PDP-1 COMPUTER
ELECTRICAL ENGINERIgG DEPARTMENT
M. I. T,
CAMBRIDGE, MASSACHUSETTS 02139

PDP-29-1
INTRODUCTION TO PDP-1i TS SYSTEM PROGRAMS

.- November 29, 1965

INTRODUCTION TO THE PDP-1 TIME SHARING SYSTEM

GENERAL_INFORMATION

This memo was written to give the new user g brief
introduction to the PIP-1 time sharing system programs. The
material presented ls sufficient information needed to operate
in the TS system; however, only the essential features of
the system programs are described. Other useful and time
saving features are described in the respective program
Memo .

The computer has three 4096-word core memories, one 1s
used for executive control of the system and the other two are
avallable to the users. In addition to these three 4096¥word
core memory, an extra amount of memory 1in the form of a
magnetic drum 1s avallable. Thé storage space on the drum
1s broken up into z number of "flelds", each of which has
the capaclity to store 40956 18-bit words. Thls drum memory
(vesides being used for the time-sharing operation) can be
used to store programs and data when there is not enough
room in core. It 1s also used as a permanent storage space

for "utility" programs which can be used by you.

To execute a program that you have written for the PDP-1,
you must do the following Chings:

1) Tell the computer, in some way, the sequence of
machine-language instructions that make up your program.

2) Have the computer translate or gssemble these
instructions into a sequence of binary words.

3) Place this binary program into core memory and
have it executed, and

L4} check you answers to see if your program is working
correctly.

The permanently stored utllity programs will be of help
to you in accomplishing the gbove tasks. One of the programs,
EXPENSIVE TYPEWRITER, assists you in reading in your machine-
language program. The POSSIBLE program will assemble your
machine-language program, producing a binary program. DDT
is an all-purpose program that will see to it that your
program 1s executed. It also allows you to inspect and
test your binary program for proper operation.

Each of the three utility progrezws mentioned above 1s
stored (in binary form) on a different field of the magnetic
drum. Of course, in order to use a program you must first
place it in core memory. This 1s done by typing the commands

shown in Pigure 1.

TURN CONSOLE SWITCH OFF
TURN CONSOLE SWITCH ON

ADM. RT. TYPE ddt
ddt OF
DD
\ ILLEGAL INSTRUCTION
b 6au (HIP) or CALL
2q ON_PRESSED or
‘ EAK POINT
o1y
0g 62y
og oy N
A ng \°* £
(:
|
| EXPENSIVE | YOUR
| TYPEWRITER [~ 9| POSSIBLE PROGRAM
;
!
Figure 1.

For example, turning the console switch off, then turning it

¢ -
on, then typing ddt ;2 willl bring the program DDT from drum
to core. Anything typed by you at this point will be
interpreted as a command to DIDT. Typing €iU then oG will
cause EXPENSIVE TYPEWRITER to be brought into core. Anything
typed at this point will be interpreted as a command to
EXPENSIVE TYPEWRITER.

The features of each of the programs will now be described.

¥The letters typed by you will be underlined in this paper.
Those typed by the computer will not be underlined. The
symbol 1s a carrliage return.

EXPENSIVE TYPEWRITER:
This program is used for the reading in or typing in of

your machine language program. It is alsc valuable in medifying

your machine language program--with 1t you can do such things

as changing lines, inserting lines, deleting lines, ete. This

program has a buffer storage area where a copy of your machline

language program is kept. When you enter EXPENSIVE TYPEWRITER

by typing 61U then 0G to DDT, this buffer area is cleared.

Entering E.T. by typing 61U then 2G will not clear this buffer.
E.T. has two operating "modes“, control mode and text mode.

In the control mode, charactérs typed in are commands to

EXPENSIVE TYPEWRITER; in the text mode, typed input is copled

directly into the buffer. The only exception to this is the

character "backspace” which in the text mode has the effect

of cancelling the previous character. To go from text mode

to control mode, type a backspace lmmediately following a

carriage return or after deleting all characters from a line.
Certain commands in the control mode put E.T. into the

text mode. In the control mode, the typewriter prints

in red, and in the text mode it prints in black. A lower

case command is terminated by typing in a carriage return

or tab; at any time before the terminator 1s typed the

command can be cancelled by typing the character middle

dot (e).

-

Commands to EXPENSIVE TYPEWRITER:

In the examples below, the letter N is used to signifly

the number of a line. (A carriage return denotes the end of

a line.) For example, the title line of your program will

be line one, etc. Slash (/) or period {.) may be used for

the N to signify the last or current line number, respectively.

