoped that MACRO users will easily be able to switch
over to thls more powerful assembler.

The MACRO language had been used on the TX-0 for some three
years previous to the writing of MIDAS. Hence, MIDAS incorporates
most of the features which have been requested by users of MACRO,
such as more fléxible macro instructions, six character symbols and
relocation.

The original MIDAS Assembler was written for MIT primarily
by Robert A. Saunders. The PDP-1 translation was done by R. Saunders,
now of III; A. Kotok, DEC; W. F. Mann, BBN; D. Gross, MIT4 and
S. D. Piner, DEC. |

THE MIDAS ASSEMBLY PROGRAM

ANTRODUCTION

Programming for a digital computer is writing the precise se-
quence of instructions and'data which is required to perform a given
computation. The purpose of an assembly program is to facilitate
programming by translating a source laﬁguage, which 1s convenient
for the programmer to use, into a numerical representation or object
program, which is convenient for the computer hardware to deal with.
A symbolic assembly pfogram such as MIDAS permits the programmer to
use mnemonic symbols to represent instructions, locations, and other
quantities with which he may be working. The use of symbolic labels
or address tags permits the programmer to refer td instructions or
data without actually knowing or caring what specific location in
the computer memory they may occupy.

MIDAS is a two pass assembler; that 1s, it normally processes
the source program twlce. During the first pass, it enters all sym-
bols definitions encountered into its symbol table, which it then

uses on Pass 2 to generate the complete obJect program.

The MIDAS Source Language

A program consists of a sequence of numbers in memory which
may be instructions, data, or both. We shall refer to these numbers
as words without specifying whether they are instructions or not. A
word is denoted in the source program by one or more syllables sepa-
rated by sultable combining operators, and termlnated by a tab or car-
riage return. A syllable may be defined as being the smallest element

of the programming language which has a numerical or operational value.

-2

The following are some different types of syllables:

i. Integers. An integer is a string of digits, which will
be interpreted as an octal or decimal number.

2. Symbols. A symbol 1s a string of characters (letters,
numerals, and/or periods) containing at least
one letter, The flrst six characters of a
symbol are used to ldentify it if it is more
than six characters long.

Syllables may be combined with the following operators:

+ or gpace means addition, modulo 218-1 (ones complement)

- means additlon of the ones complement

V means logical union (inclusive or)

A means logical intersection (loglcal and)

~ means loglcal disjunction (exclusive or) |

X means Integer multiplication

A symbollc expression 1s one syllable, or more than one syllable
combined with these operators. We shall refer to ii —» and space as
additive operators, and V, A, =, and X as product operators.

Operations are performed from left to right, except all prod-
uct operations are performed before additive operations. It is not
admlssible to precede or follow a product operation with any other
operator. In a string of consecutive additive operations, the last
one seen applies.

The following examples of symbolic expressions on the left have
thé value listed on the right. (All numbers in this report are

octal unless followed by a decimal point",".)

2 2
243 5
2-3 777776
2x3 6
av3 3
2A3 2
2~3 1
-273 TTT776
--1 777776
—+1 1
7-2V3 . m
add 40 400040
claVema 764200

A symbolic expression terminated by a tab or carriage return is
a storage word. The location in memory to which it is assigned is
determined by a location counter in MIDAS. After each word is assigned,

the location counter is advanced by one.

More About Symbols. Pseudo-Instructions

MIDAS classifies symbols according to the manner of their defi-
nition. The initial vocabulary consists of symbols for the more
commonly used PDP-1 instructions, and also a class of symbols called
pseudo-instructions, which represent directions to MIDAS on how to

proceed with the assembly. Some examples of pseudo-instructions are:

Bl Action
octal All integers following (unless specifically denoted

as decimal) are interpreted as octal numbers until
next appearance of pseudo-instruction decimal.

decimal All integers following are interpreted as decimal
numbers until next appearance of pseudo-instruc-
tion octal.

start Denotes the end of the program.

Additional pseudo-instruction will be discussed at opportune
places, A complete list is given in Appendix 1.

Y

Symbols are defined in the following ways:

1.

3.

A8 address tags. A comma following a symbolic expression
denotes an address tag. If the tag is a single undefined
symbol, it will be defined with numerical value equal to
the present value of the location counter. If the tag

is any other defined symbolic expresslon, 1t will have

its value compared with the present value of the location
counter, and an error comment (QQE) willl be made in the
event of a disagreement. If the tag is any other symbolic
expression which is undefined when encountered on Pass 2, an
error comment is made (ust). Use of a defined symbol as an
address tag cannot change the value of the symbol,

By parameter assignments. A symbol may be assigned g
numerical value by the use of a parameter assignment. The
form

symbol=expr2

where symbol 1s any legal symbol and expr is any symbolic
expression terminated by a tab or a carriage retﬁrn, defines
symbol as having the numerical value of expr. Parameter
assignments may be used to set table sizes, define new
operation codes, or for other purposes. Thus

clc=clacha;

.define clc as 761200, which, as an operate instruction, would

clear and complement the AC.

