PDP=1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
mmm@,mmggacuusam

FDP-35-1
INSTRUCTION MANUAL

PART 5 == MPA'S AND IVK'S

15 April 1971

Introductidn

" This memo describes the interface between user programs and
the FDP-1 timesharing supervisor. Sections identified with &n
asterisk (}) may be omitted on a first reading. '

Needless to say, this memo 1s subject to change without much
notice. Spheres and entries are especially 1ikely to undergo
development : _

- The following convention is used to specify the location of
information in registerssy

- Blt O is the sign bitg bit 17 is the "least signiflcant" bit.
An expression such &s A{n-m) refers to the contents of bits n
through m of reglster A. For example, I(9-<17) refers to the right
- half of the in-out register. -

- Most supervisor calls are handled by meta-instructions
(mt2=770070). Information on what action to taks IB contained in
bits 9-11 end 15-47 of the instruction itself, as well &s in the
- ldve registers.

~In addition to the hardware registers A, I, X, P, and @, each
process has a W register, which is maintained entirely in
software by the supervisor. Certain cperations require or supply
information 4in the W register. To facilitete the writing of
reentrant procedures, supervisor c¢alls never make use of X.

Instruction Action
mta O Copy A into W,
mta 1 Copy I into W,
mta 2 Copy W into A.
-mta 3 Copy W into I.

Since these instructions are interpreted by the supervisor,
i?ey are much slower than similar hardware instructions such as
. ao ‘

,The instructions mta 4, mta 5, mta 6, and mwta 7 are special
- instructions which trap to the program's superior (usuelly ID).
Mta 7 (dsm, "disniss®) is used to signal normal completion to ID.

~ ID inteFpiets mta 5 2s 2 request to perform a command string (see
memo PDP=23), S

Core Memory

Each program has &an address space consisting of those core
memory addresses it is permitted to reference. The address space
is divided into units of 10000 (cctal) words, called ®ecore
modules” or simply “cores®., The address space consists of "reall
cores, numbered from O up to (at most) 5, and stischments (see
the section on spheres for a discussion of attachments)e ‘'The
memory bound 1s the lowest address not 4in 2 real core, Upon
Togging In, The memory bound is 10000 and ‘there are no attoche
ments, '

mta 206 _
Read memory bound and attachments to A.
| loomes SIETEY
A ound ,)
5 © | 11412.

-mta 207

: Set wemory bound., The npumber of cores 4is specified in
A(3=5) or, if that is zero, A(15-17). The wemory bound
cannot be lowered Go zero or raised above 60COO, She
eontent of existing cores is not changed., If the memory
bourd 1is raised, any attachments that are in the way are
autcmatically removed, The instruction sikips if success-
ful. If unsucecesaful, She TeRory bound and all attache
ments &re unichénged,

(%) mta 205
Detach, The core number is taksn from A{3-5) or, if that
is zero, A(15-17), The instruction skips uniess it is en
attempt to detach a yeal core.

Attenmpts to reference addresses outside of the address space
are illegal, and normally trap to the progrom's superior (ID
Prints << and the offending instruction).

. 1,($% A program may intercept these gwaps by =setting its
illegal meinor ;ef@rencg,geﬁurge khen an illegal aewory reference
ogcuUrd, CONLrol 13 transierred to the oddress specified by the
illegal memory reference return. W(3«17) will conbtain the pProgran
counter at the time of the illegal memory reference, W(o=2)} wili
contain the core which wes referenced, The original contenta of W
are lost. Other registers are unchanged. If AAL (see part 2 of
this Instructicn Mamwml) was on when the illegal remory reference
oceurred, it will be on, The 1llegal memory reference returm may
gz giggbled by setting it to a negative number. I& is initdally
88 o

nta 202
Read 1llegal memory rererence rzturn Lo A,

mta 203
Set dllega) momory reference return from &,

Tilegal Instructicons

Certain instructions are illegpl., Normally these trap to the
progrem's supérior (ID prints ard the offending instruction).

(%) A program m2y intercept some of these traps (recoverable
illegel instructions) by setting its illegal instrueiich returne.
The following instructions &re unrecoverdbly illégalz hnit, oODes
opcode CO0, priviledged instructions, and attemits $o reference
locations O through 77 when PRL 18 on (see belowj)., A1l other
illegal instructions are recoverable. When & recoverably illegal
instruction is executed, control is transferred to the address
specified by the illegal instruction return. W(3=17) will contain
the program counter at the time of the 1llegal instructicn (.e.,
the address of the instructionj). W(O=2) are cleered. The original
contents of W are lost, Other reglsters, including &AL, are
unchanged, The illegal instruction return way be diszbled by
setting 1% <o a negative number. It is initially disabled,

mta 200
Read illezal instruction return Lo A,

mta 201
Set 1llegal instruction return froem A.

