PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
M.I.T.

CAMBRIDGE, MASSACHUSETTS 02139

PDP-23-3
ID

September 5, 1967

ID - Invisible Debugger

Invisible Debugger, commonly referred to as ID, 1is
,é|utility brogram in the PDP-1 time sharing system written
to aid in the debugging of othgr programs. An advanced
ID has been written (April, 1966) to allow all operations
to be carried out either directly on drum fields or on |
running cores. It uses the drum to allow the user full
use of core (s) and drum field (s) for his program and
to provide extra features. 1ID and the program being
debugged each have a drum field to thamsglves.

For clarity when typing examples are‘given hereiln,
the typing done b&‘the user of ID is}ﬁnderlihed. Also,
when needed the following symbols are assigned to the

invisible flexo characters:

carriage return)
tabulation
space
backspace

upper case

S=1T84

lower case

A.

General Essential Breparation

1.

When a time-sharing user requests ID he 1s automatically
assigned one drum field to be used for his ID program.
The user's running field, which was assigned when the
console was turned on, and the console's pseudo drum
fields will be used as the consble's drum and core
fields whose contents may be examlined and modified

by the use of ID. The drum field assigned upon .-
requesting ID is the consolet's ID field and may not

be examined or modified by instructions to ID or by
execution of a program.

When entering ID, the user has either a binary tape
containing the program and its symbols or a binary
version of his program existing on his pseudo field 1
with 1its symbols'still in the POSSIBLE SYMBOL TABLE
located in the console's running field (i.e., in core 0.)

a. Program on Fileld 1 and Symbols in POSSIBLE SYMBOL TABLE:

To inform ID of the meaning of the symbols used in
the program type:

2ft oy
ID will then take a copy of POSSIBLE SYMBOL TABLE
and put it into its own ID SYMBOL TABLE. To get
a copy of the binary program from pseudo field 1
and place it into the console's current field so
that it can be executed, type:

iUy \
(NOTE» If changed, the Iimits M+l and M+2 should
be initialized before the above command by typing
"M-" .) i

3.

rogram and Symbols on Tape: To clear all available
rgisters of the current field memory, type:

Az | u
This command will zero all the registers of the
arrent fileld. Then to kill the previous symbol
table, leaving only the initial PDP-1 instruction
memohics,'type:' T ‘ | ‘

Jﬁﬂﬂgz)

T read in the binary tape containing the program
r data, place the tape inithe peader and type:

Vs

Yy

This causes ID to yank a standard binary black
format tape into the current field memory. To
inform ID of the meaning of the symbols used
In the program, place the symbol tape, which was
repared by POSSIBLE or MIDAS SYMBOL PUNCH, in
the readér. If the tape\is a binary tape from
NIDAS type: |
1Ty
It it is an alphanumeric tape from POSSIBLE type:
ATy

ID will then read in the symbol tape and will

rerge the contents of this tape with ID's own

symbol table. After this, ID is ready for use

and will be able to interpret constants and
instructions typed either symbolically or numerically
or both.

Typing _
preceded by the address where the user wants his program
to begin, will cause the program to start running.
For example, typing:
or
afte -
will cause control to be transferred to absglute
location 100 or symbolic location "a" respectively.

To return control to ID after using a "G!' command,
press the console's CALL BUTTON.

B.

The Current Field S
This new version of ID (April, 1966) allows operations
to be carried out directly on drum fields or on the user's
running cores by making the field involved the "current field."
Initially ID is set up so that the user's running core 0 1s the
"current field". The "current field" is normally specified
by the underbar command. Typing
x._
causes field x to become the “coﬁhent field". If xLATT,
X 1tself 1s used; otherwise, bits 2+5 of X are used.
Fields 0 to 7 refer to the user's normal running core.
For time-sharing users, only 0 and 1 are legal, and 1 is
legal only if core 1 is assigned to the user. Fields
140-100 are illegal. Fields greater than (>) 100 refer to
drum fields. For example, typing
103_
"makes the user's pseudo field 3 the current field.
Absolute field are indicated by bit 12. For example,
161

causes absolute field 21 to become "current". Typing
underbar (_) alone will cause the current field to be
printed out.

-6

C. Examination and Modification of Stored Information

1.

Opening a register in the current field - In using .

ID, a fundamental idea is that of opening a register
sSo that its contents may be examined and/or changed.
This may be accomplished by typing the twelve-bit
address of the register in the current field to be
opened, either symbolically or as an absolute constant,
followed by a slash. For example:

reg+2/
or

2467/
When the above is typed ID will immediately print a
tabulation, then the contents of that register in
the current field, followed by anothef‘tabulation.
Continuing the example above:

reg+2/ »| add loc+3 ->|
(NOTE: Current drum fields not assigned to the user
cannot be examined.)

Examination of a register not in the curfent field - It
is frequently desirable to open a register not in the
current field so that is contents may be examined
and/or changed. This is accomplished by typing a 16
bit extended address of the register to be opened,
elither symbolically or aé an absolute constant, followed
by a vertical bar. The corresponding core module will
become the “current field". For example:

12345
will gcause core 1 to bedgame current, and open:regilster
2345, Typing '

i reg]
will open register reg in core 1 and make core 1 current.
(Note: 1=10000 in POSSIBLE and ID symbol tables.)
Like slash, when the above 1s typed, ID will immediately
print a lower case, tabulation, then the contents of
the register, followed by another tabulatioF.

