PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS
22139

pPDP=-35
INSTRUCTION MANUAL

PART 5 == SUPERVISOR CALLS

Tt\;s aa R] 15
+L3. j)(é “ﬂwrf? ’/ \/53»‘/5"9"‘

5{- Iﬂs‘i"f a f{ 40 (Yié-‘m Bl
L&sS T VYD AT E f)auf’f 5 B . ,';j.kj(“"x()t‘\
SCLcuRery ON :

{

y

p: i
cmﬁ'

n w‘ﬂloe/r'z T LA

T
S SV L‘\1 '973 .E:;LJM\‘J D(&yr&
2l—dempery—t373

Te743 Process Haard

When a process executes a frk, or an enter oDgcurs (see
sectjon on entry capapilities), the supervisor aj|locates a

process. If no process is available, the frk waits until a
process becomes available, A program may, if it wishes,
insyre that a process will pbe available when it is needed by

setting its process hoard, The process hoard is the number
of processes which the program s guaranteed to be able to
have, 1t may have more than this nuymber if, as S usually
the case, the superviSor Can allocate space for them, The
heard is simply the nymber that are reserved and guaranteed

to be available at all times, no matter what other programs
do. [f the hoard is p and there are @ processes curfently in
existence in a program, the next n-m frk's are guaranteed to
succeed [mmediately, Upon |ogging in, the hoard is initially
l.

mta 4026
Read process hoard to A, Does not skip,

mta 487
Set process hoard from A. Skip if successful,

15

11.2 Extended System Features

Two powerfu) features of the PpP-1 time sharing system
are the ability to have npultiple processes in a single
sphere, and the abijlity to create other spheres which may
have thejr own processes, Since part 4 of the instructian

manyal s devoted to the yses of multiple processes in a
sphere, the related mia's and ivk's will not be djscussed
here,

The rest of this memo will be primarily concerned with
the yse of spheres ; intersphere and jntrasphere communjca-
tionsy, creation and contro| of spheres, and error handling
capacitiess

11,1 Purpose of Spheres

It is sometimes ysefyl for a user to create a sphere
that s, create separate processes running in an address

space independent of the address space of the creator, and
with a separate set of capabilities. For example, suppose a
user program FOO wanted to run some other program DESTROY
whichs, either malicioysly or because of program buygs, mijght
attempt to wreak hayoc in FOO, FOQ coyld create an inferior
sphere, load DESTROY inte it, grant it any necessary
capapilities, run the program, and be quite safe from
whatever mijght occyr., The program ID is an example of this,
The typewriter capabi|)ity and 4K of core the yser has ypon
logging in (the user's initial sphere) is a sphere owned by
the yser's ID.

spheres are also fregquently used when the user program
wishes to run another program in a "nice"™ enyironment, For
example, "IIID" §js a program designed to enable users to
debug programs that ryn in more than one sphere, This is
accomplished by creating two inferior spheres, placing ID
into one of them, and the wuSer's program into the other,
puring execution, ID thinks that it 1is receiving traPs
directly from the usert's sphere as usyal, while actually al|
traps are being fijtered by IIID, Similarly, all typeout
from ID is passed throudh an entry into IIID which first
génerates a process state display and only then directs ID's
outpyt to the consoje, In gddition to controlling the input
ahd outpyt streams for ID, IIID monitors all| spheres created
by the user such that he may point his ID at any one of them
in opder to follow procegges within the selected sphere,
Furthermore, by carefylly reading and writing ID's core
during sphere switching, IIID perm;ts the wusSer to have
breakpoints Set in Many gpheres simultaneously, FORTRAN
43

programs wishing to manipyjate microtape datafiles provide
another example, The openjng, closjng, reading, and wrjting
of the datafile has been |mplemented by running the File
System of the appropriate tape in an inferior sphere,

Only a user's initial sphere has the ability to have
capabilities with PRL off. See section I,5 on PRL,

ITe2.1 Ownership and Receiving Traps

When sphere A creates a sphere B, sphere A receijves a
master sphere capabijity to B. Ownership of a master
capability by A makes A the superior sphere to B, and B the
inferior sphere, There may be at most one master capability
to a sphhere at a time; there may be none, This implijes that
other copijes of a sphere capability created by a mta 425
(copy capability) or a grant or share sphere ivk (described
. later) will not be master capabilities, A sphere may be |ts

own superior,

peing a sphere's superior iMplies that if some process in
the inferior sphere encounters difficulties, the superior

will be informede. Processes that encounter oproblems in a
sphere havind no superier wWill simply cease execyting
instructions but wil]l not otherwise affect any remaining

process in the sphere, Difficulties ares;

8 illegal instruction;
irrecovgrable or return not enabled

1 Jock faylt

2 ESI trap

3 I/0 function busy trap

4 bpt trap .