(%) Low Priority Mode

A process mey enter 1low priority mede by execubing & mta 100,
Thereafter, the process™ will run only if nc other processes
(except other 1low priority mode processes) want o run,

| Capabilities

System resources, such as tape drives, d&rum fields, ard
typewriters, are made available to the user through capabilities.
A user is permitted to use & resource if he owns 2 CEPADLLiLY €O
the rescurce. Each capability is distinguished by an index fyom O
to 77. The index of a capability is specified when &ha cépability
is created (though it mey be chenged later by mia 401), arnd no
two capabllities may have the semes index., The capabllitice are
stored in an area of memory knowin as the C=1ist. .

Upon logging in, the usér has only cne capability, to his
console typewriter, at index zero. Aiso, only indices ITprom 0 £
17 wBy be usedy to increase the available zrange to 77, see the
description of mta 403 below.

To invole & capability which he owns, a user executes an ivk
instructIon (1vks=TH0000). Bits 12-17 of the ivk Instructicn 575 .
the index of the capability being involked (e.g., ivic 14 operates
the resource at cepability index 14). Bits éoii of ¢the ivk
instruction are called the yarlant, and, along with 4, I, and U,
ey speclfy what operaticn 18 £0 cake pi&ece. The elfect of the
ivk instruction differs for e2ech type of c8pability. The
reminder of this memo describes the types of capabiiitics which
‘may be created and how they are used. '

Capabilities are created with instructions of &he form mha
30n, O §, n §}?. For all such instructions, the index of the
capability 1s specified by A(42-17)s if this is zern, the first
fres index 1s used. The index is returned in A(42-47) with A{C=
11) clesred. The I register and A({O-11) may contain paramsters
pertaining to the capsbility ¢o be created, The capability
created vrefers %o & neyw coject, not owned by anyone elseé. (From .
the polnt of view of ' the supervisor, objects are “allocated®yg
from the point of wiew of the user, objects are “creaged®,) If
successiul, the instructlon skips. A copy of the capability (what
mtd 400 (Qov.) reads) is returned 1in T. If unsucecessful, the
instruction dees not skip., Either the requested index {or, if ©
weg requested, svery index) was =alveady cecupied, in which case
the capabllity at that index (or, if O was requested, the last
index) is returned in I, or else Gthe irdex wos available but
there were insufficient resources (e.g. drum fields) to create
the object, in which case I is cleared,

The Tollowing instructions m2nipuiate capabilitiess

mta 204
~ ‘Delete capability. A(48-17) contains the capability
index, If there is no capability at the epecified index:,
no action is t2ken. A and I axe wnchangad,

mta 400 :
fiead capability. A(32-17) contains the coapability index.
An 18=bit word uniquely specifying %the capabllity is
placed in A. If no capability exists at the specified
index, & i3 ciesared, ,

mta 401

mte 402

mta 403

mba 404

mta 405

(%) mte

(4) mes

Exchange capabllities. The capabilities at the indices in
A(6<41) and A(12-17) are exchanged. Null capabilities nay
take part in the exchange.

Turn off PRL. Undoes the effect of mta 403 (Q.v.).
Capabilities et indices 20 through 77 are deleted, (For
spheres not at the top level, capebilitiecs at indlces O
through 47 are elso deleted, See the section on spheres
for details.,)

Turn on FRL (program reference 1ist). When PRL is on,
capability indices O through 77 may be used, The C=llst
is stored in locations O through 77 of the program's
address spece., To protect against unauthorized modificae
tion of this informaiion, the program ig not permitied to
examine or modify these locations. The state of PRI is
read by bit 8 of the cks word (see pavrt 3 of %his
Instruction Mamual).

Count capabilities. Return number in A,

Copy capabllity. The capability at the index in I{6-41)
is copied into the index %n 1{12=17) (or the first free
index 1f I(12-17) 18 zero). The index 15 returned in A.
The instruction skips if successful, anct & copy of the
capability is placed in I, I unsuccessiul, the instruce
tion does not skip. Either a capabllity aliready exists at
the index in I(12-47) (or at all indices 17 1(12-47) s
zerc), 4in_which case that capability (or ¢he 1ast
capability) is ploced in I, or else no capability exists
&t the index in I(6<ii) or the capability thers is an
sntered process capsbility, in which cese I 1s cleared,

501

Disown capability. The capebllity at the index in I{6-11)
is deleted without delebing the corresponding cbject.
(For example, if 2 sphere capability is discurned, %the
sphere contimies %o run, occupy storags, owWn other
capabilities, etc.) An index is reburned in A(412-17) with
A{O=11) clears this index 15 to be used o reclaim the
capability (see mta 502), If successful, the instruection
skips, and & copy of the capsbility is placed in I,