~-T-

(NOTE: For'time~sharing users, reference to core 1 is
legal only if core 1 is assigned to that user.)

3.

Modifying and closing a_register - Once a register
has been opened in either of the above manners its
contents may be modified, if desired, by typing .
the change either symbolically or as a constant.

For example:

regt2/ »| add loc+3 >| add_loct5

(NOTE: System fields or drum fields not assigned
to the user cannot be modified.) ‘

A command character which may be helpful in modifying
reg;sters is Q. This has the value of the last quantity
typed by ID or you. For example, to change the
contents of register 50 from 155 to 157 type:

50/ »| 155 »| Qt2
However, the modification is not placed in memory
until the user types one of the three terminating
characters - up arrow, backspace, or carriage return.
The effect of each of these characters is given in
the following table:

e o i o i s

Y

Action

Returns carriage and modifies
the contents of the open
register i1f a modification

has been typed. The register
becomes closed. If a vertical
bar was used to open the
register, bits 2 through 5
indicate the core module that
becomes "current".

Same action as carriage return
except in addition the next
sequential register in the
current fleld is opened
automatically (i.e., current
field plus the address 1s typed
followed by a slash tab, and the
contents of the register).

If no register 1s open when

the backspace is typed, the
-next sequential register in the
current field is still opened.
NOTE: If the current location
is 7777, register 0 of the
current field wlll be opened
next. ‘

Same action as backspace except

“this character opens the

preceding register of the
current field instead of the
following one.

NOTE: If the current location
is 0, register 7777 of the
current field will be opened
next.

Once a particular register has been closed by use of either
the carriage return, backspace, or up arrow, further
modifications of that register is impossible until it is opened

again,

-0

Additional Interpretation of Register Contents - If,
while a register i1s open, any one of the following
characters 1s typed, the contents of that register
will be reprinted in the indicated manner.

Character Interpretation
= types out quantity as a constant
> types out quantity as an instruction
~ types out as if quantity is a

concise code.

To 1llustrate the use of these interpretation characters,
consider the following examples:
reg+100/ | lac abe =»| = ->| 202147 > -| lac abc
reg+101/ »| dac 6251 ~ | ubr
where abbfhas the value 2147,

Examination and modification of a deferred register - Once
an in truction has been typed out by ID, it is frequently-
desired to know the contents of the register addressed
by the instruction. The control characters tab (+|),
greated than (>), and special uses of slahs (/) and
vertical bar (|) provide this facility.
a. After opening a register, the character tab (-|)
may be typed to close that register and open the
register in the current field addressed by its
instruction. This causes the location counter,
a register internal to ID which contains the
address of the last register opened, to be changed.
An example follows:
200/ »| lac abe »| 2|
abc/ »| 30 > &«
abe+1/>| 0 ->|
Modifications may be made to a register while it is
opened during this procedure. For example:
200/ »| lac abc | lac abetl =]
abe+l/>| © > 5 |

-10-

Like tab, the character > can be used to find out
the contents of the register in the current field
addressed by its instruction. Unlike;tab, it Jjust
prints a tab and the contents (not the address
followed by a slash.) It opens, modifies, and
closes registers in the same manner as tab.
The current location counter 1s not changed. For
example: | ’ ‘
200/ »| lac abe »| > 30 »| &
201/ +| dac bop

The character / when used while a regilster is
open closes the register without making any
modifications to it and types out the contents
of the register in the current field which was
last typed by you or ID. The location counter
is changed to the new register opened. For
example:

200/ =| -ac abc »| / >| 30 »| &

abe+l/ »| 0->|
or

200/ »| lac abe »| 100/ #| dac 1 3]

Like /, the character | when used while a register
is open closes the register without making any
modifications to it and types out the contents
of the 16-bit addresses register whirch was last
typed by you or ID. The location counter and
the current fleld are both changed according to
this new register opened. For example:

1200/ »| i+def =] | »>| 2150 »| &«

i def+1/ »| 1567 -| (1=10000)

Notice that core 1 was made the current field and the

location counter was changed to core 1 location def.

11+

The Current ILocation .Counter

The current location counter is a register internal to
ID which contains the address of the last register
opened in the current field. To re-open a register that
has accidently been closed or to refer to regjsters
near the one presently opened, the current location
character, point (.), is used. Typing an address
followed by a register opening characters such as slash
or vertical bar sets the current location counter to
that address. Backspace, up arrow (1), and tab
automatically set this register to the appropriate
address; carriage return does not affect it. Since
point (.) has the value of the current location,
expressions such as dap .+1 may be typed into ID
(although they will not be typed out in this format).

-12-

E. Symbols and the Symbol Table

1.

A symbol is a string of not more than six letters and
numerals, contalning at least one letter, and having
a value assocliated with it. ID malntains a table

of symbols and thelr values, and uses it to interpret
symbolic words.

Initially, ID's symbol table contains 110 symbols, cor-
responding to PDP-1 instruction mnemonics, such as the
operation mnemonics 1like lac, tyo, ete., the indirect
b;t';, the shift mnemonics 1s, 2s, etc.

