PDP-1 COMPUTER
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE 39, MASSACHUSETTS

PDP-30
POSSIBLE

August 27, 1965

POSSIBLE

Introduction

Programming for a digital computer is writing the orecise
sequence of Instructions and data which 1s required to perform
a gilven computation. The purpose of an assembly program is
to facilltate programming by translating a source language,
which 1is convenlent for the programmer to use, into a numerical
representation or object program which is convenient for the
computer hardware to deal with. A symbolic assembly program
such as POSSIBLE permits the programmer to use mnemonic
symbols to represent instructions, locations, and other
quantities with which he may be working. The use of symbolic
labels or address tags permit the programmer to refer to
instructions or data without actually knowing or caring what
specific location in the computer memory they may occupy.

A POSSIBLE source program may be prepared using the
standard FIO-DEC Flexowriter with the concise III typeface
as given Iin the Appendlx, or using an on-line editing program
such as Expensive Typewriter. The source program consists
of one or more parts, each with a title, a body, and a start
pseudo-instruction. The title i1s the first non-empty line
and 1s terminated by a carriage return. The body 1s the

storage words, macros, parameter assigmments, etc., which
make up the substance of the program. The start pseudo

instruction denotes the end of the source program. See figure 1.

sum

n=100

100/

a, law tab
dap b
dzm s

b, lac .
add s
dac s
idx b
5as ¢
Jmp b
hlt

tab, tab+n/

8, o

C, lac tabmn

start a

Figure 1 - A POSSIBLE SOURCE PROGRAM

POSSIBLE 18 a two - pass assembler; that is, it normally
processes the source program twice. During the first pass,
it enters all symbol definitions encountered into its symbol
table, which it then uses on Pass 2 to generate the complete
object program. POSSIBLE will either punch a binary tape of

the object program or assemble the program directly onto drum
field 1 during lass 2 of an assembly.

-3-
II. POSSIBLE SOURCE LANGUAGE

8. Notation
For clarity the following symbols are assigned to the

invisible flexo characters when needed in examples of source
progrem expressions:

carriage return B
tabulation >}

The abbreviations tab and ¢r will be used for tabulation and
carriage return respectively in format description.

B. Syllables and Expressions

The body of a POSSIBLE source program consists of a
sequence of expressions which may be instructions, data, or
both. An expression is denoted in the source program by one
or more syllables separated by sultable combining operators,
and terminated by a tab, c¢r, slash, comma, or equsls. A
syllable may be defined as being the smallest element of the
programming language which has a numerical or operational)
value. The following are two of the forms syllables can take:

1. Symbols - 4 symbol 1s a string of letters and
diglits containing at least one letter. Symbols
may be of arbitrary length, but are recognized

by their first three characters and a test on

the existence of any others. Example: sin,
Sine, and since are all legal symbols, but will
be recognized as only two distinct symbols sin

and sin_,

4o

2. 1Integers - An integer 1s a string of the diglts
0, 4 » « » 9. The value of an integer is the
18-bit representation of the integer. Thus, the
largest integer taken as its face value is

TT7777 in octal or
262143 in decimal.

The value of an integer above these limits 1is

taken modulo (218-1). 1If the integer 1s immediately
followed by a period (.), then that number is

taken as decimal regardless of the current radix.
Note: Period appearing anywhere within an integer
produces unexpected results.

C. Operators
Syllables may be combined by use of the following operators:

Additive Operators:
1. + or space means additions, modulo 218-1 (one's
complement). A line containing nothing but a
piug sign or space will not generate a storage

word.
2. -~ means subtraction of the syllable. Minus
signs count out properly; thus, -+0 = -0 = ~--0 = -0,

A line containing nothing but a minus sign will
generate a -0 storage word.

Product Operators:

1, V means loglcal union (inclusive or)

2. A means logical intersection (logical and)

3. ™ means loglcal inequivalence (exclusive or)

4, x means integer multiply. It performs ones
complement multiplication - that is, the result
will be the same as that obtalned by repeated
addition.

5. > means integer division. Division by 0 is
equivalent to division by 1. ‘

6. < means get remainder of integer dlvision.
Division by 0 will leave a remalnder of O,

..5_.

POSSIBLE computes the value of an expression by combining
the values of 1its component syllables.,

Operator Priority
Operations of the same priority (on the same line,

below) get performed from left to right. Operations
of different prlorities get performed in the order
listed, from top to bottom.

—
() These vanish in pairs; priority only
[] important to things inside them.
repeat

>)

4

The symbols open and close brackets, [,], are used for
evaluating an expression before applying other operators;

the expression Inside 1s computed before the outside operations
are performed. Redundant additive operators are examined

and computed from left to right. Redundant product operators
are taken as having zero (0) between them and are then
computed from left to right. The following examples of

symbolic expressions on the left have the value listed on the
right. (All numbers are assumed to be octal unless followed

by a decimal point.)

i
o)
H

EXPRESSTION

2

243
2«3
2x3
2V3
2A3
2”3
273
3
13>5
7-2v3
add 40 4ooouo
claVema 761200
-1t 777773
-, 1

~+3 TT7TT4
++2 2

3IXX2 0

EJUH'\) g
3 5
G\

77776

NN DWW

Qther Operators

1.

