PDP-1 COMPUTER
EIECTRICAL ENGINEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS
02139

Sy

PDP-35

INSTRUCTION MANUAL

PART 1 —— BASIC INSTRUCTIONS

Yz,

S Fef ONE S IRLe

21 March 1972

1. Basic Instructions
1.1 Word Formats

Each PDP-l word is 18 bits long. The bits are numbered, in
deciml, O to 17 from left to right. In this manual, all numbers

are octal, unless otherwise specified. The numbering of bit
positions in words is always decimal.

0 1 2 3 4 5 6 7 8 94044 12 43 44 15 16 17
[] L] [L] []

e

first ’ last
octal digit octal digit
1.1.1 Number Formats

The entire word may be regarded as a signed 18-bit number.
Bit O is the sign bit. It is on (i.e., & "1") if the number is
negative. There are two different ways (called one's complement
and two's complement) in which +the PDP-1 hardware can interpret
signed numbers. Positive numbers are the same 1n both representa-
tions. Positive numbers are represented in the ordinary birery
notation. The range of positive numbers that can be represented
is 0 to 377777 (131071 decimal). ‘

In ones's complement, the negative of a number is formed by
complementing all of its bits. Hence -1 1is represented as 777776
in one's complement. 400000 (=131074 decimal) is the most
negative number that can be represented in one's complement. Note
that there is a representation for -0, 777777 Since =0 and 40
are similar in their arithmetic properties, this dual representa-
tion 1is an ambiguity which can be the source of difficulties.

In two's complement, the negative of a number is formed D
complementing all bits of the number and then adding 1. Hence =
is represented as T77777. 400000 (-131072 decimag% is the most
negative number that can be represented in two's complement. Note
that the negative of 0 is 777777+l which 1is O, In twols
complement notation, O 1s represented uniquely.

Number (base 10) One's Complement Two's Complement

0 0 0

-0 T7777 no representation
5 5 5
-5 777772 77773
131071 37177 TOree
-131071 400000 Loooot
-131072 no representation 400000

By ignoring the sign convention, & program could deal with
dta words as unsigned numbers ranging between O and 262143
(decimal) or 0 and 777777 (octal).

The one's complement addition rule for 2 18-bit numbers is
as follows. Add the 2 numbers in the normal fashion, propagating
carries to the left. If there is a carry out of the last bit (bilt
0) add this carry in at the right hand side of the word (bit 17;.
The addition is said to overflow if the result does not correctly
represent the algebraically correct sum, i.e., the magnitude of
the correct result is greater than 377777.

The twol's complement addition rule is similar, Add the 2
mmbers in the normal fashion, propagating carries to the left.

Ignore any carry out of bit O, Overflow is said to occur if both
operands are of the same sign and the sign of the result differs

from the signs of the operands.

In both one's and two's complement, the overflow condition
is equivalent to the condition that a carry occurred from bit 1
but not from bit O or vice versa,

Example One's Complement Twol's Complement
. 7 . { 7
+ =100 + 77767 + 777700
—=r S ~TTTToT
123456 123456 123456

+ 666666 + 666656 + 666666
“ToIZ3UE TIOI23WT = 012345 TIOI23LT = 012344

1.1.2 Addressable Instruction Format

Instruction Part Address Part

A A .
“0 14 2 3 4 5% 7 8 910411 12 13 14 15 16 17

5
Jc ¢ c ¢ ¢c]I1[A A A A A K R A & K & A]
L \)
¢ T

Op. Code 1 of 4096 (decimal) locations

the "i" pit

The "instruction part" consists of 5 bits (the "op. code")
that tell which instruction the computer will do if 1t executes

this word, and the "“i-bit" which has to do with address
modification.

Except for Jmp and Jsp, addressable instructions take a
minimum of two memory c¢ycles =—- one to fetch the actwl
instruction and another to fetch the operand. Jmp and Jsp do not
take an operand and consequently, reduire a minimum of one cycle.
The amount of time required for the execution of an addressable
instruction depends on what addressing is done (see PDP-35,
INSTRUCTION MANUAL, Part 2 for complete informetion). Under the
most common conditions, the actuwl time required for instruction
execution is the minimum time given above.

1.1.6 Non-addressable Instruction Format

1 2 3 4 5 6 7 8 914011 12 13 14 15 16 17

0
[C C C C C|E E E E E & EE E E E E B
I) 3
Vv "

Op. Code Extended QOp. Code

The low 13 bits are actually an extension of the op. code,
further specifying what the computer i1s to do. Non-addressable
instructions never require more than one cycle because they do
not reference memory, except for the ivk instruction with PRL on

(See PDP-35, INSTRUCTION MANUAL, Part 5).

1.2 Regilsters

The PDP-1 contains 6 18-bit registers which define the state
of the wuser's process. They are the. A (accumulator), I
(input/output register?, X (index register), ¢, F (flag regis-
ter?, and W. When the user first logs in, all of these registers
contain 0 (all bits off). This defines the initial state of the
user's process. Each of these registers has its own properties.

