PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
M.I.T.
CAMBRIDCE, MASSACHUSETTS 02139

PDP-29-1
INTRODUCTION TO PDP-1 TS SYSTEM PROGRAMS

September 21, 1966

INTRODUCTION TO THE PDP-1 TIME SHARING SYSTEM

GENERAL_ INFORMATION
This memo was written to give the new user a brief

introduction to the PDP-1 time sharing system programs.
The material presented l1s sufficient information needed
to operate in the TS system; however, only the essential
features of the system programs are described. Other
useful and time saving features are described in the
respective program memo.

The computer has three 4096-word core memories, one is
used for executive control of the system and the other
two are avallable to the users. In addition to these three
4L096-word core memory, an extra amount of memory in the
form of a magnetic drum 1s aballablie. The storage space
on the drum is broken up into a number of “fields", each
of which has the capacity to store 4096 18-bit words.
This drum memory (besides being used for the time-
sharing operation) can be used to store programs and
data when there 1s not enough room in core. I¥¢ is also
used as a permanent storage space for "utility" programs
which can be used by you. '

-2

To execute a'program that you have written for the
PDP-1, you must do the following things:

1) Tell the computer, in some way, the sequence of
machine~languagé instructions that make up you program.

2) Have the computer translate oﬁ assemble these

instructions into a sequence of binary words.

3) Place this binary progeam into core memory and
have it executed, and

4) check your answers to sce if your program is
working correctly.

The permanently stored utility programs will be of
help to you in accomplishing the above tasks. One of the
programs, EXPENSIVE TYPEWRITER, assists you in reading in
your machine-language program, producing a bilnary program.
DDT is an all-purpocse programvthat wili see to it that
your program is executed. It also allows you to inspect
and test your binary program for proper operation.

BEach of the three utility programs mentioned above
is stored (in binary form) on a different field of the
magnetic drum. Of course, in order to use a program you
must first place it in core memory. This is done by
typing the commands shown 1in Figure 1.

Turn Console Switch Off
Turn Console Switch On

ILLEGAL INSYRUCTION

DT [HLT] or CALX BUTTON
b PRESSED or
= ' .Y POINT
o2y
b
oa
v
EXPENSIVE POSSIBLE) YOUR
TYPEWRITER PROGRAM
Figure 1.

For example, turning the console switch off, then turning 1t on,
will bring the program DDT from &rum to core. Anything typed
by you at this po.'nt will be interpreted as a command to DDT.
Typing 61U then O will cause EXPENSIVE TYPEWRITER to be brought
into core. Anything typed at this point will be interpreted as
a command to EXPENSIVE TYPEWRITEH. -

The features of each <£ ine programs will now be described.

* The letters typed by you will be underlined in this paper.
Those typed by the computer will not be underlined. The
symbol is a carriage return

EXPENSIVE TYPEWRITER:
This program ls used for the reading in or typing in of

your machine langusge program. It 1s also valuable in modifyling

your machine language progbam«wwith it you can do such things

as changing lines, inserting lines, deleting lines, etc. This

program has a buffer storage area where a copy of your machine

language program is kept. When you enter EXPENSIVE TYPEWRITER

by typing 6iU then 0G to DDT, this buffer area is cleared.

Entering E.T. by typing 61U then 2G will not clear’this buffer.
E.T. has two operating "modes”, control mode and text mode.

In the control mode, characters typed in are commands to

EXPENSIVE TYPEWRITER; in the text mode, typed input is copled

direcﬁly into the buffgr. The only exceptlion to this 1s the

character "backspace"” which in the text'modg has the effect

of cancelling the previous character. To g5Afrom text mode

to control mode, type a backspace lmmediately followlng a

carriage return or afﬁer deleting all characters from a line.
Certaln commands in the control mode put E.T. into fthe

text mode. 1In the control mode, the typewriter prints in

red, and in the text mode it prints in black. A lower

case command 1s terminated by typing in e carrlage return

or tab; at any time before the terminaﬁor is typed the

command can be cancelled by tyﬁing the character middle

dot (o).

o

Commands to EXPENSIVE TYPEWRITER:

In the examples below, the letter N is used to signify

the number of a line. (A carriage return denotes the end of

a line.)

For example, the title line of your program will

be line one, etc. Slash (/) or period (.) may be used for

the N to signify the last or current line number, respectively.

I.