There are five different ways of adding six character symbols.

to ID's symbol table.

a. A binary symbol tape may be prepared by an assembler
and entered into ID by typing AT. This causes the
tape to be read and merges the symbols with ID's
symbol table. |

b. An alphandmeric or numeric tape may be prepared by
an assembler and entered into ID by typing T.

This causes the tape to be read and merges the symbols
with ID's symbol table.

c. Symbols may be left in core by an assembler and
entered into ID by typing 2T.

d. Symbols may be defined directly by means of a close
parenthesis as in the following example:

2475 sym) |

The value 2475 is then associated with sym. Symbols
may be redefined in this manner. (Even the initial
PDP-1 mnemonics may be redefined, but there is rarely
any reason to do so.) The predefinitions can be in
terms of their old value:
If

abe=50

the command
abe+5 abe)

-13-
will make
abe=55

a symbol may be defined while a register is open by
also using the close parenthesis. Thils would define
the 'symbol to be the contents of the open register.
for example,

1/ »| 720307 »| dpy)
defines dpy to be 720307.

e. Symbols may be defined to be equal to the current
location by typing the symbol followed by a comma.
This does not affect the contents of the current
lo ation. For example, if the register last opened

was 50:
50/ »| lac T74 |
by typing
Sym,
sym is defined as 50 but the register still contains
lac TT4.

sym/ »>| lac 774 |
f. Symbols may also be defined to be equal to the 12-bit
address part of the last expression fyped by the user
or ID by typing the symbol followed by an imply sign
(D). Thus: : |
500/ -] add.256 | cond
./ »| add con--
Thus, con was defined to be 256.

Symbols may be destroyed by using the commands K or_symK
where sym is a symbol. The command K kills all the symbols

‘in ID's table except the 110 PDP-1 instruction mnemonics.

(If any of these were redefined, however, the original
value 1s not restored.)

If a symbol which has hot been defined is typed, ID types.
a capital U (undefined) and idnores the entire line.

-1~

F. Typing Instructions, Constants, and Locatilon

1.

Instructions, constants, and locations, which collectively
may be referred to as words, may be typed by the user
at any time using any combination of numbers an/or
defined symbols separated by appropriate connectives
such as plus and minus signs. In ID, a symbol 1s any
combination of letters and numbers not longer than
six characters, which contain at least one letter.
(In most other versions of DDI, symbols can hat be
longer than three characters.)
The connectives used in forming words are listed in
the following table along with thelr meanings.
Connectives Meanings
) adds value of next symbol
or number to word.
+ adds value of next symbol or
number to word.
- subtracts value of next symbol
or number to word.
A ands value of next symbol or
number onto word.
\Y ors value of next symbol or
number into word.
Thus,
Typing Yields
add 10 400010
lac 2147 202147

lac i adr (where gdr has previ-
ously been defined as
200)
dpy-1 720007
clavelivelf7 764207
law 144 700144

G.

H.

-15-

Evaluation of Words

1. Often it is desirable to be able to evaluate a word
that is to be used in a program without actually
affecting memory. This may be done at any time without
opening a register by simply typing the word to be
evaluated followed by the appropriate interpretation
characters (see section c-4). When this is done, ID
will automatically type out the appropriate interpretation
of the word followed by a carriage return.

Notes on Symbolic Type-Out

A given register, containing only an octal number, can

be interpreted symbolically in more than one way. = Thus,

ID may sometimes type out instructions you may not expect.

1. If several symbols are defined as having the same
value, ID chooses to print out the last one defined.

2. ID will not print a symbol which has been suppressed
by putting it into calm mode, although subh a symbol
may be typed in. The command symC changes a symbol
to calm mode. The command symL changes it to the
normal (loud) mode.

3. Expressions with negative terms will not type out as
ﬂyey were typed in; for example, if ret=adr+5, then
ret-1 typed in will be typed out as adr+4. Similarly,
ID recognizes the current location symbol (.) but
never prints it out.

-16-
The symbols 1s, 2s, 38, 98 are defined, but have:

been placed in a special part of the symbol table so
as to be printed out only on shift and rotate instructions.

Operate group lnstructions and sklp group instructions
type out with inclusive or signs when necessary; for
example, 762407 types out as claVeliVelf 7. Thus, if
a register contains data which happens to be in this
range, the resulting type-out may be in terms of

these instructions.

Numbers beglnning in 77_- - _ _type out as negative.

Control of Modes

1. Although it has been assumed so far that ID normally
prints out the contents of registers as instructions
with symbolic addresses and normally interprets
constants as unsigned octal numbers, a pmoviéion
has been made to alter this state of affairs
with a considerable degree of flexibility.

2. There are several different register opening characters
from which to choose according to the type-aut mode

desired.
Register Opening
Chagacters Meaning
/ Types out the contents of the

preceding 12 bit address number
as symbols or constants,
according to the mode.

Types out the contents of the
preceding 16 bit address number

as symbols or constants, according
to the mode.

[Types out the contents of the
preceding 12 bit address number
as constants, but does not ‘
change the mode.