1.2.1 Accumulator

The accumulator is the ma jor register for use in processing
& ta. Most arithmetic and logical instructions operate on data in
A and leave results in A,

1.2.2 Input/Output Register

The input/output register was origimlly used primarily for
input/output operations. This is no longer true. I 1s now a
secondary accumulator. Many arithmetic and logical operations can
be performed on data contained in I.

1.2.3 Index Register

The index reglster has two functions. First, it 1s used in
addressing memory (See PDP-35, INSTRUCTION MANUAL, Part 2).
Second, it is, like I, & secondary accumulator.

1.2.4 G Register

The G register contains the 15-bit program counter, the
overflow bit, the extend mode bit, and the arithmetic mode bit.

The program counter (PC) is bits 3-17 of the G register. The
purpose of the program counter is to tell the processor where in
memory the instruction that is to be executed next lies. The
program counter 1is incremented after each instruction so that
instructions are executed sequentially, according to their loca=-
tions 1n memory. When the program counter is incremented, carries
out of bit 6 of G are lost. Thus, the instruction executed after
the instruction in location 7777 1is the instruction in location

0. Certain testing instructions increment the PC an extra time,
causing an instruction to be skipped.

Bit O of G 1is the overflow bit (WF). It is set to 1l by
certain arithmetic instructions when overflow occurs, and cleared
by the szo instruction. Bit 1 of G is the extend mode bit (EXD).
This bit is used in addressing (See PDP-35, INSTRUCTION MANUAL,
Part 2). Bit 2 of G 1s the arithmetic mode bit (TWOS). If this
bit 1s off, the processor is in one's complement modet if this
bit it on, the processor is in two's complement mode.

The format of the G register is shown below.

0 4 2 3 4 5 6 7 8 91011 12 413 14 15 16 47
OJE|T|P P P P P P P P P P P P P P P
vViX|W/|C ¢ C C CCCGCOCOCZCOCGCTZCTCUC
F|DpD/lo|]3 4 5 6 7 8 9 4 4 14 14 14 1 1 1
S O 1 2 3 4 5 6 7

1.2.5 Flag Register

The flag register contains the 6 program flags and several
bits which define various states of the processor.

The program flags are 6 1-bit registers that may be quickly
and conveniently set and tested by programs (see Operate and Skip
class instructionsd+ Als see 7“4 3.2:6 , the L@k+ Fen

The 3 Dbits AMD, AEF, and AAL determine the mode of
addressing which the processor will use on memory referencing
instructions (see PDP-35, INSTRUCTION MANUAL, Part 2).

The 2 bits SBH (Sequence Break Hold) and SBM (Sequence Break
Mode) determine the sTate of the seqUence break sysTem (see ~PDP-

35, INSTRUCTION MANUAL, Part 3).

The ESI (Execute Single Instruction) bit causes the proces-
sor to trap after each instruction 1is executed (see PDP-35,
INSTRUCTION MANUAL, Part 5).

The PRL (Program Reference List) bit affects the way in
which the ivk (invoke) instruction Works (see PDP-35, INSTRUCTION
MINUAL, Part 5). When the PRL bit is 1, references to memory
locations O-77 are illegal,

The format of the F register is as followse

0 4 2 3 4 5 6 7 8 91011 12 13 14 15 16 17

A A A|lS S| P|E P P P P P P

M E A|B B|R| S| F F F F F F

D F LI M H|LII 1 2 3 4 5 6
1.2.6 W Register

The W register, a software register maintained by the time-
sharing supervisor, is used solely for communication with the
supervisor., Certain mta and ivk instructions (both are supervisor
calls) wuse the W register (see PDP-35, INSTRUCTION MANUAL, Part

5).

1.3 Instructions to Set the Arithmetic Mode

The PDP-1l processor may operate in either of two arithmetic
modes, one's complement and two!'s complement. The arithmetic mode
in which an instruction 1is eXxecuted 1s determined by the state of
the TWOS bit in the G register. When the TWOS bit is off

contains a 0}, the processor is in one's complement mode. One's
complement mode (TWOS off) 1is the default mode. The following
instructions change the state of TWOS.

Ynemonic Op.Code Name Function
e2m 770060 Enter two's mode Set TWOS to 1
elm 770061 Enter one's mode Set TWOS to O

The instructions add, adm, sub, mul, div, idx, isp, sft,
opr, and opr 1 (the micro-program instruction/ behdve differently
in one's and two's mode. Address arithmetic is always done in the
current arithmetic mode. :

1.4

H

y
The

Addressable Instructions

In this section, the symbol
me&ns the memor
notation
information on how addresses

I (y 1

Wty

used in the context of “ins

location referenced by the instruction "ins'.

means the

TION MANUAL, Part 2.

1.4.1

Data Moving Instructions

These

instructions serve to move

contents of
are computed, see PDP-35,

location y. For
INSTRUG -

data between memory loca-—

tions and the A, I, and X registers. These instructions copy data

words (or parts of words) from one place to the other and never
destroy information at the source.