As variables. The appearance of overbar within any legal,
undefined symbol, at any appearance of that symbol, defines
that symbol as a variable. For each such symbol defined, one
register is allocated in a region of storage reserved by the
next appearance of the pseudo-instruction variables. The

initlal contents of these registers is undefined. Thils feature

facilitates the reserving of temporary storage locations.

Example:

-5~

law 1 100
dac temp
isp tTemp
Jmp loop

variables

4, As macro instructions. A symbol 1s defined as a macro-instruection
name by use of the pseudo-instruction define. Further discussion
of macro instructions will be left until later.

5. With equals or opsyn. A symbol may be defined as precisely
equivalent to any other symbol by use of the pseudo—instruction

equals and opsyn. The usage is:

equals anysym, defsym
or
opsyn anysym, defsym

where the symbol anysym is made loglcally equivalent to defysm
if the latter is defined. Previously defined symbols are
redefined. Equals and opsyn differ in one respect: opsyn is
effective on Pass 1 only. These may be used to define a logical
equivalent for any other defined symbol. Thus abbreviations may
be defined for pseudo-instructions if desired. Note that equals
and opsyn are NOT the same as the equals sign used in parameter
assignments, and are not in general interchangeable with it.
Eduals and opsyn are used to give a symbol a logical or oper-
ational value, while parameter assignments are used to give a
symbol a numerical value. |

Ihe TLocation Counter

The MIDAS location counter records the assigned location for
each word in the object program. It 1s set to 4 at the beginning
of each pass, and counts upward modulo memory size. The location

counter may be set to any value by writing:

—6-

expr/

where expr is any symbolic expression. This sets the location counter
to the value of expr modulo 212. If expr contains an undefined
symbol, on Pass 1 the location becomes indefinite, and the definition
of address tags is inhibited until the location again becomes definite
by means of a defined location assignment. On Pass 2, an undefined
symbol will result in an error message (usl). The undefined symbol
is taken as zero, and the location remains definite. The pseudo-
instruction variables may not be used when the location is indefinite.

| The value of the location counter may be obtained by using the

special syllable "." (period). Examples:

sza 1

Jmp .43 clf 1
law 1 szf 1 1
dac indic Jmp .-1

The first example places 1 in register indic if the‘AC contains any
number other than zero, but zero in the AC causes the program to skip
this sequence. The second example walts for flag 1 to be set by the

typewriter. The third instructlon is read "jump point minus one."

COMMENTS
The character /, when not preceded by an expression, denotes the
beginning of a comment. Characters following it are ignored until

the next tab or carriage return.

CONSTANTS

Constants required by a program will be reserved automatically
by MIDAS when enclosed in parentheses., Thus, 1f it is required to

get the number add 20 intd the accumulator, one can write

-7~

lac (add 20)

The word enclosed in parentheses is stored in a block reserved by the
next appearance of the pseudo-instruction constants. Duplicate con-
stants are stored only once. Closing parens will be supplied guto-
matiqally by MIDAS if the character following is a word terminator
(e.g., tab or carriage return). The constant word and surrounding
parens are treated as a single syllable whose value is the address
of a register contalning the constant word. Constants may be used
in constants. The following two program fragments are equivalent;

add (add (20)-11i0-(30 add a

L .
L] L]

* .

constants a, add b-lio-c
C, 30

The pseudo-instructlon constants may not be used where the location
1s indefinite.

lexo Code Pseudo-Instructlons
Three pseudo-lnstructlons are provided to facllitate handling
flexowriter characters in programs. These are:

1) character gc, where g is any of the letters 1, m, or r,
which specifies whether the character ¢ is to be placed
in the left (bits 0-5), middle (bits 6-11.) or right
(bits 12.-17.) portion of the word. The pseudo-instruction,
with 1ts argument, 1s treated as a single syllable.

2) flexo abe, where 8, b, ¢ are any three flexo characters,
1s equivalent to
character la+character mb+character rc

-8-

3) text gArbitrary string of characters.q, where the arbitrary
string of characters is stored three to a word as in flexo
until the first character g is encountered again. Neither
appearance of g is considered part of the string. Thus g
may be any character not appearing in the string.