502

Claim capabillity. The disowned capability whose irdex is
in I(6-11) is placed in the index in I(12-47) (or the
first free index if I(12-47) is zero). The irndex 4s
returned in A. If successful, the instruction skips, and
& copy of the capability is placed in I, 1P unsucceserul,
the same action is taken es for mia 405,

-Typewriter

A program is norm2lly given & Lypewrlter capability at index
zero by its superior. A typewriter may be created, however, if 1%
is not logged in or otherwise cwned, Mta 306 with 05 in A(0=5)
creates & typewriter capabllity. A(6=14) has the desired console
number. A(12-17} has the capability imdex. The instruction skips
if succeasful,

For typewriter ivks, 4f the variant is zero, A{8-10)#1 is
used to specify the operations

Variant Operation

1
Type cut from A, The flexo code cheracter in A(12-47) is
typed out,

]
Type in to A, The character typed is placed in A(12-17)
with A{0=11} clear.

3
Pype out from I, The flexo code character in I(12-17) is
typed out.

4

Type in to %, The character typed is placed in 1{12-47)
with 1{(0=41) clear,

(k) It is cccasionally desirable to share a typewriter with
another progrém, but in such 2 way that the originsl owner wnay
assert control over the typewriter when it wishes, without
finding and deleting @ll coples 4in the reciplent. (For example,
I wants to share its ¢ypewrlter with the user under it.) An
inferlor typewriter capability is & PTypewriter capability with an
enable/diseble switch. When the typewriter capability is dis-
abled, all ivks on it will hang until the capability is enabled,
The recipient of an inferior typewriter capabllity 1s not aware
of the enabling and dlsabling. Infericy typsuriter capsbilities
ray be created ¢o any reasonable depth, and each hag its own
engble/diseble switch,

Varians gperaticn
5 Enable.

6 Dissbie,

T Unused,

10 Unused,

11

Turn off entble/disable permit for the ivk'ed capability.
Enable/disable permit is 2 property of each copy of the

2

capability, not of the inferior Lypewrlter as & whole.
This 4is wused to - prevent the recipisnt of an inferiox
typewriter capability from interfering with the engbe
1ling/disabling activities of the superior.

Create inferlor typewrliter. The Ivkled capadbllity is
replaced by an Anferior typswriter cepability. Skip if
successful, The new capadllity will be disabled, with
enable/diseble permit on, '

Pﬁper Tape Reader

The PDP-i has & photoelectric peper tape reader capable of
reading 320 or 6U0 1ines per second, as seleccied by & toggle
switch on the left side of the reader raek. Eight=hole tape 1s
normally used; although five, six, and seven hole tape may also
be read, Mtz 306 with O3 in A{O=5) creates & reader capability.
A(12-17) has the capability index. A(i1) specifies how ivks on
the reader will be treateds O for alphz mode, 1 for binary node.
The mta 306 skips 1f successful. For reader ivks, the varlant and
A are lgnored.

Alpha mede .
One line of tape is read and piaced in A(10-4T7). A 4
represents & hole, & O represents no holv. Channel 8 (the
channel farthest from ¢the feedholes) goes into bit 10,
channel 7 into bit 411, etc, A{0=9) axe cleared, If
successful, the ivk skips. ' If the reader ls out of %ape, °
the ivk does not skip.

Binary meode , :
Three lines of tape are recd. Channel 8 must be punchedy
if not, the line 1s ignored. Channel 7 is alwayc ignored.
Channels six through one of the first line are vlaced in
- A{0=5)g A(6-11) is filled from the eecond lire, cvd A(12-
17) from the third. If successful, the ivk skips. If the
reader 1s out of tape, the ivk does not skip.

Paper Tape Punch

The PDP=1 peper tape punch punches stamdord eighi-hole tape
et 2 speed of 63 lines per second, Mis 306 with O4 in A(0=5)
crestes & punch capability. A(12<17) has the capsblliity index.
The mta 306 skips 4f successful, : :

A punch ivk causes one line of tape %o be punched. Tape
chennels eight through one come from A{10-47) respectively. The
feedhole is always punched. - '

Button Conscle

The consoles of buttons and switches are described in pare 3
of this Imstruction Manual, Mta 306, with 01 in A(0=5), creates a
button console. A{10=11) has the console mumber., A(12-17) has the
cepability index., The mta 306 skips if successful,

Invoking & button tonsole capability hangs until the state of
the buttons is different from the contents of A. The new state of
the buttons is placed in A (in the same formet as rbt) and the
instruction completes: Rbt Iinstructlons work indeperdently of
button console capabllities,

Temporary Clock

Mta 306 with 02 in A(0=5) creates & clock capability. A(12-
17) has the capebility index. The mta 308 skips 1f successfulg it
~falls only if the capability indexr was already ccecupled,

The temporary cleck ticks 1760 ¢imes per minube (about 30
ticks per secomnd). A clock ivk hangs fov m%ﬁontents of A) ticks,
A is incremented at each tick, and the instruction completes when
A is positive or 2zeroc.

