PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
CAMBRIDGE, MASSACHUSETTS 02139

SUPPLEMENT TO PDP-35
INDEX REGISTER and MICRO~PROGRAM INSTRUCTION CLASS

June 12, 1968



-1-

An index register is an active register which is particularly
useful for modifying operand addresses. Its name derives from its
use 1n indexlng through arrays since its contents (the index) can
be added to the address field of an instruction (array base address)
to determine the effective address for the desired operand. 1In
dealing wlth linked data structures it is often convenient to load
a "pointer" into the index register and to have a "displacement"
quantity in the address fileld of the instruction. Thus the effective

address becomes the pointer value offset by the displacement.

On the PDF-1 the index register (XR) is an 18-bit register.
Effective address calculation is performed by one's complement
addition of the low order 12-bits of the XR and the address
fleld of the instruction. The result is a 15-bit extended address
which 1s relative to the current core if the machine is not in
extend que. If the machine is in extend mode, the 15-bit index
sum is absolute. The indexing operation does not require any

time in addition to the instruction time.

Since there are no spare bits gvailable in the op code to
designate the indexing operation the "1" bit (bit 5) 1is used to
designete ‘ther Indirection or indexing, depending upon the state
of the machine .- set by mode instructions. The machine remains
in any given mode until another mode setting instruction is executed.
Mode setting lnstructions are:

nam /set normal mode, subsequent "i" bits will
/mean indirection

iam /set index mode, subsequent "i" bits will
/cause an effective address to be calculated
/using the XR.



-2

aam /1f in normal mode the next (only) instruction
/indexed, independent of the "i" bit.
/1f in index mode, the next (only) instruction
/wiil be indirected.
/if the "i" bit of the next instruction 1s
/set both indexing and indirection will
/occur, in that order,
/(i.e., Indexing first.)

Instruction to load the index register from a memory reglster:

1xr /load index register (similar to lac and 1lio0)



-3

Instructions in the PDP-1 micro-program instruction class are
quite useful for incrementing (stepping) the XR contents, and
exchanging and/or operating upon the contents of the XR in conjunction

with other active registers.

The instructions Jmp, Jjdp, jda, and Jsp always behave as if in

normal mode. aam still applies, however.

Examples:
In the index mode the instruction

lae 1 array2 load the AC with the content
of memory

location array2+C(XR).

/pregram which stores zeros in all of arraye

n=100

dimension array2(n)

iam /enter indexing mode

xr (-n /initial value into XR

dzm 1 array2+n /store a zero into the array
SXXP /step xr and skip if it is 40
Jmp .-2 /continue loop

L

. /that does it%.



b

MICRO-PROGRAM INSTRUCTION CLASS

Sample Micro-program instructions

symbolic
A+T

A+IA
a+181x

A+ICP
A+ICP|

AHIX>

X~>IXA|

ZAIX
SA>
SAAP
™M
CXP
TAXI

TAAXI

octal

773600

773700
773760

773606
773611

773633

776420

771160
771210
774302

T7E 004

776202
TT4060

774160

action

computes sum of AC and IO and does nothing at
all with 1it.

the sum of the AC and IO is put into the AC.

the sum of the AC and I0 is put into the AC,
10, and XR.

skips 1f the sum of the AC and IO is less than
-0 or equal to +0.

skip if the sum of the AC and IO is not less
than -0 or equal to +0,

the sum of the AC and IO is put into the XR.
If the sum was -0,+0, or greater than +0, the
Instruction, w:1ll skip.

exchanges the I0 and XR. The "old" I0 is also
put into the AC. Thils instruction skips always.

the AC, I0, and XR are cleared.

skip if the AC plus one 1is greater than +0.
add one (step) to the AC and skip if it is +0.
skip if the XR is -0 and clear the XR.

skip if the XR is -0.

transfer the contents of the AC into the XR
and I0, the AC is cleared.

same as TAXI, but the AC is not cleared.