() center dot is a null operator that simply
gets eliminated from an expression whenever

it 1is seen within a macro definition. Outside

a macro definition, 2z center dot is simply
ignored., It may be used, for example, with

the pseudo-instructlion chargeter within a macro
definition to allow a durmy symbol argument to
appear. See the macro definltion part for further
explanation.

Example: define dispatech a,b
char l+a+b
terminate

-~

2. (") single quote 1s a null operator like center
dot but gets eliminated from an expression
whenever 1t 1s assembled. This is the most
natural way to concatenate two symbols within
the definition of a macro,

D. Use of Expressions
The meaning of an expression to POSSIBLE is determined
by the context in which it apears in the source program;

the character immediately following the expression usually
indicates 1its use.

1. Storage Words - An expression followed immediately
by a tab or_cr is a storage word.

Examples: Jmp ret B
lac abe |

The 18-bit number representing the value of the
word 1s assigned a location in memory; this
location 1s determined by a locatlion counter in
POSSIBLE. After each word 1s assigned, the
location counter i1s advanced by one. Note: A
storage word may be an instruction forming part
of a program, a constant used by the program, or

data.

8-

Tocation Assigrment - An expression immedlately
followed by a slash is a location assipgnment.

Examples: 100/
tab+120/

The current location 1s set equal to the address
portion of the value of the expression.

Examples: 100/+{sza
->jjmp 1002

In the source program, the sbove instructlons
will cause the instruction sza to be placed at
register 100 in the object program, and the
instruction jmp 100 will be found in register
104. Note: If, on Pass 1, a locatlon assigmment
contains any undefined symbol, the definition
of .address tags is inhibited untll the location
again becomes definite by means of a defined
location assignment. On Pass 2, an undefined
symbol will result in an error message (usw).
The undefined symbol is taken as zero, and the
locaticn remains definite.

vg...
Symbollc Address Tags -~ An expression followed
lmmediately by a comma is an gddress tag.

Examples: tab,
100,
tab+299,

If the tag 1s a single undefined symbol, it will
be defined with numerical value equal to the
present value of the location counter. If the
tag is g defined symbol or number, the value

of the expression is compared with the current
location, and a disagreement will cause an

error comment (mdt). If the tag 1s any other
symbollc expression which contains other than one
undefined symbol, an error printout (1lt) occurs.
Use of a defined symbol as an address tag cannot
change the value of the symbel. Also the current
location cannot be changed by a symbolic address
tag. Usling a symbolic address, the preceding
example could be written as:

100/a2,»|sza
Jmp a2

The programmer should note that location assignments

and symbolic address tags, in themselves, have

no effect on the object program, but rather direct
the process of assembly. Also, he should observe
thelr lnverse character. The location assignment
sets the current location counter to the value

of an expression, while the address tag sets the
value of a symbol equal to the current location.

«10-
Hence the sequences:

100/&2,b2)
and 150/ 32,‘2
bz,

each assign 100 as the value cf both symbols a2
and bz. A sequence such as

4000/ tab,
tab+n/

is frequently used to reserve a block of
registers for a table of data or computed
results. In the above example, the block
starts at register 1000, 1s named by the symbol
tab, and contains a number of registers given
by the value of the symbol n.

Symbolic Parameter Assigmment - A symbol immediately
followed by an equal sign, an expression, and z

tab or a ¢cr is a pavgmeter gssigrment. It assigns
the symbol to the left of the egual sign a
numerical value gilven by the expression to the
right, 1f the latter is defined. If the expression
1s undefined, no actlion 1is taken.

Examples: n=100y
sne=sza 1,
cai=claVell
t=t+t

-11~-
Parameter assignment may be used to set table
slzes, define new operation codes, or prepare a
set of instructions for an interpretive program.
Note: IT equal sign (=) is immediately preceded
by a number, POSSIBLE complains. An expression
such as z3+kO=y8 defines the symbol kO with the
value of symbol y8 and generates a storage word
23+k9; it does not cause the symbol y8 to be
evaluated as 2z3+k9. The expression kS=z3=y8, if
y8 1is defined, assigns both symbol k9 and symbol
k9 and symbol z3 the numerical value of symbol y3.

E. Comments
The character slash,_/, when not preceded by an expression,
denotes the beginning of a comment. Characters following it
are ignored by POSSIBLE until the next carriage return.

