PDP-1 COHMPUTER
ELECTRICAL ENGINZERING DEPARTMENT
M.I.T.

CAMBRIDGE, MASSACHUSETTS 02139

PDP-23~1

ID

May 20, 1966

ID -~ Invislble Debugger

Invisible Debugger, comonly referred to as ID, i a
utility program in the PDP-1 time sharing system writien to
aid in the debugging of other programs. An advanced ID has
been written {April, 1966) to allow all operatlons to be
carried out either directly on drum filelds or on running
cores. It uses the drum to allow the user full use of core(s)
and drum field(s) for his program and to provide extra
features. ID and the program being debugged each have a drum
field to themselves.

For clarity when typing examples are given herein, the
typing done by the user of ID is underlinéd° Also, when
needed the following symbols arve gssigned to the invisible

flexo characters:

carriage return

tabulation -»|
space 2
backspace P
upper case ()

lover case V]

-

A. GQeneral Essentlial Preparation

1. When a time-sharing user requests ID he is sutomatically
assigned one drum fleld to be used for his ID program.
The user’s running field, which was assigned when the
consocle was turned on, and the console's pseudo drum
flelds will be used as the console’s drum and coxre
fields whose contents may be examined and modified
by the use of ID. The drum fleld assigned upon
requesting ID is the consolets ID fleld and may not
be examined or modified by instructions to ID ov by
execution of a program.

2. When entering ID, the user has elther a binary tape

containing the program and its symbols or a binary

version of his program existing on hls pseudo field 1

with its symbols still in the POSSIBLE SYMBOL TABLE

located in the console's running fleld (i.e., in core 0).

a. Program on Field i and Symbols in POSSIBLE SYHEOL TABLE:
To inform ID of the meaning of the symbols used in
the program type:

2§hmgga
ID will then tslke a copy of POSSIBLE SYMBOL TABILE
and put it into its own ID SYMBOL TABLE. To get
a copy of the binary program from pseudo fleld 1
and place 1t into the console!s current fleld so
that 1t can be executed, type:

;ﬁ.,w_a

(NOTE: 1If changed, the limits M+1 and M+2 should

be initialized before the above command by typing
"M_“ .)

-3

Program and Symbols on Tape: To clear all avallable
reglisters of the current field memory, type:

R4 5
This command will zero all the registers of the
current field. Then to kill the previocus symbol

table, leaving only the initial FDP-1 instruction
mnemonics, type:

ﬂ_w.a
To read in the binary tape containing the program
or data, place the tape in the reader and type:
RCh
This causes ID to yank a standard binary block
format tape into the current field memory. To
inform ID of the meaning of the symbols used
in the progrsm, place the symbol tepe, which was
Erepared by POSSIBLE or MIDAS SYMBOL PUNCH, in
the reader. If the tape is a binary tape from
MIDAS type: '

hry >
If 1t 1s an alphanumeric tape from POSSIBLE type:

ﬂwgé

2

ID will then read in the symbol tape and will
merge the contents of this tape with ID's own
symbol table. After this, ID is ready for use
and will be able to interpret constants and

instruetions typed either symbclically or numerically
or both.

w

2

Typing
.ﬁ.@ﬂ'... Q
preceded by the address where the user wants his program
to begln, wlll cause the program to stari unning.
For example, typing:

100fh gl
or

@J&Shﬁi>

wlll cause control o be transferred to absolute
location 100 or symbolic location "a" respectively.

To wreturn control to ID after using a "G" command,
press the console's CALL BUTTON.

B,

mﬁm

The Current Field

This new version of ID {April, 1966) allows operations

to be carried out directly on drum fields or on the

user's ruming ccres by making the field inveclved the
"eurrent field". Initilally ID is set up so that the user's
running core 0 is the "current field”. The "current field®
is nommally specified by the underbar command. Typing

X

———

causes fleld x to become the "current fileld". If
X477, X 1ltself is used; otherwlse, bits 2-5 of X are
used. Fields 0 to 7 refer to the user’s normal running
core. For time-sharing users, only 0 and 1 are legal,
and 1 18 legal only if core 1 1s assigned to the user.
Fields 10-100 are illegal. Flelds greater than {>) 100
refer to drum flelds. For example, typing

103

-

makes the user's pseudo field 3 the current field.
Absolute flelds are lndicated by bit 12. For example,

161

causes absclute fleld 21 to become "current”. Typing
underbar (_) alone will cause the current field to be
printed out.

-l

C. Examination and Modification of Stored Information

1.

Opening a reglster in the current fleld - In using

ID, a fundamental idea is thatv of opening a register
so that its contents may be examined and/or changed.
This may be accomplished by typing the twelve-blt
address of the register in the current field to be
opened, either symbolically or as an absolute constant,
followed by a slash. For example:

regi2/

or
24617/
When the above is typed ID will immedlately print a
tabulation, then the contenta of that register In
the current field, followed by another tabulation.
Continulng the example above:
regi+e/ »| add loc+3 |
(NOTE: Current drum fields not assigned to the user
cannot be examined.) '

Examination of a register not in the current field - It
is frequently desirable to open a register not in the
current field so that 1s contents may be exanined
and/or changed. This 1s accomplished by typing a 16~
bit extended address of the register to be opened,
either symbolically or &s an absolute constant, followed
by a vertical bar. The corresponding core module will
become the "ecurrent field". For example:

12345}
wlll cause core 1 to become current, and open reglster
2345, Typing

1 regl
wlll open register reg in core 1 and make core 1 current.
(NOTE: 4=10000 in POSSIBLE and ID symbol tables.)
Like slash, when the above is typed, ID will lmmediately
print a lower case, tabulation, then the contents of
the register, followed by another tabulation.
(NOTE: For time-sharing users, reference to core 1

18 legal only if core 1 is zssigned to that user.)

3.

e

Modifying and closing a register ~ Once a reglster
has been opened in elther of the above manners 1ts
contents may be modifled, if desired, by typing
the change either symbollcally or as a constant.
For exanple:

regte/ »} add loc+3 | add loc+h
(NOTE: System fields or drum fields not assignsd
to the user cannot be modified.)

A command character which may be helpful in modifying
registers is Q. This has the value of the last
quantlty typed by ID or you. Fuor example, to change
the contents of register 50 from 155 to 157 typse:
50/ »| 155 »| Q2
However, the modification 1s not placed 1ln memory
untll the user types one of the three terminating
characters - up arrow, backspace, or carriage return.
The effect of each of these characters is given in
the following table:

Termlnating Character Action
Returns carriage and modifies
;D the contents of the open

register if a modification
has been typed. The register

- becomes closed. If a vertical
bar was used to open the
register, bits 2 through 5
indicate the core module
that becomes "current',

Same action as carriage return
- except in addition the next

sequential register in the

current field 1s opened

automatically (i.e., current

field plus the address is

typed followed by a slash

tab, and the contents of the

register). If no register

is open when the backspace

is typed, the next sequentigl

register in the current field

is s8till opened.

NOTE: 1If the current location

is 7777, register 0 of the

current fleld will be opened

next .,

Same actlon as backspace except
thls character opens the
preceding register of the

current field instesd of the
followlng one.

NOTE: 1If the current location

is 0, register 7777 of the
current field will be opened next.

P~

Once a particular register has been closed by use of either
the carriage return, backspace, or up arrow, further
modifications of that register is impossible until it is
opened again,

&

>

MQ._
Additional Interpretation of Reglster Contents - If,
while a register is open, any one of the following
characters is typed, the contents of that register
willl be reprinted in the indicated manner.

Character Interpretation
= types out quantity as a constant
> types out quantity as an instruction

e

types out as Iif quantity is 3
conclse code
To illustrate the use of these interpretation characters,
consider the following examples:
reg+i00/ +| lac abe »| = »} 202147 » »| lzc abe
reg+ili/ =} dac 6251 = +| ubr
vhere abc has the value 2147.

Examination and modification of a deferred register -~ Once
an instruction has been typed out by ID, it is frequantly
deslired to know the contents of the register addressed
by the instruction. The control characters tab (+|),
greater than (»), and special uses of slash (/) and
vertical bar (|) provide tris facility.
a. After opening a register, the character tab ()
may be typed to close that register and open the
register in the current field addressed by its
instruction. This causes the location counter,
a reglister internal to ID which contains the
address of the last register opened, to be changed.
An example follows:
206/ »| lac abe »| =
abe/ »| 30 >
abe+di/>| 0 >
Modifications may be made to a register while it is
opened during this procedure. For example:
200/ »| lac abc -] lac abe+i |
abe+i/~>] O »>| 5

b.

e Ju

Like tab, the character > can be used to find out
the contents of the register in the current field
addressed by its instruction. Unlike tab, it just
prints a tab and.the contents (not the address
followed by a slash). It opens, modifies, and
closes regilsters in the same manner as tab.
The current locatlion counter is not changed. For
example:

200/ »} lac abe »| > 30 »] «

201/ | dac Dbop
The character / when used while a reglster is
open closes the register without making any
modifications to it and types out the contents
of the register in the current field which was
last typed by you or ID. The location counter
is changed to the new register opened. For
example:

200/ | lac abe =} / »| 30 »| «

abe+d/ »| 0=
or

200/ »| lac abc | 100/ | dac 1 =]
Like /, the character | when used while a reglster
is open closes the register without making any
modifications to it and types out the contents
of the 16-bit addresses reglister which was last
tyred by you or ID. The location counter and
the current fleld are both changed according to
this new reglster opened. For example:

1200/ -»| i+def | 1 =l 2150 »} «

1 def+1l/ >} 1567 | (1=10000)
Notice that core 1 was made the current field and
the location counter was changed to core 1 location
def.

-14-~

D. The Current Iocatlon Counter
The current location counter is z regilster internal to
iD which contains the address of the last register
opened in the current field. To re-open a register that
has accldently been closed or to refer to registers
near the one presently opened, the current location
character;, point (.), is used. Typing an address
followed by a register opening character such as slash
or vertical bar sets the current location counter to
that address. Backspace, up arrow (1), and tab
automatically set this register to the appropriate
address; carriage return does not affect it. Since
point (.) has the value of the current location,
expressions such as dap .+1 may be typed into ID
(although they will not be typed out in this format).

E,

~12~

Symbols and the Symbol Table

1.

A symbol is a string of not more than six letters
and numerals, contalning at least one letter, and
having a value associaﬁed with it. ID maintains
a table of symbols and their values, and uses it
to interpret symbolic words.

Initially, ID's symbol table contains 1i4 symbols,
corresponding to PDP-1i instruction mnemonics,

such as the operation mnemonics llke lac, tyo, etec.,
the indirect bit 1, the shift mnemonics 1s, 28, ete.

