PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS
02139

PDP-35
INSTRUCTION MANUAL

PART 4 -- MULTIPROCESSING

9 November 1971

Introductlon

As long as no IO operations take place, the “ethic" of a
computer is to execute instructions, in the sequence specifled by
the programmer, as rapidly as possible, When IO operations are
present, the computer usually must be slowed down to synchronize
with the limited rate of information transfer of the IO devices,
The simplest way to conceive of this 1s to think of the
instructions that operate the IO devices as taking a long time to
complete, For example, a type-out 1instruction keeps the computer
busy for the entire 1length of time that the typewriter is
operating., Only when the typewriter mechanism is flnished with
the character does the instruction complete and the computer go
on to the next instruction, This method of doing IO 1s elegant
because 1t makes the above-mentioned Methic" still correct?
execute instructions as rapldly as possible, 1in all cases, In
most computers, this i1s one way of actually doing I0 at the
hardware levely 1in inexpensive computers, it 1s sometimes the
only way,

To make absolutely clear what is meant, we 1list some IO
operatlions? _

Type-out (also paper tape punch, plotter, etc.) - When the
instruction begins, the data 1is sent to the device. The
instruction ends when the device has finished and is ready
to be operated again,

Type-in - When a key is struck, the data 1s sent to the
computer and the instruction completes,

Paper tape reader - Same as type—in, but the reader mechanism
is started when the instruction begins.

Drum or tape read -~ the operation begins wheh the instruction
does, The instruction completes when the data are safely in
core and the checksum has been verified,

Drum or tape write - The operation begins and ends when the
instruction does :

A program to type out characters stored in an array might
look like this:

P» lac array
ivk O /type
idx p
Jmp p.

and a real time graph of its execution would 1look like this:

time >
type Il type ‘H type

R\all the other instrué%ions —

This makes horribly inefficient use of the processor, and
in part this is an inevitable result of the fact that computers
are fast and IO devices slow, However, there are ways to
partially overcome this difficulty. Although there is nothing we
can do to give us a 100 page listing in 2 seconds, the computer
can be doing something else and not wasting 1ts time,

1) In the case of output, if the data are moved to a buffer
reglster as soon as the instruction beglns, the processor doesn't
‘need to be idle while the device 1s operating. It 1s only
necessary that the computer, if it be allowed to continue, not
initiate another instruction on the same device until the device
is ready. This can be accomplished by making the second
initiation hang up until the device 1s ready for it. The PDP-1
hardware behaves this way when output devices are operated in
"pause" mode. (N.B. The preceding statement does not imply
anything about the way the timesharing system operates; IO
instructions are interpreted by the supervisor.) With this
feature, a program that had a large amount of calculation between
characters %say a real time printing of "e"), instead of behaving
this way:

[compute 3] type I Jcompute 2] type 2 |compube 3] type 3
during these times, the typewriter is idle

behaves this way:

ype 1 type 2 type 3
[compute T [compute 2] walt [compute 3] wait [compute 4

Similarly, if one didn't care about reliability, one could
make a tape writing operation take up the data into a buffer and
then complete immediately, allowing computation to proceed while
the data are moved from the buffer to the tape, The <DP-1
timesharing supervisor does not do this, so that the user will be
assured that, when the instruction completes, the transfer has
taken place and, for example, the tape did not break.

This is a simple case of multlplexing the processor and an
output device,

2) Something similar to 1) can be done for input. Suppose a
compiler that runs about twice as fast as a tape reader 1s to
make efficient use of the reader. It might operate like this?

read 1 read 2 read 3
walt use 1] wait J|use 2] wait Juse 3

This 1s a little harder to accomplish than the treatment of
output devices, and generally requires two IO instructions: one
to initiate the operation and ancother to wait for completion and
obtain the data., The PDP-1 hardware does this, Thls 1is an
extremely simple example of multiplexing the processor and an

input device. '

3) Another useful mode of operation is multiplexing two or
more IO devices, For example, to obtalin a listing of a flle on a
machine with two typewriters, the file could be divided in half
and each half listed separately. Here a real synchronlzation
problem appears, especlally if the {ypewrlters run at different
speeds,