-17-
Reg;ster Opening
Characters Meaning
] Types out the contehts of the

preceding 12 bit address
number as symbols, but does
not change the mode

(Does not type out the contents
of the preceding 12 bit address
but puts ID into the type-in
mode starting at that address.

Type-Out Mode For Instructions - By typing one of
two commands to ID, the normal mode of printout of
register contents may be controlled.
a. Symbolic type-out mode is the most often used
"~ and the one in which ID is initially. This mode
is obtained by typing a capital S, ‘The
contents of registers will be printed out as symbols.
b. CQnstants type-out mode is obtained by typing
a captial C. In this mode, the contents of
the registers are typed out a s numbers.

Type-In Mode 1s obtained by opening a register with

an open parenthesfs ((). In this mode, ID does not

print out the contents of the register at all;

it 1s a convenient ‘mode for typing sh@rt programs or parts
of programs. This mode 1s left by typing a carriage '
return, hoyever, backspace, up ‘arrow, and tav keep ID

in type—in mode and open the appropriate register.

-18-

5. Type-out Mode for Address of Registers - By typing

one of two commands to ID, the mode of printout of

register addresses (as a result of tab, backspace,

up arrow, etc.) may be set.

a. Relative mode i1s the one in which ID is initially.
By typing capital R the mode can be obtalned again
so that addresses wlll be typed out symbolically.

ex. | ~ adr+10/ +| lac abc »>| &
‘ adr+11/ »| dac x42 -»|

b. OQctal mode causes the register addresses to be:
typed out as numbers. It is obtained by typing
a capital ©. ‘

6. Constant print control - By typing one of the following
two commands, the normal mode for the printout and input
constants may be controlled. ’

Command Resulting Action
H all constants willl be printed

out as octal numbers - hoctal mode.

U all constants will be printed out
as decimal numbers - unhoctal mode.

J. Input Radix Control
The cyrrent radix, used for both input and output, may be
set by XR, where x is a decimal number. H is equivalent
to 8R, and U is equivaienﬁ to 10R. The character period
(.) 1s used to force 1nterpretation of input constant as
decimal regardless of the current radix. If the input
constant is not immedlately followed by a period, it is
;ntgrpreted according to the current radix. The character
single quote (') causes the last three characters typed in
to be taken as their squoze code value. This applies only
to the letters or numerals. The character double quote (")
causes the first three characters typed in to be taken as
their concise code value. This applies onlyyto letters or
numerals. - -

D 2 3 4 5 6 7 11 12 13 44 415 16 17

-1.9-

Special Registers

The capital letters in the following table indicate special
consecutive registers, which are internal to ID. These
registers control some of the main functions of hD;

they may be referred from any field and are opened and
modified in the same manner as a register in the current
field.

Capltal Letter
in their ILocation Order Register Contents

A the stored accumulator of
the program

I the stored IO register of
the program

X the location of ID's execute
register

G the stored program counter
of the program; the overflow
flip-flop is stored in
bit Q, the extend mode in
bit 1.

W dia word - the word which
is stored from the IO
when a dia 1s executed,
and supplies for the
following dcc. Hence, 1if
a breakpoint is placed
between a dia and a dce,
the result of the dia | may be
examined and modified. Also
if an illegal instruction -
trap occurs on a decc, the
write field may be determined.

F the stored flags of the
program and its sequence
break information. The format
for this information is:

//// flags |
SBS | ser- XCT '

on/off vice .1
///// instr
/12_3,4 516

™~

-20-

Capital Ietter

in their ILocation QOrder Register Contents
M the mask for word searches
M+1 the lower l1limit for word

searches, save and unsave
fields, and special uses of
yank, tape, verify tape,
punch data blocks, and zero
memory. :

M+2 the upper limit for word
searches,, save and unsave
fields, and speclal uses
of yank tape, verify tape,
punch data blocks, and
zZero memopry.

B breakpoint locations

B+1

B+2

B+3
The characters A, I, M, and B when preceded by a single
argumeht deposit the argument 1n the corresponding register.
For example, typing ' '

177TTA
deposits 17777 into ID's internal register A, containing
the stored accumulator for the program.

The usage of the above control characters will be
more fully explained in the sections to follow.

01—

L. Assignment and Deassignment of IO Devices and Drum_Fields
ID can assign or deassign JO devices and drum fields
independent of the user's program. The capital letter
F when preceded by one or two arguments causes ID to
execute an arq instruction. The mnenonic or concise code
indicating the accumulator contents is the argument immediately
preceding the F command. If it is a symbol its concise
code will be used. <<F 1s equivalent to executing the
following three instructions
law flexoo¢ or lag =<
cli
: arq
(Note: The arg is executed without reference to the
special internal registers A and I of ID.)
In certain cases the IO must contain additional information
about the device; thus the F command must have two arguments.

Typing

XE
will put x into the IO and the concise code for the
mnemonic of the device requested into the AC and then
execute an arq. If the arq skips, then two carriage returns
will occur. If the arg returns information in the AC,
ID prints out the information in the right 6 bits.
The operation of the arg instruction is explained in meno
PDP 31. |
M. One of the most powerful features of ID is the ability
to insert breakpoints in programs. In testing a large
program, it is frequently convenient to use breakpoints

% The capital letter F when not preceded by an argument
refers to ID's special internal register, F, containing
the stored flags of the user's program.