There are flve different ways of adding six character

symbols to ID's symbol table.

a. A blnary symbol tape may be prepared by POSSIBLE
or MIDAS SYMEOL PUNCH and entered into ID by
typing 1T. This causes the tape to be read and
merges the symbols with ID's symbol table.

b, An alphanumeric or numeric tape may be prepared
by POSSIBLE and entered lnto ID by typing T,
This causes the tape to be read and merges the
symbols with ID's symbol table.

c¢. Symbols may be defined directly by means of a
close parenthesis as in the following example:

2475 s >}

The value 2475 is then associated with sym.
Symbols may be redefined in this manner. (Even
the initial PDP~1 mnemonics may be redefined,
but there is rarely any reason to do so0.) The
redefinitions can be in terms of their old value:
I

abe=50
the command

abe+5_abe)
will make

abe=55

~13-

A symbol may be defined while a reglster is cpen
by also using the close parenthesis. This would
define the symbol to be the contents of the open
register. For example,

1/ | 720307 | dpy)
deflnes dpy to be 720307.

d. Symbols may be defined to be equal to the current
location by typing the symbol followed by a comma.
This does not affect the contents of the current
location. For example, if the register last
opened was 50:

50/ »| lac T74 -|
by typing

sym,
sym 1s defined as 50 but the register still
contains lac T74.

sym/ | lac T74 -|

e. Symbols may also be defined to be equal to the
12-blt address part of the last expression typed
by the user or ID by typing the symbol followed
by an imply sign (D). Thus:

500/ +| add 256 -»| cond
</ =] add con
Thus, con was defined to be 256,

4. Symbols may be destroyed by using the commands K or
sym¥ where gym i3 a symbol. The command K kills all
the symbols in ID's table except the 114 PDP-1
instruction manemonies. (If any of these were redefined,
however, the original value is pot restored.) The
command gsymK kills only the particular symbol sym.

5. 1If a symbol which has not been defined is typed, ID
types a capital U (undefined) and forgets the symbol.

-4

Zyplog Instructions, Constants, and Iocation

1.

2,

Instructions, constants, and loeations, which collectively

may be referred to as words, may be typed by the user
at any time using any combination of humbers and/or
defined symbols separated by appropriate comnectives
such as plus and minus signs. In ID, a symbol is any
comblinatlion of letters and numbers not longer than
six characters, which contain at leasi one letter.
(In most other versions of DDT. symbols can not be
longer than three characters.)

The connectives used in forming words are listed in
the following table along with their meanings.

Connectives Meanings

a adds value of next symbol
or number to word.

+ adds value of next symbol or
number to word.

- subtracts value of next symbol
or number to word.

A ands value of next symbol or
nunber onto word.
v ors velue of next symbol or
number into word.
Thus,
Typing Yields
add 10 402010
lac 2447 202147
lac 1 adr (where adr has previ- 210200
ously beenr defined as
200)
dpy-1i 720007
clavelive uﬁ ot 764207

law 144 700144

45

G. Evalustion of Words

.

Oiften it 1s desirable to be able to evaluate a word

that is to be used in a program without actually
affacting memory. This may be done at any time without
opening a register by simply typing the word to be
evaluated followed by the appropriate interpretztion
characters (see section C-4)}., When this is done, ID

wlll automatically type out the appropriate interpretation
of the word followed by s carriage return.

H, Notes on Symbolic Type-Qutb

A glven register, contalning only an octal number, can
be interpreted symbolically in more than one way. Thus,
ID may sometimes type out instructions you may not expect.

1.

If several symbols are defined as having the same
value, ID chooses to print ocut the last one defined.
If clf 6 is typed into ID, it will be printed back

as opr 6.

Symbols of four characters or more will only be printed
out as the first three characters. Thus, if two symbols
abc and abed are defined as different cctal values,

ID will print both of them symbolically as abe. One

may type the interpretive character to find which is used.

Expressions with negative terms will not type out as
they were typed in; for example, 1f ret=adr+5, then
ret-1 typed in will be typed out as adr+di. Similarly,
ID recognizes the current location symbol (.} but
never prints it out.

U

6.

~46 -

The symbols 15, 28, 38, cco. 98 arve defined, but have
veen placed in ¢ gpecilal part of the symboel table so
as to be printed oub only on shift and rotate instructions.

Operate group instructions and skip group ingstructions
type out with inclusive or signs vhen necessary; for
example, 762407 types out as ¢laVeliVelf 7. Thus, if
a reglster contains data which happens to be in %his
range, the resulting type-out may be in terms of

these instructions.

Numbers beginning in 7Ttype out as negative.

I. Control of Modes

1.

2.

Although it has been assumed so far that ID nermwally
prints out the conterts of reglsters as instructions
with symbolic addresses and normally interpreis
constants as unsigned octal numbers, a provision
has been made to alter this state of affairs

with a considerable degree .»f flexibility.

There are several different reglster openlng characters
from which %o choose according to the type-out mode
desired.

Register Opening

Characters Meaning
/ Types out the contents of the

preceding 12 bit address number
as sywbols or constants,
according to the mode.

i Types out the contents of the
preceding 16 bit address number
as symbols or constants, according
to the mode.

[Types out the contents of the
preceding 12 bit address number
as constants, but does not
change the mode.

-7

Reglstey Quening

Characters Mezaning
1 Types out the conients of the

precedling 12 bit address
musber as symbols, but does
not change the mode.

{ Does not type out the contents
of the preceding 12 bilt address
but puts ID into the type-in
mode starting at that address.

Type-Out Mode Foi Instructions - By typing cne of
tyo commands vc¢ ID, the normal mode of printout of
register contenis may be controlled.

a. oSymbolic type-oub mode is the most often used
and the one in which ID 1s inltially. This mode
is obtained by typing a capital 3. The contents
of registers wlll be printed out as symbols.

b. Counstanis type-out mode is obtained by typing
a capital C. In this mode, the contents of
the registers are typed out as ﬁumberee

Type-In Mode 1s obtalned by opening s register with
an open parenthesis ((). In this mode, ID does not
print ocut the contents of the regilster at all; it is
a convenlent mode for typing short programs or parts
of programs. This mode is left by typing a carriage
return; howvever, baclkspace, up arrow, and tab lteep ID
in type-in mode and open the appropriste register.

~18-

5. Type-ouf Mode for Addregs of Registers - By typing

cone of two <ommands to ID, the mode of printout of

reglster addresses (as a result of tab, backspace,

up arrow, etc.) may be set.

a. Relative mode is the one in which ID is initlally.
By typing capital B the mode can be obtained again
80 that addresses will be fyped out symbolically.

ex. adr+10/ | lac abe +} &
adr+11/ »| dac xl2 |

- Atcane i vt

typed out as numbers. t 18 obtained by typing
a capltal Q.

6. Constant print control - By typing one of the following
two commande, the normal mode for the printout of
conatants may be controlleqd.

Conmand Resulting Action
H all constants will be printed
out as octal numbers - hoctal mode.
U all constants will be printed out

as decimal numbers - unhoctal mode.

J. Input Radix Contirol
The commands H and U dlscussed in the preceding section
control the radix used by ID to interpret all numbers typed
out by the users. The character period (.) is used to force
interpretation of linput constant as decimal regardless of
the current radix. If the input constant is not immediately
followed by a period, it is interpreted as octal regardless
of the current constant radix. The character single quote (')
causes the last three characters typed in to be taken as
thelr sqoze code value. This applies only to letters or
numerals. The character double quote (") causes the first
three characters typed in to be taken as thelr sqoze code
value. This applies only to letters or numerals.

-19-

K. Speclal Reglsters
Tne capltal letters In the following tabile indicaﬁe‘special
consecutlve regilsters, which are internal to ID. These
vegisters control some of the main functilons of ID;
they may be referred ifrom sny fleld and are opened and
modifled in the same ramner ag a reglster in the current

field.
Capital Letter
in their Iocatlon Order Regicster Contents
& the stored accumulator of
the progrzm
I the stored IO reglster of
the program
X the location of ID's execute
register
G the stored program counter

of the program; the overflow
£lip-~-flop 1s stored in
bit 0, the extend mode

in bit 1.
P the stored rlags of the program
M the mask for word searches
M+1 the lower limit for word

searches, save and unsave
fields, and speclal uses of
yank, tape, verify tape,
punch data blocks, and zerc
memory .

=
%
<3
o

the upper limit for word searches,
save and unsave flelds, and
speclal uses of yank tape, verify
tape, punch data blocks, and

Zero memory.

B ‘) breakpoint locations
B
B+
B+3

e

-2

The characiers A; I, M, and B vhen preceded by a single
argunent deposit the argument in the corresponding register.
For example, typing

1TTTTA)
deposits 17777 into ID's Internal reglster A, containing
the stored accumuliatcr for the program.

The uvsage of the above conirol characters wlll be
more fully explained in the sections to follow.

L.

-2

Asslignment and Deagssipnment of I0 Devices and Drum Filelds

ID can assign or deassign 10 devices and drum fields
independent of the user's program. In this way, the

user can be assured of cobtaining essential equipment

before starting his program running. The capital letter

F when preceded by one or two arguments provides a

convenilent way to assign or deassign eguipment directly

from ID.® The table of possible request 1f found in

the fssigmment znd Deassignment of In-Qut Eguipment and

Drun Fields lMeme (PDP-31). The mnenonic or concise cede
indicating the device requested is the argument immediately
precedlng the F command. Thus, typing F where « is a
mnemonlic or concise code Indlcating the device requested,
will recuest assignment of thot device to the user's console.
T 1is equivalent to executing the following thrze instructions:

law flexo< op lawex

cli

arqg ,
{NOTE: The arq is executed without reference to the special
internal registers A and I of ID.)

In certain cases the I0 must contain additional information
about the device; thus the F command must have two arguments.

Typing

xR
will put X into the I0 and the concise code for the
mnenonic of the device requested into the AC and then
execute an arg. If the assignment or deassignment of

The capital letter F when not preceded by an argument
refers to ID's speclal internal register, F, contalning
the stored flags of the user's program.

-2D

fields is successful, then two carriage returns will
occur. On the successful field gssignments that return
information in the AC, ID prints out the information

in the right 6 bits and restores the AC to its contents
before the reouest was made. For asslgnments and
deassigmments of in-out devices (not fields) two carrviage
returns will be returned only on successful assignments,
[On unsuccessful assigmments, only one caryiage return
is given.] An sssignment will be successful if the
field(s) or device requested is not already assigned

or 1f the assigmment is already in effect. |

M. Breakpolnts

One of the most powerful features of ID is the ability
to insert brealktpoints in programs. In testing a large
program, 1t i3 frequently convenlent to use breakpoints
to interrupt the computation so that partial resulis
may be examined or the state of the program determined.
Breakpolnts may be set up at a location in the user’'s
program by two methods:

1. Typing

adrB
causes ID to set up a breakpoint in the current field
at location adr. Only one breakpoint can be inserted
at a time by this method; the address preceding the
B will be deposited into the special register B.