S

The micro-program instruction class has the following instruction

format.
BIT 012345678 910112 14 15 17

j1T21]1 111X XY|Y Y AlA A SIS S S|

inst. part
(=77)

operands ;“‘\k\‘\\
specifies a column

in the chart below

dperation

|

specifies a ro;\\\<i\

in the chart below

L s8kip condition

assignment of result

symbolic Specification for Micro-program operations

A=aC, I=I X=XR
e~ o i
0060 TI 77 7x

) a cAR o X

o0l % H I

10 (A>T (x=A) | (a2

611 AMI AMA |2 MI

zZ
pollzem) | vz |xvA  |xVI

(] <A

ol st ANL | anA | XL

(] 52: —

olczorezl gz | %77 x Z
5X

RICTEPAN A X+A | XHT

11_ S (Step, le., add one)

OPERATION (result)

T (True, test, or Transfer)

C (Complement (negative))
exchange (see explanation below)
M (arithmetic Minus)

V (inclusive OR)

A (bitwise AND)

~ (exclusive OR)

+ (arithmetic Plus)



-6

The functions of the result assignment and skip condition

fields are as follows:

ABA Bit 11=1 will put the result in the AC (a)
Bit 12=1 will put the result in the IO 51)
Bit 13=1 will put the result in the XR X)

888S: Bit 14=1 will cause & skip 1f the result is >+0 >;
Bit 15=1 will cause a akip if the result is <-0 (<
Bit 16=1 will cause a skip if the result is = + gP)
Bit 17=1 will cause a skip 1f the result is = -0 (M)
The execution of mlcro-program instruction computes the result specified

by the XX and YYY bits (i.e from Table on previous page), puts this

result in the specifled register (s) and skips 1f any of the specified

condltlons are true. Note that skip condition 1s evaluated on the

result of the micro-program, not the final contentis of any given

reglster, and the result need not be asslgned to any register. Thus,

1% 1s possible to test the sum of the AC and I0 to see if it is

equal to -0 or greater than +0 without destroying fhe contents

of these registers. The instruction to do this is 773611 or,

symbolicly, A+IM>. All opr 1 instructions take 5 A seconds.

The "T" operation clears the transmitted register after the
transfer. This may be prevented by assigning the result back to

the transmitted register. See the examples.

The exchange operation is a speclal case. The result I (A1)
means that the result of the function 1s the old I0 register, but
in addition the accumulator is placed in the IO. This Secondary
assignment is done before the assignment given by the AAA bits in

the instruction. Thus, the instruction A-+I (772400) will move

the AC to the I0, A-+IA (772500) will swap the AC and I0, and A-IT
(772440) 1s a nop (because the primary assignment is to the IO and
the result 1s the old I0).



USAGE

The assembler considers any symbol consisting of capital letters
as a micro-program instruct.on. The entire instruction must be in
upper case, and may appear in any expression, e.g., storage word,
constant, etc. When typing into ID the instruction must be preceded

by a single quote (').

ilicro-programs are specified by concatenating three "fields"
- the resuit field, the assignment field, and the skip field. The
characters in all of these must be 1n upper case and there should

be no separator between the flelds.

<result fleldd><assignment fieldd<skip field>

<result field> must be one of the twenty-eight results given in
the Table on a previous page.

{asslgrment fleldd> may be null (no characters) or any combination

of A, I, and X to specify in which registers
the result will be placed.

<sklp field> may be null or contaln any combination of >, <,
P, M, l, - and )

> means skip if result 1s greater than +0
P means skip if result is equal to +0
M means skip if result is equal to -0
< means skip if result is less than -0

| means complement the cpecifiled skip conditions
= and _ means skip if result is either +0 or -0

Jince the octal representation of a microprogram instruction
1s computed by exclusive - OR'ing all of the specifications within
each field, redundant specifications may lead to unexpected results.

For example TAIII is the same as TAI; and TAID> 1s the same as TAI.



-8~

An error in syntax results in s uer error message from the assembler.
Note that the add and minus instructions don't always set minus
zero to plus zero and do not set tiue overflow flip flop. The step

instruction does set a minus zero to plus zero, i.e. -1->+0.



	001
	01
	02
	03
	04
	05
	06
	07
	08