-22-

to interrupt the computation so that partigl results
may be examined or the state of the program determined.
Breakpoints may be set up at a location in the user's
program by two methods:

1.

Typing

adrB
causes ID to set up a breakpoint in the current field
at location adr. Only one breakpoint can be inserted
at a time by this method; the address preceding the
B will be deposited into the special register B.

Four specilal registers, B, B+1, B+2, and B+3, canl
be used to contain the addresses of breakpoints. No
break location 1s indicated by an overbar(T);
initially all four registers contain overbars. For
example:

Bt/ »| ~ »| adr .
This puts a breakpoint at location adr in the user's
program. If the user transfers control to his program,

‘and the instruction in register adr is reached,

computation will cease and control will be returned

to ID, which will type out the register location,

a close parenthesis, tab, and the original contents

of the register. At this point, the user may -examine
the accumulatop, I0, and/or any other register and
make modifications as he pleases. A breakpoint
remains in the location specified until it is removed
by clearing the breakpoint register contalning the address.
All breakpoints may be cleared by typing B~ . If the
user wants to clear only one breakpoint, he puts an
overbar or a minus zero in the breakpoint register
containing the break address to be cleared.

CAUTION: The location selected as breakpoints must

not be registers whose contents are modified by the
program under test, since ID transplants their contents
and substitutes specific transfer commands.

N.

Go

-23-
(¢), Proceed (P), and Execute (X)

The instruction adrG, where adr is an address in
the user's program, is used to start the user's
prggram running at locatlon adr.

If a breakpoint trap occurs, control is transferred
to ID. To continue operation of the user's program
from the point at which the break occurred, the
command P is used. Even if the last breakpoint
encountered has been deleted or moved, P still
proceeds from the point where the break actually
occurred. ’

nP, where n 1s a positive numeral, will cause ID to
proceed from a brgakpoint trap, and go past the
breakpoint n times before breaking again. This
multiple proceed commands apply¥s to the last break-
point that broke.

Single instructions may be executed directly by IDj
cont;ol need not be returned to the user's program:
Theré are two possible ways to execute single
instructions in ID: '
a. Typing
bX
causes the instruction b to be placed in the
addressy specified by the contents of the execute
internal register X and then to be executed.
b. Typing
agbX
causes the instruction b to placed in address
a and then to be executed. The internal register X
does not change. ‘
Normally there are two carriage returns after X; if the
PC is incremented by two (that is, the instruction skips),
X will return the carriage a third time. If the return
PC is not the same as the original PC incremented by one.

—25-

D. Word Searches

A valuable feature of ID is its search facility. Three
kinds of searches can be made; these types are controlled
by the commands N, W, and E, and they all use the special
internal registers M, M+1, and M+2.
1. The three types of searches and their respective
commands are:
a. wordW - The word search causes ID to search
the current field for §nd print out all the
registers, between the limits in M+1 and M+2
inclusively, containing the given word.
b. wordN - The non-word search causes ID to
search the current field for and print out
all the registers, between the limits in
M+1 and M+2 inclusively, not containing the
given word. This is most frequently used in
ON, the search for non-zero memory.
c. adrE - The effective word search causes ID to
search the current field for and print out
all dpHe registers, between the limits in M+1
and M+2 inclusively, effectively addressing adr.
If the user is in extend mode, (bit 1 of the PC
on), indirect addressing chains for effective
address searches will be carried to a depth of
1; otherwise they will be carried to a depth
of 10, at which point ID will give dp.* An
E search will never print out skp, sft, law,
iot, T4, or’opr instructions. This type of
word search is valuable for locating 1ncorreét
instructions which are modifying the program;
If a jda instruction 1s suspected, try jda_adrN

%* An E-search with greater depth than 10 octal might
take a long time and an E-search with no restriction
on depth might get caught in an infinite chain like:

adr, lac 1 abc
abe, Jmp 1 adr

-26-

2. The specilal interpal registers for word searches are
m, M+1, and M+2; the use of these registers is explained
in the following table.

reglster Contents
M The mask register contains the

value of the mask used in

word searches. During wprd
searches, only the bits masked
1 in register M are compared.
Initially M contains -0; thus
all bits are compared unless
the register is modified.

M+1 The lower limit for the word
search is stored in the M+1
-register. Initially, M+1 contains
0; thus the search will begin
at 0 unless modified.

M+2 The upper limit for the word
search 1s stored in the M+2
register. Initially, M+2
contains 7777; thus the search
will end at 7777 unless modified.

3. Speclal commands may be used to modify the contents
off the special internal registers M, M+l, and M+2.
Typing '

M
initializes the contents to %0 in M, 0 in M+1, and
TT77 in M+2.
' faglaM

puts fa and la in M+1 and M+2 respectively. M remains
unchanged. To change M, type

CoaMm
where a is the mask desired for M.

4. There are two ways to print a block of registers:
a. Set the mask to zero and set up M+1 and M+2 to enclose
the area to be printed. Then search for any word.
b. If irrelevant parts of memory happen to contain zero,
merely do a N-search for zero.

P.