Microtapes
The FDP=1 has four microitape {(Dectape) transporte. A siantard
reel of tape has 1000 (octal) blocks of 400 (octal) words each,
There are a number of “"public® microtapes providing convenlent
storage for users.
.Mechanical operation of the tape drives

The following state diagram shows how the drives are con=
trolled.

rmn

famual

.

stop| x‘-h‘~.‘ auto

When a drive is off, the motors are not operating, and a tape
my be mounted or removed., When in mamudl mode, the metors are
under control of the "fwd® and “rev! bustons. When in automatic
or write permit modes, the motors are under control of the
~cem€uter apd the tape may be read or written under program
control,.

Po mount a tape, press it I[irmly onto the left hub, draw <the
tape over the head and onto the empty reel on the right huhg and
wind it onto that reel one or two turns by hand., Press the “run"
butbon to place the tape in wmemwal status, and run the tape
forward for a few secords. Then 1lift the Rauto” butiton, followed
- by the “write® button 1f desired,

To remove & tape, press the "stop® buiton, followed by the
“run® button. Move ¢the tape in reverse by means of the “rev!
bubtton until it comes completely off the {ake=up reel., FPress
“"agop", stop the coasting tape by hand, and remove it.

Use of WMicrotapes
Norm2lly, microtapes are used through the Mlerctape FPRile

System (see memo FDP=42)., All tape instructions operate directly
on microtapes, without reference to eny file structure. Nta 306,

with 00 in A{0=5), creates a micrctape capebility., A(8<11) has
the desired transport number (0-3), A(12-17) has the capability
index. It skips if successful.

On & microtape ivk, the varisnt is ignored. A{0=1) 1s decoded

as followse
00 =~ read
10 = write
0l = rewind., The instruction completes when the rewind is done.,
1l = rewind. The instruction completss iomediately. Any subse=
quent tape instruction will coverride the rewind,
A IT] core address 0 0000
2 3 “32113
I |[block count block mumber

1 Feere, oo blsckis raniberred .

Por read and write opéggtignsa 1(0=5) contains the rumber of
blocks to be transferreds ' 1(9-47) cont2ins the block number of
the first block %o be 4rensferred, Consecutive blocks are
trensferred to consecutive eareas in core, Block O 18 considered
to follow bdleck 777. The core address of the firet word of the
first block 18 given by A(3-47)y 4t must be a multiple of 40
words, No block may be ¢ransferred partily intc one core and
partly into ancther, but different blocks my be translerred to
different cores in the same operation.

If A(2)=0, the block number in I{9-17) is trenslated into a
physical block mumber. This 18 the normal cagse, as 1t allicuws
consecutive block numbers to be read in one pags across the tape,
Block numbers 0, 1, o0., 377, 400, 801, ..., 777 translate to
physical blocks 4, 3, .,., 7%§i 7369 TT4s 200, 0o If A(2)=1, the
physical bleck number in I(8=17) is used without translation,
This allows tepes with mere than 1000 bloeks to be read,

If all blocks are transferred successfully, the instruction
skips, leaving the address of the last word trensferred+l in A(3-
17) with A(0=2) unchanged, the number of the 1last bleck
transferred+d in I(9-17), and zero in 1(0-5)., If an error occurs
on any block, the instruction does not skip, 1(9-17) contains the
number of the block in which the error occurred, and I(0=5)
contains the number of blocks remaining, including the one that
was 1in error. Furthermore, an error code 4is placed in Ag

Cpef e
= ta&pe unit is not in automatic statua
= block cannot be found {probebly bad tape)
= 1llegal core address
= checksum error (the data transfer took place enyway)
= mark track error (probably bad tape)
- Gata channel error (serious hardware malfunction)
= NO Write pernit

W AR == O

For rewind operations, the instruction skips uniess the tape
unit is not in auntomatic status, in which case A is cleared,

Drum Fleld

A drum field is a 20000 {octal) word block of medium=speed
memoYy., Trensfers take place between the drum and core mewmory
The initial drum address and count (number of words transferre@}
must be multiples of 40 (occtel) words. A drum field, like the
drum, is circulars 4if a transfer extends past the end of the
field, it will "wrep around® to the beginning of the same field.
A transfer may not cross a core bourdary. The core address need
not be a multiple of 40 words., If the count is zero, 10000 vords
will be transferred.

- Mta 300 creates a drum field, The capability dindex 1is
specifried by A{12-47). If A{O) is i, the absolute field mumber in
A{5=11) is used, and writing on that field will be illegal (any
absolute field may be created in this "read-only” mode). The mta
300 skips if successful.