The followlng examples demonstrate theilr usage.

character rf is equivalent to 66
character mm is equivalent to 4400
flexo thi is equivalent to 237071
text .this. is equivalent to 237071
220000

Macro Instructions

Often certain character sequences appear several times through-
out a program in almost identical form. The following example illu-
strates such a repeated sequence.

lac
add
dac
lac
add
dac

HO QO UTO

The sequence:

lac
add
dac

N X

1s the model upon which the repeated sequence is based. This model
can be defined as a macro instruction and given a name. The charac-
ters X, ¥y, and z are called dummy arguments, and are identified as
such by being listed immediately following the macro name when the
macro instruction is defined. Other characters, called arguments,
are substituted for the dummy arguments each time the mode is used.
The appearance of a macro-instruction name in the source program is
referred to as a call. The arguments are listed immediately follow-

ing the macro name when the macro instruction is called. When a

~g-

macro instruction 1s called, MIDAS reads out the characters which
form the macro-instruction definition, substitutes the characters of
the arguments for the dummy arguments, and inserts the resulting
characters into the source program as if typed there originally.

The process of defining a macro is best illustrated with an

example:
define write a,b
law b
Jda wr
text /a/
b, terminate

The pseudo-instruction define defines the first legal symbol
following it as a macro name. Next follow dummy arguments as re-
quired, separated by commas, terminated by a tab. or carriage return.
Next follows the body of the macro definition. Appearances of dummy
arguments are marked, and the character string is stored away. Dummy

arguments are delimited by the followlng characters: plus, minus,

space, V, A, Z, X, upper case, lower case, tab, carrlage return,

equals, comma, slash, overbar, parentheses, brackets and apostrophe.

Dummy arguments must be legal symbols; any previous definition of
dummy argument symbol is ignored while in the macro definition.
A macro call consists of the macro name, followed if desired
by a list of arguments separated with commas, and terminated with a
tab or carriage return. The write macro, if called as follows:
write This gets printed out; nextag

generates the following code:

law nextag

Jda wr

text /This gets printed out./
nextag, '

-10-

which, with a suitable text-printing subroutine, might comprise the
necessary code for printing "This gets printed out." on the typewriter.
The argument to be printed, using this format, must not contain the
characters comma, tab, carriage return or slash. Comma, tab, or
carriage return would end the argument while slash would terminate

the argument of the text pseudo-instruction. So that comma, tab, and
carriage return can be used within arguments, the argument quotation
characters [and] are provided. They might be used as follows;

write [This, of course, has commas.
It also has a carrlage return], nextag

All characters within a pair of brackets are considered to be one
argument, and this entire argument, with the brackets removed, will
be substiltuted for the dummy argument in the original definition.
MIDAS marks the end of an argument only on seeing comma, tab, or
carriage return not enclosed within brackets. If bréckets appear
within brackets, the outermost pair is deleted. If an outer bracket
is immediately preceded by an upper case and immediately followed by
a lower case, both case shifts are deleted also. A tab or carriage
return immediately following a macro name denotes that no arguments
are read., Any other separating character will be the first character
of the first argument except space: a space used as a separator will
be deleted and will not be part of the first argument.

The second argument of the write macro is a symbol which is
defined as an address tag each time the macro i1s called, so a differ-
ent symbol must be supplied at each call of the macro to avoid mul-
tiply defined tags. MIDAS will supply sultable created symbols for
this purpose, guaranteed to be unique to each call of the macro, if

we write the first line of the definition thusly:

-11-

define write a/b

or
define write a,/b

In elther case, the slash denoted that the dummy symbol following it
will be suppllied from specilal created symbols if not explicitly
suppllied when the macro is called. The created symbols are of the
form ...a01, ...a02, .¢.,...209, ...aOa, etc. The created symbol
generator is reset to...all at the beginning of each pass. The
number of created symbols may not exceed 33,695. Note that unsupplied
arguments corresponding to dummy arguments preceding the bar are
plugged in as empty strings. Supplied arguments corresponding to the
dummy arguments following a bar suppress the generation of a
corresponding created symbol.

A possible problem is, how do we plant dummy arguments in the
argument of character r, m, or 1? Of course, the r, m, or 1 could
be part of the supplied argument, but there is another way.
Write, say: |

define macro a

.

-

add (charac r'a /note charac ra does not work as
. /ra is not a dummy argument

The sequence upper case, apostrophe, lower case 18 deleted during the
macro definition, but causes the macro scan to search on each side for
dummy arguments. In this case, g is found to be a dummy argument,

and 1s treated accordingly. If the apostrophe 1s not both preceded
and followed by case shifts, only the apostrophe is deleted.

-12-

Example:
define type x46Upq
lio (charac r'xi46lipq

tyo
terminate

type f gives: 1io (charac rf
tyo

How may one cause a created symbol to define a varlable? The
solution is to place an overbar over the first character of the dummy
argument. Note that the overbar may not appear in the middle of the
dummy argument.

