PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS
02139

PDP-35

INSTRUCTION MANUAL

PART H5A -- BASIC SYSTEM CALLS

1 February 1975

5B

* » o @

.

OCOO0OO0OO0OO0OWVWo~N O W PO

PR PR

12

Table of Contents

Introduction and Background
The W register -
Low Priority Mode
Real Time Clock
Virtual Memory Assignment '
Illegal Instruction Return/ Illegal
Memory Reference Return
Concept of Capabilitys Mta's and Ivk's
Differentiated
General Capability Manipulation
PRL Mode
External Equipment
Mta 30X description
Drum Fields
Queues
Directories
Files
Using I/0 Devices
Microtapes
Button Consoles
Temporary Clock
Paper Tape Reader and Punch
Typewriters
Hardware I/0 Devices
Disowned Objects
Comments, Randomness

Advanced System Features

[V o

* o

PO ONPONEKFO

ool UdEEEFEOWWNDEROOO
¢ 2 0 o o & o

Advanced System Features
Elaboration on Concept of Spheres
Protection, Intersphere Communication
Simple Sphere Control
Attachments
Entry Capabilities
Master Entry ivks
Examples of Use
Traps, creation of EPC
EPC Ivks
Examples of entry trap
Ownership, master/%on-master spheres
subjugation
Fault traps
Examples
Breakpoints and ESI
Examples
Comments, Randomness

mta
mta
mta
mta
mta
mta
mta
mta
mta
mta
mta

mta

mta
mta
mta
mta
mta
mba
mta
mta

O\ FEWNO PO

e
00O
EQ O

105

200
201
202
203
204
205
206
207

Note:?

mta

300

Use?

Summary of Mta's and Ivk's

(omit on first reading)

Copy A into W, 5A
Copy I into W, BA-
Copy W into A, 5A
Copy W into I, 5A
= hlt, Cause mta 4 trap, 5B
Cause mta 5 trap. 5B.
Cause mta 6 trap, 5B
= dsm, Cause mta 7 trap, 5B
Enter low priority mode, 5A,2

Real TimeClock, Instruction Memo part‘t3
Read absolute drum fields 0-77 5A,10.1
A(6-12) contains count/40 A§13) is write bit
I(0-5) abs, field number I(6-12) drum address
W(3-17) core address

Read absolute drum fields 100-177 5A,10.1

PRPpR

L d
°
L]
L]

L]

Read illegal instruction return into A, 5A.5
Set illegal instruction return from A(3-17). B5A,
Read illegal memory reference return into A, 54,
Set illegal memory reference return from A(3-17).
Delete capability given in A(12-17). B5A.7
Detach core, If nonzero, A(3-5), else A(15-17). 5B.2
Read memory bound and attachments into A, 5A U

Set memory bound, If nonzero, A(3-5), else A(15-17).
Skip., B5A.4

For all mta 30X instructions, the low six bits of the AC,
A(12-17), should contain the desired index of the created
capability, If this field contains a zero, the first free
capability index will be used, Skip.

Assign drum field, If A(O) is zero, field assigned is
read/write, If A(O) is one, absolute field specified in
A(5-11) is assigned as read only.

A(13) is write bit, A(6-12) is count/40,

I(6-17) is drum address. Must be multiple of 40,

W(3-17) is core address, 5A,10,1

mta 302

Uge?

A

AC
12
32
52

72
112

132
152

172
e
h32

4so
iNe)

512

532

552
572

612

632

652

672

Create sPhere. 1(3-17) containg fault entry address.
5B.1

(14)=0, read/write sPhere. 5B.%1
A(6-12) holds count/L4O A(13) write bit
1(3-17) sphere address. Multiple of 40.
W{3~17/) core address.
Action
SuppPress Processing. 5B.1
Permit processing. 5B.1
Attach. I(15-17) attached as core I(3-5). 5B.2
Reverse attach. I(15-17) attached as core 1(3-5).
Read Process state. 5B.1
I procegss number
W (3-17) six word area to receive A,G,I,X,F,W.
Run indicator off. Skip.
Write Process state. Similar to 112. 5B.1
Read breakpoint state. 5B.6
1(3-17) core address
Run indicator off. No skip.
Write breakpoint state. Similar to 152. 5B.6
Create Processe. Skip. Process no. returned in A.
Run indicator off. 5B.1
Delete Dprocess. Beware of process hoard. 5B.1
I(O-i?? process number
Run indicator off. Skip.
Count Processes. Answer in A. 5B.1
Set Cb?syle assignment . 5B.l
A(O) zero, use ivk'ers console
A(0) one, use console 0 (on bay 11)
Set Trap Status. 5B.5
I3} on to enable mta~treDp
I(4) on to extend suPeriority
I{(5) on to nullify this ivk in inferior
Read fault entry and superilor. 5B «5
A contains entry address or 1s unchanged
I contains sPhere number or O
Subjugate. I(3-17) fault entry address. 5B.5
I(O-Q) clear. Skip. Enters mgy oOccur.
Execute mta. A(0-8) containg mta code > 200 5B.1
W contains AC £t0o be used for executed mta
I contains I to be used for executed mta
Reverse share. 5B.1
T(6-11) is donor index.
I 12—17) is recelver index. If zero, filrst free.
Share. B5B.1
Reversge grant. 5B.1
Grant. B5B.1

mtz 303 Crezte program queue. =|I| i1s initial population.
Negative numbers are taken as one's mode. Use I > O.
54.10.2 and Instruction Memo part 4

Use? Variant Action
0 Use variant sPecified by A(13-14) +1 .

1 Mmter queue.
2 Release queue.
3 Read queue population into A.

mta 304 Create directory. 5A4.10.3

Ugses Variant Action
0 A(8=11) + 1 used instea ?
1 Retrieve. (dir, I -11) (user, (12—17))
2 Place. (user, Ig6—11 % > (dir, 1(12-17))
3 Remove. (dir, 12-17) goes away »
T Count capabilitieg in directory. Returned in A.
14 Turn into read-only caPabllity.
15 Translate capability in (air, (12-17)) Returned

in A
mta 305 Creete file. 5A.10.4
Usey Varlant Action

0 Ir A5143=1 then A(10-13) + 1 is used for the variant.
If aA(14)=0 then read/write flle is spPecified.
A(0-12) count. A(13) write Dbit.
1(0-17) file address. (multiple of 40)
W(3=-17) user core address.
Current restrictions pPrevent writing across
LOoO-word file boundary Or user cOre boundary.
Read (length)/L00 into A.
Set length from I to equal (I)x400 words.
Convert to read-only file capability.

WMo

mta 306 Assign I/0 device. fRG2 = A(6-11) ©DE = A(0-5) 52.10.

CODE=0 microtape unit given iIn ARG2. 52.10.5.1
Use? A(0-2) zero. A(%—93 count /400
A(10-11) zero. Al12) O translate, 1 no translation

A(13-17), 06 read, 26 write, 16 rew. wait, 36 rew
I contains taPe address (multiple of 400)
W contains core address (multiple of 40)
CODE=1 buttons, console given in ARG2. 5A.10.5.2
Uset Hang until button status differs from A (0=-17).
CODE=2 temporary clock. 5A.10.5.3
Uge? 1760 decimal tilcks Per minute.
Hang for =A(0-17) ticks, unless c(a) > 777777
CODE=3 meDer taPe reader. ARG2, O albha, 1 bindry 5A.10.5.4
Uses data right Jjustified in A. skip unless out of tape.
CODE=4 paper tapPe punch. 5A.10.5.4
Use? data taken from A(10-17).
CODE=b5 tyPewriter, ARG2 spPecifies desired console. 5A.10.5.5
Use? 0 Use variant given by a(6=0) +1 .
1 A(12-17) typed out.
2 Type in to A(12-17).
ﬁ 1(12-17) typ?d out
Type in to I(12-17).
5 mable.
6 Disable.
11 Turn off enable/disable.
12 Convert to inferior.
13 A(11-17) typed out
14 Type in to A(11-17).
15 1(11-17) typed out.
16 Type in to I(11-17).
CODE=6 call button. ARG2 specifieg congole number.
Use? Hang until call button 1s Pushed.
CODE=T Hardware device. ARG2 specifiles which device.