The core address for the transfer is specified by wé3«&7§,
the drum address/L40 by I{6-12), &nd %the word count/40 by A(6-12).
Note that the drum address apd word count appear in the inormall
position in the word. A(43) is 0 %o read from the drum, 1 to
write, The drum ivk skipe if no drum error occurred,

A) 1 count |R/W] .
v} 56 12 43 4k i?J

T | drum address] b
(¢ 5 6 3 kY4

1 1 core address
TS iﬁj

Mea 104 and-mba 405 are used to resd any absolute drum
2ddress. The format is the same as for a drum ivig, except that
the drum field comes from I(0=5). Iita 4104 resads fields 0=77, mta
105 reads fields 100-177. Kta 404 and mwba 105 skip if no drum
eryror CeCurs,

Programmed Queue

Qusues are described 4n Part &4 of this Instruction HManual
(miltiprocessingl.

(%) Hardware 1/0

The design of the PDP-1 allowas certein I/0 operations to oe
performed directly by users., An extensive and somswhat accurste
description of this facility mey be found in memo PDP=33,
Input/Output in the PDP-4-X, PRL must be on to opsrate hardware
directly (see description of mta 403),

Mta 306, with OT in A(0-5), creates a hardware I/0 capabil-
1ty. A{6-41) has the I/0 device number. A(42-27) has the
capability index. The mta 306 skips 1f succesaful,

The following device numbers are currently used?

4 -~ new drum A

2 - new drum B
16 - teletype input
47 - teletype output
20 - microtape unit monitor
24 - microtape data control
22 - speech controller
8% = ditto
24 - ditto
77 - microtape motion control

Some of these devices are described in separate memos, Most
require special turn-on procedures, Devices 20, 24, and 77 cannob
be assigned; microtapes are referenced by other means,

(k) Sphere

one of the I1important concepts in timesharing ls that of
extenslibility., A timesharing system is extensible if 1% 1is
possible, from & console, to construct z2nother timesharing system
underneath the first, It should be possible to change the
characteristics of the systemi for example, ocne might want <o
cause what would normally be Lypewriter ocutput to become spolten
speach, Extensibility goes a long way toward meking a timesharing
system both useful and general, The PDP-1 timesharing system is
exge?sibla. The objects which make this posslible are spheres and
entries, '

Everything which has been sald about “progrems® in reality
- applies to spheres., The user geis & sphere when he logs in, Each
sphere has 1ts own address space, proc¢esses which run in ¢hat
address space, and capabilitles which those processes may lInvoke,

The initial user sphere may have capabilities O through A7
even when PRL is off, Other spheres may notj they must have PRL
on to have any capabilities,

Mta 302 creates & sphere, A£12=i72 has the capability index,
T{3-27) has the fault entry addresa (seo below). The mte 302
skips if successful, The sphere 1n which the mita 302 is executed
becomes the superior of the sphere which 1s created. The initial
state of the sphere 18!

memory bound 40000

attachments none

PRL off

processes none

process hoard 0

run indicator off

breakpoint -0,0,0
variables disabled)

illegal instruction -0 {disabled)
return

1llegal memory -0 (disabled)

reference retwn

There are two kinds of sphere capabillities, master and nen-
master. Mta 302 creates a master sphere capability, There is at
- most one copy of a mester sphere capabllity, owned by the
sphere’s superior. Whenever & master sphere c2pabllity is granted
or shared (by mta %05 or an approprinte sphere ivk), the new copy
is & non-master sphers capability. When a master sphere capabil-
ity is deleted (elther explicitly or by granting i%), the sphere
no longer hes a superlor, The sphere itself is deleted only when
all capabilivies referring to it, master and non-mAster, are
deleted, Mta 501 and mta 502 are considered granis,

Core modules that ave not assigned as %real® cores may be
mde into attachments, An attachrment is a core module that is
shared among several spheres, I i8 & "real® core module in one

of the spheres and an atitachment in each of the others., Memory
references to &n attachment are directed (effiaien@ly) to the
“attached "real® core module. Cores which are attachments need neot
be consecutively numbered. An attachment will disappear withoub
warning if the attached core 41s deleted. The core O of & sphere
with PRL on cannct, unfortunately, be attachedp the read//vrite
sphere ivk must be used to reference such & core.

Eech sphere has an enable or run indicator, Processes in the
sphere may run only if ¢he indicator is on. When the irdicator 1s
off, no processes mBy run or be creeted by an enter. When €he run
indicator 1is turned off, processes that are in "soft" waits (a1l
waits except enter, queue, and hardware IL/0 waits) will be
removed from the wait, They will re-execute the instruction when
the run indicator is turned back on. Processes that are in enter,
queue, or hardware I/0 waits may have the wait complete, but they
will not resume running. Certain operations on spherss, such as
‘manipulation of processes, mey be done only when the run
indicator is off.

gertain instructions, including all unrecoverably idllegel
instructions, are treated as enters into the superior sphere,
{see the section on enters.) Recoverable illegal instructions and
illegal memory references are treated as enters if they are net
handled by the illegal instruction or 1llegal memory reference
refturns. If the sphere has no superior, the instruction waits
until the cphere gets 2 supericr (possibly forevey).