Input:
Al

i3

append. Enter the text mode; add the following
typed text onto the end of the previocus contents
of the buffer; the buffer already has a stop

code at the end.

insert. Enter the text mode; insert the
following typed text 1mmediately before line N.
That 1s, the first line of the inserted fext
becomes the new line N. The text is squeezed

in betwemn the old lines N-1 and N; no material
is lost.

change. Enter the text mode. Line N is entirely
deleted and the following typed text 1s inserted
in its place; any number of lines may be inserted.
read. The tape in the reader is read in and
appended to the end of the buffer.

II. Deletion of Information in the Buffer:

Nd:
K:

delete. Line N is deleted.
kill., The entire buffer is cleared.

IIXI. Printout: ‘ o
W: write. The buffer is printed ocut (1ﬁ black).
Ni: line. Line N is printed out (in red).
backspace: prints out the next line |
it prints out the previous line.
IV. Punching Tape
P: punch, This punches the buffer out on paper tape.
V. Transfer ;

N: transfer control to PO3SSIBLE

b: transfer control to DDT
VI. Search
87 1limited.

B

s : unlimited. Search the current page (limited)
or the entire buffer (unlimited) for the first
occurrence of the string anywhere in the text
buffer. KIf none 1s found, ET types "missing”¢
Dtherwise the search ébmmand is replaced by the

line number where the string was found.

Typlegl Operating Procedure: ,
Probably the first time you use the computer you will

enter E.T. by typing 61U then 0G. Your program buffer will
be clear. If you have prepared a FI0O-DEC program using the
off-line flexowriter, you may read it into the EXPENSIVE
TYPEWRITER text buffer by typing r. In reading the tape in,
{first, insert your tape with the 5-holed side toward you.
The input side is the right and the tape feeds from right to
left.

;7“[

Pfurn the reader §uitch on at the main console by lifting it
up. Typing r will read the tape into the buffer. After the
tape 1s read in, turn the reader switch off by pressing it
down and remove the tape from the reader. If a tape of your
program has not been made, typing‘g, then your pfogram, will
put your prcgram‘into the buffer. After cortecting any typing
mistakes using the cielete, chénge, ete. comands, you will be
ready to enter the POSSIBLE program wherg‘youg brogram wlll
be assembled. To enter POSSIBLE type & capitaliﬂf

When you have a program in E.T.'s buffer,’yaﬁycaﬁ geﬁ
a punched copy by typlng the command F. Your tape will |
automatically be punched, After punching, press the tape-feed
button on the main console to glve you a cdgple cf‘extra
fanfolds of tape, and tear off your tape. This tapé can
now be used on another attempt to run your proegranm. 'In this
way 1t 1s not necessary to retype your entire program every
time you run., You should also get a typewritten copy of the
machline language program by Cyping W. Lifting Sense Switch 1
while the buffer 1ls being typed oﬁt by a W will stop the
typing.

The E.T. has one all-purpose error signal - 2. If &
? 1s typed by E.T. after you have typed soﬁething, examine

what you have done carefully.

Important Reminders:

1) The meaning of the backspace key to EXPENSIVE TYPEWRITER
differs depending upon the mode of operation. IFf E.T. 18 in
the control ﬁnde, the backspace key means: print out the |
hext line (if no pre#ious line has been mentioned, this will
_print out the first line). If E.T. is in the text mode, the
backspace key has two meanings. If a letter of text has
vbeen typed by you a backspace erasses 1t. If.a backspace
follows & cérriage return typed by you, it mezns: return
to the control mode. Do not attempt to type a command
to EXPENSIVE TYPEWRITER unless it 1s in the control mode.

' 2) After you type in your program and leave EXPENSIVE
TYPEWRITER, you will probably want to return later to make
further changes to your prograim. When ehtering;EmT. {rom
DDT the second time, be sure to enter by typing 61U then 2@.
A 0@ will erase your program entirely. . [

3) Remember every lower case command to EXPENSiVE TYPEWRITFR
must be followed by a carriage return before it is executed.
4) 1t is a good 1dea to bxiut out the line you wish
to modify uéing the command N1 before and after the change

is made. This way you can be sure that you are changing
the right 1line and that the change was made correctly.

5) After making any changes io your machine-lsnguage
program with EXPENSIVE TYPEWRITER you must élways:reass&mble
your program with POSSIBLE 1f-you want to get a new binary
program. Therefore, you should leave EXPENSIVE TYPEWLITER
-using the N command {0 POSSIBLE rabhér than the b command to
DDT. |

BOSSIBLE |
The POSSIBLE program when entered by N will assemble the

machine-language program which is located in the buffer of
EXPENSIVE TYPEWRITER. The assembled binary progvram is placed
automatiéally on drum field 1, unless specified that a tape

1s desired.