Mnemoniic Op.Code Name Function
lac y 20 load A Copy (y) into A
lio y 22 load I copy (y) into I
xr y 12 load X Copy (y) into X
dac y 24 deposit A Copy A into y
dio y 32 deposit I Copy I into y
aap y 26 deposit address Copy the low 12 bits of A
part of A into y. The high 6 bits of
y are unchanged
dip y 30 deposit instruc- Copy the high 6 bits of A
tion part (of A) into y. The low 12 bits of
¥y are unchanged
dZny 34 deposit zero in

memory

Makes location y contain q:)

1.4,2 Logical Instructions

These instructions take one operand in A and the other from
The result is left 1in A, Each bit of the
result depends only on the corresponding bits of A and the memory
word before the operation.

a memory location,.

Mnemonic Op.Code

and y o2
ior vy oh
Xor y 06

Name
and

inclusive
or

exclusive
or

Each Dbit of A will be a 1
if and only if the corres-
ponding bits in A (before
the instruction) and (y)
were =—-—

both one

not both zero

different

1.4.3 Arithmetic Instructions

The following instructions are used +to compute sums and
differences. The "left" operand is in A and the "right' operand
is taken from memory. The result is left in A and in the case of
QﬁﬁL(add to memory), it replaces the contents of the memory

location as well.

In one's mode, arithmetic is done in one's complement. If
the result of an operation i1is =0, 1t is changed to +0 with the
exception that (-0) - (+O) results in -O.

In two's mode, arithmetic is done in two's complement.

The overflow bit OVF will be set by the add, adm, or sub
instructions if the signed result cannot be correctly represented
in 18 bits. This is the case if and only if a carry occurred from
bit one and no carry occurred from bit O, or vice versa. See the
8z ¢ instruction.

Mhemonic Op.Code Name Function
add y Lo add Sum of A and (y) to A
adm y 36 add to memory Sum of A and (y) to A and y

sub v L2 subtract A minus (y) to A

1.4.4 Multiply and Divide

Multiply and divide behave very differently in one's mode
and two's mode. Hence the actions of these these instructions
Will be explained separately for each of the arithmetic modes.

Mnemonic QOp.Code Name Function

ml y 5k multiply A times (y) to A,I 1)
r /)J’

div y 56 divide Quotient of AV (y) to A

Remainder to T
Skip 1if the dquotient does
not overflow

Multiply takes & minimum of two memory cycles plus from 3 to
15 microseconds, depending on the number of one's in A. Divide
instructions which skip take two cycles plus 20 microseconds. In
one'!s mode, divide instructions which do not skip take 2 cycles.
In two's mode, divide instructions which restore A and I and do

not skip take 2 cyclest other non-skipping divides take 2 cycles
plus 20 microseconds. A

1.4.4,4 Multiply (One's Complement Mode)

Multiply and divide deal with double-length numbers. mul my
be viewed as multiplying two 17-bit integers plus signs %o
produce a 34 Dbit integer plus two signs. A result of =0 is
changed to +0.

Result of Multiply (One's Mode)

0 1 2 16 47 0 1 2 16 17
sign——] [Jeeef | ([T T Jeeef | ersameas sign

) r 7

least significant bit

Quite often, two integers are multiplied such that the
result can be held in one register. In this case, A will be +0 or

-0, and the result will be in I, but i1t will appear to be shifted
left one bit position. A rir is instruction will convert I back

to normal single~length integer format.

Examples ==

Before mul After mul
A v A I

3 200000 1 400000
-3 200000 77776 3TTTTT
3 2 0 4
-0 anything o] o]

1.4,4,2 Multiply (Two's Complement Mode)

Multiply and divide deal with double-length numbers. mul may
be viewed a@multiplying two 17 bit integers plus signs to produce
a 35 bit integer plus sign 1in the combined A and I registers.

0 1 2 16147 0 1 2 16 17

sign—| [Jeeef | [[| [feecel |]

A I
least significant bit

When two integers are multiplied such that the result can be

held in one register, the entire result will be in I in the
conventional signed integer format.

Examples -—-
Before mul After mul
A y A I
3 200000 0 600000
-3 200000 777777 200000
3 2 0 6
-3 2 177777 177772
400000 2 7707 0

400000 400000 200000 0

1.4.4.3 Divide (One's and Two's Mode)

Divide (div) takes a double-length integer in A and I (in
the format produced by mul in the same arithmetic mode) and
divides this by a single length integer in the addressed memory
location. The result of a div is a single-length integer quotient
in A, and a single-length integer remainder in I. The sign of the
reminder will be the same as that of the dividend.

If a quotient overflow occurs, that is, if the divisor goes
into the dividend more +times than can be represented in the
accumulator (A), the div instruction will not skip. In one's
mode, &a divide will skip if the absolute value of the original A
is less than the absolute value of the divisor. In one's mode if
a div does not skip, the original A and I are preserved, except
that if A and I were both -0, A is changed to +0. In two!s mode,
if a div does not skip, the contents of the A and I registers are
preserved if the divisor is O, otherwise they are uswlly
destroyed. div never sets the overflow bit.