I.

IL.

Input:

A:

I&

append. Enter the text mode; add the following
typed text onto the end of the previous contents
of the buffer; the buffer alreasdy has a stop

code at the end.

insert. Enter the text mode; insert the
following typed text immediately before line N.
That is, the first line of the inserted text
becomes the new line N. The text 1s squeezed

in between the old lines N-i and N; no material
is lost.

change. Enter the text mode. Line N is entirely
deleted and the following typed text 1s inserted
in its place; any number of lines may be inserted.
read. The tape in the reader is read in and
appended to the end of the buffer.

Deletion of Information in the Buffer:

Nd:
K:

delete. Line N is deleted.
kill. The entire buffer is cleared.

III. Printout:
W: write. The buffer is printed out {in black}.
Ni: line. Line N is printed ocut (in red).
backspace: prints out the next line
<I= prints out the previous line.
IV. Punching Tape
B: punch. This punches the buffer out on paper tape.
V. Transfer
N: transfer control to POSSIBLE
p: transfer control to DDT
Vi. Search

8 & limited.

s ~: unlimited. Search the current page (limited)
or the entire buffer (unlimited) for the first
occurrence of the string at the beginning of
the line. If none is found, ET types "missing®.
Otherwlise the search command 1s replaced by the

line number where the string was found.

Typical t cedureg:
Probably the first ¢ime you use the computer you will

enter E.T. by typing 61U then OG. Your program buffer will
be clear. If you have prepared a FIO-DEC program using the
off-line flexowriter, you may read it into the EXPENSIVE
TYPEWRITER text buffer by typing r. In reading the tape in,
first, insert your tape with the 5-holed side ftoward you.
The input slde is the right and the tape feeds from right to
left.

-7~

Turn the reader switch on at the main console by lifting it
up. Typing r will read the tape into the buffer. After the
tape is read in, turn the reader switch off by pressing it
down and remove the tape from the reader. If a tape of your
program has not been made, typing A, then your program, will
put your program into the buffer. After correcting any typing
mistakes using the delete, change, etc. commands, you will be
réady to enter the POSSIBLIE program vhere your program will
be assembled. To enter POSSIBLIE type a capital N.

When you have a program in E.T.'s buffer, you can get
a punched copy by typing the command P. Your tape will
automztically be punched. After punching, press the tape-feed
button on the main console to give you a couple of extra
fanfolds of tape, and tear off your tape. This tape can
now be used on another attempt to run your program. In this
way it is not necessary to retype your entlre program every
time you run. You should alsoc get a typewritten copy of the
machine language program by typing W. Lifting Sense Switech 1
while the buffer is being typed out by a W will stop the
typing.

The E.T. has one all-purpose error signal - ?. If a
? 1s typed by E.T. after you have typed something, examine

what you have done carefully.

-8

Important Reminderg:
1) The meaning of the backspace key to EXPENSIVE TYPEWRITER

differs depending upon the mode of operation. If E.T. is in
the ¢ontrol mode, the backspace key means: print out the
next line {(if no previous line has been mentloned, this will
print out the flrst line). If E.T. 1s in the text _mode, the
backspace key has two meanings. If a letter of text has
been typed by you a backspace erases 1t. If a backspace
follows a carriage return typed by you, it means: return

to the control mode. Do not attempt to type a command

to EXPENSIVE TYPEWRITER unless it is in the control mode.

2) After you type in your program and leave EXPENSIVE
TYPEWRITER, you will probably want to return later to make
further changes to your program. When ehtering E.T. from
DDT the second time, be sure to enter by typing 61U then 2G.
A Qg will erase your program entirely.

3) Remember every command to EXPENSIVE TYPEWRITER must
be followed by a carriage return before it is executed.

4) It is a good idea to print out the line you wish
to modify using the command Nl before and after the change
is made. This way you can be sure that you are changlng
the right line and that the change was made correctly.

5) After making any changes to your machine-language
program with EXPENSIVE TYPEWRITER you must always reassemble
your program with POSSIBLE if you went to get a new binary
program. Therefore, you shou;d leave EXPENSIVE TYPEWRITER
using the N command to POSSIBLE rather than the b command to
DoT.

POSSIBLE

The POSSIBLE program when entered by ¥ will assemble the
machine-language program which 1s located in the buffer of
EXPENSIVE TYPEWRITER. The assembled binary program is placed
automatically on drum field 1, unless specified that a tape
i1s deslred.