F. Current location Counter
The POSSIBLE location counter records the assignment

location for each word in the object program. It is set
to 4 at the beginning of each pass, and counts upward
modulo memory size. As was explained earlier; the location
counter may be set to any value by a lccation assigmment
expression. The character period (.) when not preceded by
2 number, 1is a specizl syllable whose value 1s equal to the
current location. Hence,

sza
jmp -1

is an alternate way of writing

a2,»!sza
Jmp a2

G. Radix 50 Sqoze Codes
The character double quote {") can be used to generate
a radix 50 sqoze code for the first three characters of the
preceding symbol., If there are more than three characters in

the syllable, bit 1 1s set to 1.

-]
H. Pgeudo-Ingstructions

Normally an assembly program produces one machine
language instruction for each instruction of the source
program. However, some lines in the source program, known
as pseudo-instructions, are directions to the assembler and
do not directly produce instructions in the object program.
These instructions govern the way in which subsequent
Information in the source program 1is processed,

A pseudo-instruction 1s a string of at least four letters
and digite, 1n which at least one of the characters 1s a letter.
The string is terminated by an operator. A pseudo-instructlon
may always be shortened to four characters.

The pseudo-instructions of POSSIBIE are described below:
1. End of Source Program - The pseudo-instruction

start denotes the end of the source language
program. The expression following start gives
the address of the instruction in the object
program which is to be executed first. POSSIBLE
stores this address and if a bilnary tape of the
object program is produced, POSSIBLE will include
an appropriate start block in the binary program
tape.

Exgmple: start begt2

This line will terminate scanning of the source
program and if the object program i1s being punched
then the word Jmp beg+2 will be punched for the
start block of the binary tape. When the binary
tape 1s read into the FDP-1 in regd-in mode control
will go to register beg+2 after the start block
is read.

2.

i3
Radix Control - The pseudo-instructions octal,
decimal, and radix control the current numeric
base for evaluation of integer syllables. The
pseudo-instruction gctal located anywhere in the
source program indicates all integers following
it [unless specifically denoted as decimal by a
period (.)] are interpreted as octal numbers
untll a next appearance of the pseudo-instruction
decimal or radix. The word decimal indicates
all integers followlng it are interpreted as
decimal numbers until the next appearance of the

pseudo-instruction octal or pradix. The pseudo-inscruction

rgdix takes any expression following (until the
next tab or ¢r) as the new radix. Numbers used

a8 the argument of ragdix are assumed to be decimal.
If the radix is not defined, it 1s taken as octal.
Note: The largest integer taken at its face value
1s 262143, or TT777Tg.

Storage of Character Codes - The pseudo-instructions
character, flexo, and text are provided to the

programmer as a convenient means of storing

character codes for printout by his program, or

for comparison against alphanumeric data acceptedd

by his program. For reference, the six-bit codes

for the concise III character set used with the

PDP-1 are inecluded in the Appendix of this memirandum.

Y.

\a) The pseudo-instruction character is used
to place a character code in the left
(bits 0-5), middle (bits 6-11), or right
(bits 12-17) portion of the word. The
word character 1is followed by space, then
by a r, m, or 1 according to the position
desired, and then the character whose code
is wanted.

Examples: VALUE
char ra 000064
char mb 006200
char le 630000

The above are pseudo-instructions syllables,
and may be used in the same manner as symbols
or integers in forming expressions.

Examples: VALUE
~char ra 777716

{b} The pseudo-instruction flexo is used to
compile three character codes into one
elghteen bit word.

Example: VALUE
flex abc 616263
This 1s equivalent to:
char ra + char mb + char lc

(¢) The pseudo-instruction text 1s 1r.sed to
asgemble a long string of charscters ty groups
of three into successive words in the bject
program, The string to be assembled is enclosqd
between two appearance of the came character
and is preceded by the word text. The character
selected as a delimiter cannot appear in the
string itself. '

-15-

Exsmples: VALUE
i, text .message. 445522
226167
650000
This is equivalent to:
flexo mes
flexo sag
char le
2. text /this is printed/ 237071
220071
220047
507145
236564
which 1s equivalent to:
flexo thil
flexo & 1
flexo s p
flexo rin
flexo ted

Any expression before the text is added to
the first word of the text; any expression
immediately following the range of a text
is added into the last word of the text
unless the number of characters in the
range of the text, modulc 3, 1is zero. 1In
this case, the expression is assembled into
a word of its own. This is useful, for
example, when one wlshes to type an expression
in red and so needs to introduce red and black
shifts into the text. Thus,

350000+text . this gets printed in red. +34
assembles a red shift and a black shift into
the text.