When a superior enter happens, the enbtered process starts
- executing at the fault entry address, Ita A register hes the

index of an entered process capability. Its I reglster has <the
reason for the traps

0 = illegal instruction
1 - lock fault
2 = ESI trap
= 1/0 function busy trap (hardware devices only)
-~ bpt trap
5 = hlt
6 = illegal memory reference, return not enabled,
7 - unused :
10 - mta &4
11 - mta 5
12 = mta 6
13 -~ mta 7 {dsm)

If the entering process is Yrestarted®, it will enter agailn
{(immediately, unless its zun 3indicator 4is off) without re=.
executing &ny instructions, unless 1ts registers have bheen
written on with a sphere 1ivl, :

There are three "breakpoint® registers assoclated with each
sphere hat enable the execution of instructions ¢o be counted at
(reasonably) high speed, The registers will herein be c¢alled bpl,

bp2, and bp3., Bit 6 of the F register 1s celled ESI (execute
single instruction). Whenever it is on, & special ESI trap occurs
to the supervisor at the end of each 1instruction (including
supervisor calls, enters, etec,) executed by the precess, In
addition, the Dbpt instruction (®breakpoint®, 770044} causes a
special bpt trap, The brealpoint mechanism can be disabled by
setiting bpi to -0,

éf*) Whenever bpt or ESI traps occuwr from any process (no
checking is done to see that it 1is the same process each time)
the following action 1s taken, Bpl(0) will be called A, bpi(i}
will ke called B. e

"Meaning® of A and B?

AB = 00 ¢ not & superproceed
40 ¢ superproceed, haven®t hit bpt yet
04 3 hit bpt, proceeding under ESI
11 : proceeded, further bpts illegal

(ESI trap)

_ bpt trap)

0
N
O~ A
i1 -+ B N
: ave the Instr at
%i he address in bpl
n bp3, replace
replace bpt wit Rt with bpt

the instiyr in bp

restart
pPEOCEess

4 - ESI
restare process

Sphere ivks

If A{14)=0, the opération is 2 read/write core. A{13) is O %o
read the invoked sphere's memory, i to write. Either of the core
modules taking part in the transfer mdy be an attachment. The
word count and sphere address must be multiples of 40, The
transfer mby not cross & core boundary in either sphers., If FRL
ia on in either sphere, locations O thra??h T7 of that sphere may
not be read or written on, The word count/40 is in A(6-42)s if it
is =z2ero, 10000 words will be transferred. The addresa in the
involeed sphere is in I(3-17), and the address in the invoking
sphere 4s in W(3=17). The instruction skips if successful.

Y | count g%wg of |
S ¢ 5 0 15 1
| | _sphere address | 0)

02 3

WL L core eddress i
e S «

Other sphere ivkss
code in A Operation

12 :
Suppress processing. The run indicator i1s turned off.

32 .
-Permit processing. The run indicator is furned on.

Attach, The core module of the invoked sphere (the
attachee) specified by I(15-17) becomes attached to the
sphere executing the ivk as the core mctule speeified by
I(3=5). This instruction will succead if the attached
core exists (&s an attachment or 2 real core) and the
-agtaching core is not & real coére, If the attached core
is itself an attachment, its attachee will be used, I
the attaeching core is & previous attachment, it will be
removed., An attachment may be made and m2intained whether
the run indicator is on or off, Skip if successful,

Reverse attach, Similar to attech. The core mcdule of
the d4nvoking sphere specified vy 1{15-47) becocmes at-
tached t0 the invoked sphere as the core module specified
by 1(3-5), Skip if successful,

122

i32

i52

172

b2

h32

hs2

552

Read process state, The registers of the process whose
mmber 12 in I are regd and stored in gix consecutive
words. beginning at the address in W(3-17). The order is
A, G, I, X, F, eand W, Procesalng must be suppressed,
Processes are numbered beginning with 1. This instruction
will fail if the numbered process doeg not exist or %he
run indicater is on. Skip if successful.

Write process state., Similar to read process state. This
will fall if the numbered process does not exist, the run
dndicator is on, or the process 1s in & west. Skip if
successful .

Read breakpoint state. The - three words of breakpoint
state are read into three consecutive words beginning at
the addvess in I(3-17).

Write breakpolint state. Similar to read breakpoint state,

Create process. A new process is created for the sphere,
and becomes the highest numbered process. The process
number 48 returned in A. The run indicator must be off,
The instruction faills if no preocess is available. Skip if
successeful, : '

Delete process. The pr@ceas' whose rumber is in I is
deleted. All higher numbered processes are renumbered. I
the process is in a walt 1% willl be deleted anyway, but

- the process hoard will diminish by 1. This instruction

fails if Che numbered process dees not exist or the run
indicator 1s on. Skip if successful.