Example:
define macrg /abed
dac abcd
jsp subr
lac abcd
terminate

The variables would then be of the form ...a01, T..aQQ, etc. which
are perfectly legal and unique variables.

Created symbols have been introduced to solve the problem of
address tags within macro definitions, but they may be used in other
ways also. Some examples are given in Appendix 2.

Macro definitions may contain other macro definitions or macro
calls. Arguments of the macro belng called may be used in the macros
it calls or defines with perfect generality. -As an example, let us
rewrite the write macro so that it inserts a suitable text printing
subroutine into the object program at its first call, and then redefines
itself so that later occurences call the subroutine. This might be

done as follows:

define write a)
define write c/d /redefines write when
law d /called first time
jda wr

text /c/

-13-

da, terminate write

write [a] /calls new definition
tra zzxgwg
wr, 0 /text printing subr
dap wrzx
1pkh, lio 1 wr
ril 6s
tyo
ril 6s
tyo
ril 6s
tyo
idx wr
sas wrzx
jmp 1lpkh
jmp 1 wrzx
Wrxz, 0
ZzZXgwq, terminate

Notice that address tags in the text printing subroutine need
not be created symbols, as the tags appear only at the first call of
write. They must not, of course, conflict with tags used elsewhere
in the program, and to insure thils, created symbols may be used if
desired. Notice that, in this example, the pseudo-instruction
terminate has been supplied with an argumentf the name of the macro
being defined. If terminate 1s followed by a space, it will expect
to find this argument, which it will compare with the name of the macro
being defined. Unless they agree, an error comment (ggg) will be
made. This permits the programmer to be sure that his defines and
terminates count out correctly. An additional aid in this respect
is the fact that terminate i1s undefined outside a macro definition.

Arguments can, by judicious use of brackets (see example below),
contain sub-arguments. A pseudo-instruction irp (indefinite repeat)
permits the analysis of such an argument. The pseudo-instruction irp

in the macro definition takes one argument, namely, the dummy argument

-14~

corresponding to the argument to be analyzed. When the macro
Instruction 1s called, the characters following the argument of the
irp until the next matching endirp will be inserted once into the
program for each sub-argument in the argument being analyzed and the
sub-arguments will be substituted for the corresponding dummy argument.
Example:

define sum a,b,c
lac a
irp b
add b
endirp
dac ¢
terminate

sum j, [kel,m],n
glves:

lac J

add k

add 1

add m

dac n

It is quite permissible to have irp's within an irp, analyzing

either the same of different arguments. The pseudo-instructions irp
and endirp are deflned only within a macro definition. If an irp
analyzes a null string, the characters in the range of the irp will

not be inserted in the macro expansion.

The Garbage Collector

When MIDAS redefines a macro, the space in the macro instruc-
tion table used by the old definition will be recovered, if necessary,
by a garbage collector. It 1s important in a long program to insure
that unused macro definitions are abandoned; that is, that their
names are caused to refer to something else other than the original
macro definitions. A suiltable "something else" is the pseudo-

instruction null, which does absolutely nothing. Thus if a macro

-15-

called foo has been defined, it may be discarded after its last usage
by saying:

equals foo, null
which will make the space used by foo recoverable. The garbage col-
lector 1s called whenever the combined macro and symbol tables are
exhausted. If no space can be recovered, an error comment is made

(sce).

Repeat

The pseudo-instruction repeat expr, anything, where expr is a
symbolic expression defined on Pass 1 and anything is any string of
characters terminated by a carriage return, causes anything to be
inserted into the program a number of times, called the count, equal
to the value of expr. The anything, called the range of the repeat,
can be storage words, parameter assignments, macro calls (1f not con-
taining carriage return in an argument), other re eats, or anything
else. If repeat is used in the range of a repeat, both repeats will
end on the same carriage return. Repeat may be used in macros, and
dummy arguments may appear either in the range or the count of the
repeat, or both. If the count of a repeat is zero or negative, the
range of the repeat is ignored.

Dimension
The pseudo-instruction dimension may be used to allocate space
for arrays. The statement
dimension namel(sizel), name2(size2),...a
causes Sspace to be reserved in the variables storage for the array

names specified. Each name is defined as the location of the first

-16-

Word of the block of registers of the length specified. The array
names must not have conflicting definitions elsewhere, and the array

sizes must be defined at their occurrence on Pass 1.