4,

-16-

Repsat Pseudo-Instruction - The repeat pseudo-
instruction provides a convenient way of placing
a sequence. of similar expressions in a block of
the object program. The pseudo-instruction
repeat is followed by a symbolic expression, a
comma (operator with priority higher than tab
may be used), and the range of the repeat. The
latter contains all the materlal from the comma
to (and including) the next carriage return.
This pseudo-instruction causes POSSIBLE to scan
and assemble the range a number of times equal
to the value of the expression immedigtely
following repeat. The symbolle expression must
be defined when the prepeat 1s encountered during
pass 1 and cannot have a value greater than 4000008;
if it 1is negative or zero, the range of the repeat
is ignored. The range of the repeat can be
storage words, parameter gssignments, macro calls
(1f not containing carriage return in an argument),
other repeats, or anything else. If repeat is
used in the range of a repeat, both repeats will
end on the same carriage return. However, open
and close brackets may be used to enclose the
range of the inner repeat and thus, allow ¢r

to appear within the range. Arithmetic brackets
may not be used in the range of a repeat unless
the entire range 1s enclosed by brackets; the
number of open and closed brackets must be the
same. Repeat may be used in macros; dumdy
arguments may appear either 1n the range or the
count of the repeat, or both.

-47-

Example: 1. repeat 3, ril 63 -»| tyo
wlll assemble the following
instructions:
ril 6s
tyo
ril 6s
tyo
ril 6s
tyo

2. repeat 2, [5 »| repeat 2,3
] = 1, | 2

Q
will assemble the following:

P wwu Wi,

5. Conditional Assembly ~ It is often useful, particularly
in macro instructions, to be able to test the value
of an expression, and to make part of the assembly
dependent on the result of this test. For this
purpose the pseudo-instruction whenmever ig provided.
Followlng the pseudo-instruction there 1s a symbolic
expression, a comma, and the range. The latter
contains all the material from the comma to (and
including) the next carriage return. This pseudo-
instruction causes POSSIBLE to evaluate the symbolic
expression following the repeat and if its value
is zero, the range will be assembled once. The
symbolic expression must be deflned when the whenever
is encounted during pass 1; an undefined symbol is
taken as zero. The range of the whenever can be
storage words, parameter assigmments, macro calls
(1f not containing carriage return in an argument),
repeat pseudOoinstructions, or anything else.

~18~

If repeat 1s used in the range, bhoth the whenever
and repeat pseudo-instructions will end on the
same carriage return.

Example: whenever n, lac tab
If n=0, this will assemble the storage
word, lac tab, once. Thus, this instruetion
would be equivalent to
repeat 1, lac tab

Special Tape Format - For fabricating special

tape formats or punching start blocks without
stopping the assembly, the pseudo-instruction
word 1s provided. It takes one argument ended
by a tab or carriage return; this argument is
punched directly onto the object program tape
during pass 2. The location counter is not
affected by this pseudo-instruction.

Informative Printouts - The pseudo-~instructions
printx and value can be used to generate
informative printouts during an assembly. Printx
takes an argument whose format is exactly like
the pseudo-instruction text. During an assembly,
POSSIBLE will print out this argument on line.
The pseudo-instruction value takes an argument
which 18 an arithmetic expression and prints

out its octal value during an assembly.

-19-

I. Automatic Storage Assignment
Several features have been provided in the POSSIBLE

assembly program which automatically assign storage locatilons
for the constants used by a program and the variables and
tables manipulated by the program. These features reduce

the amount of typlng required to prepare a complete source
language program, simplify editing, and make the source
program typescript more readable.

1.

Constants - An expression enclosed in parentheses
is a constant syllable and may appear as a syllable
in storage words and parameter assigmment. POSSIBLE
will compute the value of the expression enclosed
and place it in a constants area of the object
program as explalned telow. The value of a
constant syllable 1s the address where the

enclosed word is placed by POSSIBLE. The location
at which constant words are plazced 1is determined
by the next appearance of pseudo-instruction
constants following the constant syllable.

When the pseudo-instruction constants is scanned
by POSSIBLE, the constant expressions assembled
since the last use of the pseudo-instruction
constants, or since the beginning of the program,
are placed in the object program starting at

the current location. Constant words having the
same numerical value are entered only once. The
current locatlon 1s advanced to an address

somevwhat beyond the register in which the last
constant is placed, leaving a small gap of unused
registers between the constants area and any
following portion of the program. This gap arises
because POSSIBLE reserves one locatlon for each
symbolic and each unique numeric constant during
the first pass but may be able to do some combination
on pass 2.

-20-

Note: The close parenthesls may be omitted from
constant syllables lmmediately followed by one
of the terminating characters comma, tab, close

bracket, or c¢r. Recursive use of constant syllables

1s permitted; that is, a constant syllable may
appear within an expression forming a new constant
syllable.

Example: Thus, the sequence
lac (lac tab
dap .+1
a2z, 0
constants

is equivalent to
lac abe
dap .+1
a2, 0
abc, lac tab.

Variables ~ A symbol typed with a bar over at
least one of its characters at any appearance

in the source program is a varilable. All symbols
identified as variables become defined on the
subsequent appearance of the pseudo-instruction
variagbles. The pseudo-instruction variables

must follow all defining appearance of variables.
The variables are assigned to sequential locations
starting at the location of the pseudo-instruction
varigbles. Thelr initial contents 1s indefinite.