2. TFour speclal registers, B, B+i, B+2, and B+3, can
be used to contaln the addresses of breakpoilnts. No
break location is indicated by an overbar (7);
initially all four registers contain overbars. For
example:

Bri/ ~| ~ =| adr

This puts a breskpoint at location adr in the user's
program. If the user transfers control to his program,

-23~

ané the instruction in register adr is reached,
computation will cease and control will be veturned
to ID, which will type out the register location,

a close parenthesie, tab, and the original contents
of the regilster. A¢ this polni, the user may examine
the accumulator, I0, and/or any other register and
make modifications as he pleases. A breakpoint
remains in the location specified until it is
removed by clearing the breakpoint register
containing the address. All breakpoinis may be
cleared by typing B . If the user wants to clear
only one breakpoint, he puts an overbar or a minus
zero in the breakpolnt register containing the
break address to be cleared.

CAUTION: The location selected as breakpoints must
not be registers whose contents are modified by the
program under test, since ID transplants thelr
contents and substitutes specific transfer comrands.,

-l

N. @o_(G), Proceed (P), snd Execute (¥X)

i.

The Instruction adrG, where adr is an address in
the user’s program, is used to start the userts
program running at location adr.

If a breakpoint trap ocecurs, control is transferrved
to ID. To continue operation of the user's program
from the point at which the break occurred, the
command P 18 used. Even if the last breakpoint
encountered has been deleted or moved, P still
proceeds from the point where the break actually
ccecurraed.

uP, where n 1s a positive numeral, will cause ID to
proceed from a breakpoint trap, and go past the
breakpoint n times befove breaking again. This
multiple proceed command works only for the breakpoint
whose address is in register B.

Single instructions may be executed directly by ID;
control need not be returned to the user’'s progranm.
There are tuo.possible ways to execute single
instructions in ID:
a. Typing
bX
causes the Instruction b to be placed in the
address specified by the contents of the execute
internal register X and then to be executed.

b. Typing
agbX

causes the instruction b to be placed in address

a and then ©o be executed. The internal register X

does not change. . ‘ .
Normally there are two carrlage returns after X; if the
PC is incremented by two (that is, the instruction skips),
X will return the carriage a third time. If the return
PC 1s not the same as the original PC incremented by one
or two, control 1s transferred to the location specified by
the PC. Otherwise control is returned to ID.

~25-

0. Hord Searches
A valuable feature of ID is its seagrch facllity. Three
kinds of searches can be made; these types are controlled
by the commands N, W, and E, and they all use the special
internal registers M, IM+1i, and M+2.

1. The three types of secarches and thelr respectvive

commands are:

a. wordW - The word search causes ID to search
the current field for and print out all the
reglsters, between the limits in M+L and M2
inclusively, containing the given word.

b. wordN - The pon-word search causes ID to
search the current field for and print out
all the registers, between the limits in
M+1 and M+2 inclusively, not containing the
glven word. This l1s most frequently used in
0N, the search for non-zero memory.

¢. gadrE - The e¢ffective word search causes ID ©o
search the current field for and print out
all the registers, between the limits in M+l
and M+2 inclusively, effectively addressing adr.
If the user is in extend mode, (bit 1 of the PC
on}, indirect addressing chains for effective
address searches will be carried to a depth of
1; otherwise they will be carried to a depth
of 10, at which point ID will give up.x An
E search will never print out skp, sft, law,
iot, T4, or opr instructions. This type of
word search is valuable for locating incorrect
instructions which are modifying the program.
If a jda instruction is suspected, try Jjda_adrN
in addition to adrE.

% An E-search with greater depth than 10 octal might
take a long time and an E-search with no restriction
on depth might get caught in an infinite chain like:

adr, lac 1 abe
abe, Jmp 1 adr

2.

4,

26

The special internal registers for word searches are
M, M+Ll, and M+2; the use of these reglsiers is explained
in the follouwing table.

Reglster - Contenis
M Tne mask register contzins the

value of the mask used in
word searches. During word
searches, only the bitis masked
i in vegister M are compared.
Initially M contains -0; thus
all bits are compared unless
the register is modified.

M+4 The lower limit for the word
search is stored in the MN+i
reglster. Inltially, M+1 contalns
0; thus the search will begin
at 0 unless modified.

M42 The upper limit for the word
search is stored in the M2
registver. Initially, M42
containg T777; thus the search
will end at 7777 unless modified.

Speclal commands may be used to nmodify the contents
of the specilal internal registers M, M+i, and M2,
Typing

M ‘
initlalizes the contents to ~0 in M, 0 in M+i, and
7777 in M+2.

faglall
puts fa and la in M+l and M+2 respectively. M remains
unchanged. To change M, type

aM

where g is the mask desired for M.

There are two ways to print a block of regilsters:

a. Set the mask to zero and set up M+1 and M+2 to
enclose the area to be printed. Then search for
any word.

b. If irvelevant parts of memory happen to contain
zero; merely do a N~ search for zero.

P.

Zero

Often it is valugble to zero all or parts of a field So
that irrelevant parts of the field will contain zero.
The following commands may be used:

Command
Z

fa<laZ

NMeaning
zero all of the current field

where fa and la are 12-blt
addresses limites for the zero
command. The registers of
the current fleld bhetween fa
and la inclusively are zZeroed
by this command. ,

where % 18 the ficld number
for the zero command. The
ficld specified 1s zerced
betyeen locations in M+l and
M+2 lnclusively. The current
field is not changed.

28 -

Q. Yank
In the Preparation Scction of this memo {(pavt &), the
usey was instructed to use the command "Y" to vead into
the current field a binary tope prepaved by POSSIBLE or
MIDAS. For convenierice, other variation of this command
may be used. They axe:

Command Heaning
¥ Read a tape in POSSIBIE or

MIDAS binary block format
into the current field between
the locations specified by
i+1 and M+2 inclusively. The
core medules specified in the
data block origins will be
ignored. If a checksum is
encountered, the process will
stop. It is then possible to
move the tape back one block,
regtart the recader, and type
“e¢" to continue reading, if
desired.

xY x is the field number into
which a tape in POSSIBLE or
MIDAS binary block format is
read. Otherwlse, the command
is the same as 'Y alone. The
limits of the yank are in M+1
and M+2 as above. The core
mnedules specified in the data
block origins will be ignored.
If a checksum is encountered,
the process will stop. It is
then possible to move the tape
back one block, restart the
reader, and type "e" to
contlnue yanking, if desired.

faglaY vhere fa and la are 16-bit
address limits for the yank
command. The data block will
be checked against core field
specified in the block origin.
Only words with extended
addresses from fa to la inclusively
will be yank in. The process
will stop on encountering a
checksum. To continue, move
the tape back one block,
restart the reader, and type
“e" to continue yanking.

R,

~29-

Verify
Another feature of ID 1s the ability to verify the program
currently in core or on a drum field with the original
binary tape. The ecapital letter V is used as the command
In the following ways:

Command Meaning
v Read a binaxy tape in POSSIBLE

or MIDAS binary block format;
the core modules specified in
the data block oxigins will
be ignored. The words read
in axre compared against the
current fields words between
locations specified by M+l
and M+2 inclusively. HNo

© change is made ©to menory;
any discrepgncies are typed
out aa:

location/ memory tape

If a checksum error is encountered,
the process will stop. It is

then possible to move the tape
back one block, restart the

reader, and type "¢ to

continue reading, if desired.

xV X 18 the field number whose
contents 1s to be compared
against the tape. The field
may be a core field or drum
field. Otherwlse, the command
is exactly the same as V alone.
The limits of the verify are
in M+i and M+2 as above. No
change 1ls made to memory and
any discrepanciles are typed
out as:

location/ memory tape

The program will stop on encountering
a checksum. To continue, move

the tape back one block, restart

the reader, and type "e" to

continue reading and verifying.

faglav

-30-

vhere fa and la are 16 bit
addreas limits for the verify
command. The data blocks will

be checked against core field
specified in the block origin.
Only words with extended addresses

from fa to la inclusively will

be checked. No change is made
to memory and any discrepancies
are typed out as:

extended location nemory tape

The precess wlll stop on encountering
a checksum. To contlnue, move

the tape back one block, restart

the reader ané type "e" to

continue verifying.

~34-

3. Save and Ungave Drum Fields
Another valuagble feature of ID is the abllity to save
an image of a progrem on another drum fleld, so that
it may be restored at some fubure time. The capltal
letters S and U, when preceded by addltional information,
are command to save and unsave drum fields.”™ The
special internal registers M+i and M+2 indicate the
limits of the transfer for the current field. The
two basic commands and their meanings are:

Command leaning
£ Save on field "£" - an image

of the current field between
the limits in M+l and M4+2

is written onto drum field f
betuween the limits also in
V+1 and M+2. This operation
does not affect the contenis
of the current field. Field
“f" must be assigned to your
consoles; it wmust be a number
from 1 to 174 when refevencing
a pseudo fie%d, or from &18 to
57Tn when referencing an
abdBolute field.

£U Unsave field "f£" - the contents
of the current field between
the limlts in M+1 and M+2 are
replaced by the contents of
drum field f between the limits
in M+1 and M+2. The contents
of drum field f are not affected
by this operation. Field "g"
must either be an absolute system
field or a fleld assigned to
ycur console; thus 1t must either
be a number from 1 to 174 when
referencing a pseudo fiegd
assigned to your console, a
number from 418 to 57q when
referencing an~absolute field
assigned to your console, or
a number from 61§ to 668 when
geferencing an absolute system

ield.

¥ The capital letters S and U when not preceded b& a
ghgracgeg'?ean gymbolic and unhoctal. (See section
-3 and 6.

-32-

Two other commands to unsave and save drum fields are
avallable for cwapplong informstion to a different
location on the drum field and the current field. These
commands are:

Command Meaning
x<£8 Add *x" to the origin of the

area on field © - an image

of the current field between
the limits in M+l and ¥+2

is written onto drum fielid ¢
between the limits "x" plus
the contents of M+4 and "x%
plus the contents of M+2.
Thus the limits 1ln M+1 and
H+2 apply only to the current
field, not fleid “f". Field
£ must be assigned to your
congole; it must be a number
from 4 to 175 when referencing
a pseudo fie?d or from 41

to 574 when referencing ag
absolite field.

x<EU Add "x" to the origin of the
area unsaved from field “f" -
the contents of the current
field between the limits in

. M+1 and M+2 are replaced by
the contents of drum field T
between the limits "x" plus
the ccontents of M+1 and “x“
plus the contents of M+2.
Thus, the limits in M+l and
M+2 apply only to the current
field, not field "£". Pield
"£Y must either be an absolute
system field or a field assigned
to your console; thus, 1t must
elther be a number from 1 to
17 when referencing a pseudo
field assigned to your console,
a humber from uig to 578 when
referencing an absolute“field
agsigned to your console, or
a number from 61q to 668 when
§§f§§encing an absolute system
eld.

....33..,

An example of using the latter commands appear
20¢58

moves locations 100 - 200 inclusive from the current

fleld to leecations 120 -~ 220 of field 5.