Conditional Assembly

It is often useful, particularly in macro instructions, to be
able tb test the value of an expression, and to condition part of the
assembly on the result of this test. For this purpose the pseudo-
instructions 1if and 0if are provided. Following the pseudo-instruction
name there is a symbol called a gualifier that determines the type
of test; and then an argument that is tested according to the gqualifier.
The argument is ended by any of the word terminators tab, carriage
return, comma, or slash., All these terminators except slash do what
they would have done had the conditional not been present} but slash
only marks the end of the conditional, which is treated as a single
syllable whose value is one or zero. Examples:
repeat 0if vp x+1, macro argl, arg#s
a=11f vzxA600000~+|
dac p+1if vp-s/x2
The value of 1if is one 1f the condition tested for is true,
and zero otherwlse; while the value of 0if is zero if the condition
tested for is true, and one otherwise. There are at present three

qualifiers with three corresponding tests:

vp: If the value of the expression following is positive
or zero (either plus or minus), the test is true.

vz: If the value of the expression following is zero, the
test is true.

p: Test is true on Pass 2, false on Pass 1.
The first example calls the macro if x>-1. The second example
defines g as one if the two high bits of x are both zero; otherwise

a 1s defined as zero. The third example generates dac p if s is

-7~

positive, and dac pt2 if s is negative. It could also be written as:
dac p+2x0if vpsB
Conditionals may be used in or out of macros, but may not con-

tain other conditionals.

The Source and Object Programs

A source program for MIDAS consists of one or more flexo tapes,
each with a title, a body, and a start pseudo-instruction. The title
is the first string of characters other than carriage return or stop
code and is terminated by a carriage return. Carriage returns and
stop codes preceding the title are ignored. The body 1s the storage
words, macros, parameter assignments, etc., which make up the substance
of the program. It may be vold. The start pseudo-instruction denotes
the end of the source program tape. It takes one argument, which |
specifies the first instruction to be executed in the object programs.
Start must be preceded by a tab or carriage return. There must be a
stop code after the carriage return after start.

MIDAS will normally punch a binary object program during Pass
2 of an assembly. It will contain a title in readable characters,
consisting of the visible characters in the title except those
following (and including) a center dot. Next will be punched an
input routine, which is a loader that reads in the rest of the tape,

and which is itself read in by the PDP-1 read in mode. The binary

output from the body of the source program is punched in blocks of

up to 100 registers. The end of the binary tape is denoted by a

start block, which 1s produced by the pseudo-instructlion start. The
start block causes the input routine to transfer at once to the address
specified. The argument of start must have the value of the address

to which control is to be transferred.

-18-

The format of the output is subject to considerable control by
the programmer. The pseudo-instruction noinput suppresses punching
the input routine. The pseudo-instruction readin suppresses the in-
put routine and punches in readin mode until the next encountering
of the pseudo-instruction noinput, which resumes punching in input
routine format. The normal input roﬁtine occuples registers 7751-
7777

For fabricating special tape formats or punching start blocks
without stopping the assembly, the pseudo-instruction word is pro-
vided. Its argument or arguments, separated by commas and ended by
a tab or carriage return, are punched directly on the object program
tape, and do not affect the location counter.

The tape formats discussed so far are characterized by having
a specific location in core assigned for each word in the object
program. MIDAS will also préduce relocatable tapes, which, by means
of a special loader, may be placed anywhere in memory. An explanation
of this feature will be found in subsequent issues of this memorandum.

Information on Relocatable Programming will be supplied in the

next edition.

Format

-19-

MIDAS has few requirements on format. The user should b= aware

of the following:

1)

2)

3)

4)

Carriage returns and tabs are equivalent except in th-
title, in the range of a repeat, and after start. = tre
tabs or carriage returns are ignored.

Backspace, D, <, >y "5 Ty >, 2, %, _, |s red, black, ou?
unused characters of the flexo code are illegal excopt “n
arguments of flexo code pseudo-instructions, titles o..°
comments,

Stop codes are ignored except in arguments of flexo cuis
pseudo-instructions. Apostrophes and brackets are sin’ arly
ignored when not in macro calls or cdefinitions.

Deletes are always ignored.

Many programmers have found that adherence to a fairly rigic

format is of help in writing end correcting programs. The follow nj

suggestions have been found useful in this respect:

1)

Place address tags at the left margin, and run instructi-a:
vertically down the page indented one tab stop from the .=ft
margin.

Use only a single carriage return between instructions,
except where there is a logical break in the flow of the
program. Then put in an extra carisiage return.

Forget that you ever learned to count higher than three;
let MIDAS count for you. Do not say dac .+0; use an
address tag. This will save grief when corrections are
required.

Organize the program by pages, separating each page of
flexo tape with a stop code and some tape feed. Make
page boundaries coincide with logical division of the
program if possible. Fixing one bad page and splicing

in a new one takes about as much time as reproducing two
pages of program, so learn to splice tape.

6) Have the typescript handy when assembling or debugging a
program, and note corrections in pencil theron as soon as
you find them.