4) And, one might want to multiplex the processor with
~several IO devices., For example, while a batch job 1s running,
the previous Jjob's output could be 1listing on a line printer
(having been stored on a high speed medium such as a disk) and
the next Jjob's input being read in and stored on a disk. Such a
state of affalrs, called SPOCLing (Simultaneous Peripheral Output
On Line) i1s used 1in some of the 1less medieval batch processing
systems. Here the synchronizing problem is even more formidable,
especlally since all three operations handle unrelated data, and
the main program neither knows nor cares when a card has been
read or when the printer 1s ready for another line,

5) The ultimate in multiplexing of unrelated operations 1s
the timesharing system, which has not only to allow for complete
generality in the mode of multiplexing of programs and IO
devices, but has to allow the mode to change under program
control, ‘

There are three common ways of lmplementing a computer
system that can do these things (particularly 3), 4), and 5)).
One way is to use an interrupt (sequence break) system, 1n which
I0 instructions complete immediately without hanging up the
processor, When the I0 device completes, 1t iInterrupts the
processor and starts it on a special “service" program. This
program does whatever 1s necessary, e.g., obtains another line of
output and sends 1t to the printer, and then resumes the oriﬁinal
program, Another, much more expensive way 1s with a “data
channel, which is a small processor, independent of the main
processor, which executes the IO program (spending most of its
time waiting) while the main processor runs at full speed on some
other program, The third method is multiprocessing, in which the
I0 program is executed by what appears to be another maln
processor, identical to the original one, Because processors with
the full instruction set are expensive, and the processor
executing the IO program 1s idle most of the time, multi-
processing 1s usually (as in the PDP-1 timesharing system)

faked®™ with only one real processor which is multiplexed between
programs,

Multiprocessing 1s the most natural way of handling IO
because? : '

It preserves the simple and elegant form of IO instructions
given above, viz, an IO instruction hangs up the processor
executing it until the operation is complete,

The IO programs are handled by a processor identical with the
main processor, which 1s much more powerful than the
typical data channel, This compatibility also simplifiles
communication between processors,

Multiprocessing 1s applicable to situations other than IO
synchronization, In a system with more than one hardware
processor, multiprocessing can be used to advantage 1n non-
IO situations, Because the PDP-1 has only one processor,
and the techniques of mltiprocessing are the same in IO
and non-I0 cases, discussion will be limited here to IO
applications, Even so, a subroutine can be consldered as an
I0 device, and in such cases multiprocessing can sometimes
bring a conceptual simplification (or a shorter program)
which is worth the overhead of multiplexing a single
processor, '

Here 1s how application 4) (SPOOLing) would look when
multiprocessing 1s used:

[]
Iget a line of output read card for
from job n-1 Job n+1
[execute job nj
[print 1iY]
program 1 program 2 program 3

The hardware processor spends almost all of 1its time
executing program 2,

Instructions

The "thing" that runs around in a program executing it is
called a virtual processor or process. Each process has six "live
registers"s A, I, X, F (containing the six program flags and the
address mode), G (the program counter, the overflow and extend
mode bits), and W Sa software register used for communicating
with the supervisor). These registers are private to each
process} no process can directly examine or modify the live
registers of another process. '

All processes running 1in the same sphere share the same
contents of core memory and the same C-list,

The frk (fork) instruction (770042) creates a process, The
frk is followed by the starting address for the new process, All
live registers (except the program counter) are initialized to be
the same as those of the process executing the frk., The process
executing the frk continues two locations after the frk,

The git (quit) instruction (770043) causes the process
which executed the git to be deleted., Unlike hlt and dsm, which
cause the program's superlor to take notice, a process executing
a qlit simply vanishes,

Example

Suppose 1t is desired to build an array of data and display
the data while they are being added to the array, The data are
being generated as a function of some input, e.,g. type-in, It can
be done this way:

/start here with one process
frk
b

a, 1ivk 200 /get input
dac 1 p store it
idx p
Jmp a

/second process will start here

b, law m /start at beginning of array
dac q

C, sad p /reached end of array?
Jmp b es
lac 1 q /go, get data , '
Jdp disp /display data in desired format:
i1dx q
Jmp ¢

dimension q(1),m(1000) |

P»s m . /pointer to end of array

' Conceptually, a time graph of the execution of this program
would look like: :

display
fork walt i walt I walt I
store store store

Since the PDP-1 has only one real processor, the execution
would actually look like:

[fork | display {l display il display i
store store store

Example of a Hazard or Lurking Bug

Multiprocessing programs are susceptible to a type of bug
not found in ordinary programs, but similar to hazards and races
in hardware, Suppose the first process 1in the above example
wanted to decrease the size of the array:

law 1 1 /(one's complement mode)
adm p

This would introduce a hazard, Suppose p contained m+10i, q
contained m+100, and the second process were -somewhere in the
display subroutine. p would be changed to m+100, q would be
i1dx'ed to m+101, and the display would run off the end of the
array, displaying garbage, Note that the bug will not be
manifested unless p is decremented Just at the time q 1is pointing
at the end of the array. Hence, this program might be tested and
found to operate correctly 100 times, which ordinarily would be
fairly convincing evidence of its correctness., But it would still
have a bug. '

Hazards such as this are notoriously difficult to weed out
in the normal process of debugging, because they are non-
deterministic, Moreover, the odds of the hazard manifesting
itself may be changed drastically by minor changes in parts of
the program that have nothing to do with the real bug, '

Because hazards may exist without immediately making them-
selves evident, those parts of multiprocessing programs concerned
with process synchronization and control must be - debugged on
theoretical grounds rather than wilth trial runs, This memo
contalns many examples of properly written multiprocessing pro-
grams, :

The scheduler is that part of the timesharing supervisor
responsible for multiplexing the processor among those processes
which can run. The process, and not the processor, 1s of concern
to programmers, It is tempting to make assumptions about the
likelihood of, say, one process €xecuting a large number of
instructions before another process has executed any, but to
assume so 18 to invite hazards. The only guarantee the programmer
has regarding the scheduler 1s the following: & process not hung
in a wailt will eventually execute 1ts next instruction,

Process Synchronization and Control

Synchronization and control is a very important part of
multiprocessing. Just as the stored program computer offers an
immense variety of ways to realize a given algorithm, there are
many ways to realize a solution to a control problem, Since core
memory and the C-1list are the only things that are shared between
processes, all methods of synchronization use one of these two
means,

_ One sequence that 1s very common 1n program' control 1s
called join: '

isp ¢
qit

It Jjoins n processes into one; the resultant process does
not emerge until all n processes have entered. If the varlable c
is initialized to -n, the first n-1 processes that come to the
Join will quit, leaving -1 in c. The last process will skip over
the qit. ' _

In the above, ¢ 1s a process control variable (sometimes
called a semaphore), Process control variables are often used
with the idx, adm, and isp instructions, for reasons that will
become clear later,

Join _pfesents another opportunity for a hazard, The
initialization of the counter must take place before the first
fork, If it 1s done this way: - ‘

frk

a

law 1 2 /(one's complement mode)
dac ¢

Jmp J

a’ oo e -
Js i1sp ¢
qit

the process at “a" might do whatever it has to do and get all the
way to the 1sp before the other process initializes ¢. Then,
depending on what happened to be 1in c, no process would emerge,
or one would emerge prematurely, While this may seem farfetched,
i1t isn't. The effects of this bug may be easily demonstrated in
practice, '

Reentrant Programming

- It 1s 'often desirable to have more than one process

executing the same section of code, without any particular
synchronization. At any instant, each process may be at any point
in the section of code, indegendent of other processes. Such code
is called reentrant or "“pure®. »

Suppose that three typewriters are available, and a file is

to be printed by belng divided into thirds and each third
printed, For simplicity, the file will be Just an array. It could
be done as follows?