5 unused

6 illegal memory reference,
return not enabled ,
(except far jllegal ref=
erence to PRL, which is
an illegal jnstruction
and therefore code 2).

7 unused

10 mta 4 (hit)

11 mta 5

12 mta 6

13 mta 7 (dsm)

44

Informing the superjor is done by an entered process &as
diagrammed below,

Sphere 8 sphere A

A
]
ialel
11
w w
oF &
<>
1

entering

process
\ Ay G, \K
N I, Xs N
N Fe W\

<instruyction)

Pl g S
A A A e S A e
P A A g SV A A S e
F A AV A SN A s Wl

When the process executes whatever instruction causes the
trap, the following steps occur;

1) the process executing the instryction is "hung"; no
further instructions may be execyted unless the nracess

is explicitly restarted,

2) A system "pointer" o this processS state is placed in ths
first unused C=|ist |ocagion provided that the superior's

run indicator s on, that an wunused C=|ist location
exists, and that step 3 can occur. This pointer Is caj|led
an entered process capabjlity,

3) A new process is created in the superjor sphere, This
process will have |in jts AC the Iindex of tne entered
process capability created in step 2, The I regjster will
contain the octal number @ to 13 from the above |iSt
describing the reason for the trap,

The fault entry address specified when +the sphere was
created or Subjugated is put inte G(3-17) and G(8~2) is
cleared, All other regjsters of the created process contain
zeéro, The fault entry address indjcates where a procesSs
created to respond to a "faylt" in the inferior should begin
exegyting, ’

In the diagrams above, C-lijst index "y" implies the
entered process capabli|jty added in step 2, and C-lict Indey
nx" represents the index of the master sphere Capabul:ty,
Reversing this entjre entry mechanism will be discyssed

latere.

A sphere that wiShes ¢o Quarantee an enter can accur
shoyld set its process hoard. Hoards are more fully de-
scribed in part 4 of the Instruction Manual,

45

Mta-Trap Mode

A sphere may choose to handle all mtats > 280 executed by
an inferior rather than haye them handled by the Administra-

tive Roytine. To trap such mta's, first the superior must
set run status, (See sphere ivk 512,) Then, whenever any
process in the inferior attempts to exacute mta's 3 208¢, the
following occurs;

1 and 2) Identical as for a fayit (above).

3) A new process is Created in the syperior sphere, Its AC
will contain the index of the entered process capability
created in step 2. I wil}| contain the mta nymbers, The mta
nymber in I is compressed; e,g, mta 306 appears as 36,

The fault address specified when the sphere was Subju~
gated in put in G(3~17) and G(@=2) is cleared. A}l other
regigters of the created Process contaijn zero,

46

11.2,2 Relevant Instryctions
Instructjon Action

mta 3082
Create sphere, Creator receives a master sphere capa-
bility, A(12=17) contains the desired index or & if
first free capabiljty to be ysed, I(3- 17) should
contain the fault entry address, Skip if success=-

ful, The sphere wijl initialiy haves
core 2 {memory bound = 100080)
PRL off (Sphere may not own capabijities)

run jndijcator off

{the following have not yet been described)
breakpoint varjables disabled (777777,8,0)
illegal ingtruction returp disabled (777777)
illegal memory reference return disabled (777777)
no attachments

mta 4

This is the h|t instryction. Causes a mta 4 trap to
the sSuperior,

mta 5

Cayses mta 5 trap to superior, ID will interpret this
as a request to perform a command string (see ID
memo) ,
mta 6

cayse mta 6 trap,
mta 7

This is the dsm instpruction, ID interprets this as a
"normal complgtionn.