-0 -

Example: The sequence

lac a2,

add bg@

dac a2 2

bz, 0

a2, 0
is equivalent to

lac a2

add bz

dac a2

variables
except that the contents of registers
a2 and bz of the object program will
be zero in the first case, and unknown
in the second.

3. Tables - Blocks of reglsters may be reserved for
tables by nmeans of the dimension pseude-instruction.

Example: dimension x(n), y(m), z(m+n)0
This string reserves three blocks of lengths given
by the values of the expressions n, m, and min.
The first address of each block is assigned as

the value of the symbols x, y, and z. The
reserved blocks are placed at the location in the
objeet program specified by the variables pseudo-
instruction. The initial contents of the reserved
blocks is indefinite in the object program. The
following rules apply:

(a) Expressions gilven as lengths of blocks in
a dimension pseudo-instruction must be
definite when scenned on the first pass.

~DD -

(b) The symbols assigned to blocks by a dimension
statement must be previously undefined.

The use of dimension, variables, and constants in a complete
POSSIBLE source program is illustrated in figure 2. This
program will produce exactly the same cobJect program as the
introductory example on page 2 except that the initial contents
of register g 1s zero in the earlier version and undefined here.

sum
=100
dimension tab(n)
100/
a, law tab
dap
dzm
b, lac .
adm s
idx b
gsas (lac tab+n
Jmp b
hlt
variables
constant
start a

wt o

Figure 2

-23-

J. Macro Instructions
Often certaln character sequences appear several times
throughout a program in almost identical form. The following
example 1llustrates such 3 repeated sequence.

lac
add
dac
lac
add
dac

Lo T = T I = g

The seguence:

laec x
add y
dac z

is the model upon which the repeated sequence 1s based. This
model czn be defined as a macro instruction and given a name.
The characters x, y, and z are called dummy arguments, and
are identified as such by being listed immediately following
the macro name when the macro instruction is defined. Other
characters, called agrguments, are substituted for the dummy
arguments each time the mode is used. The appearance of a
macro-instruction name in the source program is referred to
as a call. The arguments are listed immediately following
the macro name when the macro instruction is called. VWhen

a macro instruction 1s called, POSSIBIE reads out the
characters which form the macro-instruction definition,
subastitutes the characters of the arguments for the dummy
arguments and assembles the resulting characters into the
object program.

-2l

Examples: defline gbsolute
spa
cma
terminate
define move a; b
lac a
dac b
terminate

Note: If an argument expression is omitted, then the null
string (no character) is inserted for that dummy argument.
This differs from MACRO; the arguments are not evaluated but
are substituted as text strings.

i.

Defining a Macro-Instruction - A macro-instruction
consist of four parts; the pseudo-instruction
define, the macro-instruction name and dummy
gymbol 1ist, the body, and the pseudo-instruction
temminate. Each part is followed by at least

one tabulation or carriage return. The macro
instruction name has the same form as 2 pseudo-
instruction - a string of letters and diglts of
which at least one of the first six charscters

is a letter. The name is terminated by a space,

or if there is no dummy symbol list by a cr or

tab. The first six characters of a macro
instruction name must distinguish that name from
all other macro names and from all pseudo-instructions.
If a name is three or less characters long, it
must be spelled out in full but if 1t is longer,

1t may be abbreviated, like a pseudo-instruction,

to four characters. The dummy symbol llst consists
of up to 138 or 1110 distinet dummy symbols, separated
from each other by commas, and from the macro

name by a space. Since dummy symbols have no
meaning outside of a macro definitlon, the same
symbols may be used in many definitions without

harm.

wf:_D -

The body of a macro definition 1s an avbitvary
sequence of expressions in which any dummy symbol
list may appear as a syllable. All the pseudo-
Instructions can be used within the body of a macro
definition. This includes the pseudo-instruction
define which must have 1ts own terminate
pseudo-instruction. The body may also contain
macro calls, including calls to the macro itself.

Example: The definition and use of a
macro instruction is l1llustrated
by a program to store zeros
in a block of register. This
program can be assighed the
name clegr by the definition:

Define clear a,n
law a
dap .+1
dzm
idx -1
sas (dzm a+n
Jmp .-3
terminate

When the line

clear tab,100
appears later in the source
program, the instruction sequence

law tab

dap .+1

dzm

idx .1

sas {dzm tab+100
Jmp .-3

is inserted into the object prograz.
The resulting sequence will clear

a hundred registers starting with
recister tab.

K. Format
POSSIBLE hss few reduirements on format. The user should

be aware of the following:

1.

3.

4,

Carriage returns and tabs are equivalent except
in the title, in the range of a repeat, in a
comment, and after start. Extra tabs or carriage
returns are lgnored.

Backspace, 2, ., -, %, _, |, red, black, and

unused characters of the flexo code are illegal
except in arguments of flexo code pseudo-lnstructions,
titles, and comments.

Stop codes are ignored except in arguments of
flexo code pseudo-instructions. Apostrophes
are similarly ignored when not in macro calls
or definitions.