mta 307 Create entry capability. I(3—17) sPecifies entry address.
Uset ivk <master entry> 5B.3.1
: A(12-17) gives new transmitted word
ivk <non=-master entry> 5B.3.1
causges entry into sphere contalning master entry

mta 400 Translate capability in A(12-17). Result in A. B5A.7
mta 401 mxchange caPabilitiles A(6-11) and 2(12-17). 5A.T
mta 402 Turn off PRL mode. 548
mta 403 Turn on PRL mode. 5A.8
mta 404 count capabilities. Result in A, 77777? if no C~list. 5A.7
mta 405 Duplicate capability in I(6-11) onto I(12-17),
first free. B5A.T
mta 406 Read Process hoard into A. 5B.4
mta 407 Set process hoard from A. 5B.4

mta 500 Asslgn/dezssign external equipment. 5A.9
a(0-5), 0 assign external levels
deassign external levels
2 agslgn external register shared
E agsign external reglster private
deassign external register.
axternal levelg aret
L External clock
7 Radio Astronomy antenna
External levels are specified by A(i+10) for 1 1 £ 7o

mta 501 Disown caPability specified in T(6-117. Reference index
returned in A. 5A.11
mta 502 Claim capability. Disowned capabllity at reference index

given in I(6-11) is claimed onto I(12-17), first free.

Preface

Instruction Memo part 5, composed of two parts, has been
written to provide a technical description and a theoretical
understanding of the PDP-1X system architecture. In addition
to providing the basic reference material describing the
available sgystem calls, thils memo attempts to provide the
reader with some of the conceptual background needed to make
intelligent use of these calls.

The material is arranged 1like a book = each section
agsumes at most the knowledge of previous sections. New
users are urged %to become familiar with the baglc system
features, as described in Instruction Memos 1 through &4,
before Dplunging into the more advanced features. Such a
policy will 1t in programs with fewer trivial bugs and
in less agf jtion for both you and the system hackers.

54A.0 Introduction and Background

This Instruction Memo 1s concerned with the description
of two clagses of instructionss mta's and ivk!s. In order to
understand these instructions it 1s necessary to define
certain frequently used terms. It 1s also desirable to have
a certain amount of Dbackground knowledge of time sharing
systems in general and to know the PDP-1 philosophy in
particular. The following is intended as a concise gZeneral
introduction, but does assume some familiarity with computer
hardware and with common terminology of computer softwares.

The PDP-1, opPerating out of time sharing mode, 1s similar
to an IBM 1130 or PDP-11 in its typlcal mode of opPeration?
it has at most one user and all gystem resources are his to
KB Or not use as_ he chooOses. There 1s one central
essing unit (CPU) which physically contains

and a core—rename reglster (R) 18 bits long not used out of
time sharing. There is a fifteen bit program counter (Pc)
and a large number of individual "“gtatus™ or "mode® bits
such as the program flags, address mode bits, etc. Ingtruc—
tiong to0 be exXecuted by the CPU must be fetched directly
from core memory, of which there Physically exist five UK-
word 18 Dbit/word memories, numbered O, 1, 2, 3 and Te

one accumulator A Or AC 18 bits
one I register I or IO 18 bits
one index register X) 18 pits

One of the first, most obvious problems of opPerating this
hardware 1in a time sharing mode is thae~there ls physically
only one CPU, whereas two or more y] mgy wish to Dbe
running their programs. Solving the p em involves writing
a program which can equitably schedule (CPU time among the
users who wilgh to run. When the scheduler decldes the
current user has 7run long enough and that someone else
should now be allowed to run, 1t must save the contents of
the hardware registers. When the descheduled user is next
given time, if ever, his computation mney be resumed after
the registers are reloaded from the values saved. On the
PDP-1, extra hardware exists which, when the time gharing
switch is on, will do the actual saving and reloading of
reglisters.

The system may now be viewed as having created a virtual
processor for each program wishing to run. Thils virtual
Processor hasg its own set of registers and status bits. Many
of these status bits are groubed together for simplicity and
called the "flag" register (symbol F?. Overflow, extend
mode, and two!s complement mode status bits are concatenated
to the high order end of the fifteen bit PC and called the G
register. The state of the hardware Processor can thus be
stored in five 18-bit wordst A, I, X, F and G. To ald
system-user progrem commnication, and additlonal 18-bit
register called the W register was added to the virtual
Processor. Of course, since thils is not a hardware register
it can only be accessed through the system software. Thig

virtual processor is the conceptual "thing" that executes a
uger! s program and 1s known as a Processs

A second Problem of time sharing is that, in the general
cage, it 1s not desirable to let one user modify the
contents of the core memory being used by someone else. To
Prevent this, the total core memory space 1s partitioned by
the system. Phygical core 7 is reserved for the Permanently
regident parts of the system, while physical coreg O, 1, 2
and 3 may be given to users. The user 1g then allowed to
access only his allotted portion of physical core.

Memory partitioning must be done cleverly, though. T4
would Ve highly undesirable to require a program that fits
in 4K to fit in a particular 4K, say core 1. If & program is
written that references bpPhysical core 1 now, but tomorrow
the system allocates the Dprogram physical core 0, the
program couldn't run. Programs must somehow be set up to b
able £to run 1in elther case. A cOre-renale reglster (=®
exlsts for just this purpose, and can be set only by the
system. It allows the system to allocate Physical memory
space %to0 a uger such that when the user Program references
what it calls core O “the hardware will automatically
redirect the reference to the correct Physical core. By
suitable partitiining of core, use ©of secondary storage
spece, use of the CR register, and use of Paging techniques,
the gystem can and doeg create a virtual memory spece for
each user. This sPace may vary in size from as large as six
4K core regionsg to as small ag oOne.

The third and final gifficulty to be mentioned here 1is
that of zllocating system resourceg other than memory and
CPU time to the *time sghared pPrograms. Under a batch
pProcessing system or on a dedicated machine all system
regources can simply be gilven to the currently running Jjob.
In time sharing mode such a scheme will fail completely. 4
line printer assigned in such a fashion might print three or
four characters for one Pprogram, a few from the next
scheduled program, etc., resulting in a thoroughly useless
printout. It thus becomes deslrable for the system to agsign
regources to individual programs. The Program mey then use
the resource as needed, and when finished with it the
program requests tThe resource be deassigned. The system
maintains a list of resgources & ssigned to each computation
and thig list is called a capab r list —S-1ist . Further
discussion of (C-lists 1isg pOS" ied upitl fsection 5A.5.

A virtual memory spPace, any v1rtua1 provessors (process-
es) thet might be executing ingide that memory space, Plus
the list of associated resources (C-list) comprise a sbhere
of protection. A few examples of spPheres are given here, but
elaboration on sphereg is left for part B of this memo. The
time sharing system itself, including the scheduler, I1/0
controllers, and resource management routines 1s a sbhere.
Also, each user ig given his own sPhere by the system which

9

is seParate from that of other users ¢énd in which the user's
programg are typically run.

The reader 1s now pPrepared for the mterial which
followsge.

10

512.1 The W register

As stated before, each Process hasg an 18-bit software W
register. References to it are much slower than references
toa hardware register such as the AC or IO. However,
various system calls pass data through this register and it
is useful for communicating between sbPheres via entered
processes, as discussed later 1in section B. It may be
referenced by the following instructions.

Instruction Action
mta O Copy A into W
mta 1 Copy I into W
mta 2 Copy W into A
mta 3 Copy W into I
54.2 Low Priority Mode

The system logically maintains three walting areas for
DProcesses able to run. The first area 1s where regular
priority Processes compete for scheduling time. If no
processes are in this area, then low priority pProcesses able
to run may compete for scheduling time. Finally, if no
processes are in either area, a process known 2 g the "hung"
process will run. The hung process 1s the only Process ever
in the third area.

Occe slonally programs are written that would like to run
either continously or not at alls e.g. real time simulation
progrems. In such cases, use of low pPriority mode is
suggested.

A DProcesg mgy enter low priority mode by executing a mta
100. If thils pProcess should execute a frk, the new DProcess
will also be in low priority mode. (see pert 4 of the
Instruction memo for a description of frk.