Examples
Bef ore divide After divide
One's Mode T™wo's Mode
A I c(y) A I A I
0 16 2 3 1 7 0
0 7 3 1 0 2 1
0 11 77773 -1 0 ~1 4
0 25 TTT7TH =3 1 -5 1
1 400000 200000 3 0 6 0
177776 377777 TTTTT4 200000 0 300000 -1
7e 0 400000 1 0 o 0
200000 0 400000 577777 200000 400000 0
6 777776 0 no skip, A and no skip, A and
I unchanged I unchanged
100000 222222 100000 no skip, A and no skip, A and

T unchanged I destroyed

1.4,5 Counting Instructions

The +two instructions idx and isp add one (in the current
arithmetic mode) to the contents of the specified memory location
and leave the result both 1in memory and A. isp skips the next
instruction if the result 1is positive, including O. Neither
instruction will set overflow. In one's mode, a -0 result is
corrected to +0, l.e., ilndexing -l results in +0, and indexing -0
results in +L,

Mhemonic Op.Code Name Punction

idx y Ly index (y) +1 %o A and vy

isp v 46 index and skip (y) +1 to A and y
if result positive skip if result 2 o

14,6 Compare Instructions

The following two ilnstructions are used to compare A with
the contents of a memory loction., The comparison is done bit-by-

bit, therefore, the contents of A are the same as the contents of
memory 1f and only 1if every bit of A is the same as the

corresponding bit in memory.

Mnemonic Op.Code Name and Function

sas y 52 skip if A is the same as (equal to) the
contents of y

sad y 50 skip if A i1s different from (y)

1.4.7 Transfer of Control

A1l of the following instructions have the effect of
changing the program counter (PC) so that the PDP-1 will begin
executing instructions eows—ef—fre—morss~l seduence.

Tm & new

Mnemonic Op.Code Name Function
jmp v 60 jump transfer control to location
v

jdp v 14 jump and deposit store G in y, Jjump to y+l
program counter

jspy 62 jump and save jump to y and save G in A
program counter

jda y 17 jump and deposit store A iny, save G in A
accumulator jump to y+L (dac vy, Jjsp J+13

cal y 16 call store A in 00100, save G in

, Jump to 00101, ignored
(51m11ar to jda iOO%

The instructions Jjdp, Jsp, and Jjda are used chilefly for

calling subroutines. The saved G register 1is the linkage
mechanism which allows the subroutine to return to the place from
which 1t was called.

Simple Examples

jdp subr Jjsp subr Jda subr
subr, O N subr, dap subx subr, O
"8 E N 4 dap Sub}{
jmp 1 subr subx, Jmp subx, Jmp

These examples show three ways in which & subroutine may be
called. In each example the method by which the subroutine
returns to the calling program is illustrated. 1In each example
the regﬁrn is to the 1location immediately following the subrou-
tine call,

1.4.8 Execute

The xct instructlon causes <the contents of the specified
memory location to be executed as an instruction. xet's my
execute other xct's. In all cases the effect is the same as if
the Xct were revlaced by the instruction it addresses. xct takes
a minimum of one cycle plus the time to do the addressed
instruction.

Mnemonic Op.Code Name Function

Xet y 10 execute execute the contents of y as
an instruction

1.5 Non=Memory Referencing Instructions

5.1 Skip Class

Instructions from the skip class will cause the PDP-l to

jumo over one instruction 1n the normal sequence 1if the skip
condition described by the low 13 bits of the instruction is

true.,

A skip class instruction has the following format -

0O 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17

[171 0 4 0]/ I[/S s S S S s S S S s s 8]

\ W ./ | & W)

Op. Code GU=skp skip conditions

invert sense of skip

Each of the low 12 bits emables a different skip condition.

Mnemonic Op.Code Name Function

skp 640000 skip never skips
szf n 64000n skip on zero skip if program flag n is =3
flag n (1<n<7) off. szf 7 skips if all=>

flags are off.

szs nO 6400n0 skip on zero skip if sense switch n is
switch n (1<ng7) off. gzs 70 skips if all
, switches are off.

sza 640100 skip on zero A skip if A (0-17) = O

spa 640200 skip on positive A skip if A(0) =0

sma 640400 skip on minus A skip if A(0) =1

SZ 0 641000 skip on Zero skip if the overflow bit

overflow (VF) is off.

A gszo instruction always
clears VF

spi 642000 skip on positive I skip if 1I(0) =0

sni 644000 skip on nonzero I skip if I(0-17) 4 0

If more than one skip condition is enabled, the instruction
skips if any (i.e. the logical OR) of the skip conditions is
true. :

The "i-bit" reverses the sense of the skip, i.e., & skip
instruction with the "i-bit" on will skip if and only if the
corresponding instruction with the "i-bit" off would not skip.
For example, skp 4200 will skip if either I 4 0 or A(0) = O. skp
i 4200 will not skip if either of these conditions 1s true. Thus,
skp i 4200 will skip only if I = Oand A(0) =1,

The following mnemonics define several useful compound skip
instructions, 1.e, each has several skip conditions enabled.