/one process starts here

g2,

83,

Js

i,
p2,
pP3,
el,
e2,

e3,

nam
frk

g2
frk
83

lac 1 p1
ivk 1
idx pi1
sas el
Jmp g1
Jmp 3

lac 1 p2
ivk 2
1dx p2
sas e2
Jmp g2
Jmp J

lac 1 p3
ivk 3
idx p3
sas e3
Jmp g3
isp ¢
qit

. dsm

C, -3
dimension a(60)

a A
a+20
a+40
a+20
a+40
a+60

/contains the file

This 18 obviously wasteful of space, and should be done

with one program executed reentrantly by each process. The
processes will all wuse the same 1instruction sequence, but will

- operate on separate data. Since there are several things that
must be private to each process, the index register will be used,
This technique of wusing the 1index register to distinguish
"private® areas of core 1is indispensible in reentrant programs,

/one process starts here
lam
ZX
frk
g
SXXA |
sas (2
Jmp o-u

£ aam

: lac

xct
ldx
sas
- Jmp
isp
qlt
dsm

QR = o b= o
0 g

C, : "'3 .
dimension a(60) /contains the file
P a
a+20
a+i0
e, a+20
a+40
a+60
t, ivk 1
ivk 2
ivk 3

Reentrant programs offer many opportunities for hazards,
Suppose we want to print the square of each array element, If
part of the program is written thls way:

8, aam
lac
dac
ml w
scr 1s
lai

"xet 1 ¢t

ip
W

a hazard will be introduced. Between the time that one process
executes the dac w and the mul w, another process might execute
the dac w, This particular bug would cause a malfunction very
rarely, because when any one process gets to the dac w, the other
two are almost certain to be hung on the xct 1 t. One correct way
to write the above 1s to meke w a private variable:

"dac 1 w
: ' ml 1 w
dimension w(3)

 Another bug would be introduced if we tried to use a
program-modified ivk instead of an xct:

lio (ivk 1

X+II ‘

dio .#1 }

0 _ /ivk 1, 2, or 3

This sequence could be interfered with between the time the
ivk is stored and the time 1t is executed. Program-modified
instructions nearly always lead to hazards in reentrant programs,
The Jsp instruction i1s useful in reentrant programs, because Jjdp
and jda lead to hazards,

Example

We now turn to a more lnvolved example, a buffer, When used
for output, this will “cushion® irregularities in the rate at
which characters are produced, enabling the output device to run
at full speed, One process takes characters produced somewhere
and 1inserts them into the buffer, Another process takes the
characters from the buffer and outputs them, Since the insertion
takes very little time, the process generating characters doesn't
have to wait, unless the buffer becomes full, :

[EX]] .
generate pu
character ~
-
process 1 process 2

Process 1 sends data to process 2 through the buffer, Both

- processes must send control information to each other, More
specifically, when the buffer becomes full, process 1 quits until
space becomes available, and must be restarted (with a fork) when
process 2 removes the next character. Similarly, when the buffer
becomes empty process 2 must quit until process 1 inserts the
next character., Let the capacity of the buffer be n and the
variable p indicate 1ts current level. The following will work:

/start here with one process
a, [generate]
[put]
idx
sad (n
qit
sas (1
Jmp a
£, frk
: a
b, [get}
" tuse
- law 1 1
adm p
sza 1
qQit
sas (n
Jmp b
Jmp £
0

-1

D,

This works because the modification and test of p cannot be
interrupted by the other process, If an interruption could take
place between the modification and test (for example, if the test
were done by '

idx p
law n
sad p

), or within the modification itself (for example,

lac p
sub (1
dac p

), there would be a hazard, For example, if p were idx'ed from 1
to 2 by process 1, then reduced from 2 to 1 and tested by process
2, process 2 would not quit. When process 1 then finds that p
contains 1, it will fork, thinking that p had previously been
zero and hence process 2 had quit. ‘ '