5A.3 Real-Time Clock

The real time clock described as device 76 in section
54.10.5.6 of this memo can also be read by executing a mta
103 instruction. The returned A and I are the same ag if
hardaware I/0 device 76 had Dbeen 2ssigned and invoked.

11

54l Virtual Memory Assignment

The memory space available to a user who has Just logged
in is one 4K memory region. Mogt pPrograms written will
probably fit easily into this sbPace. For thoge that desire
additional space the size of virtual memory may be expanded
to ag large ag six UK regions or 24K words.

The memory bound of a sPhere 1s equal to one Plus the
highest numbered address of core owned by the sbhere. In the
inltial memory space availlable, the highest core address
agsigned 1s 7777 octal. Therefore the memory bound is 7777 +
1 = 10000 octal initially.

Attempts to reference nonexistent virtual memory are
illegal. TUsgually ID will be informed of the error and will
print address{< and the error—causing instruction. A method
for catching attempts to reference nonexistent memory is
described in section 5a.8.

Attachments are discussed later in section 5B.2. In
general it my be saild that 1if you do not know what an
attachment is, you are not likely to have any.

Instruction Action

mta 206
Read memory bound and attachments into 4.
Format is given below.

attachments
A L [bound | [012 3 4 5]
0 2 3 56 11 12 17

mta 207
Set memory bound. The number of cores is sgPecified
in aA(3-5) or, if that is zero, A(15-17). The
memory bound cannot be lowered to zero nor raiged
above 60000. The content of any existing cores 1s
unchanged. If the memory bound is r&ised, any
attachments that are in the way are sutomatically
removed. Skip if successful, If unguccessful, the
memory bound and all attachments are unchanged.

12

54.5 Illegal Instruction Return
and
Illegel Memory Reference Return

The 1llegal returns tell the system that the progrem has
a subroutine of its own to handle the chogen “error" which
should be used in place of the "standard" action performed
by the system. While both thege 1illegal returns are
initially disabled, they mey be enabled simply by gilving the
address of the subroutine to be used.

If an 1llegal condition occurs and the appropriate
illegal return 1s set then the following wi1ll occurs

1) The pProcess executing +the current instruction will stop
in mid-instruction. In mosgt cases this willl leave the
process and core-memory in the same state asg 1t was in
prior to executing the error—causing instruction.

2) The process state is modified as followse W(3-17) will be
set to the address of the illegal instructiong W(0=2) is
zZeroeds G(3—17) is set to the illegal return address
specified. Nothing elge, including AAL, is modified. This
may require the first instruction of the error handler to
be a nop or rpf.

3) The process will attempt to resume executing code. Be
very careful of such lossage as referencing nonexistent
memory inside the illegal memory reference gsubroutine.
This may cause a very curious infinite loop.

An 1llegal memory reference 1s defined as an attempt to
access nonexistent memory. Note carefully that an instruc-
tion that attempts to reference locationg 00000~00077 inclu-—
sive while PRL 1g on 1s considered an irrecoverably i1llegal
instruction. Besides, that 1s memory that exlists to the
sphere -~ 1it's Jjust protected. The illegal instruction
return catches any recoverably 1llegal Jfistruction. Any
illegal gystem call involving mta or ivk®hstructions 1is
recoverably illegal. All other tyPes of illegal ingtructions
sre intringically irr;gqverably illegal. Section 5B.4.1
describes how any illglal instruction mey be made to appear
recoverably illegal in‘\cértain cases.

One obvious use of these 1llegal returns 1s to mrke a
program more self=reliant and less demanding of ID's error
printing routines and the programmer's patience. A less
obvious use of the illegal memory reference return is 1o use
it to implement a paging routine. The program would be
written such that 1f ever some paged out data were to be
referenced, say by having indirected through a dispatch
table, then the address referenced would be nonexistente.
This would activate the paging routine, which would immedi-
ately find the instruction causing the fault and thus the

13

eged out data item desired.

updating digpatch table

the

After paging in the data and
it could then return to the

error—causing instruction and resume Processing.

Instruction

mta 200

mba 204

mta 202

mta 203

Acblion

Read 1llegal instruction return locstion
into Ae.

Set illegal instruction return from A.
Any negative number in A will disable
this feature.

Read illegal memory reference return
location into A.

Set 1llegal memory reference return
from A. Any negative number in A will
disable this feature.

The following program will dismiss normelly.

100/ iam
law 46
NaX
mta 203
aam
lac 1
hlt
dsm
A contalins 107
X containg =107
W contains 105
G containg 107
F containg 500000

will never be executed
illegal memory reference return

address
when dsm is executed

/ subroutine address for mta 203

/ mkes (X) <0

/ set 1llegal memory return

/ see below

// references the negative address
-107

/

/

/

/ AAL still on

14

54.6 Concept of Gapability
Mca' s and Ivk's Differentiated

A time gharing system 1is continually faced with the
problemg of regource allocation. The Problem arises because
of the need to Dprevent interference among concurrently
running pPrograms which wish £to use a common system resourcee.
There are three kinds of solutions to this problem. The
first solution is to provide a "BUSY" or "IN USE" indicator
for the regource and then let all programs directly access
the resource. Such a primitive system 1s frequently used for
I/0 devices, especially by IBM. However, in the cage of &
disk or drum such a busy flag would 1likely only indicate
when data was being transferred, and some other DPrecautions
would have to Dbe taken to insure that no two pPrograms
accldentally used the same track or field.

A second solution 1s to assign to each resource a list of
those pProgramg allowed to access the resource. Thils tech-
nique is referred to as an access-list- or list—orilented
protection gystem. Such a system ig employed by MULTICS for
each segment (rile, directory, or whatever) in the system.

The third solution is to assign to each progrem (more
accurately, each sPhere) a list of those resources which it
can access. This is the approach adopted by the PDP-l, and
is referred to as a ticket-oriented system. The sgystem
assigns the sPhere a regource by handing 1t a ticket
(capability) which will allow admission to gystem routines
controlling that resource or, sometimes, tO0 the resource
itself. This capability is not itself the regource but 1is
merely a certification of the user's privilege to usge a
regource. A Program acquires a caPabllity to a regource by
asking the system for it. If the sydem has the necessary
regources available to satisfy the requsted amount then it
will allocate these resources to the user and give the user
a capabllity stating his right to access the resourcese.

Once the user DpProgram acquires a capPability there are
many things 1t may do with i1t. It may ask the system to
duplicate the cagpability. Like a Soclal Security number, a
capebility states the program's access rights to a gsystem
regourcee. PerhapPs the user Program is run by the government
and would like to have this privilege Presented in tripli-
cate. Another thing that could be done would be to delete
the capability. Of course, the system knows whether or not
other _coples of this capbility (records of accessing
rights) are still outstanding and so will not free the
agssoclated resources until all copies have been destroyed.
Many other things may be done to the capability itgelf as
will be discussed in later sections of this memo.

The main reason for acquiring a capability is, naturally,
to uge the assoclated resources. This 1s done by invokin
the capability and specifying what action should be Per-

15

formed. The deglred action is conveyed by & Droce s's 2, I
or W _registers, core memory, and/or the ivk (short for
invoke) instruction itself. The 1ivk instrdzgfon 1s dia=-
grammed below.

L 7 [& Jp[/1T v | Index |
0 23 5678 1112 17

Bits 12~17 of this instruction are the offset of the
capability to be invoked in the (=-list. This index 1is
usually known readily to the programmer. The four bits 8-11
labelled "W" are called the variant. Frequently these four
bits help specify what operation 1s desired of the invoked
capability. Bit 6 1s pPause mode and 1s only important when
working directly with hardware devices. It is included here
for the sake of completeness since 1t is never needed by a
uger in time sharing mode.

As an example, consider an ivk EOOﬁ'vnstruction, which

most retders should know is used to typé€™in one character to
the AC. This instruction has a varlant of 2 and a sPecified
index of O. TUsually the user will have a tyDewriter

capability at index O of his C-list. This capabllity has
associated with it the pPhysical typewriter which the user
would be gitting next to. Variant 2 tells the system phat

type of operation to Perform on this resource == type;'n,
put code in AC. When the operation ig finished the ivk will
"complete™ and processing will resume.