Commands to POSSIBIE:

: ' begin assembly

i

o

continue assembly

punch symbols

o o

3 transfer to DIT

demt

e constants area

-

Operating Procedure: \
When you enter POSSIBLE with your machine-language program

stored in the buffer of EXPENSIVE TYPEWRITER, typing a g will begin
pass 1 of the assembly. If an error is discovered during
assembly an error signal will be printed out in the format
described below and the assembly process will cease.

If an error is found on pass 1, first type ¢ %o continue'
pass 1. Then return to EXPENSIVE TYPEWRITER by typing b then
€1y then 2G, in order to correct your machine lapgugge program.
After the correct;ons have been made, return to POSSIﬁLE with N
and try pass 1 again. If pass 1 assembles corrgctly,vno error message
will be printed out. In this case, type 8 to initiate pass
2. Error in assembly'during pass 2 result exactly as in pass 1

and you should proceed as described above.

% 0o

If both passes assemble correctly you may, if you desire,
receive a paper tape punched with your table of symbols by
typing g. Also by typing k the constants storage area will
be printed out. After your program is assembled by POSSIBILE,
you will want to return to DDF to run it and find errors if
 %hey exist. Typing b will cause you to leave POSSIBLE and
return to DPT.
‘Error Signals:

Upon detecting an error, POSSIBLE will print cut the following:

aaa pbbbb cce ddad eee

aaa is the three letber code indlcatipng the error. bbbb is
the octal address at which the error occurred. ccc 1s the
symbolic address at which the ervor occurred. dddd 1s the
'name of the last psegdo~instruction encountered. In the
case of an error caused by a.symbol, eee will be'the symbol,

Following 1s a list of the error indications in POSSIBLE.

ERROR MEANING
neca NO CONSTANTS AREA
The pseudo-op constants is needed.
iif ILLEGAL FORMAT
il ILIEGAL TAG

Tag which is not a single symbol is
not squel to current location.
ex. foo+i0, ¥ current location

mdt MULTIPLY DEFINED TAG
Tag consisting of a single defined syidol
is not equal to current locatlon.
Symbol is not redefined.

usw - UNDEFINED SYMBOL
'A symbol which has not been defined in
program is encountered. Symbol is given
the value of zero if assembly is continued.

ERROR
cld

vid

1id

8ce

pce

tme

mdd

~14-

MEANING

CONSTANTS IQCATION DIFFERENT

The constant pseudo-op appears in different
location on pass 2. No recovery can be made.

VARIABLES IOCATION DIFFERENT

Same as cld but for varlables. Often
possible to recover by ignoring this.

ILIEGAL DEFINITION

Program attempis to redefine pseudo-op

or previcusly defined symbol. Redefines
pseudo-ep or symbol if assembly continued.

STORAGE CAPACITY EXCEEDED

Storage of macro definitlons, macro arguments,
repeat ranges, numerical constants (pass 1),
unique constants (pass 2), symbolg, or macro
names has been filled. No recovery can be made.

PUSH DOWN CAPACITY EXCEEDED

Macro, repeat, or constant nesting is

too deep or too complicated arithmetic
statements are used. No recovery can be made.

TOO MANY CONSTANTS AND VARIABLES PSEUDO-OPS

Total number of constants and varisbles
pseudo~ops 1in 208, No recovery can be made.

MULTIPLY DEFINED DIMENSION

Symbol representing first location in
dimension of array is already defined. The
cld symbol definition is retained if
assembly 1is continued.

1D

tmt TCO MANY TERMINATE PSEUDO-OPS
There exlist more terminaste instructions
than define instructions. The terminate
is ignored if assembly 1s continued.

ids ILLEGAL DIMENSION SIZE
' ‘ Speclfied dimension size is negative.
Dimensdon size is set to zero if assembly
continued.

ien ILLEGAL CHARACTER
Input source hzs an illegal flexo code
or character. Number typed is the
illegal character; if the number l1s in
the 400's 1t is an upper case character.
Continuing assembly will ignore the
character. |

DDT: .