The i1idx, isp, and adm 1instructions have the required
properties, An instance of one of these instruction 1is not
interruptible, and, of two instances, one will always precede the
other. The modification effected by these instructions appears to
take place in a unique instant of time. Furthermore, they leave
the result in A, so another instruction to load the result 1is
unnecessary., The necessity of modification and test of a control
flag without interference arises repeatedly 1n process control
applications, making these 1lnstructions very useful,

Note that, if a standard ring buffer is used, with an input
pointer and output pointer, "put" and "get" use only their own
pointer and do not even look at each othert!s pointer, which will
guarantee that the pointers are private and no hazards are
assoclated with them, The fullness and emptyness checking is done
entirely through the variable p, not by comparison of the
pointers (the usual method of testing in ring buffers).

After cheéking that the generate, put, get, and use
routines work properly, 1t 1s necessary to prove that the
multiprocessing 1s correct. In this case, it must be shown that

(1) The number of puts will not exceed the number of gets+n
(the buffer will not overflow).

(2) The number of gets will not exceed the number of puts
(the buffer will not underflow).

This is achieved by making sure that no process will run in a
section of theprogram that will violate the above rules, i.,e, no
process will be in the generate/put sectlon if the buffer 1s
full, and none will be 1in the get/use section if the buffer is
empty. Furthermore, it must be shown that

(3) No process will be unnecessarily deleted, l.e., the
generate/put process will be removed only if the
buffer is full, and the get/use process will be
removed only if the buffer is empty. ’

The wusual method of proving such a thing 1s to divide the
flow chart into regions, such that each transition between
regions 1s simultaneous with 2 modification of a semaphore, and
then correlate the numbers of processes 1n the various regions
with the semaphore states,

start, p=0

— T

//<::>I [generabe;\\)

[put]

-
NORR:3 o

The only possible states are:

no, in A no, in B no, in F
. 0 (start)

Al X ek]

n-2
n-1
n-1

cCoORPRRRPBOR
POBPPBRRROO
oroococOOR

Exercise? Show that no other states can be reached, by
considering the effect of any instruction execution on each
state, Conclude that, since "get™ is not executed when p=0 and p
is increased to 1 after "put¥, the buffer will not underflow.
Conclude similarly that the other two requirements are met,

Locks

Although, as has been seen, the instantaneity of 1ldx, 1isp,
and adm make 1t unnecessary in many applications, the abllity to
lock sections of a program 1s very useful, A lock guarantees that
no more than one process will be in the locked region at any one
time. For example, the reentrant program that needs a temporary
can be fixed with a lock: '

[lock]
dac w
ml w
[unlock]

If every variable or data object is either referred to only
from inside of locked regions or referred to only from outside of
locked regions, then all locked regions can be consldered to be
instantaneous transitions, with no hazards assoclated with them.

Ideally, 1lock and unlock should be considered to be
addressable instructions, addressing a lock indicator. The 1lock
operation guarantees that no more than one process at a time will
be in any of the regions locked by the same indicator. The
operation could be modeled by a lock indicator containing O or 1,
initially O, Lock waits until the indicator 1is zero, then sets it
to one and proceeds, Unlock sets 1t to zero,

The PDP-1 timesharing system has hardware lock and unlock
instructions (lok (770040), ulk (770041)) which have a few
unusual properties:

They are not addressable. (All lok and ulk instructions could
be considered to address the same global lock indicator.)

When a process 18 1locked, not only are other processes
prevented from entering this or any other locked reglon,
but they are prevented from executing any instructions at
all, During a 1lock, interrupts are disabled, giving the
process the undivided attention of the computer,

Because of the potentially dangerous results of disabling
interrupts, only 63 memory cycles (mul and div count for
about 5 extra memory cycles) are permitted under a lock
(including the lok itself). If this is exceeded, the ®lock
fault® trap occurs (ID prints “2D%),

An instruction trap (a supervisor call such as mta's, ivk's,
frk, qit, etc.) of any kind, or an address snag (an attempt
to reference a core which has not been swapped in, even if
the reference does not result in a address violation), will
automatically remove the lock, " T