Zero

-27-

Often it is valuable to zero all or parts of a fileld so
that irrelevant parts of the field will contain zero.
The following commands may be used:

Command
Z

faclaZz

XZ

Meaning
zero all of the current field
where fa and la are 12-bit
addresses limits for the zero
command. The fégisters of
the current field between fa

_and'la inclusively are zeroed

by this command.

‘where x 1s the field number

for the zero command. The
field speci%ied is zeroed by
between location in M+1 and
M+2 inclusively. The current
field is not changed.

-28~

Q. Yank
In the Preparation Section of this memo (part A),
the user was instructed to use the command "Y" to read
into the current field a binary tape. For convenience,
other variation of this command may be used. They are:

Command Meaning
Y Read a tape in binary block

format into the current field
between the locations specified
by M+1 and M+2 inclusively.
Words outside of these limits
are 1gnofed. The core modules
specified in the data Block or
origins will be ignored.

XY X 1s the field number into
which a #ape in binary block
format is read. Otherwise,
the command is the same as Y
alone. The limits of the
yank are in M+1 and M+2 as
above. The core modules
specified in fhe data block
origins will be ignored.

faclaY where fa and la are 16-biy
address lgmits for the yank
command. The data block will
be checked against core field
speciffed in the block origin.
Only words with extended addresses
from fa to la inclusively will
be stored.

-29-

R. Verify
Another feature of ID is the ability to verify the program
cufrently in core or on a drum field with the original
binary tape. The capital letter V is used as the command
ih the followtng ways:
Command Meaning
v Read a binary tape in binary
block format; the core modules
specified in the data block
origins will be ignored. The
words read in are compared
against the current fields
words between locations
specified by M+1 and M+2
inclusively. No change is made
to memory, any discrepancies
are typed out as: '
location/ . mempry tape
XV , x is the field number whose
contents 1is to be -compared
agdinst the tape. The field
may be‘a core field or drum
‘fleld: Otherwise, the command
is exactly the same as V
alone. The .1limits of the
verify are in M+1 and M+2
as above. No change is mgde
to memory and any discrepancies
are typed out as:
location/ memory tape
faglav where fa and la are 16-bit
address limits for the verify
command. The data blocks will
be checked against core field
specified in the block origin.
Only words with extended
addresses from fa to la

S.

-30-

inclusively will be checked.
No change is made b0 memory
and any discrepancies are
typed out as:

extended location memory tape

Save and Unsave Drum Fields

Another valuable feature of ID 1s the ability to save an
image of a program on another drum dield, so that it may
be stored at some future time. The capital letters S

and U, when preceded by additional information are
command to save and unsave drum fields. % The special
internal registers M+1 and M+2 indicatewthe limits of the
transfer for the current field. The two basic commands

and thelr meaning are:
 Ccommand
S

fu

Meaning
Save on field "f" - an image
of the current field between
the limits &t M+1 and M+2
is written onto drum fileld f
between the limits also M+l
and M&2: This operation does
not affect the contents of
the current field. Field "f"
must be assigned to your
console; 1t must be a number

from 1 to 20 when referencing a

pseudo field, or from 418 to 668
when referencing an absolute field.
Unsave field "f" - the contents

of the current field between the
limits in M+1 and M+2 are replaced
by the contents of drum- "f" between
the limits in M+1 and M+2. The

-31-

contents of drum field f are

not affected by this operation.
Field "f" must either be an
absolute system field or a field
assigned to your console; fthus

it must either be a number from

1 to 20g when referencing a pseudo
field assigned to your console, a
number from'418 to 668 when
referencing an absolute field.

% The caplital letters S and U when not precéaed by a character

mean symbolic and unhoctal.

Command
xL£S

x<Lfu

(See section I-3 and 6.)

Meaning
Add "x" to the origin of the area
on field f - an image of the current
field between the limits in M+1
and M+2 is written onto drum
field f between the limits "x"
plus the contents of M+2. Thus
the limits in M+1 and M+2 apply only
to the current field, not field
"e£M, Field "f" must be assigned
to your console, it must be a
number from 1'to 208 when re-
ferencing a pseudo field or from
418 to 668 when referencing an
absolute field.

Add "x" to the origin of the area
unsaved from field "f" the contents

-32-

of the current field between the
limits in M+1 and M+2 are replaced
by the contents of drum field f
between the limits "x" plus the
contents of M+1 and "x" plus

the contents of M+2.

Thus, the limits in M+1 and M+2
apply only to the current field,
not field "f". Field "f" must
either be a number from 1 to 20g
when referencing a pseudo field
assigned to your console, a
number from &18 to 668 when
referencing an absolute field.