Count processes. The number of processes in the sphere is
returned in A, '

- Subjugate. The sphere in which the ivk wes executed

becomes the superior of +the 4invoked sphers, Tho I
register oontzins the new fault entry address, The
invoked capability becomes a master sphere capabilitys
Ay processes waiting to enter will enter immediately
unless the run indicator is off. This instruction fails
i the sphere already has a superier. Skip if successfuls

572

612

632

652
672

Execute meta, <The ¥ register is moved to A, apd %he
meta-instruction whose code was originally in 4(0=8) is
executed as if by a process in the spheve., Valuss
returned by the meta-instruction will be placed in A and
I. Only instructions S mta 200 my be execubed., The ivik
1z 1illegal if the meto=instruction is illegpl. Skip 1if
meta=-instruction skips. :

Reverse share, A capability 1in the invoked Sphere is
copled and the copy placed in the C=list of the sphere

- exXecuting the instruction,

Share. A capability in the sphere executing the

instruction 1s copled and the eopy placed in the Ce-ldat
of the invoked sphere,

Reverse grant.

grant. Grant and reverse grant are similar to zhare ang
reverse share, except that the donorfs copy is deleted,
Entered process capabilities m2y be granted {they may not
be shared),

Format of (reverse) share and grant

The capabllity in the donor specified by 1{6=11) 48 read
and placed in the C=1ist of the receiver at the index in
I{12-27) ir non=zero, or the first free index otherwise.
If successful; the index of the capability created in the
receiver is placed in A and & copy of the capability in
I. Il unsuccessful, either the requeated index in the
receiver (or, if 0O was requested, every dindex) was
already occupled, in which case the capebility at that
index {(or 4ir O was requested, the last irdex) is returned
in I, or else the index in the receiver was available but
no cap2blliity (or, in the case of (reverse) share, en
entered process capability) existed a% the specified
index 4in the donor, in which case I is cleared., Skip if
successiul . '

(%) Entry

An entry is a user<programmed capadbility. The actlion which
ccoewrs wnen an entry capabllity is invoked is entirely under 4he
control of a program. For example, &n entry can be used to
sirmulate any of the other kinds of capabilities,

There are two kinds of entry capabilities, master and non=
master, Invoking & master entry capability performs operations
relating ¢o the entry itself, Invoking a non=raster entry
ggpability sets in motion the entry mechanism %o be described

iow,

For each entry there is at all times exactly one copy of 2
master entry capability, owned by the sphere which created the
entry. Whenover a master entry capablliity is granted or shared
(by mta 405 or an appropriate spheve ivk), the new copy is a none
magter entry capability. When =2 moster entry capabllity is
deleted (elther explicitly or by granting it), the entry becomes
unuseabley involking non-paster entry capabilibties corresponding
%o the same entry will be illegal.

: Each copy of an entry capebility has a G=bit transmitted
Word, When an enbry capability is granted or gshared, &the
transmitted word is copied, The transmitted word of a master
entry capability may be changed by invoking the capability with
the desived transmitted word in A4(12-17) and A{0-11) ciear, The
transmitted word of 2 non-m2ster entry capability cannot be
changed. The +transmitted word 38 a tool for distinguishing
- several simlilar entry capabilities without creating & separate
entry object for each ocne, ~ '

Mta 307 creates a master entry. The transmitted word is
initially zero. The I vegister contains Gthe entry saddress
(explained below), A(iami?} contains the capabilily indeX. Gne
mta 307 skips Af successful. ‘

When & non-mRster entry capability 4s invcked, & process is
credted in the sphere which created the eniry (the enterse)., It
starts executing 8t the entry address which was speeiried when
the entry was created, Its A 18 4nitialized to the index of an
gntered process capabil ty which 1s created when +the entry is
LTHAVOKed (o8 z“‘fﬁ"“g@ ¢entains the ¢ransmitted word of the
invoked capability. Its I(amii} centains the variant of the ivk,

A process <€yl to enter will wait until 21l of the
following are trues 1) Processing is ermbled in both the entering
and entered spheres. 2) A process is available. The process is
teken from the entered spherefs hoard, A progxam which wants ¢o
be certain it can be entered should set 4its hoard. 3) A
capabllity index in the entered spheve is available for %the
entered process capabllity.

An entered process capability is the enterce’s "1link® to he
enterer. There 4s exactly one cepy of an entered procoess

capabilitys it may be granved but not shared. The following ivks
may be performed on an entered process capability.