Mnemonic Op.Code Name Function
szm 640500 skip on zero or skip if A(0-17) = O or if. -
minus accumulator A(0) =1
(szm = smaVsza)
spa 650500 skip on positive skip if A > O
quantity (spa = smvsza 1)
clo 651600 clear overflow this never skipse it is

used to clear aoverflow
(clo = spaVsmeVszo 1)

1.,5.2 Shift/Rotate Class

The shift/rotate instruction class is markedly different in
one's mode and twols mode. A separate explanation of the
shift/rotate instructions 1is given for each arithmetic mode.

1.5.2.1 One' s Complement Mode

Shift is an arithmetic operation. Shifting a number lef't one
bit position is equivalent to multiplying it Dby two. A single
right shift divides a number by two. The sign bit does not change
during a shift because the sign of the result must be the same as
that of the operand. The sign blt 1s copied into the bit vacated

by the shift.

Rotate is a 1logical operation in which the register Dbeing
rotated is considered to be a ring with bits leaving one end and
coming back into the other.

The shift/rotate class may operate on either A or I or both
combined as a double-length register. In the case of & combined
(A1) shift, the sign of the accumulator is taken as the sign of -
the fX{hole 36-bit number. No shift/rotate instruction will set
overflow.

The number of bit positions of shift or rotate is determined
by how many of the low nine bits of the instruction are on. Thus,
rall, ral 2, and ral 400 are equivalent,

0O 14 2 3 4 5 6 7 8 9410141 12 13 14 15 16 17
[4 2 0 4 1| R[sh] I[A]S S S S S S S s 8]
. J [_J

vV T vV
Op.Code G6=sft I A one bit for each shift

right or left -both for combined shift/rotate

shift or rotate

Mhemonic Op.Code Name and Function

sft 660000

sal 665000 shift A left

sar 675000 shift A right

ral 661000 rotate A left

rar 671000 rotate A right

sil 666000 shift I left

sir 676000 shift I right

ril 662000 rotate I left

ripr 672000 rotate I right

scl 667000 shift combined AT left
ser 677000 shift combined AT right
rel 663000 rotate combined AT left
rer - 673000 rotate combined AT right
1s 1 Used in conjunction with
2s 3 the above to shift or
3s 7 rotate the indicated

Lg 17 number of places

5s 37

6s 77

s 1T

8s 377

1.5.2.2 Two's Complement Mode

The two's complement mode shift instruction offers a very

powerful set of operations including rotates, logical and arith-
metic shifts, normalization, and bit counting. The register
operated upon may be the A, I, AT (bit 17 of A joined to bit O of
I), or TA (bit 17 of I Jjoined to bit O of A). The A and I
registers may be operated upon independently.

01 2 3 4 5 6 7 8 91011 12 413 14 15 16 17

[4 4 o 1 1]A A A AlTI I I TI|]C C C C C
2 J\ I J

L

v Tu
Op.Code 66=sf% \Vd \/ v
A fleld I field Count

The 4 bits of the A and I fields are interpreted as followse

DIRR[R |
D = directione O => right 1 => left
RRR = operationg decoded as followsse
O .
If direction = right, do nothing to <this register.
If direction = 1left, Zeroes are shifted into bit 17,
bit O is unchangeds if bit lost from bit 1 + bit O, set
overflow (arithmetic shift left).
1le
If direction = right, see below.
If direction = left, bit O of opposite reglster 1is
shifted into bit 17, bit 0 is unchangeds if bit lost
from bit 1 # bit O, set overflow (arithmetic shift left
combined).
2¢
Shift zeroes into vacated bit (logical shift).
3t
Shift ones into vacated bit.
Ly
Shift bit O of this register into vacated bit.
St
Shift bit 417 of this register 1into vacated bit.
O
Shift bit O of opposite register into wvacated Dbit.
Te

Shift bit 17 of opposite register into vacated bit.

- ‘ ‘ / N ‘ \
que mnemaﬂ,cs?.ﬁw\ 2% wode shift instrpctious are-

0(@}/

Wllér‘ef M”e””mc L
L) Lef £
&
(F Witk e e S
é Grovs
2| Zeroes
0 One S
@ é p Pf‘ﬂf&aq"‘e
R Ra+d+e
V| re \{ef‘ﬁe bits
AL,
.,S._J gl”_‘pt
Al Ae
T| 1o
a/ & C Cﬂm)’;n@{
R

‘\I N0 /‘Md/r.ze .

de")/'nj
§p€ "l(z’ A /rec 7%44

Code 7 O
1
Z
>
1 ik 5 gt
5 v M
& v, 7
7 . 16‘ /I
¢ o L0

/—{Lsa:? L GCA vLZI/;o{Rc’,:MaAm cX
— (LpC=> LAYV LET 5 RpC »ReAvRCT
Reverse combined (LBR P LA vLCT ; RpR = ReA v RET

LSR = L2AVLET ol RR PACAVACT

BNV = RCA v BT

If & field = 01, thens

If the I field is 00, 210, or 11, then shift I until
either I(0) 4 I(L) or the count runs out. A will
contain the number of places shifted (Normalize).