An example of using the latter commands appears below:
100<200M
20¢58
move locations 100 - 200 inclusive from the current field
to locations.120 - 220 of field 5. To restore this program
material at a later time, the user would type:
20<5u
and thus move locations 120 -~c220 of field 5 to 100 - 200
of the current field. ’

33

Hoarding and Reading Symbols

Another feature of ID is the ability to hoard and obtain
symbols, so that the symbols, may be stored and restored
with the associated program. The capital letters H and O,
when preceded by additional 1nformatidn, are commands

to hoard and read symbols, % The two basic commands

and thelr meanings are:

Command Meaning

fH Hoard ID's symbol table on field
‘ f - saves all of the user's
symbols (except initfal symbols,
even if redefined) on the part
between n and 7777 inclusive.
The number n is printed out
and becomes the new memory bound
for field y. (N is also in
location 7777.) This feature
is intended to be used in
association with "S" to save
a program on lower portion of
the same field. The symbols
are not changed or killed in~
any way by "H". Any argument
acceptable to "S" as a field
number is acceptable to "H".

o Obtain the symbol table stored
on field f by the command "H"
and bobily appefids it to ID's
initial symbol table. Previous
symbols in ID's symbol table
are killed (except initial
symbol). If what it finds on
that field is not a symbol
table, it responds with "?",

-34-

Two other commands to hoard and
for swapping the symbols to and
These are:
Command
X<fH

x£0

and ID's symbol table is killed.
This feature 1s intended to be
used with "U" to unsave a

program and its associated symbols
for fugther reference. Note

that the "O" processfjis different
from "T" in that in case of "0",
current symbols are fiest killed,
where as in the case of "T" new
symbols read are merged with current
ones. Any argument previously
used by "H" as a field number

can be used for "O".

read symbols are avallable
from a specified location.

Meaning
Hoard symbols on field f below
location x. The number n is
printed out; the table of user's
symbols 1s between n and x-1
inclusive. (N is also in
location s-1.) X may be any
symbolic or numeric location
and any argument acceptable to
"S" as a fleld number may be
used for f in this command.
The symbols are not changed
or killed any way be this command.

Obtain symbols from field f
below location x previously
stored by x<fH and appends

then to ID's initial symbol

35

table. Previously symbols in
tD's symbol table are killed
(except initial symbols). If
what 1t finds on that field

is not a symbol table, it
responds with a "?", and ID's
symbol table is killed. Any
arguments previously used in
the "x<fH" command can be used
for "x<fo".

¥ The capltal letters H and O when not preceded by a character
mean hoctal and octal. (See section I:5 and 6.)

Punching Programs

When final corrections have been made in the user's program,
the user may punch it out in its modified form. THe four
punching commands are L, D, center dot, and J.

1. L causes ID to listen for title. ILetter typed after
this command will be punched in readable from on tape.
The title punch 1s terminated by carriage réturn, tab,
or backspace. The result of these terminating characters
is given in the following table:

Terminating Character Result
Punches the standard input
iiL routine and sets ID to
punch the usual checksummed
data Baogks.
->| Sets ID to punch the usual

checksummed data blocks, but
no input routine. A
"jmp 7751" is punched instead.

-36-

<: ‘ Sets ID to punch read-in mode
tapes.

The capital letter D is used to punch data blocks from

the current field. A'variety of formats are available

to the user fpr hiis convenience.

a. faglaD, where fa and la are any symbolic or numeric
expressions, punches the current field from fa to la
inclusive. If the current fiegld is a drum field, the
origins of the data blocks will be in core 0. If the
current field is a core field, the origins will be in
the current field.

b. D alone is equivalent to 0C7777D. It punches the
entire current field. If the current field is a drum
field, the origins of the data blocks will be in core
0. Iflthe current field 1s a core field, the origins
wlll be in the current core.

c. XD, where X is a core number O to 17, punches the current
field between the limits in M+1 and M+2. The data block
origins will be in core x.

aJ, where a 1s any symbolic or numeric expression, causes
ID to punch a start (Jjump) hlock to the address specified
to denote end of binary tape. The address is typed
immediately preced@ng the J.

If a register is open, center dot (¢) will close the
register and punch 1its contents as a one-word data
block. This 1is convenient if the tape needs only a
few modifications, known in advance.

37.

V. Error Indications and Corrections:
1. ID has several error alarms assoclated with its use.
these are typed out by ID and have the following

general meanings:

cksm A sum check error occurred in
reading a binary program or symbol
tape. By moving the tape back
one block and typing "c", ID
will read the block again. If
the reader is left on and "a"
is typed, the block will be
accepted as read.

de Drum swap was not successful.

Error may be caused by trying to
write on locked field, or a
timing error in drum.

Busy This indicated that the reader
or punch is busy and the user
must wait until available.

U This indicated that the immediately:.
preceding word contains an undefined
symbol. ID will act as if nothing
had been typed. Thus, for example,
typing an undefined symbol in a
word into an open register will
result in "U", but typing a
carriage return will close the
Tegister with its previous contents
rather than zero. ‘

? Error has been made in the command
to ID. ID can't do or doesn't
understand the request typed in.

<sym> The symbol table has overflowed.
Sym is the last symbol successfully

2.

-38-

entered. If this occurs during a
T, 1T, or 2T, ID will continue
reading symbols, but will only
redefine symbols already in the
table. No new symbols will be
entéred.

When a user's program executes an illegal instruction,
ID 1s brought back into control and the address of
the illegal instruction is typed and followed by >>

and a tab.

Then, the ‘contents of that register

are typed out. Below ds a list of various types
of illegal instructions:

a.
b.
C.

d.

e.
f.

hlt instruction

instruction with an illegal operation code.
instruction which indirectly addresses a
location above the memory bound.

a reader or punch insfructiod when no
assignment has been obtained for the program.
arqg instruction with invalid code

a dec drum instruction addressing@an unassigned
field or locations in core above the mempwy
bound.

a bpt instruction at a location to which a
breakpoint was not assigned by the user
through ID.