8 below:

To restore
this program material at a later time, the user would
type:

1,00<200M
and thus mcve locations 420 - 220 of field 5 to
100 - 200 of the current fileld. '

~3d~

T. Heoarding and Reasding Symbols

Another feature of ID is the ability to hecard and read
symbols, o that the symbols may be stored and restored
with the associated program. The capital letters

H and R, vhen preceded by additional Information, are
commands to hoard and rezd symbols.Ne The two besic
commands and their meanings are:

Command Meaning
fH Hoard ID's symbol %table on

field £ - saves gll of the
user’'s symbols (except
initial symbols, even if
redefined) on the part
between n and 7777 inclusive.
The number n 1s printed out
and becomes the new memory
bound for fleld y. (N is
also in location 7777.) This
feature 1s intended to be
used in assoclation with "s"
to save a program on lower
portion of a field and its
associated symbols on the
upper portion of the same
field. The symbols are not
changed or killed in any

way by "H". Any argument
acceptable to “"8" gs a field
number is acceptable to "H".

R Read the symbols stored on
field f into ID's symbol table -
reads all of the user's symbols
previously stored on field f by
the command "H" and bodily appends
it to ID's initial symbol table.
Previous symbols in ID's symbol
table are killed (except initial
symbols). If what it finds on
that field 1s not a symbol table,
it responds with "?", and ID's
symbol table is not changed. This
feature 1s intended to be used with
"U" to unsave a program and its
assocliated symbols for further
reference. Note that the "R" process
is different from "T" in that in
case of "R", current symbols are
first killed, whereas in the case
of "T" new symbols read are merged
with current ones. Any argument
previously used by "H" as g field
number can be used for "R".

-35~

Tuo other commands to hwoard
for swappirng the symbols %o
Thege are:

Commmand

x<{H

#*<fR

The capital letters H and R
mean nhoctal and relative.

ané read osymbols arse available
and from g specifled location.

Heaning

Hoard syabols on field f below
location Xx. The number n is
printed out; the table of uger's
symbols is between n and x-i
inclusively. (N is also in
location x-1.) X may be any
symbolic or numeric location
and any argument acceptable

to "S" as a field number may
be used for f in this command.
The symbols are not changed
or killed in any way by this
command.

fleads gsymbols from field T
belcow location x prevliously
stored by x<fil and appends
them %o ID's Initial symbol
table. Previously symbols in
ID's symbol table are killed
(except initizl symbols). If
what 1t finds on that fleld
is not a symbol table., it
responds with a . "?", and ID's
symbol table is not changed.
Any arguments previously used
in the "x<fH" command can be
used for “x<fRr".

when not preceded by a character
(See section I-5 and 6.

U.

Punching Programs

When final correctlons have been made ln the user's program,
the user may punch it out in its modified form. The

four punching commands are L; D, center do%t, and J.

1. L causes ID to listen for title. ILetters typed
after this command will be punched in readsble
form on tape. fThe title punch is femminated by
carriage return, tab, or backspace. The result
of these terminating characters is glven in the
following table:

Terminatling Character Result
;D Punches the standard

input routine and sets
ID Yo punch the usual
checksummed data blocks.

>| Sets ID to punch the
usual checksunmed data
blocks, but no input
routine.

L Sets ID to punch read-in
mede tapes.

2. The capltal letter D is used to punch data blocks
from the current field. A varlety of formats are
avallable to the user for his convenience.

a. faglaD, where fa and la are any symbolic or numeric
expressions, punches the current field from fa to
ia inclusive. If the current field is a drum
fleld, the origins of the data blocks will be in
core 0. If the current field is a core field,
the origins will be in the current core.

b. D alone is equivalent to OKT77ID. It punches
the entire current field. If the current fleld
is a drum field, the origins of the data blocks
wlll be in core 0. If the current field is 3
core fileld, the origins will be in the current
core.

¢. xD, where x 1s a core number 0 to 7, punches the
current field between the limits in M+1 and M+2.
The data block origins will be in core x.

L

&

..37 -

ad, where a is any symbolic or numerlc expression,
causes ID to punch a start (Jump) block to %he
address specified to denote end of blnary tape.
The address is typed iwmmediately preceding the J.

If a veglsier is open, center dot (¢) will close
the register and punch 1its contents as a one-word
data block. This is convenient if the tape needs
only a few modiflcations, known in advance.

-38-

V. Error Indicstions and Corrections

1. 1ID has several error alarms associated with its use.
These are typed out by ID and have the following
general meanings: ’

ckem & sum check error occurred
in reading a binary program
or symbol tape. By moving
the tape back one block and
typing "c¢" the tave will
continue to be read.

d.e. Drum swap was not successful.
Error may be caused by trying
to write on locked field, or
a timlng error in drum.

no L7 This indicates that user
tried to punch out before
obtaining a title on the tape.

busy This indicates that the reader
or punch is busy and the user
must wait until available.

U This indlcates that the immediately
preceding word contains an
undefined symbol. ID will act
as 1f nothing had been typed.
Thus, for example, typing an
undeflned symbol in a word
into an open register will
result in "U", but typing a
carrliage return will close
the register wilth its previous
contents rather than zero.

-

Error has been made in the
command to ID. ID can't do
or doesn't understand the
request typed in.

...39...

When a user’s program execubes an 1llegal instruction,
ID ig brought back into control and the address of
the illegal 1astruction is typed and followed by >>
snd a tab. Then, the contente of fthat vegister

are typved out. DBeiow 1s a list of varlous types

of illegal instructions:

. hlt instruction
b. instruction with an illegal operation code.

c. instruction which directly or 1lndiyectly
addresses a location above the memcry bound.

d. a reagder or punch instruction when no
assignment has been obtained for the program.

e. arq instructlon with 1lnvalid ceode or parameters.

f. a dece drum instruction addressing an unassigned
field or locations in core above the memory
bound.

g. a bpt instruction at a location to which a
breakpolint was not assignhed by the user
through ID.
When the user of ID realizes that he has msde a
typing error, he may delete all that he has typed
since the last carriage return or tabulation by
typing a multiplication sign (x). For example:

loc/ »}| add a | abex =| add _abc
</ | add abe.

40~

APPENDIX I
SUMMARY OF CONTROL CHARACTERS

A. accumulator storage (19)%

B, B+1,B+2,B+3 registers contalning breakpoint locations (22)

¢ set word print mode to constants (17)

D punch data blocks (36)

E effective address search (25)

F without avgument: storage for progran flags (1.9)
wlth one or two arguments: execute an arg (241)

G without argument: storage for program counter (19)
with one argument: start program running, go to (24)

H wilthout arguneni: set constant printout mode to (18)
hoctal (octal} .
with one or two arguments: hoard symbols onto field(34)

I i-0 storage (19)

J punch start (Jump) block (37)

K ki1ll defined symbols (3)

L listen for title punch (36)

M mask register (26)

M+ | lower limit for word search (26)

M+2 upper limit for word search (26)

N not-word search (25)

0 set locatlon print mode to octal (418)

[proceed (24)

Q last quantity (7)

R without argument: set location print mode to (18)
relative
with one or two arguments: read symbol table (34)
from field.

S without argument: set word print mode to symbolic {17)
with one or two arguments: save memory on field (31)

T read symbol table (T, 1T, 21) (12)

¥ The numbers in parentheses indicate the page number

where the charaéter can be found.

U

NN

0
81 9: a-a

~iig -

wilthout argusent: set constant printout mode
%o unhoctal (decimal) (48)

with one or two arguments: unsave field into (31)
current field

verify tape (29)°

word search (25)

execute as instruction (24)

read binary tape (28)

zoro nemory (27)

octal numerals and/or symbol constituents (14)
symbol constituents (42)

take as concise code (48)

print zs conclse code (9)

define symbol as address typed (13)

inclusive or (14)

and (14)

modify and open previous register (8)

print as instruction (9)

open reglster in type-in mode (47)

define symbol {(12)

examine register as octal constant (16)
xamine reglster as instruction (17)

minug (44)

[us]
—

oG

(1.4
(14)

define as (413)

13

iu
us

v

%

print as octal (9)

current location; if preceded by number take
constant as decimal integer (418)

delete typed input (39)

examine 12-bit address register (10)

L

tab modify and open addressed register; also alters
seguence of location (9)

bk 8p modify and open next register (8)

car ret medify and close register (8)

uc, le set case

| examine 16-blt address register (10)
> modify and open addressed register (10)
? take preceding constant as decimal integer (418)

e (center dot) punch opcned register as one word block (37)

BASIC INSTRUCTIONS

add
and
cal
dac
dap
dio
dlp
dis
-»div
dzm
1dx
ior
lot
isp
jda
Jmp
Jep
lac
law
iio
-mul
mus
opr
sad
sas
st
skp
sub
xct
Xor

OPERATE

cla
cle
clf
cli
cma
i
-»lal
lap
lat
»lia
noep
onr
stf
>ZUp
XX

400000
020000
160000
240000
260000
320000
300000
560000
560000
340000
440000
040000
20000
0000
170000
600000
620000
206000
700000
220000
540000
540000
760000
500000
520000
660000
640000
420000
100000
060000

GROUP

760200
761200
760000
764000
761600
760400
760040
760300
762200
760020
760000
760000
760010
760060
760400

43—
APPENDIX IX
ID SYMBOL TABLE

SKIP GRour MISCELLANEOUS
=¢clo 651600 >¢lo 653600
skp 640000 i 040000
sma 040400 is 1
sni 644000 2s 3
spa 640200) 7
spi 642000 is 17
*SpQ 650500 58 37
sza 640100 6s : 77
szf 640000 s 177
> Zm 640500 8s 377
52p 644000 Gs 777

5%8 640000
IN-OUT TRAMNSFER GROUP

cbs 720056
cls 720033
=dba 720061
>dce 720062 TIME SHARING INSTRUCTIONS
>dia 720060
dpy 730007 Sps 723077
>dra 720063 sdl 723477
cem 724074 1sb 720052
eem 720055 . wav 722477
ioh 730000 arg 122277
ot 720000 bpt 122577
lem 720074 dsm 722377
lsm 720054 ckn 720027
ppa 730008 rbt 720217
prb 730006 cac 720053
rpa 730001 asc 720054
rpb 730002 dsc 720050
rrb 720030 nmn 725377
tyl 720004 nmf 725477
tyo 730003 sbr 722577
lea 724677
SHIFT/ROTATE GROUP lei 724577

rer 724777
ral 6541000
rar 671000
rcl 663000
rer 673000
ril 662000
rir 672000
sal 665000
saxr 675000
scl 667000
ser 677000
>3t 660000
81l 666000
sir 676000

' ID 16 aug 65 part O
2200/ |

bpt=iot 2177
-arq=iot 2277
dsm=1iot 2377
Jdp=140000
adm—36oooo

/low end inltlal symbol table
low=.-2400+2033
/top end of symbol table

tet=.-2
Jend of symbol taole, pointer t 1ow end
est=.~-1"

/symbol 1limit, mAX number. est-sl-sl must be >
/lowest . 1ocatlon used by symbol table is est—sl—sl—z.
s 1=1000

/number of. break points

nbp=U

/number of 1nternal reglsters

" nir=nbp+6 :

/number of drum flelds

ndf_26

/fixed loc in exec routine

xlc=16

12200, . jmp ent /vegin at the begimning, the king saida...