If the I field is not 00, 10, or 11, then I will shift
as uswl. A Wwill contain the number of ones shifted out
of 1(17) (Count Bits).

Notete A is first cleared and then counts during the

operation, hence I field = 11 will shift in zeroes Jjust
ags I field = 10 does.

I field = 01 is reserved for future expansion.

The number of positions to move the selected register(s) is
determined by the number in the 5 bit count field. If the count

field is O, the count is taken from X (13-17).

Execution time = 1 cycle + (count-B)xO.Z microsecond

———
USAGE

ID and the assembler consider certain symbols consisting

entire of upper case letters to be twols m ift 1 e —

L The encire symporl mus € 1n upper case, and may appear 1in
any expression, e.g., storage word, constant, etc. When typing
into ID, the instruction must be preceeded by a single quote (').

All of the common operations possible with this instruction
can be specified by a 2, 3, or 4 letter symbol.

The symbols specifying shift/rotate operations are formed as

followse
M SR veylsrtw
{direction I ield X refssar—ia.ld >t m field)>

{direction field>
The direction field indicates the direction in which
the selected register 1s to be moved. The only
permissable contents of this field are R or L, specify-
ing right and left motion, respectively.

\ CHAWGED

<{XRegilster

—_—

{shif{t-in

CHANGED

field>
The register field selects the register which is to be
operated upon. The register field may contain either an

A, I, C, R, or N,
indicates the A register.
I inNJcates the I register.

C indidNtes the combined A and I registers (AI). In
this mode N\ bit 17 of A 1is joined to Dbit 0 of TI.

R indicates
AIA). In this

he reverse combined T and A registers
de, bit 17 of I is joined to bit O of

N indlcates that th&wperation to be performed is a
normalize or count bits™Wperation (A field = OL). INS
indicates that I 1s to Db orma.liZzed, il.€., I 18 to be
shifted left until I1(0) 4) or the count runs out.
The number of positions shifteWwill be placed in A. If
the symbol 1is not LNS, then ¢ operation 1s count
bits. I 1is the selected regiskser and 1is moved as
specified by the count, {direction field>, and <shift-
in field>. The number of ones shifted out of I(17) is
placed in A,

field>
The shift=in f{ield determines what is to be shifted
into the bit position that 1is vacated as the selected

register is moved. This field may be blank or it my
contain one of the symbols Z, 0, L, H, OL, OH, or S.

If the shift-in field is empty, & rotate is assumed (a
rotate 1s an operation where the bits shifted out of
one end of the register are shifted into the other end
of the register).

7Z indicates that Zeroes are to be shifted in.

0 indicates that ones are to be shifted ine.

I indicates that the low bit of this register is to be
shifted in. In the case of double register operations
(register field = C or R), the low bit is the least
significant bit of the entire 36-~bit register.

H indlicates that the high bit of the selected register
is t©o be shifted 1in. In the case of double register
operations, the high bit 1s the most significant bit of
the entire 36=bit register.

CHANGE D

OL indicates the the leasgst significant bit of the non-
selected register is toc be shifted in. In the case of
double register operations, this bit is taken to be the
least significant bit of the most significant register.

OH indicates that the most significant bit of the non=-
selected register is to be shifted in. In the case of
double register operations, this bit is taken to be the
most significant bit of the least significant register.

S 1ndicates that the operation is an arithmetic shift.
The selected register is shifted arithmetically. Note
that an arithmetic shift 1s equivalent to a multiplica-
tion or division by a power of 2. During an arithmetic
right shift, sign bits are moved 1into the vacated bit
positiony during an arithmetic left shift, Zeroes are
moved into the vacated bilt position. If any significant
bits are shifted out during a left shift, overflow is

Two rotate/shift operations, one moving
only I may be

set (shifting out a significant bit will change the
sign bit).
EXAMPIES

OPERATION A T AT TIA
shift left IAS LIS 1cs IRS
shift right RAS RIS RCS RRS
rotate left IA or I1AH LT or LIH IC or ICH IR or IRH
rotate right RA or RAL RI or RIL RC or RCL RR or RRL
logical left IAZ LIZ 1CZ IRZ
logical right RAZ RIZ RCZ RRZ
count bits in I RN 18.
normalize I INS 17,

only A and the other

combined into one instruction by logically ORing

together the instruction moving A and that moving I. Both ORed
instructions must share the same counte.
EXAMPLES
shift A right 3¢ shift I left 3 RASVLIS 3
rotate A left T¢ shift I right 7 IAVRIS 7
copy reversed bits of I into A IAOLVRI 18.
clear A and I RIZVRAZ 18.

reverse 36 bits of AI

IAOLVRIOH 18.