There exists another class of system calls known as meta
instructions. Like the word metaphysics, meta 1lg used here
to mean "beyond". Eech of the mbta (short for meta)

instructong ls indeed 2 hardware lnst”UCulon, but the action
it performs dePends upOn the gystem software. Formally mta

ig defined 2s F7OT9 octel. It 1s diagrammed below.

1ﬂ$if?9
7T T 7T o 1 a 1T 7] B |
0 2 3 56 89 411 12 14 15 17

mta AOB

b
”)\ {i

There are 100 octal different mta ingbtruction possible, m&mr
of which are unused.

As the name impliesg, these instructlon can do more than
mogt other hardware instructions. From the point of view of
the system they are subroutine calls, which include requests
for +the asggignment or deassignment of various/ system re-
sources and for capabllity duplication or manlpgéétion. From
the uger's point of view a2 mta 1is a gingleinstruction
somewhat akin to a microprogram gkip instruction (e.g.
A+TA=) =—=—= the instruction performg some specified oper2~

1

tion using the state of the registers, meybe Puts en anguer
back in one or more of the reglsters, and possibly skips.
The convention that has been adopted for gystem callg is
that a mta instruction will gkip if successful IF there wasg
a possibility of feillure. Some requests can always be
granted.

IN ALL THE FOLLOWING SECTIONS, BOTH IN PART A AND PART B,
FOR EVERY SYSTEM CaLL OF ANY TYPE, IT IS ASSUMED THAT THE
INSTRUCI'ION CAUSING THE SYSTEM CALL WILL NOT' SKIP UNLESS
SPECIFICALIY STATED OTHERWISE. Thils applies to both mta and
ivk instructions. In addition, any capability-related in-
struction, except mta's 402, 403 and 404, will be illegal if
the sPhere in which the instruction is executed hag no C-
list.

The mta Instructions tend ¢to fall into groups. Mcatl g
numbered less than 204 are non-capability oriented system
requests such as read/write W register, read real time
clock, read absolute drum field, hit (mta 4) and dsm (mta
7). Mcats 206 end 207 refer to virtual memory assignment, as
alrendy described in the Preceding section. Mta's 300 to 307
are requests to assign sgsome tyPe of system resource and
grant a capability. @pability and C-list manipulation,
including capability duplication and moving, are Performed
by the mta 40OO's, except for mba's 406 and 407 which refer
to process hoards (see Instruction Memo pert L), of course,
gpecific numbers mentioned here are subject to change at any

ime.

The reader should now understand, and should insure that
he understands, *the difference between & regource and a
capability, between deleting a capability and freeing a
resource, and between operation on the capabllity as an
object in 1itself and invoking the capmbility to wuse the
agsoclated resource. Armed with this kpowledge, the reader
should have no difficulty with th%iiﬁg,‘ections.

17

5847 General Capability Hendling

The diagram below 1llustrates the interrelations among =&
capability 1list, a capablility, and the system regource the
capability refers to. A capablility is the system's declara-
tion of a user's right to access some resource. DuPlicating
a capability at index N in the capability 1list onto
capability index J 1s 1like saying "Since I can already
access thils resource by invoking cambility N, let me also
access the same resource by Invoking a capabllity at index
J.™ as long aganyone still hasg a capability to a given
regource the regource is not agssignable. When all capabili-
tieg referencing some resource are deleted, the assgoclated
resource is returned to the free pool and becomes &ssignable
by any sbPhere.

capabllity 1list

~list 0 0 :
1{ ecapability Regource Regource
index 2 0 1 A B
3| capability *
L| capability
5 0
. . 0 => unused index

L3 L]

The following is a list of system calls useful for
general manipulation of capabilities. The functions include
gquplication, deletion, exchanging, and counting. Mta 400
allows the program to discern whether or not a given
cerebility index is used, and if so, what kind of capability
ig 2t the capablility index.

18

Ingtruction Action

mta 204
Delete caprbility. A(12-17) stecifies the index of
the capability to be removed. If no capabllity
exlsts 2at the gilven index, no action occurs. A,I
unmodified. Does not gkip.

mta 400
Reed capebility at index specified by a(12-17).
The 18=bit word describing the capability is put
into A. If no capabllity exilsts at that index, a4
is cleared. Doeg not skinp.

mta 401
Exchange capabilities. The capabilities at the
indices in A(6-11) and A(12~17) are swapped. There
need not exist capabilitieg at the spPecified
indices. Does not skip.

mta 404
Count capabilities. Return in A the total number
of used capability indices. Returns 777777 if no
O~llist existse. ‘

mta 405
copy capability. The capability at the index in
1(6-11) is copied into the index in I(12-17)(or
the first free index if I(12-17) is zero). If
succesgsful, gkip returning the index used in p and
a copy of the capability in I. If unsucceggful
then

1) if a capebility already exists at the index in
1(12-17) (or at all indices if I(12-17)=0)
then a copy of the interfering capabillity tor
the lagt capability) is placed in I. A will
be unchanged.

or 2) if eilther no capeblility or an entered DProcess
caebility exists at the index I(6-11), I will
be cleared and A will contain I(12-17) (or the
first free index if I(12-17)=0).

19

51.8 PRL Mode

As disc%F/ga in sections 54.0 and BA.7, & spPhere includes
a capabilitd list to allow Drocegses 0 access the outside
world. There are two Possible placeg to put the ligts inside
the depths of the system or within the user's own memory
space. If it should be elected to put this list inside the
system, and if 1t 1s desired ¢to keep the memory sPace used
by the system within the limits of ¢the physical hardware,
then there must be a definite uPper limit to the totzl space
available for gtoring (C~lists.

On +the PpDP-1, both modes are used. The system will keeD
for each initizl user sphere a C~list allowing indicegs from
0 to 17 octal. All other sPheres, including all spPheres that
user Progrems can create, must explicitly allocate gpace
inglide fThelr own memory space for the storing of a (-list,
if a C-list is desired. This 1s accomplighed by executing =
mta 403 to enter PRL (program reference list) mode. Loca-
tiong O=77 of the core O of the sphere will then be used for
storing capabillities.

Specizl hardware exists in the machine to keep the user
program from examining or modifying these reserved locations
when PRL is on. Any attempt to read from or write into thesge
locations will produce an irrecoverable illegal iIngtruction
fault. A user expPecting to run with PRL on should therefore
be careful to agsemble his programs beglnning at or after
location 100.

Use of sbecial hardware devices not reserved exclusively
for the system requires that the user be in PRL mode. Thisg
is +the case for the teletype deviceg 16 and 17, the (lcomp
plotter and others listed in section 54.20.5.6, Haraware I/0
Devices.

Unfortunately, the system routines that recover after e
system crash will only recover capabllitles on indices from
0 through 17 (octal). The effect is the same as if PRL had
been off at the time of the crash.

whether or not PRL is on. If bjt, 8 of the word read into I
by the cks instruction is a one,fRL ig on. Otherwise PRL is
off. Other bits hiskertr=iiy Derflorneg) waefwdt functilong, but
are now obsolete. o+ P 7&

The cks instruction (720033)2gfay be used to determine

Ch e)
> :“¥ ! ;n:;g:,%

20

Instruction Action

mta 403
Turn on PRL. Core O locztions C through 77 octal
become protecteds. Bit 8 of the cks word will be
turned One.

mta L02

Turn off PRL. Core O locations C <througnh 77
become unprotected, and are set to zero 1f PRL wasg
on at the +%time of executing this Instruction.

Notet For the initial wuser sbhere only, when PRL is
turned on current capabllities in indices O-17 are copied
into the PRL (~ligt in the corresponding indiceg. When PRL
is turned off, capabilities with indices from O to 17
inclusive are saved, and thoge from 20 to 77 are deleted.
Stheres other than initial user spheres will have all their
carabilities deleted 1f PRL 1s turned off.

21

.

54.9 ternal Equlpment Assignment

There are gseverel items which may be assigned to a sPhere
but which will not be exPressly entered into the (-list.
These items are assigned and deassigned by using a mta 500
instruction, with the appropriate code 1in the AC. The
external levels are also listed for convenlence.