- define feed a

~law 1 a

: Jda fee R

~; terminate

-deflne dispateh low,upp
[upp=uc 44]x1000 low—uc Ly

“termin e

define letter a,b

“disp [[a+uc—44]] b

L termlnate> : . , R
deilne bprlnt - /good for up to nbp=10
repeat nbp—i Th6254 7200+b b=b+l
termlnate Lo o
‘dfp, .add /drum field of program (real)"
dpf, add , /used for holding dfp '
aa, Th6100 0 /A
, . Th7100 0 /T
746600 0 ,
- Thhhoo o - /M
CT7hhbsk o oo7201 g /ML
TaLlLsl - 007202 N /M2
T4 6200 0 ~ /B L
SR bprint ' /B+1, etes
o e | , .

‘,r—i
start

ID part 1’1/26/65:
/thisAis bhé;béginnihg inthe realﬁprogram

ent, iac
S ~ sza
Jup

- ldx

§ J Sp

‘eem

lac.

dac
idx
lac

- dac
©idx
. lac
Coddx

- lac
dac

ids /were we in ID9

enl /yes ‘
1ds /we are now

sswW /set state word pclnters,f

1 acp.
ac

acp

i acp-
io

acp

1 acp.
pc
acp

i aecp

fg

/now get the breakp01nt package

*1aw
dap
lac
dac
idx
idx

sas (dac bp nbp

Jmp

bp :
02'
i bpp
bp A
bpp
.=

o5

/get kdm pointer

law
dap
lac
add
dap

lac:

lem
‘dap

/gét why 1

Jsp
Jmp

xlc

Xmw

i xmw

xc0 /kdf-awl = 4
Xmw '

1 xmw

kdm /pointer into exee core

enl, isp
' ~sad
Jmp
lac
dac
~Jmp

/dispatch
- en2, and

sask ‘,v
Jmp .

-add
dac
dap
Jmp

/dispatch table

red, .1

jmp.
Jmp .

Jmp
Jmp

Jmp-

-~ Jup
- Jmp

Jmp.

L

zrg
dpf

dfp
err

(77
why
red
bkt
. 1

/call button

~ /restore drum field

/check validity

/Leo, you goofed.

/setup flag

/g0, man, go

- /constant

zrt

cl
ii
cll
1bp
rx

- /1adt! typed from mystic

/arq-—leo goofed again
/dsm issued
/illegal op
/call button

 /bpt given

/return from X
/leo screwed up ‘

/subroutine to get why;‘the‘reason ID was entered
/Leaves reason in why and ac - 1o preserved

gy, ~ dep
: ‘ eem

law:

dap
lac
add
- add
sub
dap
lac
dap
lac
lem
dac

gyx, Jmp

~/random constants

acp,
- bpp,
Xmw ,
xcO,
- xcl,
xece,
Xc3;

why,

- bp,
“gcni:

xe2,
nms,
lds,
- OPC,
- bpa,

S Xe3,
pil,

. mpe,
mb,

050000

/pointer to ac in exec core

050000 /pointer to bpt package in exec core .
- 050000 /gets into exec coré.
000004 Ob=kfd-awl (executive symbolsg
000047 ' /i5=sp2-awl executlve symbols
- 000015 /13=brk-sp2 ot :
- 000003 . /brk-why ERITRRS
000000 /reasén ddt was actlvated
000000. /break-
000000 /point
000000~ /pack-
000000 Jage. .
- 000000 /temp storage for pc
- 000000 /switch for G P or X
000000 /ID switch(non 0O~ID running) .
000000 - /storage for pc¢ during X
050000 /pointer to kdm word in exec
000000 /temp for pointer tracing ~
000000 /temp for instruction in bpt routlne .
000000 /storage for proceed routine ' x
lac bkl nbp - /random: number for, bpi-bpo -
006770 | |

/memory bound

/subroutine to set up pointers to state word and bpt pack
/sets pointers acp and bpp
/Jsp ssw to enter

ssw,

dap ssx =

law xlc
dap xmw
eem

lac 1 xmw

add xci

- dap xmw -
‘add xc2

ac clobbered io preserved

/spe-awl = 15
- /brk-sp2 = 13

~dac ssx 1
lac 1 xmw
dap xmw
lac 1 xmw o
dap acp /pointer to ac
lac ssx 1 L
dap xmw'

- lac 1 xmw

- dap xmw
lac 1 xmw
dap bpp

: lem
SSX, Jop .

/pointer to bpt package

0 /temporary storage

cl,

Cll;,

ixe,

ixe+3,

L rx,

xe,

ele
dac-

law

 sas

Jmp
clce
dac

- law

Jda
law
Jmp

: laW

and
Jmp

law

Jda
law
Jda
JSP

Jsp

Jsp
jda

- Jmp

ﬂiad

sub

- sas
- Jsp

1lio
dio

Jmp

~ /clear the prOCeed ihdicatof; dsm entfyf
bkO ‘ : e E
xe 3

2 /call button entry

nms o <

cli
. /call while X in progress

bkO /cant proceed _

Ther

tys

255 . ’) :

ixe 3 SR /pe=xe2 so mp3 works right

7777 /normal call

pc

3bp

The7 /illegal execute

tys

1010

tys ,

lct

mp3 /setup :

fet /and get the offendlng word
lwt

xXe+l -

pc /X return

xe2 - /did X

(4 /skip?

lcec /yes v

opc -/no skip 2 '

bkO /restore old pc for proceed after X
bpo . ‘
zrt ’

- /drum read error.routine

lac

(723564

Jjda tys

lac
- Jda
Jmp 1.

ys
(6534

tys
1lis

1bp,

2bp,

3bp,

. dzm

law
sad

Jmp.
law 7'

and

dac t

law
dap
lac
sad t©

JIp.
idx 2
sas.

Jmp

“law

sad

- Jmp

- Jsp

lac
dzm
dzm
jda
lac
Jda
lac

Jmp-

bkf /breakpoint

ixe /bpt whilé‘x iﬁ progress.
bp -~ /true loc of bpt -

bkl - /setup.
2bp

s : - /check for assigned breakpoint;

3bp

bp
(18c bl nbp
2bp E

2 /illegal instruction
nms - /were we X ing

ixe ~ /yes=illegal execute
lio (741010
law 7777 /check
~and p
dap t2 /for »
- law bkl ‘
dap . 1 - /illegal
lac bk - ,
‘sad ‘t2 - /instruction
.‘jmp,3bp 1
idx /under
‘sas (lac bkl nbp
Jmp =5 /breakp01nt.
~dio bkf 7
lac 2 /to set up bkO after bp3
Jmp 3bD_1
lio (55 ‘
dio t3 . o ‘
dac bkO /set up for proceed from bpt or illegal

bpo

mod
lef
pad

tys
pad
tas

/G go

Ibgoa“

, pi{

e

dzm
spi -
Jmp
dap

~Jsp

Jsp

Jsp

J8Pp

Jmp .

chk
nms

err'
xe2
‘mp3
bpi
XXX -
lce

pl2

/neW‘modé switch

/setup address

/setup fetch and counter for bpt
/put in breakpoints -

/for 'sequence break(same XXX as exec)

:/X‘execute‘from location n

xe0,

kspi*
Jmp.
- dap’

law

dac:

lac

~dac
Jsp

Jsp

dac
- Jmp

err
xez2

2

nms
ka
opc
mp3
fet

xe3
p1

/subroutlne mp3

,mp3:

, -dme
- lac
©add

dac

. lac

dac

Jmp

e T
tst .
el
tas -

cl

enl

]

/save old pc til after X

/fetch from drum

, /at 1cc;§(xe2)

/procéed counter= 0O

/P proceed and multiple proceed logic -

prO,

- p2,

spi;
© law

cma
add
dac
lac
sad
Jmp
dap
dzm
law
dap
dap

cnl
bkO -

(-0
err
xe2
nms
bkl

« 1

lac .

sad

bkO

/single proceed

/loc to proceed from ‘

/cant proceed

/is this proceed through bpt?

Jmp p3
idx p2 :
sas (lac bkl nbp

. Jmp p2

P9,

3,

lac
sza-

Jmp

lac

sad
Jmp
idx

- Sasg
Jmp p8
Jmp

lac

Jmp

lac
‘dap
-JSP,
Jsp-
lac

dap
lac

add-

dap
dac

dzm-
lac
‘add (
‘dap
lac.

Jjda
law

-dac
jmp;

bkf /did we stop by xXct ing a bpt?
o e v -
pl-2 /no |

bkl /yes

bp 3 /is there still one there9

pg - /yes

k(lac bkl nbp

p1—2 /no 1onger there‘

o /after putting in bpt s

tas . /put baékf61d instruction :

pll /s that it will be'éxecuted

R /this is the instructlon from under bpt
dep /put it back

nms ~ /setup proceed.

/xxx routine ahd“aSéociated,trash

XXX,

dap
eem
lac
and
sad

law

lio
ril
rer

dio

lem

Jup .

xxd

fg
€23000
21000
1

i kdm
1 .
1

i kdm

,/set the state of the user and go

piz, Jsp ssw o ,
: . laaaaaaacccce bkl lac bkl
dac bp IO
- lac bkl nbp
dac bp 1 /set up bpt package
eem
lac ac A
dac 1 acp
ddx acp
lac io -
~dac 1 acp
“idx acp
lac xe2
dac 1 acp
ldx-acp
lac fg
dac 1 acp

'/now the.bpﬁTStuf‘r

law bp

dap . 1

~lac bp -

dac 1 bpp |

idx bpp

Sidx .-3 ,

sas - (1ac bp 4

CJmp =5 -

‘dzm’ ids /note that we are 1eav1ng ID
ilac nms : ,
~dsm. : /pass the buck to exXec.

bpi)‘
}pr,

bp5,

bp6,.

bpb42,

Cbp;

- cbx,

1io

cli

dlo

dap

lac:

‘dac
law
dap
spi
idx

law

dap
dap

aJIp

dap

lac
dac
cla

..

Jmp.

~dac
idx
sas
Jmp

cla:

sad

Jomp .
law

dap b
dzm
idx
lac

dacL
Jmp.

dap
law
dap
.¢clce
dac
1dx
sas
Jmp
Jmp

(=0
T

darf

bp6
bpb+2

bp2+1

bp>
dpx

dpx
bl

bp3
add (

nbp

bp4
lac &
spa

bp5+L

tas

dep

dp0
1 bph
bp3
mpe

bp2
are
(bﬁt
dff
dPX
,bp2+1

bpl .

chbx
bkl
bp3

i bp3,

bp3
mpe

o4

/breakp01nts insert 1nto user's fleld

,/break points take out

/gets changed
/used by cbp

/used as a constant above

/clear all?breakpoints

fet, 1io (=0 /feteh
- dio dff L
Jmp dep+e

 dep, - o i - - /deposit.
o dzm 4ff : a
dap dpx -
lac tas
ema -
‘ . Jmp dpx-1 , e I =
~dep+6, lac tsf - /re—entry frem word search
, sza . ~ . S e ,
Jmp dp2 ' , ‘ e
dpO, lio drf /re—entry from bpi, bpo.
' spli 1 | B)
lac dfp
I dip t1
dpl, law TTT7
-and tas
jda chk

1lio t1
law 1
lio d4ff
spi
add dfp
- BWp
law dep -
~dee
Jup dre
. lac dep
dpx, - . Jmp .