1.5.3 The law Instruction

law and law i ("load accumulator with") make it possible to

load the accumulator with 12 bit positive or negative numbers in
one cycle.

1 2 3 4 5 6 7 8 91014 12 13 14 15 16 17

0
|1 4 14 0 OJ]I[]N N NN NN NUN N N N NJ
L J \)

\Y NV
Op.Code T70=law 12-bit number to be loaded

on to complement

law first loads A from the address part of the instruction and
then, 1if the i-bit is on, complements A. Thus, law 3 puts three
into A and law 1 3 pubs 777774 into A,

In one's complement mode, law 1 n (where 0<n<7777) will put -n
(onets complement) into A,

For convenlence when programming for two!'s complement mode,

lan ("load accumulator with negative®) is defined as law 7777.
Thus, lan_n (1 < n < 10000) will load A with -n (two's

complement).

el

1.5.4 The Operate Class

Each bit of the address vart of an opr instruction enables an

operation in the processor.

0 14 2 3 4 5 6 7 8 94011 12 13 14 15 16 17

[1 4 14 1 1 O/E E E E E E E E E E E EJ
. Ji)

Op.Code 76 = onr O §3 ‘%pe?atvon enabling bits

Several

bit in the address

rart. The

operations can be enabled by turning on more than one
order

in which the various

operations on A and I occur is =-- firt, clear A and clear It
Sedewe, complement and step Ag =xg, OR in the test words
fourth, complement A and complement;Ig and last, switch data
between A and T.

Second

Miremonic Op.Code Name Function
opr 760000
nop 760000 no operation one cycle time delay
stf n 7600Ldn set flag n set one of the six progranm
(1&ngT) flags. Set all if n=7. Set
none if n=0
clf n 76000n clear flag n clear selected flag. Clear
(lSnS?) all if n=7. Clear none if
n=0
la 760200 clear A put O into A
B 762000 OR test word to A
a2t 762200 load test word copy test word switches
Feogon into A
cs5a, . Covplecs ¢ Bosip A
cma 761000 complement A
cle 761200 clear and put 777777 in A
complement ?
-CSC 261400 complensat,s c/, le Subtrwet 1 Lrom A,
cli 764000 clear T towplemewtA put O into T
i 760400 complement I
e, - -
[(i 0oL nd Sowe
(123 760040 load A Foom T
‘ Swr 16000 €~W /A LT

!

. lia

‘\SW .

csa

760020
760060
760400

load I fromA
swap A and I

complement and
step A

Mohe—isalcrmmmarirtrre ot i

Although the

manipulate

the program flags,

instructions —-

Mnemonic

Ipf

rpf

Op.code
770051

770050

complement A, then add one

to A, ’hgqcs mko .f

c»n‘mo-s 1 ¢34 winl NW’)“ in TR
772777 g 25 woJe frxA Conrl

stf and clf instructions are usuvally used to

Name

load program flags

read program flags

there are also the following two

Function

Top 2 bits of I to Address
mode bits. Bottom 6 Dbits
of I to program flags.

Address mode to top 3 bits
of I. Flags to low 6 bits
of T.

ey

00090 h

(

‘49s €1 Jn¢g

1.5.7 The Micro-program Class

The milcro-program instruction class has the following instruc-
Lo
tion formt =——

0 4 2 3 4 5 6 7 8 91011 12 13 14 15 16 17

[4 12 12 14 14 41]%x X|]vyvy v v|[A A A]ls 8 s §]

[J) I\, JL J
\'s V Vv Y Vv

Op.Code 77 T ’T skip conditions
operands (column in assignment of result

following table)

operation (row in following table)

Symbolic Specification of Micro-program Operations

X 00 ol 10 11
YYY
T
000 N TT TA a4 T (Test, or transfer)
S S
P T
001 E R NI NA MX N (Negate)
cC U ’
I C A-T X4 X->I exchange (see
0LO0 A T (1) (a) (1) explanation below)
| I \ |
oLl ’ N AMI % VA LMT ; M (arithmetic minus)
S | _
100 | (zero) AVI | XVA xvI | V (inclusive or)
100 (&)+1 E AAT 1 XAA AT] A (bitwise and)
8T | f j
110 (1)+1 A~ T X™A ™I * ~ (exclusive or)
7 ’ |
111 (¥)+ A+ 1 XA X+I ' + (arithmetic plus)
| | !