Performing an Assembly

First read in MIDAS. Set the test address to 4 and the TW to 0.
Load the first source tape into the reader and press continue. MIDAS
will read the tape in sections of about one page each, and will stop
shortly after reading the stop code at the end of the tape. To pro-
cess additional tapes after the first, press Start. Now begin Pass
2 by loading the first tape and pressing Continue. For additional
tapes, press Start. At the end of Pass 2, press Continue again to
secure a start block. Tapes should be processed in the same order
on both passes. |

The normal operation of MIDAS may be summarized by the following

table:

Condition AC IO Action on Continue Actlion on Start
MIDAS or symbol 0 -0 Begin Pass 1 Begin Pass 2
punch read in
End of tape,

Pass 1 0 0 Begin Pass 2 Continue Pass 1
gggsog tape, 0 0 Punch start block Continue Pass 2
After start block 0 -0 Restore, begin Begin Pass 1
Error stop -0 -0 Continue, suppress

punching Continue Pass

-21-

The normal sequence of operations above can be modified by use
of the TW. Whenever Start is pressed, bit 0 of the TW is examined.
If it 1s zero, the normal sequence 1s followed; if it is 1, the next
6 bits of the TW are examined. These control:
Bit 1 Pass 1 if 0, pass 2 if 1.
2 Begin pass if 0, continue pass if 1.
3 If 1, punch if pass 2; if 0, do not punch. '
4 If 1, punch input routine if punching; if 0, no input.
5 If 1, punch title if punching; if 0, no title.
6.

If 1, restore symbol table to initial symbols and
pseudo-instructions.

It is sometimes useful to type in on-line short programs symbol
definitions, and the like., Thils may be done by having sense switch
5 up when Start or Continue is pressed. Instead of reading tape,
MIDAS will listen to the typewriter until either a) the buffer is
full, in which case the characters will be processed, and control
returned to the typewriter, or b) Sense switch 5 is turned off. If
you make a typing error, set the test word to 0, press Start, and start

typing this buffer load over again.

Error Stops

MIDAS will complain about various ambiguities and error con-
ditions found in source programs. Some of these have already been
mentioned. An error listing has the following format:

Column 1. A three letter code describing the type of error.
A number following is the depth of macro calls.

2. The octal location in the object program. The
symbol r means relocation.

20
3. The symbolic location, in terms of the last address
tag seen.
4, The last pseudo or maéro—instruction name seen.
5. The offending symbol, if a symbol was in error.
MIDAS will ignore most errors (with exceptions noted below) and

will continue the assembly if Continue or Start (with TW 0=0) is

pressed; the two are equivalent except Continue will discontinue
punching on Pass 2 if it was in progress. Turning up IW 17 1is
equivalent to pressing Continue after an error stop. In elther case,
1f bit 3 of the TW (the punch bit) is on, punching will continue.

The error conditions are:

us - In general, undefined symbol., Undefined symbols

are evaluated as 0. The third letter tells where
it was found.

W In a storage word or argument of pseudo-instruction
word.

m: In a storage word generated by a macro call.

d: In the size of a dimension array.

p: In a constant,

S Ir. the argument of start.

r In the count of a repeat.

t: In an address tag of more than one syllable., This
will frequently be the result of an undefined macro
instruction.

i: In an argument of 0if or 1if., _

ich Illegal character. The bad character is ignored.
ilf Illegal format. Some character or characters were

used in an improper manner. Characters are ignored
to next tab or carriage return.

ir - Illegal relocation. The relocation is taken as 0.
The third letter identifies where it was found, and
will be the same as listed under undefined symbols (above).

mnd

mdt

mdv

mdd

ipa

Sce

tme

tmp

tmv

cld

vlid

ilae

Troubleshooting

-23-

Macro name disagrees. The argument of terminate dis-
agrees with the name of the macro being defined. First
name used.

Multiply defined tag. Original definition retained.

Multiply defined variable. A symbol containing an
overbar is previously defined as other than a variable.
Originsl definition retained.

Multiply defined dimension. An array name in a
dimension statement has a conflicting definition.
Original definition retained.

Improper parameter assignment. The expression to

the left of an equal sign is improper. The assignment
i1s ignored.

Storage capacity exceeded. Assembly cannot continue.

Too many constants. The pseudo-instruction constants
used too many times in one program, on too many con-
stants words used.

Too many parameters: the storage reserved for macro
instruction arguments has been exceeded.

Too many varlables. The pseudo-instfuction variables
has been used more than 8 times in one program.
Assembly cannot continue.

Constants location disagrees. The pseudo-instruction
constants has appeared on Pass 2 in a different lo-
cation from that found on Pass 1, meaning all the
constants syllables have been assigned the wrong value.
Assembly cannot continue.,

Variables location disagrees. The pseudo-instruction
variables has appeared on Pass 2 in a different lo-
cation from that found on Pass 1, The condition is
ignored.