Deleted characters are always lgnored.

Many programmers have found that adherence to a falrly
rigid format is of help in writing and correcting programs.
The following suggestion have been found useful 1ln this

reapect:

i.

2.

Place address tags at the left margin, and run
instructions vertlcally down the page indented
one tab stop from the left margin.

Use only a single carriage return between instructions;
except where there is a logical break in the {low

of the program. Then put 1n an extra carriage

return.

5.

-27-

Forget that you ever learned to count higher
than three; let POSSIBLE count for you. Do not
say dac .+16; use an address tag. This will save
grief when corrections are required.

Have the typescript handy when assembling or
debugging a program, and note corrections in
pencll thereon a&s soon as you find them.

As macro instructions must be defined before
they are used, put these definitions at the beginning
of the program.

Tf the pseudo-instructions constants and variables
are used, they should be placed before the start
at the end of the program.

08 -

III. POSSIBLE ASSEMBLY
POSSIBLE is a two pass assembler; that 1s, it normally

processes the source program twice. During the first pass,
it enters all symbol definitlons encountered into its symbol
table, which it then uses on yass 2 to generate the complete
object program. FOSSIBLE was written for time-sharing mode;
1ts commands are typed through the console. The assembler
may be used out-of-time sharing also by typing commands.

POSSIBLE may get the source program directly from

expensive typewriter's text puffer or from the paper btape

reader., A resulting program is either assembled on (drum)
field 1 or punched out as a binary tape. [It is also possible
to do an assembly without any output Just to check for errors. 1
The symbol table fommed during the assembly may be typed or
punched out in numeric or alphabetic order. Also the area
used for storing constants and variables may be typed out.

It is possible to fabricate tapes with speclal formats
such as a Jjump block replacing the input routine or several
titles and input routines on one tape.

The programmer may leave POSSIBLE to (0 to ID, the
debugger program, or to the Editor, to correct errors in
the source program found during assembly.

A. Possible Assembly Control gggggcters
The control of the POSSIBLE assembly procedure is by
typed-in commands. The following tables indicate the commands
that are avallable and what they mean:

COMMATIDS R IRANING

INPUT SOURCE:
e expensive typewriter text tufizr source
) off-line source (reader)

QUTPUT MEDIUI:

d drum assembly
t tape assembly
W without output

COMMAND MODIFIERS:

23 get

x cancel (exchange)
SPECIAL FORMAT:

(g.x) 1 input routine

(8:x) Jjump block

(g,x) 1 label (title)

ASSEMBLY CONTROL

s start new pass (also used to suppress
punching after error printout)

¢ continue pass (also used to continue
punching after error printout)

1 pass 1

2 pass 2

T forget everything (initialize symbol
table)

I0_EQUIEMENT CONTROL

(g,x) r reader (initialize reader buffer
non ts mode

(gsx) p punch,
SYMBOLS ,

a alphabetic symbols

n numerlc symbols

k konstants areasaand varliables areas
EXIT

back to ID or AIYM RT
m meliorate source prorram (bacl £o 7

-30~

SEN CH USAGE
POSSIBLE uses sense switches during an assembly to
provide the following speclal features:

SENSE_SWITCH USE
1 type-out characters dilspatched on
4 continue gssembly without stopping

after any error printouts.
5 listen for input from typewriter
6 suppress checking for parity error.

The symbol package for POSSIBLE also uses sense swiltches
to indicate additional information.

SENSE SWITCH USE
1 suppress punching and typing
2 down - punch out symbols
up - type out symbols
3 down -~ input format
ex, tab=105

up-listing format
ex, tab »{ 105

If POSSIBLE is entered from Expensive Typewriter by the
command N (nightmare version of POSSIBLE) or M (merging version
of POSSIRIE), POSSIBLE is initially set up to accept source
from expensive typewrliter and to place the resulting binary
object program onto (pseudo) drum field 1. Otherwlse, POSSIBIE
will expect input source from the paper tape reader (off-line)
and will punch a paper tape of the object program. These
conditions may be altered by using the appropriate commands 4
"e" (for source from expensive typewriter's text buffer), "o"
(off~line reader used for source program), "d" (assemble onto
drum field 1), "t" (assemble onto paper tape), and "w" (without
output; just check for errors).

-31-

If the linput source program 1s expected from the reader,
POSSIBLE will automatlcally assign the reader at the start
of each pass. If the reader is busy, an "r" is type out.
Typing "s" gets the reader if it 1s no longer busy and starts
the pass again. Typing "gr" iz used to initialize the reader
buffer. 1If on pass 2, a tape is to be punched and POSSIBIE
is unable to get the punch assigmment, a "p" will be typed.
Typing "s" will get the punch if it is no longer busy and
will start the pass again.