2(0-5) code Action

Assign external levels. DMore than one may be
agssigned in a gingle instruction. For all i, 1< 1
7, external level 1 ig assigned if a(i + 107 =

« Skip if oOke.

Deagsign external levels ag above. No skip.

Assign external reglster, common. Skip if ok.
If one gPhere hag the ext. reg. owned in common
mode then any other sbPbhere requesting the ext.
reg. in common mode will have its request granted.
Any sPhere owning the register in this mode may
read and write the contents of the reglster at
will.

Assign external vregister, Dprivate., Skip 1if oke.
No stheres may use the register excebPt the sbhere
to which the register 1s assigned. Thils 1s the
desired mode for musilc players, alHhouia %swwﬂ%y
aﬁumifj assigns i n common wod’e. ¢
Deassign external register. No skip.

External Levelg

3 Used for temporary hardware connectlons

L mxternal clock

6 Used for temporary hardware connections

7

Radlo Astronomy antenna

22

52.10.0 Ma 300 Seriles Degcription

The group of ingtructions from mta 300 to 307 is used to
acquire capabilitles to system resources. There are eight
categories of resources? 4K drum fields, entered DProcesses,
sPheres, program queues, dlrectorles, fileg, hardware 1/0
devices and entries. The category of entries 1s used to
cover those T/0 resources which have a software system—
resident controller. Examples are the PaPer taPe reader and
punch, microtaPes and typPewriters. The eight categories
given are numbered type O to 7 resPectively.

To a good approximetion a mta 30X Instruction 1s used %o
assign a resource of category X. For example, a mta 305
would be used to agsign a file, resource typPe 5. There are
two exceptions. Mta 301 does not exist, and mta 306 is used
to szssign all I/0 devices ——= not only hardware devices
%type 6) but algso all of those with a system controller
accessed through sam Lilltleg of 1y De 7).

A1l of the mta 300 gerieg of instructiong use the same
generel formt. The Program must sPecify what resource 1s
desired 2and where to put the new capability that willl be
created. Where to pubt the capability 1s always spPecified by
A(12-17), and the convention has been adopted that if these
oix bits are zero then the first free (unused) C-list index
will be used, beginning with index O. This first-free-if-0-
ig—gPecified convention 1is frequently used throughout the
sy stem,

All of the mta 300'gs gkip if successful. Success 1s being
able to allocate fthe requested resource and being able to
put a carebility at the requested index. If the Instruction
skips, A will contain the C-list index and I will contain a
copy of the carability at that index. If the Instructilon
faililg to gkipe

1) If T is nonzero, then there is already a capability at
th requested index (or 2ll indices if zero was requesb-
ed). A Will be unchanged.

o) If T is zero, then there are insufficient resources %O

@atigfy the request. A will contain the requested index
(or first free index if zero was sPecified).

23

Instruction sction

mta 300
Lssign drum fleld. If A(O) is C any avallable
drum field will be assigned é&nd both read and
write operations may be pPerformed. If a0) is 1
then the absgolute drum fileld given Dby p(5-11) will
be 2 gsigned in read-only mode. Read-only indlcates
that write operations are recoverably illegal. The
initial contents of a writable drum field are not

Predictable.

mta 303
Assign progrem queue. The initilal population of
the queue is ones complement —|I].

mta 304
Assign directory. A directory 1s initially devoid
of carebilities.

mta 3C5
Assign file. Initial length 1s zero.

mta 306
Assign device The particular device class is
glven by A(O~5) end variations within a clags are
specified by A(6-11). The major classes are?

microtePes. Drive number in a(6=11).

buttons. A(6-11) indicates panel O or 1.
temporery clock

feper taDe reader. Alpha mode chosen if A(11)
is zero, binary mode otherwlse.

P per tapPe punch .

typewriter. A(6-11) indicates desired console.
call button. A (6= %) indicates deslred console.
hardware device. A(6-11) indicates which
device. Devices 1, 2, 20, 24 and 77 are Perm-
nently owned by the system.

~OWUldE WMok O

Fach of these resources 1s described 1in the following
sections along with the ivk ingtructions that apply.

mamples. law 216 / assign tape drive 2 to
mca 306 / cambility index 16
hlt / if unsuccessful
A contains 16 / if successful

I containg <{microtape capability)>

lac (30010 / assign alpha reader to

mca 306 / capability index 10
hlt / if unsuccessful
A containg 10 / if succegsful

I contains <{reader capablility)

el

5..10.1 Drum Filelds

Drum fields are assigned &s indlcated in sectbion 52.10.0.
The formet of data transfers is indicated in Instruction
Memo part 3.

The primry use of drum fields is for storing core image
data, such as the binary version of a program as DProduced by
the assembler. Read-only drum field capabilities allow a
user %o access certain gystem Drogrems such as E.T.,
Certainly, ET Window and ID. Storage of non—-core-~imge typPe
dote such as text should use files in preference to drum
fields ag files are inherently more efflicient use of system
resources.

Mca 104 and mta 105 are also used to0 read any absolute
drum fleld. The format is the same ag for a drum ivk, excebt
that the drum field comeg from I(O~5§. Mca 104 reads fields
0~77, mta 105 reads fields 100-177. Mta 104 ang mta 105 skip
if no error occurs. The reglsters are always unchanged.

25

5410.2 Queues

Since program gueues are discussed thoroughly and compe-—
tently in part 4 of the Instruction Memo, only brief
comments are given here. Queues are described solely for the
gake of completeness.

A Queue Provides a way for a Process t0 ask the system
for condltional descheduling. The Process may remain de-
scheduled for an indefinitely long period of time. This and
other features make a queue an efficient lock mechanigm,
preventing more than some desired maximum number of Drocess-—
es from entering the locked region of code.

111 registers are always Preserved by queue ivks.
Variant Action
0

A(13-14)+ is used as the varisnt

1
EInter gueue. The population is increased by oOne.
If the result is strictly positive, the DProcess 1s
suspPended 1in the queue. If the result ig zero or
negative, the instruction completes and the pro-
cegs continues.

2

Releagse queue. The population is decreased by One.
If the result is nonnegative the Process that has
been susPended longest 1s removed from the gueue
and restarted as if its enter queue had Just
completed. The releage queue ivk always completes
immediately.

W

Read queue population into A. Primrily used
for debugging.

26

52.1C.3 Directories

A dirvectory ig & means of storing capebilities. Ez2ch
directory can hold 2s mny zs 200 (octal) cepabilities. A
capability in a directory, however, my not be directly
invoked but must first be placed 1in the user's C~liste

A directory may contain any kind of capability. There are
two be sic kinds of directory capablilities. The first 1s_the
kind created by the create directory mta. This capability
mey be invoked to add things to, delete things from, or
otherwise modify the directory. The second variety is a
read-only capabillitye. This_ kind of capabllity may only be
invoked to obtain a capability from the directory. Attempts
to modify the directory using this capabllity are 1illegal,
except retrieval of entered DProcess cepebilities which
return error 106.

Directories are asgigned as indicated in section 54.10.0.
The following 1vks exigst.
Variant Action

0
4(8-11) + 1 is used as the variant.

Retrieve capability. The capability sDecifled by
T(6-11) in the directory is placed at I(12-17) in
the uger's C=list. The ivk will gkip if a nonzero
capability was succegsfully placed at the deglired
index 1in the user's (C~list. The capebility in the
directory 1is not deleted unless the capability was
an entered Process capability. Ir I(12~17) is a
Zero, the filrst free index in the uger's (-list
will® be used. The contents returned in A will be
the index in the user's (C-list at which the capa-
bility was (or would have been) placed. I will
contain a copy of the capabllity at the index in
A

27

14

15

will

Place capability. Similer to verlant 1 ebove.
1(6=11) specifies the index 1In the usger's C-list
and I(12-17) the directory index (or if 1(12-17)
is zero the flrst free dlrectory index will Dbe
used.) - The uger's copy will Dbe deleted only if
the capability was an entered Process capability.
This ivk will gkip if a nonzero capability was
succeggfully transferred.

Remove cambility. The capability &t the directory
index given In A(12-17) will ©be deleted. All
reglsters are left unchanged by this ivk.