Commands to POSSIBLE:
g: begin assembly
¢: continue assembly
¢ punch binary symbols
: transfer to DDT

w o ®

: constants area

Operagting Procedure:
When you enter POSSIBLE with your machine-language progran

stored in the buffer of EXPENSIVE TYPEWRITER, typing a g will begin
pass 1 of the assembly. If an error is discovered during
assembly an error signal will be printed out in the format
described below and the assembly process will cease.

If an error is found on pass 1, first type ¢ to
continue pass 1. Then return to EXPENSIVE TYPEWRITER by
typing b then 64U then 2G, in order to correct your machine
language program. After the corrections have been made,
return to POSSIBLE with N and try pass 1 again. If pass 1
assembles correctly, no error message wlill be printed out.
In this case, type 8 to inltiate pass 2. Error in sssembly
during pass 2 result exactly as in pass 1 and you éhould

proceed as described above.

s

Y omes

; ‘. i-x 3 TR U
Ao o Wi MR bbb e

}...&

D Lunh vrosss assonbag CorselUly Jou may,
sacelve a paper tape punched with your fable of syumbols by
tyoing 2. Alsc by typing k the constznts storaze arves will
be priated out. After your program 1s assembled by POSSIBLE,
you will want to return to DDT to run it and find errors if
they exist. Typing b will cause you to leave FUSSIBLE and
return to DLT.

Error Signals:

Upon detecting an eryor, POSSIBELE will print ocut the followin

i.‘
2
64

aaa bbbb cce dddd eee
sas 1is the three letter code indicating the error. bbbb 1s
the octal address at which the error cccurred. ccc is the
symbolic address at which the error occurred. &ddd 1s the
nzme ¢f the lzst pseudo-instruction encountered. In the
case ¢f an error caused by a symbol, eee will be the symbol.

Following is & list of the error indications in POSSIBLE.

ERRCR MEANING
nea NO CONSTANTS AREA

The pseudo-op constants ls needed.
jif ILLEGAL FORMAT

il¢ ILLEGAL TAG
Tag which 1s not a single symbol is
not equal to current location.
ex. Tfoo+il, # current location

mat MULTIPLY DEFINED TAG
Tag consisting of a single defined syniol
is not equal to current location.
Symbol is not redefined.

usw UNDEFINED SYMBOL

A symbol which has not been defined in wvrogrsn
is encountered. Symbol is given the valuz of

mmmra AP Aaceaamhliao 1o Aanantinnad

ERROR
cld

vid

ila

sce

pce

tme

mdd

MEANING

CONSTANTS ICCATION DIFFERENT

The constant pseudo-op appears in different
location on pass 2. No recovery can be made.

VARIABLES IOCATION DIFFERENT
Same as cld but for variables. Often
possible to recover by ignoring this.

ILLEGAL DEFINITION

Program attempts to redefine pseudo-op

or previously defined symbol. Redefines
pseudo-op or symbol i1f assembly continued.

STORAGE CAPACITY EXCEEDED

Storage of macro definitlons, macro arguments;
repeat ranges, numerical constants (pass 1),
unique constants (pass 2), symbols, or macro
names has been filled. No recovery can be made.

PUSH DOWN CAPACITY EXCEEDED

Macro, repeat, or constant nesting 1s

too deep or too complicated arithmetic
statements are used. No recovery can be made.

TOO MANY CONSTANTS AND VARIABLES PSEUDO-OPS
Total number of constants and varlables
pseudo-ops is 208. No recovery can be made.

MULTIPLY DEFINED DIMENSION

Symbol representing first location in:
dimension of array 1s already defined. The
old symbol definition is retalned if
assembly is continued.

2B

tmt TOO MANY TERMINATE PSEUDO-OFS
There exist more terminate instructions
than define instructions. The termlnate
is ignored if assembly is continued.

ids ILLEGAL DIMENSION SIZE
Specified dimension size 1s negative.
Dimension size is set to zero if assembly
continued.

ich ILLEGAL CHARACTER
Input source has an illegal flexo code
or character. Number typed is the
i1llegal character; 1f the number is in
the 400's it is an upper case character.
Continuing assembly will ignore the
character.

DoT:

This program is a very valuable ald in debugging and testing
your binary program. It allows you to examine the contents
of locations of core, to change the contents of these locations,
to run your program, and to make use of breakpoints. When
in DDT, all typing will be performed in black. After a command
is typed by you, DDT will type a carriage return to indicate
that the command was carried out. Therefore, do not type a
carriage return after a command as you would do in EXPENSIVE
TYPEWRITER..