This program is a very valuable ald in debuggling and testing
your blnary program. It allows you to examine the contents
of locations of core, to.change the contents of these locations,
to run your program, and to make use of breakpoints. When
in DDT, all typing will be performed in black. After a command -
is typed by ybu, DDT will type a carrilage return to lndicate
that the command was carried out. Therefore, do not type a
carriage return after a command as you would do ln EXPENSIVE
TYPEWRITER,}

Co nds to DDT
Control

2T Typed immediately after returning from POSSIBLE
assembly. This places your symbols and their
values into the DDT symbol table. This allows you
to use symbolic addresses when communicating
with DDT. :

NU where N is a number. This takes the program from
drum field N and places it in core memory so that
1t can be executed. Your binary program has been
placed on drum field 1. EXPENSIVE TYPEWRITER is
on absolute drum field 21. MACRO is on absolute
drum field 22. (Absolute drum flelds are indicated
by the sign bit being on; thus, absolute field 21
is obtained by typing 61U.)

locG This will cause the computer to begin executing

the program which is in core starting at location
loc. loc may be either a symbolic expression or an
absolute number. .
Fpr an example of the above commands:

or .

w

begG
will enter your symbol table from POSSIBIE into DDT''s
symbol table from POSSIBLE, bring your program from
drum field 1 into core, and begin executing your
program at location beg.

-1l

Inspecting and Modlfying:
Examine a Regilster

adr/: Types out the contents of register adr.

"adr" may be a symbolic address or an

astal number,

Exaﬁbles: beg+2/ types out the contents
of the register 2 positions
past beg. _55/ types out
the contents of register 55.

Change a Reglster
adr/ exp: Changes the contents of regiéter

adr to exp. |

Example: k/ 4 ;32‘ examines

the contents of the register k and

finds it contains the number 4. This

is changed to 13.

Set the Mode
S Sets DDT to type out all words as
symbolic instructions. '
c Sets DDT to type out all words as
octal number.
Examples: 8
20/ and k
c

20/ 020003 (1f k = 3)

<

=

Convert an Expression
exp =

UM~

char ~

15~

Converts all numeric printouts to
decimal .

Resets DDT so that all numeric printout
are in the normal octal mode again.

Examples: c

20/ 020003
uJ

20/ 8195

H

20/ 020003

Types out the value of the expression
exp as an octal number.

Types out the octal number num as an
instruction.

Tyces out the character (s) char as
concise code.

Examples: 20/ 20003 and K
(L x = 3

20 (if beg is the
symbol for location 20)
610420

[o'
g F
[

]

+16-~

Examinlng Sequences of Register

adr/ ... §

adr/ ... (bs)

(bs) means back-

space

adr/ ... (tab)

Opens the reglster preceding adr and
types 1its contents;
Example: tab/ 43 ¢t

tabmi/ 21 i

tab-2/ 0
Reéister tab contained 13, tab-1
contalned 21, and tab-2 contained 0.
Opens the contents of the reglster next

in sequence to adr and types out.

Example: tab/ 43 (bs)
tab+l 61

Reglster tab+l contains 61

Types out the contents of the

reglster addresses by the contents

of register adr.

Example: beg/ lac 13 tab 44

Reglister 13 contains 44

-1 -

Breakpoint Commgnds

It 1s tempting t¢ load a newly coded program into the
computer, let it run to compietion, and check the final answer
for correctness. Becauae of the high probability of one or
more errors in even shori programs and the cumulstive effect
of these errors, this approach is practically worthless
(except for very short programs).

A more satisfactory approach 18 to run only a small portion
of the program at a time and check intermedlate results.
This allows one to catch errors before they have s chance to
make the whole operation unintelligikle. The breakpoint
feature of DDT permits one to take this approach and check.
out one sectlion of the program ac¢ a \::!.;:mee‘i

A breakpoint is a place in the usex's program where
computation is interrupted and control iuo transferred to DDT.
This is accomplished by removing and saviag the instruction
at the breakpoint and inserting in it¢s plsce a Jump~instruction‘
to DDT.

When the program reaches this jump, the status of the
machine (AC, IO, ovérflow indicator, etc.) is saved and the

breakpoint location and contents of that ioccstion sre typed out.

~18~

At thls point one may examine the intermediate results
by use of any of the ilnspection and modification commands
listed above. If they are satisfactory, one may proceed
with the next section of the program. If they are in error,
cne may iry to correct the errors and re-run the section.
The DDT breakpoint commands ars as follows:

locB Pregares DDT to insert a breakpoint at

location loc. The actual insertion occurs
when a G or X command is given.

on

Removes the previocus breakpoints.

B_

P Given after a pirogram has been interrupted
by a breakpoint. The instruction remcved fo:
the breakpoint is executed ahd control 1s
returned to the user's program.

ingX Cauges instruction ins to be executed.

Examples:
1upB
begg
lup) add sym
k/ 4
B
P

This exampzé places a breakpoint at location lup and
transfers control to beg. The content of register lup is
add sym and location k contains 4 at the bresk. The breakpoint
is removed and the program is allowed to proceed.

dzm conX deposits +0 into register con

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