Count camebilities. Return the total number of
capabilities in the directory In A.

Convert to read-only capebility. The capability
invoked is turmed into & read-only capability.
only variants 1, 7, 44 and 15 or appropriate
variationg of variant 0) are legal on such capa-
bilitles. All other variants imply a directory
modificatlone Note, however, tThat an entered
Process capablility may not De retrieved via a
read-only directory capability ss this would
necessitate a directory modification. In this
special case error code 106 (octzl) would be
returned in A.

Translate capability. Similar to a mta 400 on a
cepability in a C-list. The capability at the
directory index specified by 5(12-17) is read and
pleced 1in A.

Variants 1 and 2 and appropricte variationsg of variant O
skip 1if succesgsful. Variants 3, 7, 14, 15, and

appropriate variationsg of variant O will never skipPe.

28

~ I —
BLellex Files

A file is a variable quantity of drum gPace which my Dbe
ag little as zero or as much as 1,000,000 (octal) words. The
uge of files for secondary data storage instead of drum
fields is urged since files 1inherently use space more
efficiently. For text, esbPecially, the use of filegs elimi-
nates the Problemg asgsoclated with use of drum filelds where
even a short text uses 4K of drum spece, and a long text
requires several capabilitles and the use of computed ivks.

Files are asgsigned as indicated in section 5A.10.0.

File operrtiong fall into two clagsest data transfer
between core and the file, and operations on the file as an
object, such as reaed length. The typPe 1s determined by
1 (14). The description that follows implicitly includes this
fact.

File ivks are 1llegal 1f the variant 1s illegal, if an
attempt is made to write or set length using a rexd-only
capability or a read/write operation sbDecifieg an illegal
core address.

Rea d/Writ e Operationg.
A file is from O to 2000 (octal) blocks of 400 (octal)
a single file block. Thus the mximum transfer i1s LOO words

per 1vk, and if the trensfer beging at word 340 of a file
block, only 40 words can be trensferred.

words each. Data transfers must be entirely contained'withii]

Data transfers must also be entirely within a2 gingle 4
core module. Thus a 400 word trensfer beginning at OTLOO Is
allowed but OTLOL to O7777 1s not a2llowed as the initial
address for a 400 word transfer.

Writing past the end of file will normlly cause the file
to be extended sufficiently %o create the specified block.

Thus writing data into block 50 of a Previougly zero length.

file will cause the file to become 51 blocks long (blocks O
through 50). The contents fthe first 50 blocks weuld—be
unpredictable. ave

The read/write ivk will gkip if successful. If unsuccess—
ful then it will be becauge?

1. An attempt was made to0 read a2 non—-existent block of the
file.

2. The sPecified %transfer required the crossing of a file
block boundary or & cOre boundarye.

3. An attempt was made t0 write past the end of file and the

29

old |

< ee ‘).30&

Ne— WO I@wgev
tyue

f£ile could not Dbe extended far enough to create the
specified block.

The formet of the A, I and W registers for a read/write
operetion ig similar to that of drum fields and microtspes.
A(13), the 20-bit, if zero will read data from the file into
corey 1f one, data is written from core into the file. The
count of the number of words to be transferred divided by 40
(octal) iz given in A(6=-12). A(14-17) should be zero.

The. address in the file a% which the data transfer is to
begin is specified iIn I. ince this "address must Dbe a
multiple of 40 words, I(13-17) will always be zero. W(3-17)
gives the extended core address &t which the data transfer
ig to begin, and refers to the core of the sbPhere executing
the file ivk. W(0-2) is ignored.

A /77777777710 0 O] count [W]O O O O]
0 56 B89 10 13 10 17

T [file address [00 0 0 0]
0 12 13 17
W /700 core address |
0 23 17

30

Any file ivk,that requests a transfer entirely wilithin a
81ncle Moouword)C%lock will continue to Dbehave as Dbefore,

when & transfer must cross 400-word Dboundaries the I and W
registers will count up by blocks and the A will count down
(much like microtape ivks), At some point the remaining word
count will lie entirely within a single block, and when that
final transfer has completed, that count along with the
associated core and file addresses will remain 1in the
registers., If the 1ivk 1is not successful, it wmay have
actually finished part of the requested transfer, and the
values in the A, I, and W will point to whatever part of the
transfer remainsg, y ﬁéﬁt' Transfers may actually cross core
boundaries &ﬂyﬂﬁﬁgm no single file Dblock ever overlapsa
core boundary, It should be noted that the invoking process
must be restarted after each transfer of a block or fraction
of a block, and so a multi-block request that writes over
the 1instruction invoking the file wmay cause the request to
terminate before completion.,

For example, say the A, I, and W contain 740, 300, and
530 initially, Then the transfer will take place in three
parts as follows?

file (300- 377) = core (530~ 627
file (L4oo- 7773 > core (630-1227
file (1000-1237) = core (1230-1467
Wwhen the transfer has completed, the A, I, and W will
contain 260, 1000, and 1230, respectively.

SEE Tnstrha 760218

iCa

File~ObJject Operations

Thege ivkg treat the file as a whole entity. If variant O
is used in the file ivk then 4(10-13)+1 1is used as the
variant., It 1s suggested that A(15-1T7) be set equal to 5.
Thege suggested values for use with variant O ere listed in
mrentheses after the variant. If the variant 1s used, the A
value 1s ignored.

Variant (a) Action

1 (15)

Read length. The length in 400-word blocks is put
into the AC. The result will not Dbe less than
zZero, nor greeter than 2000. Doeg not gkiPe.

2 (35)
Set length. The length in 400-word blocks 1s set

from the I register. Skipgs if successful. If
unsuccessful, then I was set greater than 2000, or
there wag ingufficient drum space.

3 (55)
Convert to read-only capability. Write and set
length operations on the file via this capablility
become 1llegal. Read and read length will remain
legal. Does not skip.

chould Vove ofwo&\'oms o nsext oyr
del ote blodes Jvom the middle of a Jflle.

Also , hew soowt o wia struction +hat
mics o resd/write dvum Field

no othey copies exist,

w\au%ic,auj che
o a File |
Ales how obout o Jile bk‘{ec’\' ivie Hrat -
‘c’a,uses sowme other Sfec.{}Ie,aL File fo be
. GW\P’HQG{ on LQP 93’ the «!7[“_9"} one-
4 (79 KBl cmtbaks o3 Sile on 1(6-1), skip iF 0K, Geburms plundersd
g) “""‘0'“"“7 in L. Beth wust be fea;c(/i/./ri{-&)o(;s’ﬂnct j;{,g}' Secend 5;[2_) o.vnf‘HeJ,
(115 \ L .
Tusert « bleck bedore block n, where 1 is in T(o-17)
selp ¥ SKLC/Q%’}-L!() Blockn night wot have existed » Al succeed.
%) (‘@E’_) Delete block n, Mo «,-\:\P
n Yo e Jenumbered. Be,wourl@i‘

31

- %O%\ "7 g b canst qL\ blocks

54.10.5 1/0 Davices

Thls section i1s desligned 0 comdlement Instruction Memo
pert 3 which describeg the operetion of I/0 devices. Hoch of
the following sections contains any additionzl usge or
Peculiarity of the various devices that was not mentioned in
part 3.

Assignment of I/0 devices using mta 306
The mta 306 instruction assigns most of the commonly used
I/0 devices. As with all mta'ls, much of the data is passed
in the 4C. The format referenced here ig
nigh six bits A(0-5) is c2lled CODE
middle six bits A(6-11) is callegd ARG2
The low six bits A(12-17), called INDEX, should be set to

whatever C-list index you wish the resultant capability to

be placed at. If INDEX containg O, the first free capability
index will be wused. 411 mta 306 requests will gkip if

succesgsful. If unsuccegsful, A(Omiij will be cleared.

CODE Action

Assigng a microtape. ARG2 should be set to the number
of the desired tape drive.