- chk, . o /check against F
B dap chx : 8 v
law 7777
and chk
sas c¢chk
- Jmp tal .
- 'sub mb
sma
Jmp tal
i add mb
chx, . jmp .

dp2, 1lio d4ff /fetch, deposit internal registers
daw 7777 R R B ' '
and tas
sub (ac’
spa
Jmp tao
~sub (4
sma
: Jmp dpl
- dp3, lac 1 tas
A spi 1 ,
lac dep
dac 1 tas
. Jmp 1 dpx
dpkh,: sub (2
oY sma. .
Jmp dp6
spi
Jmp dp3
add one
sma
Jmp dp5 |
lac dep /N
Jjda chk '
e Jmp dp3 -
dp5, lac dep . /M2
o Jda chk o
sub 11
spa a
Jmp tal
- Jmp dp3
dp6,,- sub (nbp
‘ o sma
Jmp tal o B
spi ’ " /B thru B+nbp-i
‘lac dep
sad (=0
Jmp dp3
Jda chk
~dac chk
law bkl &
: . dap dp7 | ~ e
- dp7, lac . /chieck whether already assigned
o sad chk s ' o
Jmp dp8
ddx dpT7
sas mpc
Jmp dp7
. Jmp dp3
dp8, clc ~
‘ ‘ dac 1 dpT7
Jmp dpT7+3-

dp9s

PV,

ni,
PVx,
pvi,

pva,

lac
sme
Jmp
law
Jda
cle
dac

Jmp

dap-
clc

dac
lac
sza
Jmp
spa
Jmp
law
and
sub

i;tas‘

1 dpx
56
tys
lwt
pn2

pVx

dfre

pvf
i
pvl
pve
e
fa
lo

spa -

Jmp
dap
sub

add

szn
Jmp
lac

- Jmp

lac

- dac

dap
Jsp
lac
Jmp
lac
Jmp

pvi. .

5
we

one

pvl-

fa’
pvf
1o
zd

0

pVX
dep
pvx

/punch, verify swap routines

/from pwd

/used by searches

zd,

zd1,

zda,

- zdx,

Zd3:\

zd2,

dap
law
sub
sub
sma

-add’

zZdx
1
wrd

lo

est

cla -

add

~dap

dap.
lac

§z&.

Jmp
dap

dzm
idx
sas.
Jmp
lac
add.

swp+cli-opr

dia

1io

dce
Jmp

Jmp:

law
add
add
sza
Jmp.
lac
adm

‘law

add
sub
sub
sma
cla

adm

lio
spi
Jmp

1lio
dia
lac
add

swp+cli-opr

est

esp
we

arr -
‘zdé'

o+l

T

esp

‘v "‘3)

1o
dfp

we

dre

i1

“We .

lo
wrd

zrt
we.
10

Wrd
1o -
we

WC
are

i
zd1

1o

we
dfp

Jmp zda

/zero drum, used for searches also

/re—entry point

/re—entry point

sav,

uns,

sul,

su2,

 $u3,

spf,

ckf,

efx,

nop

Jda
dac

lia

lac
dac

Jmp

Jjda

dzm
dip
lio
lac

.dac
dzm

law
add

‘dac
cle

dac
lac
dac
Jsp
lac
dac
law
dap

- Jmp

lac
dac
law
dap
Jmp

add

ckf
tl

dfp
%
sul ‘ C
ckf /unsave
t

v

dfp

t1

10

i1l

mb

wrd

aff

t
dfp

zd

td

dfp
su3
zdx

zdl

t

dfp

su2
zdx
zd3

(20 -

cli+EWp~opr

rer

~add

Jmp

0
dap
lac

.and

sub
szm

Jmp

lac
rar

Jmp

s
cl
sul-5

éfx

ckf
E37 ‘
ndaf

err /field number too big

ckf
6s

'/orQsasfmst+3 for field‘23 for radid‘astrohomy. -

ws,

spl
Jmp
dzm
dap

. lac
- sub
- szm

jmp
J8P

cle

dac
lac

‘dac

lac
dac
lac
dac

Jjsp.

e’J‘:’rJ |
tsf

ws2
11
ul

err

lce

arf
wrd
chi
11

lo

-w:c'd _

zd

JW,N,E

- ws0, lac wc
dap hi
cla

dap wsl+l

wsl, dzm sym
S lac .
dac t2 L
wse, Jmp . /eal or wsl

eal, and 5770000

sad (jda

Jmp .+

and ci

sza :

Jmp eaz

law 7777

and t2
wsl, xor chi R T
can, and msk /used as and
_Wea, XX S /sza or sza i

Jmp ws3 RN

law 7777
and ws4+l
add 1lo

dap loc
dzm lcf

Jda pad

law 2136
Jda tys -
lac 1 wsl4d
Jda 1wt

Jsp lec

" wWs3, idx wsl+1
' sas hi
Jmp wsh
Jmp 2d3

- ea2, idx sym

‘ ‘sad ¢l10
Jmp ws3 :
law 7777
and t2
sub mb
sma §
Jmp ws3
add mb
dac tas
sub lo
spa

Jmp dep+6
dap .+5
sub we
add one
szm

Jmp dep+6
lac &

Jmp wsh42

ver,: jsp ar N ~ /verify
S Jsp lcec. o '

vil, lac t
‘dap fa ,
lac fa - v
sub .chk /1o
‘sub (dio :
spa.
jmp vfe o
add chk /1o
sub .wrd e
szm.
Jmp vi2
Jsp pv
dac chi
lac i la
sad chi
Jmp vi2

vE3, . lac fa

dap loc
dzm lcf .
Jda pad
law 2136
Jda tys
lac chi
Jda 1wt
Jep lct -
lac i la
Jda 1wt .
‘Jsp 1lce

vz, idx fa
Addx la
sas rbl
Jmp vii+42
Jsp rbk
Jmp vfi

ar, dap arx - /assign reader
- law 51 Lo
arq .
Jmp bus
Jsp lct
law 4642
Jda tys
Jsp soi
' Jsp 1lct
arx, Jmp .

bus, Jjsp let /busy
lac (356224 -
Jjda tys

lac (223034

Jda tys -

_Jmp:pnz

start

ID part 2 1/26/65.

lis,
lis+2,

rt,

lse,

‘lss,

1sp,

8sn,

lsr;
PSi:
- cas,

-law

arq

law

147
ER!

arq

‘1lac

dac

Jsp
dzm
dzm
dznm
clc

dac

dzm
lac

dip
dzm

dzm

dzm
dzm

cle

dac
dac

dzm
lio

dio

init bax
byl
dio.
law
add
dap

lac
XX

and
dac
sub
spa
Jmp
add
dap
sub
spq
Jmp
lac
ior

1lio

sad
dio
law
lio

- 8pil

Jop
JIp

dpf
dfp

lce
mod .
iif
¢hi
wrd
cun -
sgn
dnm-
syl

sym 1
sym r

1et'
che

bbf
skl
wea -

ch
dtb
ch

‘o +1

(777
t2
(44

in

(Jmp uc
1sx
arl

i 1sx
sym 1
Sym
lef -
(45
iif
syl
let

i
evl
evhd

, 1wt

/initialize assignments.
/used by frfi

/zero drum routine return

/rarv9s or dio ph

/used as add

/last no-eval routine

law
sad
dzm
lac

Jaa

Jmp

7T

ch

‘tas
(flex U
tys.

1lss

evl, dap evx /symbol lookup
AN law mst+2

s : dap esk

“eve, lac est

dap esk

evg, dap ev2
eve, lac .
: spa
Jmp esn
cla
es3, sas sym 1
Jmp esi
‘esh, lac .
= sad sym r
‘ Jmp ev3l
esi, idx es4
- . idx esh L
esk, sub mst+2 = Jor (lac low .
sma ‘ >
S Jmp .43
add i esk
Jmp evg
idx evx
ev3, ‘idx esl
- evX, Jmp .
esn, ~idx esd
‘lac i eve
xor cli
Jmp es3

evh,

sgn,

1sx,

Cun, o

in,

11,

71n3:

dap sgn

lac wrd o ’ ;
xx /operator and syllable addr.
dac wrd . o o :
lio chi

spi

lac 1wt

Jmp .

‘rir Ss , /number routine

lac syl
ral 3s
spl i
ior t2
dac syl
lac dnm
ral 2s
add dnm
ral 1s
spi i
add t2
dac dnm
Jrap 11
add (44-12
spa :
Jmp n

dzm let /letter routine
dzm chi - | | ,

idx che
sas (4
Jmp 1n3
lio sym r
dio sym 1
dzm sym r
sub (6
s2m

Jmp lsr
lac sym r
mil spd+li
div spd+2
Jmp .

add t2
dac sym r
Jmp 1sr

uc,n+44,v lio

1lc,

840,

quo,

Q,

ir,

m, -

t&a0, -

err,
erl,

Jmp
lio
dio

Jmp.

lac ¢

Jmp

lac
sza

Tac
~Jda

lac
Jup

dac

lio
spl
Jrap

- law
Jrap.

1aw
Jmp

law

Jmp

law
dac

‘dzm
dac

 Jmp

lacg

Jda
law
Jda
law

. arqg

Jmp
law
Jda
law

- jda

lac

-dap

(rar 95
psi .
cas
1sr+l

i+l
sym 1

sym r

8Spv
tys

1wt'
nl

chi

L

-1

ac
ni-1

io

-1

msk

1if

chi

syl

n2

(743521
tys
7234
tys
is

1lse

T435
tys
Ofre
tys
est
srl

 /upper case

. /lower case

/' means take decimal number

/" means take as flexo codes

/Q means last,Quahﬁity‘

/A means accumulator

/I means i-o

/M means mask reglster

/2
/lc, blk

/symbol table overflow error

sri,

daq,

com, -

lac

spa
-idx

idx

- lac

Jda
© lac
=jda

Jmp

law
and

Jmp

lac

dac

srd
sri
i srl

pi
(741034
tys
lls+42

Ny

iwt

loc
dflyu”

/> defines sym as address of Q

'/comma defines sym as loc

,def,_
Skj-"

de,

~dot,

del,

lac
- sza -

Jmp-
law

dap

lio’
Jsp

Jmp
law
sub

‘sma
Jmp

law

‘adm

dio
sub
dap
lio
dio
sub
SWp

" lac

sza

Jmp
dio

. Xor

dac
Jmp

dio

- Jmp

lio
lac
spi
lac
dac
law
dac

Jrp

dzm.
Jmp

let

err
pn2

vdex

afl.

evli

darz - v
est=-sl-sl
est ‘

ser
il
est
1 est
one
est
sym r
i est
ocne

sym 1
i
dex
est -
ch
1 est
dex™

i esd

¢he
loc
o
dnm
syl
L
t2
11
iif

/define symbol

/symbol table full

/end of no;eval‘routiﬁes, delete

val, dac dft /open,parén,‘sets up Vaiue fon,définéf
‘ Jmp lss ‘ ‘ ' a

kil, spi /K
‘ Jmp kKi5 - s
lac let
sza
. Jmp err -
lal, lac low /used below
B sad i est : , e
Jmp err ‘ I
law kil /deléte one symbol
dap evx - ~
law lal
“Jmp evi+2

eql,
_‘pn2,v ~

arw,

arl,

oct,

dec,

smb, -

. CnS) : ‘_ .

rad,

tls,
© pls,

y 41n,

uni,

isc,

jaa
Jda

Jsp
Jmp

“Jda

jda
inp

spi

Jmp
law
Jrp
spl
JEp

S law

dap

Jmp

spi

Jmp

law

Jrp
law

‘dap

Jmp

1aw

spi
Jmp

law:
dap
~Jmp

lac
Jup
spl
dio
lac
Jrp

Jiap

lac-

Jmp

eap
opt
lct

1lss

eap

pi
del

err.
10

o

uns
12
ops
lse

pi

bpt
pns
lse

pvl
tls-1

err

pev

pal
lse

cad
ssn
wrd

csu
ssn

ssn=1

can
ssn

sav.