S (Step, i.e., add one)

The functions of the result assignment and skip condition
fields are as follows ==

AAA Bit 11=1 will Dut the “esult 1n A
Bit 12=4 ®
Blt 134 n 18 13 |!| H, X
Mode One'!s Two' s
SSSS Bit 14=l¢ Sklp 1f the result is > O >0
Bit 15=L¢ L D e R - |
Bit 16y 7 v oroonoo» S50 1G
Bit 17=1' “ "; "} “g "g = ”'O = _1

The execution of a micro-program Iinstruction computes the
result specified by the XX and YYY bits (i.es from the Table on
the previous page), puts this result in the specified register (s
if any, and skips 1if any of the specified condilitions are true.
Note that the skip condition 1s evaluated on the result of the
micro-program, not the fimal contents of any given register, and
the result need not be assigned to any register. Thus, it is
vossible to test the sum of A and I to see if it 1s greater than
O without destroying the contents of these registers. The
instruction to do this is 773610, or symbolically, A+I>. All
micro=-program instructions redqulre one cycle.

The "T" operation clears the transmitted register after the

transfer. This may be clrcumvented by assigning the result back
to the transmitted register. See the examples.

The exchange operation is a special case. The result A>T (I)

means that the result of the function is the old I register, but
in addition the accumulator 1s placed in I. This secondary

assignment 1s done before the assignment given by the AAA bits in
the instruction. Thus, the instruction A~TI (772400) Wlll move A
to I, A-TA (772500) will swap A and I, and A->IT (772440) does
nothing (because the primry assignment 1s to I and the result is
the old I).

The add, subtract, step, and negate operations vary according
to the arithmetic mode. In one's mode, negate produces the
complement of the specified register. In two's mode, it produces
the complement plus one.

In one's mode, arithmetic results (from add, subtract, negate,

and step) of -0 are converted to +0, except in the following
cases?

(-0)
(-0)
(-0)

(=0) + (-0)
(=0) - (+0)

- (+0)

Micro-program instructions executed in one's mode never fturn
on the overflow ©Dbit. In two's mode, the instructions add and
subtract will turn on the overflow bit If the addition or
subtraction overflows. Stepping 377777 and negating 400000 also
set overflow in two's mode.

USAGE

The assembler considers certain symbols consisting of capital
letters as micro-program instructions. The entire instruction
must be 1n upper case, and may appear 1in any expression, €.g.,
storage word, constant, etc. When typing into ID, the instruction
mist be preceded by a single quote %‘%.

Micro-program instructions are specified by concaterdating
three "fields" == the result field, the assignment field, and the
skip fileld. The characters in all of these must be in upper case
and there must be no separator between the fields.

result fieldd{assignment fileld>skip field>

Lresult fleld>
The result field must be one of the twenty-
eight results given in the table on a previ-
ous page. 'C" may be used in place of "N
(negate).

{assignment field>
The assignment field my be null (no char-
acters) or any combination of A, I, and X to
specify in which registers the result will be
placed.

{skip field>
The skip field may be null or contain any
combimation of &, > P, M, |, _, and =. Note
that the &, =, and are treated differently
depending on the arithmetic mode.

Symbol Meaninge One's Two's

> skip if result >0 >0
P skip if result =+0 =0
M skip iIf result =0 =1
4 skip if result <=0 <0
= skip if result =4+0,==0 =0

skip if result =+0,=-0 =0

skip if result -0 <=1

—Al
=

invert the specifiied skip condiltions

Since the octal representation of a micro-program instruction
is computed by exclusive-or!ing all of the specifications within
each field, redundant specifications may lead to unexpected
results. For example, TAIII and TAID> are the same as TAI.

SAMPIE MICRO-PROGRAM INSTRUCTIONS
The following are the same in One's and Two's Mode.

symbolic octal action

A+T 773600 - computes sum of A and I and does nothing at
all with it.

A+TA 773700 the sum of A and I is put into A.
A+TAIX 773760 the sum of A and I is put into A, I, and X.

ZA IX 771160 A, I, and X are cleared.

SA > 771210 skip if A plus one is > O.

SAAP 771302 add one to (step) A and skip if it is O.

™M 776001 skip if X is 777777 and clear X.

TXXM 776021 skip if X is T7777T.

TAX T 774060 transfer the contents of A into I and X, then
clear A,

TAAX T 774160 same as TAXI, but A is not cleared.

A->TA 772500 exchange the contents of A and I.

X-ASP 774412 transfer the contents of X into A, skip if the
previous A 1is positive. &

SAM 77201 skip if A plus one 1is ¥HFFT- Note that ~iu-
‘M}@W this will skip only if

A contains 2. —I-ﬁ—eﬁe—s—meée/b?rj:s—tns-true-‘ﬁa:eﬁ-

“rrever-sieipy, Oe?u_ IW“-"”Mﬁ

The following are different in One's and Two's Mode.

symbolic
A+I<LP

A+ILP |

A+TH>

octal

773606
773611

773633

776202

773607
775610

773632

776202

One' & Mode

action
skip if the sum of A and I 1s £ -0 or =+0,

skip if the sum of A and I is not (< =0 or
=+0).

the sum of A and I is put into X. If the sum
was > -0, the instruction will skip.

skip if X is 777777«

Two's Mode

skip if the sum of A and I is S.O.
skip if the sum of A and I is > C.

the sum of A and I is put into X. If the sum
is > G, the instruction will skip.

skip is X is O.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	20a
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