47

Sphere {vks,

1f A(l4) is zero, a read/write sphere operation is
specjfied, The - operatjon great|ly resembles the read/write
drum field ivks giyen ear|jer. A(2=5) is ignored, The count
of the nuymber of words to he transferred/40 is given in A(6b=
12), If this count s zero, 18002 words will be transferred,
If A(l3) is zero, data wil| be moved from the invoked sphere
into the sphere executing the ivke If A(13) is a one, data
will be written onto the invoked sphere from the invoking
sphere, The contents of A(15=17) should be = 2, but under
the current system this fie|d is ignored, I1(3-17) specifies
the extended core address jn the invoked sphere; since this
address must be a muitiple of 40 words, I(13-17) will be
zero, W{3-17) gives the extended core address in the sphere
execyting the ivk, W(@=2) and 1(2-2) are ignored, The
instruction skips {f successful., Core locations £-77 of a
sphere with PRL on may not pe read or written,

A AN T NFNFAN count WA 2N \
@ 5 6 12 13 14 15 17
I \VIFEFA sPhere gddress \ ¢ 2 @ 0 &\
2 2 3 12 13 17
W N/ N core address \
2 2 3 17

AC Code Action

12 _
Suppress processing in the ivk'd sphere, That sphere's
run indicator is tyrned off,
32 _
Permit processing. The run indicator is turned on, If
a sphere's rupn indjcator is on, processes in that
sphere may ryn and any pending enters will occur,
52

Attach, The core module of the invoked sphere (the
attachee) specified by I(15-17) becomes attached to
the sphere executijng the ivyk as the core module

' 48

72

112

132

152

172

412

specifijed by I(3-5), This instruyction wi|l succeed
if the attached core exists (as an attachment or a
real core which js not the core 2% of a sphere with
PRL on) and the attaching core is not a real core,
If the attached core is itself an attachment, the
real core the attached core is an attachment <o
will be wused, If the sphere to receijve the
attachment aj|ready has an attachment at the area
specified by 1(3-5), the previous attachment will
be removed, An attachment may be made and main=-
tained whether the run indicator of the invoked
sphere is on or off. Skip if successful, Refer to
section on attachments,

Reverse attach, Similar to attagh, The core module oOf
the invoking sphere specified by I(15-17) becomes
attached to the ijnvoked sphere as the core module
specified by 1(3-5). Skip if successful,

Read process state, The registers of the process whosSe
number |s {n | are read and stored in Six consecu-
tive words beginning at the address in W(3-17), The
order is A, G, I, Xs F, and W, The sphere's run
indicator must be off, Processes are numbered
beginning with l. This instryction will fail if the
numbered process does not exist or the ryn indica-
tor is on, Skijp if successful,

Write Dprocess state, Similar to read process state,
This will fajt if the numbered process does not
exist, the ryn indicator is on, or the process is
in a wait, Skip if successful,

Read breakpoint state, The three words of breakpoint
state bpl, bp2, bp3 are read into three consecutive
words beginning at the address in 1(3-17), Does not
skipa

Write breakpoint State. Similar to 152, Refer to
Breakpoints and ES1. Daes not skip.

Create process, A new proceSs is created for the
sphere, and becomes the highest numbered process,
Its process number is retyrned in A, The run

49

ANNOUNCING - NEW SPHERE IVK

AC Code Action

472

s
set/clear assignment number. If A(Q) = 0, assign the same

console munber as that cf the ivk'er, If A(0) = 1,
assign 0 as console number. This governs which sense
switches, display lever, and run light are selected by
the hardware when the sphere is running. Ordinarily
(and initially) user-created spheres are assigned to

console O (sense switches on bay 11, no display lever
or run light).

432

452

H72
512

532

552

indicator must be off, The instruction fails if no
process is avgjlabje., Skip if successful,

Delete pProcess, The process whose number is in I is

dejeted, All higher nNumbered processes are renym-
bered, If the process is in a wait, it will Dbe
deleted byt the process hoard will diminjsh by 1,

This instructjon fglls if the numbered process does

not exist or the run indjcator is on, Skip if
successful,

Coynt processess The pnumber of processes in the Sphere

is returned in A.