/print octal ihﬁeéeff(=)

/print as instruction (=)

/used by cad+2

"/octal—decimal switeh setup

/ﬂ

/U

;symbolic-constant_switch;éetup,
&7 - 2

s

;bctalerelative5switch setup

e

/plﬁs,vspacé

/minus

Junion, V -

/intersectien, A

‘tab, = spl i - /tab
LT Jda dep -
.dzm lef

ta3, - dac 1wt
’ ' Jsp lcc
lio 1c?
sni
C Jmp tald
sub (ac
Jmp tao L L
sub (nir , /internal symbol print
sma y , .
Jmp tao
add (nir
sal 1s
add (aa) -
‘dap .41 “lac .
Jjda tys =
S ddx -2
CXet =3
Jjaa tys , _
. - Jmp tald4d , ' _
bs, ‘spl 1 , /backspace
| Jda dep .- |
idx loc
Jmp ta3

fs, spi i . - - Jarrow up (forward space)

- ‘jda dep 5 ‘ ; = ; G
law i 1
adm. loc
Jup ta3

bac,.

-vb§

bar, .

cr,

 eas,

wds,

Pbx,

law

Jmp

law
dap .
jmp bar

Jup
cle
dac

lac
dac-
lac.
dzm

dac

sza
‘dac

lac
spi
Jmp

o lac

dac
lac

dzm-
- Jnp

spi
Jaa
T dzm

Jmp

spl

jda

~dac
law

Jjda
Jmp

law
dap
law.

Jmp
lac

dac

law

Jmp

- Jda

Jda
Jmnp

:opt'

o2

vax

mod
lcf
tas
iif
1if
lef

tsf
wrd
tab
tas
lef

1wt

tsf
tab

dep
tsf

“tab

dep
iwt

: 72

tys

1se+1_,

wsh42

dpx
eal
ws

sk2

wea

wsi
ws

eap
tys
pn2

/open bracket (bar-constant) ===

/cloéed braéketz(barrsyﬁbqiiﬁ)‘v

/vertical bar

/slash .

/tas used_for,témporary Storageﬁ

"/>,meansumakechrr. and open regiéter*f>

/carriage return

‘,/effeétiveiaddress search

/not word search

/word search

/print as bed (™)

rd, spi 1 - /read binary tape (Y)
- Jmp err ‘ ' ‘
Jep-ar
nb,. Jsp rbk
- law 11
add ch
and (7777 ; e ‘ '
jda chk /check last address of block -
lac ch . ; SN
sub t
dap we
law TTTT
and ©t
add dfp
SWp
dia
lio we ..
law buf
dce
Jjmp dre
Jmp nb

bgn, - . Jmp bgo
Xec, o Jup xeO
pra, - = Jjmp proO .
bk, ~ spil i /B
i ~ Jmp 1bk
cle
dac bbf
- dac let
~ law. bkl
dac syl
dac 1if
~dzm chi
, , o Jmp lsr#
ibk, @ dac dep ..
o o law bka
- add ci
dac tas
dac tsf
Jsp dep+d
Jrp lse:

ovb, ‘cle. : /overbar
spi -
Jmp nl
sas bbf
Jmp err
Jsp cbp
Jmp lse

start

ID part 3~1726/65.

ttl,

 Jbk,

spi i
Jmp err

arq

Jmp bus
feed 30
Jsp lec

- Jmp tpl

'spi :
Jmp err

law 47
arq
Jmp err

/title punch and punch formatvéetup

law 47 B

/jump block

- /do we have the punch

lac wrd -

ior cj
dac 1wt

feed 40 .

lio 1wt
JSp pbw

feed 520

Jmp 1is

pul, jda chk ' /1ower 1imit setup
' dap fa ‘
- Jmp 1lss

pwd, dac dep /punch word
: lac tas~ .

sma

Jmp tal

lac tsf

spil

ior med

sza v

Jmp ta0

law 47 : :

arq /do we have the punch?
Jmp bus ' ‘
spi ‘

Jmp <43

Jsp dep+l

dac 1wt

cle :

dac pvf

lac tas

dap fa

dap la

Jup pb5

pun, spi ; /punch any length block
T Jjmp err o o

law 47 ‘ '

arq /do we have the punch?

Jmp err SRR

Jsp zro+l

pb5, lac fa
- ‘ ior c77

dac ©
sub la ‘
sma _ - - -
Jmp pbb , /next hundred too high
idx t ‘ ‘

pbd, Jsp pbb /pbb or pur
, lac ©) ‘
dap fa
Jmp pbd

pbo, lac:la
dac t-
idx ¢
xct pbl
Jump pnz

viy,

Zro,

- 2VD,

tbl,

thi,

Jsp
Jmp
law
dap
lac
spi
Jup
Jmp
cla
dap

law
-ada

dac

- dap
law

and
Jda

dac

dac
sub
a8zm

- Jmp

dzm
dzm
law

Jmp-

sSpi

Jmp
Jsp
lac
sad

Jmp

sad

Jmp
sas

Jmp
-dzm

Jsp

Jjda

lac
sad

Jmp
Jsp
dac
Jsp
Jmp

ero+l

ver

zd
ZVp
wrad

43
chk -
«+5 -

fa
i4
mb
wrd
la
1T
fa
chk
chk -

lo
wrd -

err
arf
pvl
zd3

i
the
ar

th

(gmp TT50
tb5 |

(jmp 6151

tbi-1
(Jmp 7751

err

sym 1

/for verify

/for zero reglsters _
/used by block operatiocns -

/symbol table reader

/reader-macro

tbn,

- tom,

gwd,

gwl,

gwa,

CEWX,

b3,

law est

sub est .
sar 1s
Jda opt-

Jsp rbk
Jmp_tbm
dap gwx
lac la

‘sas rbl -

Jmp gwl
Jsp rbk
Jmp gwd+l

‘dap gwa

idx la
lac ‘.
Jmop .

Jsp gwd
dac sym 1
Jsp gwd

“and (177777

dac sym r
ior sym 1
sza 1

Jmp tbhn
Jsp gwd
dac 4fl
lac sym 1

“lia
‘rll 1s

sma+spl-skp
Jmp tbb

and (177777
dac sym 1
Jsp de

Jmp th5

‘/skiys rest of tape

/read midas table

tbe,

b3,
ok,

dzm sym 1

‘sas one

Jmp pot

lio mst

dia

law low

dac est

add dfp
cli+swp=-opr
dece

Jmp dre

lac low-1

sma

Juop err.
add mst -
spa

Jop err

law i 6151aiow
- add low-l

dac t3-

law lLow=2

dap tbd
l&c » ’
dac d4dfi
law 1 1
add tb4

~dap tbi4
‘lac i tb4

- Jda pz
Jsp de

iac tb4
sad t3

- Jmp 1se-

sub (1

“Jmp tb3

sub (lac 6150

/teble read from ts macro or possible

/see if table read from possible

- pot, sas (2 - o
Jmp err /not possible-
lac (400006 :
dac tas :
Jsp fet
sal 1
cma ‘ ' ‘
dac opt - /twice no of symbols in possible
idx tas ‘ _
Jsp fet - ' ‘
dac t1 /origin of table
' ' ~dia
law 100
add opt
sad (~100 | ' |
Jmp lse /finished
spa o
cla /full block
add (=100 T -
dac t2 ‘ /word count(negative)
cmavlia ' o
adm opt /number of remaining words
lai ' : '
adm ti /initial drum address next
lai S TR
ior dfp ,
law buf ~/initial core addreéss - reader buffer
dap gsb | , o t , S
dcc .
Jmp dre

_gs.b, : lac .. !
i ~and (477777
lia

idx gsb

dio sym r.
lac 1 gsb
sni 1

Jda dfa

idx gsb

idx t2

isp t2

Jmp gsb

Jmp gfd -

pz,t6,

pzl,

PaZX,

kil,

k12,
ki3,
a3
ki5,

- fee,t2,

fex,

dap

lac pz
(202020

and
ral
xor
Xor
dzm

lia
cla

rel
add
dap
law
and.
dac

lac
ral
add

‘ral

add
dac

“sni

Jmp
Jrp

Jmp
Jmp
sub
dac
idx
dac
idx
idx

~and

sub
dap-
add

dap

lio
dio

sas

Jmp
add
Jmp
law
dac-

dap
cli
ppa
isp
Jmp
Jmp

pZX

is
jo¥4
cl

68
psi+l
o
e

te -

t2

sym r5

Sym r

38

sym 1
1 :
pzl

low
est
lse

fex

fee
Q-2

sym I’ R

t2

/permute zones. (temp storagerhe?e)‘

/delete a11KSymbols

/feed subroutine and temp storage.

iwt,

pns,
-pnx,

eap,

£r,

ffl, o

rf3,

0
dap
lac

Jmp

0

lac

dac’

lac
sza

Jmp

Jsp

Jmp

lac

Jda
law
dap
lio
law

- spi

law

- Jmp

lio
arq
Jmp
dio
dac
Jsp
Jsp
lac
Jjda
dac
Jmp

dap

pnx

iwt
pi

o7
eap
iwt
iif

tao,

*

Sym 1
sza - :
- lac

i

sym r

spv
hip it
lsx.
let
syl
i

tys
evi
io

£r2

io

£y
lce
lce
ft
opt
1wt
lse

let

/Q, last word typed

/pi or opt

/eql,afw,pbx_cémmon

/returns'wiﬁh'ac propér for arq

.—/do the arq wztn phony ac but real io

/F interacts only with io
/temp storage

-~ /type out ac since it may contain info

/return to listen

/since lcc notjtransparent, save and restore ac ete

£r2,

ffe,

dio
dac
Jmp
0

1o
e

£f3

/temp for ac

pi,tl, xx /print instruction
o - dap px) ‘
Jsp pev

lac pi

sub ci’

spa. »

Jmp ppk

dac pi .

law 72

jda tys

tyo

law 71
- Jda tys

ppk, cli
tyo
szl 2
Jmp pvl
law 72
Jde tys
and 2760000
sad (sft
Jmp 166 e e
sad pro+l o /law O
Jmp plo . '
rar 1s
sza ; : o
. c8u, sub (320000 /used as sub
4pa , | , __ _
Jup plo
_pvl, lac pi -
ST sza i
. szf 4 1
S PV3y Jda opt
px, Jmp .