When the user of ID realizes that he has made a typing
erpor, he may delete all that he has typed since the
last carriage return or tabulation by typing a
multiplication sygn (%). For example:

loc/ »| add a -| abex | add_abe

+/ | add abe.

-‘3 9..

APPENDIX I
SUMMARY OF CONTROL CHARACTERS

A. accumulator storage (19)*
B, B+1,B+2,B+3 registers cdntaining breakpoint location(22)
C without argument: set word print mode to

constants - (17)

without argument: set symbol to calm mode

(15)

D punch data blocks (36)

=

effective address search (25)

G without argument: storage for program
counter (19)

with one argument: start program running,

go to (24 . ,

F without argument: storage for program
flags (19)
with one of two arguments: eXxecute an arq
(21) -

H without argument: set constant printout

mode to (18)

hoctal (octal)
with one or two arguments: hoard symbols
onto field (34) , v

I i-o storage (19)

J punch start (jump) block (37)

K kill defined symbols (3)

L Yég?out argument: 1listen for title punch
with argument: set symbol to loud mode
(15)

M mask register (26)

M+1 lower limit for word search (26)

M+2 upper limit for word search (26)

N not-word search (25)

0 without argument: set location print mode

to octal (18)

with - argument: obtain symbol table from
foeld (34)

o O

(=

& +

(space

~40-

proceed (24)
last quantity (7)

without argument: set location print mode
to (18) ~

relative .
with one argument: set radix (18)

without argument: set word print mode to
symbolic (17)

with one or two arguments: save memory on

field (31)

read symbol table (T, 1T, 2T) (12)

without argument: set constant printout
mode to unhoctal (decimal) (18)

with one or two arguménts: unsave field
into current field (31)

verify tape (29)

word search (25)

execute as instruction (24)
read binary tape (28)

zero memory (27)

octa% ﬁ%merals and/or symbol constituents
1 :

symbol constituents (12)

take as concise code (18)

print as concise code (9)

define symbol as address typed (18)
inclusive or (14)

"and (1L4)

modify and open previous register (8)
print as instruction (9)

open register in type-in mode (17)
define symbol (12)

examine register as octal constant (16)
examine register as instruction (17)
minus (14)

plus (14)

plus (14)

-4 -

s define as (13)
= print as octal (9)
. current locatton; 1f preceded by number
take constant as decimal integer (18)
X delete type input (39)
/ examine 12-bit address register (10)
tab modify and open addressed regilster;
: also alters sequence of location (9)
bk sp modify and open next register (8)
car ret modify and close register (8)
uc, lec set case
| _ examine 16-bit address register (10)
S modify and open addressed regiszter (10)
! use squoze code of preceding symbol (18)
. (center dot) punch opened register as one word block (37)

¥ The numbers in parentheses indicate the page number where
the character can be found.

Lo

APPENDIX II

ID SYMBOL TABLE
BASIC INSTRUCTIONS SKIP GROUP MISCELLANEOUS
add 400000 : >clo 651600 »>clo 651600
adm 360000 skp 640000 1 10000
and 020000 sma 640400 1s 1
cal 160000 sni 644000 2s 3
dac 240000 spa 640200 3s 7
‘dap 260000 spl 642000 Us 17
dio 320000 »spq 650500 58 37
dip 300000 sza 640100 6s 77
>div 560000 szf 640@00 gs 177
dzm 340000 »gszm 640500 s 377
idx 440000 szo 641000 9s 777
ior 040000 szs 640000
iot 720000 ‘
isp 460000 IN-OUT TRANSFER GROUP
jda 170000
jdp 140000 cbs 720056
Jmp 600000 cks 720033
Jsp 620000 #dba 720061 TIME SHARING INSTRUCTIONS
1a¢. 200000 >dce 720062
- law 700000 »>dia 720060 sdl 723477
lio 220000 dpy 730007 isb 720052
smul 540000 >dra 720063 wat 722477
opr 760000 eem 724074 ‘arq 722277
sad 500000 esm 720055 bpt 722177
sas 520000 ioh 730000 dsm 722377
»sft 660000 iot 720000 ckn 720027
$kp 640000 lem - 720074 rbt 720237
‘sub 420000 lsm 720054 cac 720053
xct 100000 ppa 730005 asc 720051
xor 060000 ppb 730006 dsc 720050
rpa 730001 lea T2U6TT
OPERATE GROUP e 730002 lei 724577
rrb 720030 rer 724777
cla 760200 tyi 720004
cle 761200 tyo 730003
clf 760000
cli 764000 SHIFT/ROTATE GROUP
cma 761000
hlt 760400 ral 6641000
»lai 760040 rar 671000
cmi 760100 rél 663000
lat 762200 rck 673000
»lia 760000 ril 662000
nop 760000 rir 672000
opr 760000 sal 665000
stf 760010 sar 675000
>SWp 760060 sel 667000
XX 760400 ser 677000
>sft 660000
sil 666000

sir 676000