Send the error message and a copy and listing of the
source program to the DEC Programming Group so that
the trouble may be found,

The checking features built into MIDAS will detect simple errors

llke forgotten tags very simply. Attempting to debug complex macro

definitions from error messages and binary output is a much more

24

difficult task. Special aids have been provided to simplify this.

1. The pseudo-instructions print and printx take an argument
exactly like text, which MIDAS will print out online during
the assembly process, Printx prints just the argument,
while print precedes this with the first three columns of
an error listing (with the "error" code pnt) and follows
it with a carriage return. The argument of print or
or printx may contain dummy symbols if used in a macro
definition.

2. Bit 16 of TW when on, causes MIDAS to print out online
every character 1t processes, including all macro expansions.
This permits the programmer to let MIDAS do the bookkeeping
when testing a complicated macro,.

Ihe Symbol Package

A record of symbol definitions may be printed or punched out by
use of MIDAS Symbol Package. The MIDAS Symbol Package looks at the

Sense Switches to determine its mode of operation.

SS Function

1 Symbol Punch

2 Alphabetically ordered symbol printout
3 Numerically ordered symbol printout

4 Restore MIDAS to original symbol table

The Sense Switches should be set before pressing Read-In, but
if it is desired to eliminate any of the above functions before they
complete, just turn the appropriate switch off. If 8381 ig up the
symbol punch will feed some blank tape and listen for a title. Type
a title on fthe typewriter. To obtain both symbol and macro-instruction
definitions, terminate the title with a carriage return. For symbols

only, terminate with a tab, and then type "s" followed by a carriage

25

return. For macro definitions only, terminate the title with a tab,
followed by "m" and a carriage return. The symbol punch so obtailned
may be used with DOCTOR for symbolic debugging, or read into MIDAS
at a later time for assembling patches or the like. When a symbol
punch 1s read into MIDAS, TW 6 is examined. If off, the symbols
from the symbol punch are merged with any existing symbol table. If
on, the symbol table is restored to the initial vocabulary before
merging the symbol punch.

character
constants
declmal
define
dimension
endirp

equals

flexo

irp

noinput
null

octal

opsyn

print

printx

readin

relocatable

repeat

start

terminate
text

variables

APPENDIX T--MIDAS INITTAL VOCABULARY

Part 2--Pseudo-Instructions

Inserts numerical value of a flexo character.
Denotes location of stored constants words.
Interpret integers as decimal numbers.

Define macro-ihstructions.

Allocates space for arrays.

Ends indefinite repeat.

Defines symbol as operationally equivalent %o
another symbol.

Inserts numerical value for three flexo characters.

Indefinlte repeat. Analyses macro-instruction
argument as series of subarguments.

Suppresses input routine, leaves "readin" status.
No-operation, ignored.
Interpret integers as octal numbers.

Defines symbol; same as egquals but effective
on Pass 1 only.

Generates symbolic location printout and prints
comment during assembly.

Prints comment during assembly.
Punch 1n readin mode format.
Punch 1n relocatable format.
Repeats character string.

Denotes end of program and specifies (in absolute
program) starting address.

Ends macro definition.
Inserfs words of flexo characters.

Reserves space for arrays and variables.

Appendix I--Part 2 (Cont'd)

word Punches word on obJect program tape.

0ir Has value of 0 if condition following is true,
1 otherwise.

1if Has value 1 if condition following is true, 0
otherwise.

APPENDIX TT
SOME _MACRO-INSTRUCTION EXAMPLES

Followling are some examples i1llustrating some more complex uses
of macro-instructions. All of these examples use so-called "inform-
ation carrying macros." Basically, an information carrying macro
1s a name assigned to a character string which has provision for
using or modifying the string. Three different methqu are used for
retrieving the information in the following examples.

The first two examples illustrate a method of locating coding
at a remote place in the program. It is sometimes convenient, in
the middle of a program, to specify flexo text, subroutines, or other
material to be inserted at an out-of-the way plaée. The macro name
remote, followed by arbitrary material as an argument, saves up such
material for all uses of remote until the macro-instructilon here is
used, whilch unloads all the stored information into the program at
that point.