If a binary object program 1s punched during pass 2 of
an assembly, 1t wlll contain a title in readable characters,
consiéfing of the visible characters in the title up to but
excluding a center dot. Next will be punched an input routine,
which 1s a loader that reads in the rest of the tape,
and which may itself be read in by the PDP-1 read-in mode.
The blnary output from the body of the source program is
punched in blocks of up to 4100 registers. The end of the
binary tape is denoted by a start block, which is produced
by typing "s" after pass 2 is completed. The start block
causes the input routine to transfer at once to the address
specified by the pseudo-instruction gtart. The argument of
the start has the value of the address to which control is
£o be transferred, '

For fabricating speclal tape format, the control
characters “1", "4%, and "1" may be used. Typing "gi" will
cause an input routine to be punched when the next tape is
assembled during pass 2. Typing "xi" suppresses the
punching of an input routine when the next tape is assembled.
Typing "gi" causes a Jjump block (Jmp 7753-input routine) to
be punched when the next tape is assembly durlng pass 2. Typing
"xj" cancels an "gJ" command. Typing "gl" causes a title in
readabls format to be punched when the next tape is assembled
during pass 2. Typing "x1" causes no title to be punched during
the assembly.

-3

Normally each pass is initiated by typing an "s" (start
pass). To process each additionai tope type “e" (continue
pass). During Pass 2, if an error iz encountered, typing
"s" will continue the assembly but suppress punching a binary
tape; typing a "¢" will continue the pass and continue the
punching of the tape. To alter the normmal assembly process,
the commands "1", "2", may be used. Typing "1" will cause the
next "s" to initiate pass 2; typing "2" cause the next "s" to
initiate pass 2. To 1nitlalize the symbol table so that assembly
done previously i1s forgotten, "f" is typed.

It is sometimes useful to type in on-line short programs,
symbol definitions, etc. This may be done by having sense
switeh 5 up when "s" or "¢" 1s typed. Instead of reading
tape, POSSIBLE will listen to the typewriter until sense
switch 5 is turned off. Sense switch 1 may also be used during
the assembly. If 1t is up, POSSIBLE will type out each character
which 1s dispatched on. Note that this 1s not eguivalent to
typing out every character processed. For example, arguments
of the pseudo-instruection character will not be typed and
some characters may be typed more than onece. Thils sense
switch usage provides ald in debugging especially complicated
macro definitions. Sense Switch 4 up allows the assembly to
continue without stopping after any errvor printouts. The
punching of a binary program 1s not affected if the switch
is up. Sense switch 6 will suppress the check for parity
errors in the input source program.

A copy of the symbols and their respective values may be
obtained after the assembly process. The commands "a"
(alphabetic symbols), "n" (numeric symbols), and "k" (konstants
areas and variables aress), and sense switch 2 which is up
to type symbols, down to punch; sense switch 3 which is up
for input format, down for listing formats; and sense switch 1
for suppressing both punching and typing, are used to request
the deslred form.

A
(4.)

B. Normal Assembly Procedure
1. To begin pass 1 on the source program, type "s".
POSSIBLE will stop shortly after encountering
the cr after the pseudo-instructlion start at the
end of the tape.

2, To process each addltlonal tape after the first,
type "e.

3. Begin pass 2 by typing "s%. At this point, if
POSSIBLE is to produce a binary tape, it punches
some blank tape, the title at the beginning of
the tape in readable form, a binary lnput routine
in read-in mode, and then begins to punch the
binary version of the program in blocks of 100
words (or less). POSSIBLE, as on pass 1, will
stop after encountering the gtart at the end of
the tape.

4, To process each additional tape during pass 2,
type “c".

5. If a binary tape is being produced by the assembly,
an "s" should be typed to punch the start block
at the end of the tape.

This completes the assembly process.

C. Error Comments During A Possible Assembly

Upon detecting an ervor, POSSIBLE will print out a line
in the followling format;

gaa bDbbb cec dddd eee
where aag is the three letter code indicating the error, bhbb
1s the octal address at which the error occu:r.ed, c¢c¢c 1is the
symbolic address at which the error cccurred, dddd is the name
of the last pseudo-instructicn encountered. 1In the case of
an error caused by a symbol, eee will be that symbol. Following
is the list of error indications in POSSIBLE:

-3l

ERROR MEANING

neca NO COHSTANTS AREA
' The pseudo-op constants 1s needed.

ilf JLLEGAL FORMAT

i1t ' ILLEGAL TAG
Tag which is not a single symbol is
not equal to current location.
ex. foo+10, ¥ current location

mdt MUITIPLY DEFINED TAG
Tag consisting of a single defined symbol
i1s not equal to current location. Symbol
is not redefined.

usw UNDEFINED SYMBOL
A symbol which has not been defined in
program 1s encountered. Symbol is gilven
the value of zero if assembly is continued.

cld CONSTANTS ILOCATION DIFFERENT
The ¢onstant pseudo-op appears in different
leccation on pass 2. No recovery can be made.

vld VARIABLES IOCATION DIFFERENT
Same as cld but for variables. Often
possible to recover by ignoring this,

ild ILIEGAL DEFINITION
Program attempts to redefine pseudo-op
or prevliously defined symbol. Redefines
pseudo-op or symbol if assembly continued.

sce STORAGE CAPACITY EXCEEDED
Storage of macro definitions, macro arguments,
repeat ranges, numerical constants (pass 1),

unique constants (pass 2), symbols, or macro
names has been fllled. No recovery can be made.

mdd

tmt

ids

1lch

...35...