166, law 1 /1s=9s -
- add pi

and pi

sza

Jmp pvl |

law pal+l

dap pex

lac ea

Jmp eak+2

pad, o o /print address
dap px ,
law 1777
and pad
dac pi

, clf 4 :

‘pail, Jjsp pev /pev or pvl
lac (flexo +
Jjda tys
Jmp pvl

ta#, '

- tas,

t§6,

bax,.

jda pad
lio mod
law 7221

spi

law T456
Jdav

dzm‘

dap
lio

‘dio

dap
- Jsp
lac

dip
lac

sza.

Jmp
Jsp

dac
‘Jda
- Jup

tys

loc
loc

lef

tsf

tas
let
cad
tas
mod

lss
fet
1wt
iwt

,,-f/for type-in mode

’

/pi, opr or iwt

‘pev, - dap pex v /symbol lookup subr
) law 1 7777 | 2 ’
and pi _ o o
sad (opr - /detect operates
- Jmp sev ‘ E »
and ?760000 c o
sad (skp ~ /detect skips
Jmp se
clf 2
eak, lac est
- dap ea
clf 1

‘eal, lio i ea
N spi -
idx ea
dap psw
spi 1 .
cli |
dio tb6
e idx ea
Lo szf 2 : /test for “skip or operate" or other
. Jmp sko : - o
~Xor pi
spa
Jmp elx
lac pi
sub 1 ea
spa
SJmp elx
szf 1 1
Jup psw
lac 1 ea
sub i eil
szm
Jmp psw

eix, idx ea

‘ lia :
sub mst42
SWp
spi i
Jmp +3
8as mst+l
Jmp eal
szf 2
Jmp pex
szf 11
Jmp pvl
lac pi

eil, sub
lia S :
sza /detect neg nums
Jup 177

‘ dio pi

ely, Jsp spt
lac pi
Jmp px
szf 1 2

. PeXx,

sev,

sko,

tys,

jmp .

cma
dac t2
Jmp eix

' /mask

déc t1.

lac pi
cma+stf 2-opr

dac t2
Jmp eak

dor t1
'sas 1 ea

Jjmp eix
szf 4

xor ti:

sza i
Jmp eix
Xor pl

Clia
and 't2

s8Za

Jmp eix

dio pi
szf i 1.

Jmp psSwW

lac (flexo V -
Jjda tys

lac .
~dac sym r

lio t6

dio sym 1

lac ea

stf 4

szf 2
- Jmp ely
Jmp eix

dap eil

law i 7777

-and pi
sas (770000

Jmp eiy-1 .

law 7254

Jjda tys -

lac pi

cma

Jmp pv3
0 .
dap tyx

setup opt,3:

/save instruction

~ /mask

/best symbol thus far

}" /numbers 77xxxx

/type symbol

tyl,

“tyb,

tye,

tyx,

lac

ral

‘dac

and

8za

Jrap
sad.
Jup
sad
Jmp

SWp

tyo

count opt,

lac
cli

Jmp

tys

68

tys

el
0

tyc,

(72
dns

(74
ups

1wt

iyl

dns,

dnd ,

lce,

lct,

'lcl;i

sol,

so0i,

rbk,

b0,

rbl,

rbx,

lac

lio
sad

dac
Jmp
lac
lio

Jmp

dap
law

Jmp

dap
law
Jda

-~ Jmp

rpb
rpb
spi
Jmp
dio

dap

psi
(12

cas

tyce
cas
tyb
Erar 9s
Th
lex

=77

lcd

lcx
7236
tys

i
sol
th

rbx

init rbi, buf

dap
dzm

rpb .

dio
dio

‘8pl
Jmp-
rpb.

dio

law

add
-8ub t2

and
sza
Jmp

la

-chl

2
£

lis+2
ch

i1
ch

(777700

err

rpbfi
dio .

lac
adm
idx

i rbl
chi
rbl

index t2, ch, rbo

add
add

rpb

dio
sad
Jmp

chi
t

chi
chi

/redundant case shift filter

/lower case, carriage return

/lower case, tab

/skip over input routine
/enter here

/read a block into buffer

/start block read.

/check for block format

pur,

PQE)

pbb,

pbl’f

pux,
pbe,

plo,
pow,

poy,

lac

(356342

Jjda tys

lac
Jda

Jsp.
- tyl

lal

-gas

Jmp

- law
~arq

Jmp

Jsp.

Jmp

. lio

I5p
Jsp

8WD
Jsp

Jmp

dap
dzm
“1lio

Jep
lio

Jsp

~ Jsp

SWp

-Jsp
index fa, t, pbi

llo
Jsp

tys
1ct.

(char rc
lis+2

51 '
bus

lct
rbk+l

pbz
fa
pbw
PV

index fa, t, pu2

PuUx

pba

2
fa-
pbw

t
pbw

PV’
pbw

t2
pbw

feed 5

Jmp

Jsp
Jmp

dap

repeat 3, ppb

adm
Jmp

pev
pal+l

pby
t2

*

y oo
(224434

/checksum error

/type “c* for continue

/punch read-in mode blocks

/punch binary blodkffdrmat'

/punch binary word
rcl 6s

/bombined,octal-decimal print subroutine -

' dap opx
; ~dzm opl
opa, lac opt
. opb, dac op2 :
: cll-+swp-opr
~ rcl is L :
- div opsops, 10
sas opl : ,
Jmp opb
sni g

lio (20

tyo

lac op2

dac opl

s8as opt

: Jmp opa

opX, Jmp .
opl, 0

ci, - 10000
<10, 10

/symbol print
spt,

Spy,

Spv, . -

- spr,

lSPJJ e

SPX,
‘one,

Spl)

) ;I‘il‘
. lagh
srel

dap.

1ac

and
Jda
Jsp
lac
Jda
Jsp
Jmp
0
dap
init

- dzm

lio
cla.
rel

dio
I‘aI'
add

~dap
- 1lic

spa

dac

~ldx

sas

~Jmp
Jmp
3100

50
o

flex
flex
flex
flex

flex

flex

flex

flex
flex

flex 1

flex

"flex
flex

flex
flex

flex

flex
flex

subroutine

Spy

sym 1.
(L7777
spv
tys+l
sym r
spv
tys+l

L

SpX

SpJ, Spdk
tys
Spv

is
- div

sSpv

is -
(spl-add
.+1

6s

tys

6s

tys

spJ

(div spd+3-
spr

-

737200 P

/dispatch table, IC, UC

dtb,

.disp err,

- disp err,

‘disp pls,
-letter 4,
“letter 2,

letter 3,

- letter 4,

letter 5,
letter 6,
letter 7,

letter 10, uc8

letter 11,
disp err,

disp err,

disp-.err,

disp eryr.,
disp err,

letter O,
disp bar
letter;BA,

letter 35,
- letter 36,

letter 37,
letter 40,

letter 44,

letter 42,
letter 43,

disp com,
disp err,
disp err,

disp tab,

disp err,

pls
quo
sqo
pbx
dag
uni
isc
pul

s
err

ery

err
err
err
err

arw
err

smb
tbl
dec

vy
wds
X686

rd

Zro -
err”

eql

err

err
tab
err

RIS aeNo

L] qL

w e

/Ts<

start

vletter |

letter -
. letter ;
-~ disp err,
disp err,
~disp min,

23,
2k,

disp ovb,

letter

. letter
letter

letter

letter
letter .

letter
disp lc, 1lc ,
disp dot, del

‘disp val,

!disp efr,
letter 1

21,
22

5

disp pwd, err
letter
letter

jbk
kil
ttl

I

nws
oad

pra

q.
rad
err

err .

pls
bas
vb .
bac

err

a .’

bk
cns

puni’

- eas

. begn’

’oct
ir-

disp uc, uc
disp bs, bs
disp err, err

disp cr, cr

> NN

®RHOQO M

/i

/lower case

/Q:X'
/upper case.
/backspace

/carriage return

part 4 4-22-65
private variables.

wrd, o /quantity being assembled
sym, 0 0 /8lpha symbol being assembled
che, ¢} /character count
chi, s] /+0 when letter or number has been
/typed since last typeocut or c.r. input
let, Q /40 when letter in syllable, otherwise -0
ch, 0 /character
8yl, 0 /8yllable
t, o] /temporary storage
la, dio /last address
fa, dio /first address
mod, 0 /mode, -0 for *type-in"
opd,dnm, O /decimal number
op2, 4]
/constants
ch,
cTT» 171
cOl, 010400
cd, 600000
c3, 3
c2, Q20000
pvf, . /punch, verify flop
/0 « usually, set by zro
/=0 - center dot
/not +0 -~ continue in pv subroutine
Dkf, 0 /breakpoint flop
esp, dzm . /used by zero routine
ars, 0 /value for defining symbol
loc, 0 /current location
tas, 0 /address part for fetch or deposit

/current register. instruction part
/+ for register closed, tells dep and
/fet subroutine to ignore
tsf, 0 /current examination flop
/0 - external register
/non=0 - internal register
lcr, 0 /current location flop
/0 - external
/non=0 ~ internal

1if, o /initial internal flop

/0 = usually

/non-0 - set when type A,I,M,B
bbf, o] flop

0 - usually

/=0 - when B typed, not affected by uc,lc
cn3, 400000 /special proceed counter
ace, +] /deposit-fetch flop, O dep, -0 fet
10, .
WC, .

mst, 6151 ~10w

lac tst+i-22
lac tst+i
630000
bur, 0 /reader buffer
t3, 0
t5, o
buf+100/
pf, 0]
PC, 4]
ac, 0 /Internal registers.
io, Q
fg, Y
msk, -0
11, *)
ul, 6277
bki, -0
«+nbp/
R =0 /switch for legsl proceed
/Af legal, has proceed address
awnm, 30
t1, Q
C,
constants

start lis

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	_01_part0
	_02
	_03_part1
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	_17
	_18
	_19
	_20
	_21
	_22_part2
	_23
	_24
	_25
	_26
	_27
	_28
	_29
	_30
	_31
	_32
	_33
	_34_part3
	_35
	_36
	_37
	_38
	_39
	_40
	_41
	_42
	_43
	_44
	_45
	_46
	_47
	_48
	_49
	_50
	_51
	_52
	_53_part4
	_54