Lok and ulk are very fast, and are suitable to the “/
‘application shown above, ,/j

. 0
The iwiruckion sJa. (1700hs) "skin 1} Jield assigned
wﬂ}sk§P when the addvess cow&a\nei.}jvﬂj Jimethe plegs e
74\‘(3"17) may be referencedl witheut ‘:cf;mpﬂf‘ Phe stq (77_‘:""’5)
BWehy an uololre:«;‘m@ +'m’s Cocte et o cove’ %&g""‘be “ass?gmo(bt
swopped out — tefevencing such o cope will cause “an addres tn tea
whichh will indorm the executive that it should be swapged n)

Long Locks

It is sometimes desirable to lock a 1long region of code,
usually in connection with resource allocation, For example, the
microtape supervisor 1is reentrant, with one process for each
transport, Only one tape unit can be actually transferring data
at one time, so, when the desired block 18 reached, a lock 1s
performed, The locked region contains many supervisor calls, and
the lock may remain in effect for a large fraction of a second.

A lock can be implemented in software using isp and adm,
Let w be the lock indicator, containing -2 1f unlocked and -1 (or
more) if locked. Lock will be: | ,

isp w

Jmp -+

law 1 1 /(one's complement mode)
&adm w

Jmp -4

and unlock:

law 1 1
adm w

If w contains -1, another process trying to enter the
locked region will hang up in the loop. The law i1 1, adm w undoes
the effect of the isp, If it 1s necessary for the lock to hold
two or more processes in abeyance at the same time, this has a
hazard, If one process is in the locked region and two are tryling
to lock, w takes on the values -1, O, or +1, The phase of the
processes trying to lock might be such that w happens never to
contain -1, (Such a state of affairs is unlikely to continue
forever, but in principle it might,) After the wunlock 1s
executed, w might never contain -2, although one of the processes
is entitled to go through. Thlis can be fixed by changing the lock
to: :

law 1 2

sas w

Jmp -1

isp w

Jmp +4

law 1 1 /this is almost never executed
adm w :

Jmp -"7‘

This type of 1lock is addressable (the lock indicator, or
semaphore, 1is location w can last for more than 63 cycles, and
is impervious to traps, but it 1s very i1nefficient because a
process attempting to enter the lock burns up processor time
while it waits, Furthermore, it has the following problem, or
several processes trylng to enter, one will always succeed, but
which one is a matter of chance., If processes arrive at the lock
as often as processes arrive at the unlock, there will always be
processes walting to enter, It may happen that a particular
process 1s unlucky, and never manages to get in,

During a long lock it is desirable that processes which are
unsuccessfully attempting to enter not waste processor time, One
solution 1s to have such a process quit after 1leaving some
indication that it should be recreated with a fork as part of the
unlock operation, Lock?

i1sp w

Jmp 1

qit
l’ L)

Unlocks?

law 1 1
adm w
SA>P
Jmp .+3
frk
1

Such a procedure is unsultable in most applications because
when a process unsuccessfully tries to lock, its live reﬁisters
are lost, The process that eventually appears at is a
different process from the one that tried to enter, But 1f two or
more processes are attempting to enter the 1locked region, they
presumably intend to do different things, This intent 1s usually
carried 1in live registers, which must be preserved somewhere, A
" table of preserved registers 1s needed, which requires that the
number of processes be known to be bounded. In almost every case
it 1s quite cumbersome, A shorter, faster, easier, and more
elegant way is with a programmed queue,

Programmed Queues

A queue consists of a number called the population (which
may be positive, negative, or zero), and a set of processes that
are suspended as 1f in IO walts, When the population is.zero or
negative, no processes are suspended, The principle operations
are: _

mta 303 :
Create queue, The capability index is specifled by the low
6 bits of A (zero specifies the first free index). The
l index 1s returned in A. The 1nigi§1 pﬁfulizfo?u}s minzi the
dg contents of I. Skip if successfu bse we s ne as
'—?C‘L$° /’ a 1's mde compawhion. To aved corfision, always specify T >o.
For queue ivks, the variant (bits 8-11 of the ivk instruc-
tion) normally specifies the operation, If the variant is zero,
A(13-14)+1 1s used,