1
Buttonss ARG2 should be the number of the desired
button congole (0 or 1).
2
Temporary clock. ARG2 ignored.
3
Paper tapPe reader. If reader should read in alpha mode
use ARGZ2 = 0. Otherwise use ARG2 = 1 to read tabe
in Dbinary mode.
L
Paper tape punch. ARG2 ignored.
5
TypPewriter. ARG2 should be set to the desired console
number. Will gsucceed if the congole is not logged
in and if the typewriter 1s not otherwise owned.
6
Call button. ARG2 should be set to the desired congole
nhumber Will succeed if the congolzs =clg . G-

32

Hardware device. ARGZ gPecifiegs the desired device
number. Devices 1,2,20,24, and 77 are Permenently

-

amed by the gystem.

Exerples. lac (216 /assign microtape drive 2 to
mta 306 /capability 16 octal
hlt / if problems
Jjmp . / if all ok
lac (30010 / assign alpha reader to
mta 306 / capability 10 octal
dsm /if problems
Jmp <=3

Note that in thig last example, the mta 306 will skip once
at most. This 1s because 1) the capabllity is already used
the second time around, and 2) the reader has already Tbeen
agsigned to someone and only one copy is allowed tO be given
out at a +time (although there mey be mny copieg of the
original capability).

33

54+10.5.1 [lcrotePe

(62}

MicrotabDes are agsizned as described in section 51.10.5.
The variant of a microtape ivk ig ignored.

Some years &go nicrotapes were formatted with only 1000
blocks, instead of the standarg 1102. While all public tapes
and mogt private tapegs have been switched to the standard

11402 format, the s{stem st1ll wunderstands the 1000 block
format for compatibility.

Data transfers use only A znd I, and thelr format is
shown in the diagramn.

A [c clT] core address |0 O 0 0 O]
0123 12 13 17

I [no. blocks [///] initial block |
0 56 78 17

_ I(O—5) containg the number of blocks to be transferreds
if zero, one block will be transferred. 1(6~7) is ignored.
1(8-17) contains the number of the first +tape block to be
transferred. '

A(3~17) sPecifies the core &address of the Tirst word
?c1ng tfansferre? and gsince it must be a multiple of 40
octal) words, 13-147) will contain zeros. The fact of
A(15-17) Delng zero is used by the system to determine that
1000-block trensletion is being requested. A(0=1) are the CC
bits and correspond to A(13~14) in 1102-block format tape
ivks. Al2) is the tranglation, or T, bit and corresponds to
A(12) in 1102-block format. In the norml cage where
translation 1g on (T pit 1is off) the block number ig
interPreted mod 1000 (octal).

" Regbtrictions about transfers crossing core boundaries are
the same for all tape ivkge

If all Dblocks are transferred succegsfully, the 1vk
ingtruction gkipg, leaving the address of the lagt word
transferred +1 in A(3-17) with a(0-2) unchanged, and the
number of the lasgt block transferred +1 in I. If an erro
occurs on any block, the instruction does not skip, 1(8-17
containg the umber of the Dblock 1In which the error
occurred, and I(0-5) contains the number of blocks remain-
ing, including the one that was in error. In addition, the
standard error code will be returned in the W 7:'eg,is’c,erl.L

3

In 400C=-hlock mode, the system translates the blocks so
thet logical taPe blocks 0, L, «.s; 377, 400, 401, ..., 777
reference physlcal taPe blocks 1, 3, eees TT7s 776, TTH,

LI B] O'

35

5..10.5.2 Button Oonsole

There &re two Dbutton congolesg available, numbered zero
anéd one. More detall may be found in Instruction Mnual Ert
3. Button capabllitles are assigned &s indicated in section :
501045« 1 ste Fhat %?‘é ay_:}‘\kf’\nfz\ gawels asy Q!.wuy's fe ,;z.sg}xhgg,é Fussens ;,.

~d Vi Fi

Invoking & buttoV congole capbility will cause the
Process executing the d1ivk to hang until the state of the
buttons differs from the contents of the AC. When that
condition is met, the Process willl Dbe restarted and the
contents of the AC will be the current state of the buttons
in the same format ag read by a rbt Instruction. The rbt
%Qstruction works independently of button console capabili-

leSO

54.10.5.3 Temporary (Clock

The system provides a clock which ticks 1760 times DPer
minute, or slightly legs than 30 decimml ticks Per second.
The clock is asgsigned as indicated in section 54.10.5, and aw
very_ large number of clock capabilities are avallable.

R, i

A DProcegs invoking a cloeck capebility willl hang ag
followsgs

value In
the weembsemts—ef A 1g Positive, Plus or minus zero,
cessing will resume immediately and the contents of A
111 be unchanged?

: valwe in . s
2) if the eestende—of A iz less than 777777, each clock tick
will (one's complement) add 1 to the contents of A. When

the contents become zero <the procegs will be unhung.

All arithmetic on clock time 1s done in one's complement.
If time larger than 1 hr., 14 min., 28 and 29/88 seconds is
needed, the user should write 2a loop into his program that
invokes the clock ag mny tilmes ags necessary to get the
degired totel wailting time.

1. law i 30. / will wait glightly over a second
ivk 10 / if & clock capability is at index 10
szZa
nhlt / will never be executed

2. law 30. / will not wait at all
ivk 10 / (clock on cepability 10)

54.10.5.4 Paper TapPe Reader and PaPer Tape Punch

The operation of these deviceg lg described in Insbtbruc—
tion Memo part 3.

Only one process at a time may operate the devices.
Adgitilonal processes that try to invoke the device will get
a function busy error.

37

Pvoewriters

52.20.5.5

J—-
oA

The initiel user sphere 1s Provided & typPewriter camblil-
ity 2t index O. If &a console is not logged in and no one
else already hag a capability to the associated typewriter,
then that typewriter may be agsigned by using a mbta ag
described in section 5A.10.5.

Variants O through 4 and 13 through 16 are described in
Instruction Memo Pert 3. The hext section is best understood
only after reading rart 5B of this memo about sPheres.

It 1s occagionally desirable %0 share a typewriter with
another progrem, frequently an inferior sthere, but in such
a way that the original owner may assert control over the
typewriter when it wishes, without finding and deleting all
copieg in the reciplent. For example, ID gilves the Initial
user ghhere a <tyPewriter at capabllity Iindex O. However,
when the user hits the call button, ID wants control of the
typewriter, and would not aPpreciate user Programs trying to
type in or out. This facllity is provided by having inferior
typewriter capabllities. The reciplent of an inferior type-
writer capability 1s not aware of the enabling and disabling
operations. Inferior tyDPewriter camebilities may be created
to any reasonable depth.

Creating an inferior typewriter capabllity involves the
following stepse

1) Given a tyDewriter capability at index k, duplicate the
caprebility onto index Jj.

2) Cconvert this new tyPewriter capebility at index J to ean
inferior capability by using the ivk given below. This is
now an inferior tyPewriter capability with enzble/diszble
Permit.

3) Duplicate this ceprbility still 2t index j onto capabili-
Ly n.

L) convert this into an inferior tyDPewriter capability
without an enable/disable Permit wusing the ivk listed
below.

5) Give this new capabllity at index n to whoever needs 1it.

Enable/disable permit is used to suPPress both typein and
typeout on all inferior typewriter capbilitles. When a
Procegs Invokes a disabled typewriter capability, it will be

38

hung until the copability 1g snebled. Inferior tyPewrlbe:
cepenilities with encble/diseble permit may be ivk! od for
typein or typeout 1f desired.

Tvpical use of an inferior typewriter capability 1is
illustrated by ID. ID hes two tyPewriter capabilitieg? the
one it hes at Index O of its (=list corregponds to the
initiel typewriter at index k above, and the one 1t hag at
index 12 corresgponds to the inferlor capabllity at index
above., When the usger hits call or otherwise causeg ID to
run, ID suPPresses the 1inferlor fLypewriter at Index 12
before typing out on its typewriter at index O. When ID has
finished running, 1t will re-enable the typewriter at index
12, allowing the user!'s initial typewriter and any inferiors
not otherwilse disabled to resume opPeration.

Variant Action

5

Enable.
6

Disable.
(

Unusede.
10

Unused.
11

Turn off enable/disable permit for ivk'd capability.
12

convert to inferior typewritere. The Typewriter capa-
bility ivk'd is replaced by an inferior. Skip Iif
succegsful.e The new capability will be disabled and
will have an enable/disable Dermit. A copy of the
capability is placed in I.