-13-

Commands o DDT

Control

2T

I

loeG:

Typed immediately after returning from POSSIBLE
assembly. This places your symbols and thelr
values into the DDT symbol table. This allows you
to use symbolic addresses when comsunicating

with DDT.

: where N is a number. This takes the program from

drum field N and places it in core memory so that
it can be executed. Your binary program has been
placed on drum field i. EXPENSIVE TYPEWRITER 1s on
absolute drum fleld 21. MACRO 1s on absolute drum
field 22. (Absolute drum fields are indicated by
the sign bit being on; thus, absolute field 21 1is
obtained by typing 61U.)

This will cause the computer to begin executling
the program which is in core starting at location
loc. loc may be elther a symbolic expression or
an absolute number.

For an example of the above commands:

eT

R

1w

begt
will enter your symbol table from POSSIBLE into DDI''s

symbol table from POSSIBLE, bring your program from
drum field 1 into core, and begin executing your
program at location beg.

i

Nnspec jodl '

Examine a Reglster

/i

Change a Register

adr/

Set the Mode
2

I

exp :

Types out the contents of register adr.

"adr" may be a symbolic address or an

octal number.

Exasmples: beg+2/ types out the contents
of the register 2 positions

past beg. _55/ types out
the contents of reglster 55.

Changes the contents of register

adr to exp.

Example: k/ 4 ;i;lﬁ examines
the contents of the reglster k and
finds it contains the number 4. This
is changed to 13.

Sets DIT to type out all words as
symbolic instructions.

Sets DDT to type out all words as
octal number.

Examples: §

20/ and k

20/ 020003 (if k = 3)

I

Convert an Expression

exy =

~1.5=

Converts all numeric printouts to declmal
Resets DIT so that all numeric printouts

are in the normsl octal mode agaln.

Examples: C
20/ 020003
A
20/ 8195
1§
20/ 0200C3

Types out the value of the expression exp
as an octal number.

Types out the octal number num as an
instruction.

Types out the character(s) char as

concise code.

Examples: 20/ 20003 —=_ani k
(4f k = 3)
eg = 20 (if beg is the

symbol for location 20)
alo~ 610420

B

Examining Sequences of Reglster

adr/ ... 1

adr/ ... (ps)

(bs) means back-
space

adr/ ... (tab)

Opens the reglster preceding adr and

types 1its contents.

Example: tab/ 13 1
tab-1/ 21 1
tab-2/ 0

Register tab contained 13, tab-1
contained 21, and tab-2 contained 0.
Opens the contents of the reglster next

in sequence to adr and types out.

Example: tab/ 13 (bs)
tab+1 61

Register tab+l contains 61

Types out the contents of the
reglster addresses by the contents
of regilster adr.

Example: beg/ lac 13 tab 44
Register 13 contalns 44

It is tempting to load a2 newly coded program into the

computer, let it run to completion, and check the final answer
Por correctness. BRecause of the high probability of one or
more errors in even short programs and the cumulatlve effect
of these errors, this approach is practically worthless
(except for very short programs).

A more satisfactory approach is to run only a small porticn
of the program at a time and check intermediate results.

This allows one to catch errors before they have a chance to
make the whole operation unintelligible. The breakpoint
feature of DDI permifs one to take this approach and check
out one sectlon of the program at & time.

A breaskpoint is a place in the user's program wnere
computation 1s interrupted and control is transferred to DDT.
This is accomplished by removing and saving the instruction
at the breakpeint and inserting in its place a jump iInstruction
to DDT.

When the program reaches this jump, the status of the
machine (AC, I0, overflow indicator, etec.) is saved and the

breakpoint location and contents of that location are typed out.

i B

At this polnt one may examlne the intermediste rasults
by use of any of the inspection and modification commands
listed above. If they are satisfactory, one may proceed
with the next sectlon of the program. If they are in error,
one may try toAcorrect the errors and re-run the section.
The DDT breskpoint commands are as follows:

locB Prerares DDT to lnsert a breakpoint at

location loc. The actual insertion occurs

when a G or X command 1s glven.

B Removes the previous breakpoints.

P Glven after a program has been interrupted
by a breakpoint. The instruction removed for
the breakpoint 1s executed and control 1s
returned to the user's program.

insX Causes Instruction ins to bhe executed.

Examples:
iupB
begG
1ug2 add sym
K/ 4
B
P

This exampzé places a hreakpoint at location lup and
transfers control to beg. The content of register lup is
add sym and location k contains 4 at the break. The breakpoint
is removed and the program is allowed to proceed.

dzm conX deposits +0 into register con

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