If A{24) 48 zero the operation is a read/write core operc<
tion. A(43) is O to read the enteree’s core, 1 %o writo. The
rnumber of words to transfer/40 is in A{6~12)y if this is zero,
10000 words will be transferred, The address in the enterer 4s in
1(3-17) and must be a multiple of 40 words, The zddvss in the
enteree 18 in W(3=17). The transfer rmust not cross a core module
boundary in either sphere, The instruction skips if successful,

A | |
0 ~ 5 b
X 0 O}
_ e
W |] ;address in enteree 1

U €3 . | 17
Other entered process ivisyg ’
code in A Action
(&N |

The A, I, and W reglstera of the entering pfacess are
resd into three consecutive words at the address given in

- Z(3=17).
3 - ‘
The ¢three congecutive words at the address given in
I(3-17) are written onto the A, I, and W registers of the
entering process. . :
51 .
Restart. The entering process 4s restarted and the
- entered proecess cap2bility is deleted. ‘frhe entering
brocess will not have 4i¢s PC advanced or AAL indicator
cleared, hence, unless something has changed, it will
execute the same instruction again. — ~
T2 _
Returm., The entering process is restarted and She
entered process eapability is deleted. The FC of the
entering process is advanced %0 the next instruction, ite
_AAYL indicator 1s cleared, amd, if 4ts ESI irdicator is
on, &n EST tvap will occur. This mekes the enter appear
to have completed, 1 : ‘
i1z

Cause illegal Iinstruction., The d4vk that the entering
process executed is treafed as a recoverable illegal
instructlian. The entered process capability is deleted.

- The process’s PC 1s not advanced, nor is AAL cleared, so
that Che process will appear 1o have not yot executed the
iliegal imstruetion.

131

i51

Return and skip. Simliar to return (71)3 2xeept that the
PC is advanced one more time, making the enter appedr o
ﬁkip ° '

Read preocess number, The nurber of the entering process
in its sphere (1, 2, 3, ...} 18 read into A, and the
sphere to which it belongs (low 12 bits of sphere
capability) is reed into I. (Note - Unless processing 1is
suppreased, the process number msy not be fixed,) This
instructicon akips unless the entering process was deleted
{e.go by logout) since it entered.,

SUMMARY OF META-INSTRYCTIONS

mta O Copy A into W,

mta 3 Copy I into W,

mta 2 Copy W into A,

mta 3 Copy W into I.

mta 4 Cause program trap 10,

mta 5 Cause program trap 41 (ID executes commands),
mta 6 Cause program trap 12,

mta 7 Cause program trap 43 {dsm, noermal completion).
mta 100 Enter low priority mode.

mta 104 Read absolute drum fields O through 77.

mta 105 Read absolute drum flelds 100 through 477.

mta 200 Read illegal instruction return to A,'

mta 202 ‘Set illegal instruction return from A,

mta 202 Read 1llegal memory reference rebturn to A,

mta 203 Set 1llegal memory reference return from A,

mta 204 Delete capability in A(242-17)., No skip.’

mta 205 Detach. Core number from A(3-5) or A(15-47). Skip if ok,

mte 206 Read memory bound to A(3-5), attachments to A(22-17).
No skip.

mta 207 Set memory bound from A(3-5) or A(45-47). Skip if ok,

mta 300 Create drum fleld., If A{d)=1, use absolute field in A(5-14).
If A{0)=1, read only. Skip if ok,

mta 302 Create sphere. Fault entry address from I. Skip if ok,
mta 303 Create queuwe. Initlal population is -jIj. Skip if ok,

mta 306

mta 307
mta 400
mte %04
mta 802
mta 403
mta 404
mta 405
mta 406
mta 407
mta 500

mta 504
mta 502

Create

=i W0 R0 >

a3

o
]
N
s

T/0 devies

Devics

mlcrotape
buttona

clock
reader
punch

typewriter
hardware 10

Create entry,

Read capability in A{42-17).

A(6-44} coutaina
LTANEPOTY Ne,

Skip i ok,

console no,

aonaole no,
device no,

Entry address from I, Skip if ok,

No skip,

Exchange capabllities in A{6-41} and A(22-47), No skip,

Turn off PRL., Ne skip,

Turn on PRL,

Count items 1n C-list, return number in A,

Copy capability at I{6-44) to 1(iz-i7).
Read pracess hoard to A,

Set process hoard from A,

No 8kip.

No skip.

Skip if ok,

Aseign and deassign external equipment,
g(o-s) Operation

a
e

3

Disown capability in I{6-41),

Claim capability &t index in I{6-14).
18 in I1{32-47),

Assign external levels,) £ 7s
external level 1 is assigned if A{1410)=d,

Skip 1f ok.

Deassign external levels as abovéo
Asslgn exterml register, shared,
Asslign external register, private,

Deasgsign external register,

Skip if ok,

For all i, 4 ¢

No skip,

i<

No skip.
Skip if ok,
Skip if ok,

Return index in A,

Skip 1f ok,

Ts

Skip if ok,

Index in Belf

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