L
\O

" 5241C.5.5 Herdware 1/0

The design of the PDP-1 allowg some I/0 oPerations to be
performed directly Dy users. An extensive and gomewnat
accurate degcription of this facility may be found in memo
PpP-33, Input/Output in the PDP-1¥, PRL must be on to
operate hardware directly (see section 52.8).

Assignment of hardware devices 1s described In section
54.10.5., The following device numbers are currently usede

1 New drum side A

2 New grum gide B

16 TeletPe input

17 Teletype output

20 Microtape unit monitor

21 Microtape data controller
25 PpP-14 link transmitter

26 PpP-11 link receiver

27 Glcomp plotter (see below)
30 clock (see below)

31 Real-time clock alarm device (gsee below)
32 Special uger device.

76 Real-time Clock (see below)
T7 Microtape motion controller

Some of these deviceg are degcribed 1n sepParate memos.

Most regulre speclal turn~on procedures. Devices 1, 2, 20,
21, and 77 cannot be agsignhede.

G lcomp Plotter

The usge of the plotter 1s fully described in Instruction
Memo part 3. The Dplotter is assigned ags noted in section
5A.10.5. The variant of the ivk 1s ignored.

Clock

This 1s an adjustable speed clock designed to tick in the
vieinity of 60 timeg Per second. The clock 1s agsigned 2as
device 30 ag descrived iIn section 54.10.5. all ivks on this
clock will hang until the clock "ticks". All registers are
unchanged by this ivk.

Ticking rates of greabter than about 365 times Per second
are not pogsible becduse of the system scheduling overhead
needed. The minimum rate of ticking 1s around 2.4 ticks Per
second.

Lo

/(“,& 3\ ; L“ \‘i“ L6 (&w‘,,zi,s%\& ‘ﬁié"‘i\@ ;,{‘ " &5 :H\ fg L 1 P,

Progremg Wwishing to keep track of long time perlods by
using thils device mnmight employ ons of the technlgues
exampled below.

ivk 65 / device 30 agsigned to capability 66, PRL on
1dx time / will cyele to zero in 1 hr, 12 min,

Jmp =2 / 49 1/15 sec assuming 60 ticks per second
ivk 66 / same ag above

igx time / will cycle back to zero in 6 years, 17 days,
sza / 8 hours, 17 minuteg, 15 17/45 seconds
Jmp .=3 / (assuming two leap yearsg) given a tick rate
idx time? / of 360 ticks Per second

Jmp -5

L1

Real Time (Clock

The reel-time clock 1g implemented ag %two devices, the
clock device (hardware device 76 and the alarm device
(gevice 31).

The clock device maintaing a 36 bit time register, wnhich
is I1ncremented every 100 microseconds. It my be read but
not written. The time register overflows only about every 79
days.

The alarm device 1ls ussble asg e timer for intervals of up
to 26.2144 seconds. It maintaing an internal 18 bit register
which counts down by one every 100 microgeconds, and which
turns on a flag when it reaches zero.

For the alarm device, variant 17 acts as an I/0 clear.
The execution of any nonwaiting variant 1g legal even if
another Process iz at that time wailting on the alarm, and it
will have 1its norml function. Attempting to execute a
wailting variant while another pProcess is waiting causes a
function Dbusy error. Variants O and 1 are the only waiting
variants.

Device Variant Function

76 (clock) any Read current contents of time register.
A containg the high 18 bits.
I containg the low 18 bits.

31 (alzrm) 0 (lear flag, load alarm register from I,
and wait. When flag comes on,

clear it again and complete.

1 Wait. When flag is on, clear it
and complete.

2 Clear flag, load alarm register from I,
and complete lmmediately.

3 Tegt flag. Skip if flag is on,
Clear flag and complete immediately.

1T I/0 clear. (Clear flag and cause any

other DProcess now in an alarm walt to
complete. Complete immegizately.

L2

5a.12 Random Comments
Lé This sectbilon of the memo is generally unstructured. It
bes not abide by the rule that only knowledge from previous
sectliong is needed to understand everything in thils section,
though thig might be true by chance. Hopefully this section
of the memo will be of value to users.

Short Glossary
administrative routine (aR

A part of the *time sharing system. It 1s not
permanently locked in core Dbut 1s mged in ag
needed. All mta's > 200 are processed by the AR as
are many ivk instructions. It i1s responsible for
keeping track of all regourceg except CPU time and
for capabllity menipulation. The microtape con=—-
troller resides in the AR. The AR usually runs in
user mode.

capebility
An 18-bit word stating & Dprivilege to use gome
agscclated resource.

C-list
Gpability list. A 1list of either 20 or 100
octal '
elements, some of which may contain capabilitless
2 gsocizted with a single spthere.

executive routine (ER)
The part of the time gharing system that 1s
Permanent 1y resldent in core 7. It contalins the
scheduler, paging routines, and most I/0 control-
ling routines. It ©Performs some of the simple
operations on fileg. Many ivks and all mbal's < 200
are Performed by the ER. The descriptlon of every

- Ty T Ao

sphere_, Drdiegs, D00 0T lie U LD ET I :T‘E'?C {;here.

first free convention
See gection 5A.10.0, paragraph 3.

Initial user sbhere
Qurrently, when a user logs in, the system creates
two sPheresg. One 1s the user's ID and the other is
the gPhere owned by ID in which most user Programg
are run. Thils second gbhere is the initial wuser
sbhere.

invoke
(Webster) to call on for assistance or protections

43

to demrnd Jjudlcially

.,
|
v

-

memory bound
One greater then the highest
owned by the sbPhere. Note Ui
congldered owned core.

meta =
(Webster) A prefix used in words of Greek origin
to mean in the midst of, among, between, beyond,
after, reversely.

Process

: The conceptual "thing" that executeg code in a
sphere. A virtual processor conslsting solely of
its A, I, X, F, G, and W registers.
- ’JA‘;
scheduler

Part of { tha dxecutive routine responsible for
equitabla di¥sbribution of CPU time to Processes.
Occa gione 1Ty blamed by irate users.

sPhere or gPhere of protection
A virtual memory spPace, any virtual DProcesgsors
executing in that memory space, &nd PerhePs a (-
list COmpPOge & sPhere. A sPhere 1s roughly

equivalent to a com l rtu;& cpnpul er whose
. I/0 devices are the A 1es o §% Cc-ligt.
? Comments

Some programming conventionsg have developed which are
used frequently by the system and system hackers. These
conventiong have developed through convenience and Pergonal
tagte and 1In no way are necessery restrictions of the

gystem. !
Grebilities 00—~ Mt?gd t0o be usged roughly ag 2d4low. That
Aok

is, given the index? ;*ﬂt is most likely to be I d ftheree.
0 typewritere mogtly because ID pPuts it there
1 binary copy of pProgram. Observed by assembler
and flle system.
2-6 ET text, hence drum fields
7 beginning of altermate ET buffer. Hence frequently

used for text generating programs like the
Justifier.

10 reader. Mogtly because EI uses it for that
11 no tendencies are known. Might be anything
12 gsPhere, gqueue or inferlior typPewriter

13 usually a queue

14 elmost a2lweys ¢ gPhere

Lh

=

=
o W,

grum field. Usually 2 utility progranm binary
of some sort.
scratch. Mny system DProgrems when gterting up
f a file system will autometically delete znything
on index 16 before putting the microtepe there.
Programg include ID, ET, and the Flle System.
17 a place to hide a capability® usually consldered
a "wfe" index since Practically nothing ever
ugses this index.
The dunch, an extra typewriter, button ranels and the
like tend to Dbe agglgned to any index or to first free.

Progrems written to last into the future should use files
in preference to drum fields. Accegs time is about the game
but flleg are more efficient use of grace.

L.

A DProgram should clean up after itself. Don't leave lots
of stray capebilities lying zbout in the C-list.

If a capability=-generating instruction, e.g. mta 405 or
mta 304, fails to gkip, sectlion 54.10.0 suggests an inter—
pretation of the values of A and I returned.

Ugse the mta summry --— 1t'g faster than looking it up in

the memo. It's also crogs referenced in case additional
informption 1s needed.

b5

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	30a
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