MEANING

PUSH DOWN CAPACITY EXCEEDED

Macro, repeat, or constant nesting is
too deep or too complicated arithmetic
statements are used. No recovery can
be made.

TOO MANY CONSTANTS AND VARIABLES PSEUDO-0OPS
Total numer of constants and variables
pseudo-ops 1is 208. No recovery can be made.

MULTIPLY LEFINED DIMENSION

Symbol representing first location in
dimension of array is already defined. The
0ld symbol definltion is retained if
assembly is continued.

TOO MANY TERMINATE PSEUDO-OPS

There exlst more termlnate instructions
than define instructions. The fterminate
is ignored if assembly 1s continued.

ILIEGAL DIMENSION SIZE

Specified dimension size 1s negative.
Dimension size is set to zero if assembly
continued.

ILIEGAL CHARACTER

Input source has an illegal fiexo code

or character. Number typed 1s the 1lllegal
character; if the.number 1s in the 400's
it is an upper case character. Continuing
assembly will ignore the character.

~36-
APPENDIX

POSSIBLE SYMBOL TABLE
BASIC INSTRUCTIONS IN-OUT TRANSFER GROUP SHIFT /ROTATE GROUP

add 400000 cbs 720056 ral 6641000
adm 360000 cks 720033 rar 671000
and 020000 dba 720061 rel 663000
cal 160000 dee 720062 rer 673000
dac 240000 dig 720060 ril 662000
dap 260000 dpy 730007 rir 672000
dio 320000 dra 720063 sal 665000
dip 300000 eem 724074 sar 675000
div 560000 esm 720055 scl 667000
dzm 340000 ioh 730000 ser 677000
1dx 440000 1ot 720000 sft 660000
idz 120000 lem 720074 811 666000
ior 040000 lsm 720054 sir 676000
iot 720000 ppa 730005
isp 460000 Ppb 730006 MISCELLANEOUS
jda 170000 rpa 730001
Jap 140000 rpb 730002 © elo 651600
Jmp 600000 rTh 720030 i 040000
isp 620000 tyl 720004 is 1
1ac 200000 tyo 730003 2s 3
law 700000 3s 7
lio 220000 OPERATE GROUP » hs 17
mul 540000 58 37
opr 760000 cla 760200 6s 77
sad 500000 clc 761200 78 177
sas 520000 cif 760000 8s 377
sft 660000 cii 764000 Os 77
skp 640000 cma 761000
sub 420000 hit 760400 TIME SHARING INSTRUCTIONS
xet 100000 lai 760040
xor 060000 lap 760300 arq 722277
lat 762200 asce 720054
SKIP GROUP 1ia 760020 bpt 722177
nop 760000 cac 720053
clo 651600 opr 760000 ckn 720027
skp 640000 stf 7600410 dsc 720050
sma 640400 sSwp 760060 dsm 722377
sni 644000 XX 760400 isb 720052
spa 640200 lea 724677
spi 642000 lel 72#2?7
spq 650500 nmf 725477
sza 6404100 nmn 725377
szf 640000 rbt 720237
szm 640500 rer 724777
820 644000 ' wat 722477

528 640000

-.37“.
APPENDIX {(cont.)
ALPHANUMERIC CODES

FI0-DEC Concise FI0O-DEC Conclse

Character Code Code Character Code Code
a A 61 61 0 - 20 20
b B 62 62 1 " 01 01
c ¢C 26 6 2 : 203 03
d D 6 6 2 ~ ol ol
] E 265 65 2 205 05
f F 266 66 5 ¥ 206 06
g G 67 67 6 7 a7 07
h H 70 70 g < 10 10
i I 271 71 S 211 11
] J L5l 41 9 % 57 57
k K 242 Lo (S o255 55
1 L 43 43) 256 56
m M 244 4y i 4 54
n N 45 45 - ¥ 0 40
o O Ls 4o s _ 233 33
p P 247 47 s = 73 73
a Q 250 50 . X 221 21
r R 51 51 / ? 272 T2
8 8 222 22 Iower Case 274 T4
t T 22 2 Upper Case 200 00
u U 22 2 Space 75 75
v \' 25 25 Bk. Sp. 236 36
w W 26 26 Tab 277 77
x X 227 27 Carr. Ret. 00 00
y Y 230 30 Tape Feed — 35
z z 31 31 Red* - 34
Blic¥ 13 -

Stop Code 100 ——

Delete

*Used on type-out only, not on keyboard.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