In the first example, listname 1s the information carrying
macro. Each call of remote calls in cons to concatenate the new in-
form tion onto the end of the old., The key to understanding the
example 1s In the definition and use of listname. In order to feed
the information in listname into some macro which can make use of it,
listname must be called (expanded) and the characters thereinh fed to
the macro to make use of them. This 1s done by feeding the name of
the macro to use the informatlion to listname as its argument. The
expansion of listname generates the name of the user, followed by two

arguments: the name listname itself, followed by the information

-2-

.characters 1n listname. Thus the user macro can be one which deals
wlth several different information carriers, each of which carries
its own label. The polnt is that in order to generate a function of
the information in an l.c.m., first take i.c.m. name of the function
name. The i.c.m. flips the function name in front of the information
as 1t expands.

| Exercise: Generate the expansion of the following code:

remote alfa
remote [add t

dac t]
here

The second example has remote as the i.c.m. The definition of
remote 1s such that remote effectively redefines itself, adding on
to its definition anything fed it as an argument. The here macro
redefines listname so that when remote next calls it, it unloads‘it-
self into the program instead of into a new definition of remote.

The definitions as written here are not self~resetting; the appear-
ance of here does not leave either remote or listname in condition
to be used again.

Exercise: Define a macro setup which establishes the correct
initial definitions of remote and listname when it 1s called. Insert
calls of setup in appropriate places so that the definitions of
remote and listname are properly initialized, and are reset by use
of here.

The purpose of the third example is to allow indiscriminate
use of the pseudo-instructions.octal and decimal in macro definitions
without disturbing the current radix outside of macro calls. To this

end, the system definitions of octal and decimal are saved in the

-3-

name roctal (real octal) and rdecml (real decimal). Then octal and

decimal are defined as macros which, in addition to setting the cur-
rent radix, also append the radix to a list of radices called list.
To restore the previous radix, the macro oldradix peels the top
entry off the list and discards it, then sets the current radix to
the top of the entry of the remainiﬁg list. The list, after use of
decimal and octal would look in part like this;

define append newrdx
list newrdx, [roctal], [rdecml, [roctal, [error]]]
terminate

The method used for manipulating the 1list is similar to that of
example 2. Note how the third argument of 1ist is added to and
deleted from.

Exercises: Determine the definition of oldradix corresponding to
the above definition of append. Expand decimal and determine its
effect on the list. ,

The last example illustrates the use of irp, 0if, and 1if. The
macro deciprt prints out on-line at assembly time the numerical value
of 1ts argument in English words. Zero suppression, sign, and num-
bers ending in "teen" are all handled correctly. The i.c.m. info
contains the text to be printed out, and is handled similarly to

listname in the first example. The sequence info redefine appears

so often in the original that the macro in has been defined as a
shorthand for it. The conversion to decimal is handled by the usual
method of depletlion of powers of ten. Zero suppression is handled

by the indicator sup.

b

/remote macros-method 1, S. R. Russell

deflne remote a
listname [cons [a],]

termin

define listname user
user listname,

terminate

define cons 12, name, 11/ user
define name user
user name, [i1

i2]

terminate name
terminate cons

define here
listname 2ndarg
define listname user
user llstname.

terminate listname
terminate here

define 2ndarg a,b
b

termin
start
/remote macro-method 2, A. Kotok

define remote g
listname a

termin

define listname 11/12
define remote 12
listname [i1

i2]
terminate remote
terminate listname

define here
define listname info

info
terminate listname

remote
terminate here

start
/octal decimal pushdown, s. D. Piner

opsyn roctal, octal
opsyn rdecml, decimal

define octal
append roctagl

termin

define decimal
append rdecl

termin

define error -
print /Too many oldradix pullups./
1list roctal, error

termin

define list radix, prevrdx, rdxlist
define append newrdx
1list newrdx, [radix], [prevrdx, [rdxlist]]

newrdx

terminate append

define oldradix
list prevrdx, rdxlist
prevrdx

terminate oldradix

terminate 1list

list roctal, error

start

decimal print macros, D. A. Gross

define deciprt number
z=number
repeat 0if vp z,in minus deci2-z
repeat 1if vp z/-1if vz z,deci2-z
repeat 1if vz z/A1if vz zA1, in zero
repeat 1if vz z/A1if vz zVi, in minus zero
info write
redefine

terminate

deflne deci2 a
X=ga
sup=0
deplete 100000,
teen=0
integer
place hundred
deplete 10000.
Intergy
deplete 1000,
Integer
place thousand
deplete 100,
teen=0
sup=0
integer
place hundred
deplete 10,
intergy
deplete 1
integer
terminate

define redefine y
define info user, data
user y data
terminate info
terminate redefine

redefine

define in a
info redefine, a

terminate

define arg a,b
sup=1
repeat teen, 1n a
repeat 1-teen, in b
terminate

define place a
\ repeat sup, in a
terminate

define deplete a

y=0

repeat 9, repeat 1if vp x-a, x=x-a y=y+i
terminate

define integer

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	A1-1
	A1-2
	A2-1
	A2-2
	A2-3
	A2-4
	A2-5
	A2-6