Variant ~ Operation

1 .
Enter queue., The population is increased by one., If the
result 1s strictly positive, the process 1s suspended in
the queue, If the result 1s zero or negative, the
instruction completes and the process continues,

2
Release queue, The population 1s decreased by one, If the
population had been strictly positive, the process that has
been suspended 1longest 1s removed from the queue and
restarted as 1f 1ts enter queue had just completed. The
release queue instruction always completes immediately.
3

Read queue population to A (in one!'s complement). Intended
mainly for debugging. Slow. (A faster way of determining
the queue population is to maintain a variable which 1is
incremented when the queue 1s entered and decremented when
it 18 released,)

All live registers are preserved during all queue ivks,
including an enter queue that hangs up, All queue 1vks are
uninterruptible, and appear to take place in an instant. When a

rogrammed queue 1s used, the queue population 1s a semaphore.
In Dijkstra's terminology, enter queue corresponds to the P
operation, and release Queue to V.

An efficient "long lock" 1s trivial with programmed queues.
Use a queue with an initial population of -1,

1vk 100+queue
«es - /locked region
1vk 200+queue

The first process to enter will set the population to zero,
after which all other processes will hang up until the first
emerges,

There is a variation of a 1lock in which the number of
processes 1in the 1locked region must be 1limited to some fixed
number N, not necessarily 1, This 1s wuseful 1n reentrant
subroutines that need to allocate buffer and variables space when
they are called, and have a limited capacity to do so. (In
applications 1like this, the preservation of 1live registers
through the lock is critical.) With a programmed queue, this kind
of lock 1s as easy as the ordinary kind, The 1nitial queue
population is slmply set to ~N instead of -1, ~

As a final example of the power and simplicity of Qqueues,
the buffer problem is rewritten using two of them?

/start here
law 1
1lio (n
mta 303
bpt
law 2
cll
mta 303
bpt
frk
. b -
/end of initialization
a, ivk 101
{generate]
put]
ivk 202
Jmp a

b, ivk 102

[get
[use
ivk 201

Jmp b

The proof of the correctness of this program is left as an
exerclise for the now benighted reader,

Process Hoard

When a process executes a frk, the supervisor allocates a
process, If no process 1is avalilable, the frk waits until a
process becomes available, A program may, if it wishes, insure
that a process will be available when it is needed by setting its
process hoard. The process hoard 1s the number of processes which
the program is guaranteed to be able to have. It may have more
than this number if, as is usually the case, the supervisor can
allocate space for them. The hoard is simply the number that are
reserved and guaranteed to be avallable at all times, no matter
what other programs do. If the hoard 1s n and there arem
processes currently in existence in a program, the next n-m frk's
are guaranteed to succeed immediately, (The hoard 1is also of
significance for entries. See Part 5 of this Instruction Manual.)
The hoard should be set at the smallest value necessary to insure
- that every frk will complete eventually, For example, the “tree"
program 1n the appendix may have up to nine processes running in
it at once, but a hoard of four is sufficient. Upon logging 1in,
the hoard is initially 1. Normally, the hoard is left at 1, since
processes are nearly always available,

mta 406 '
Read process hoard to A.

mta 407 _
Set process hoard from A, Skip if successful,

‘Appendix

Here is a reentrant program which graphically demonstrates
the meaning of a “fork".

/tree

beg, 1lio (3

law 1 9.
~dac ¢

1xr (374761

e, ril 2

£, 1pf

lup, rer 9s
ral 9s
iot 207
rar 9s
rcl 9s .
szf 2
sub (2000
szf 5
add (2000
szf 1 3
szf 4
add {2

1io (4000

XMIXIM

Jmp lup

SII

ril 7s

TIXP

Jmp .+4

isp ¢

qit

Jmp beg

rpf

frk

f

rifrls

frk

f

Jmp e

constants
variable
start beg

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