5)e 1(3) = 1 and I(3) =2 respectively enable and

disable mta~-trap, (See secgtion desCribing mta=-

trap). I(4)=1 cayses all faults normally trapping
to the ivk'd sphere to trap to jts suberior
instead, proyided the superjor is enabled, has an
unused C=list index, and that a process can De
created, 1(5)s1 prevents this (vk from having any
effect if executed in the sphere, The ivk is still
legal however, in the sense that it will not cause
an illegal instruction trap,

Read fault entry address and superior, If the invoked

sphere has a suberior, the fault entry address for
the invoked sphere in that superior is returned in

A, and I wjll indicate the superior sphere (|Ow
twelve bits of sphere capabjlity), If the invoked
sphere has no Syperior, then I will contain zero,
and A will be unchanged,

Subjugate, The sphere in which the jvk was executed

becomes the superior of +the invoked Sphere, I
contains the new fault entry address, The invoked
capabi|ity becomes a master sphere capability., Any
processes waiting to enter will enter immediately
unless the ryn indicator is off, If the sphere
executing the ivk js already the invoked sphere's
superior, then I must contain the new fault entry
address, This instrucion fails if the sphere
already has a syperior other than the one exBCutigg

]

Set/clear conssle ossfenment nuwmbey. It A(O)-’—O, 455\1‘3‘4, '”"& same

‘cousole 5 05 ivk'er, 13 AlD=4, assign cousee # G }
Set/Clear run status. Three status bits to be
associated with the ivk'd sphere are read from I(3~

s aeleymines which

sense swilche
disgley feverx
un ﬂqyl aye
~
used, Trdiar,
uiey . c\”m@ c,;l ’
'510‘/'&?'!&‘5 Gve
as.s:jwd te
copsale O {seas
;W; (‘“ &'S Qe

ho;, ji)'

the ivk, Skip if syccessful.

572
Execute mta. The W register is moved to A, and the
meta=instryction whose code was origjinally in A(@-
8) is executed as if by 2 process in the sphere,
Valyes returned by the meta-instruction will be
placed in A and I, Only instructions 2 mta 200 may
be executed. The ivk is illegal {if the meta-
instruction is illegal, Skip if meta=inStruction
woyuld skip,
6l2
Reverse share, A capability in the invoked sphere is
copied and the copy Placed in the (C-list of the
spbhere executing the instructijon,
632
Share, A capapility in the sphere executing the
instruction is copjed and the copy placed in the C=
list of the invoked sphere,
652
Reverse grant,
672

Grant, Grant and reyerse grant are similar to share
and reverse share, except that the donor!s copy is
deleted, Entered process capabilities may be grant-
ed but not shared,

Format of (reverse) share and grant

The capability in the donor specified by I(6-11) is read
and placed in the C-jist of the receiver at the index in
I1(12-17) if non=zero, of the first free index otherwise, If
successful, skip ang Pyt the index of the capability created
in the receiver in A and a copy of the capabilijty in I, If
unsuccessful, then

1) a capability already exijsts at the index in I(12=-17) (or

at all indices {f 1(l12-17)=@) in whijch case the
interfering capabilijty (or the last capability) is placed
in I} [N

2) no capabijlity exists at the index I(6~-11) in which case I
is Cleared, or

3) the capahility is an entered process capability in which
ca52 [is Cleared.
51

11.2.3 Processing entered process capabilijties

Having been {nformed that a faul|t has occurred, some
action should be taken, This action may take +two forms,
Either one may use the powerful sphere jvksS and jncur the
cost of stopping processing in that sphere, or one may
choog® to use the |less powerful entered process ivk's whiCh
affect only the process that caused the fault (the enterer),
Having discovered why the fault occurred, and taken whatever
actioh s desired, the entering process myst be restarted,
This can only be done by executing an entered process |vk
with any of 51, 71, 111, or 131 in the AC, Execution of any
of these four jvkts will cause the following to occur;

1) the entering pProcess iS restarted according to the
description beloy,

2) the entered process capability in the suyperijor is

de|eted,

3) the process execyting the ivk will remain running, If
this process has no more to do, it should execute a
Ilqit." .

An entered process capabi|jty may be granted or moved, but
not shared or duplicated, Only one copy may exist at a

time,

I1l.2.4 Relevant instryctions
Entered process ivks

If A(l4) is zero, a read/write core operation |{s speci=
fieds A(2~5) is ignored. The number of wWords to be
transferred/4¢ s sSpecified in A(6-12)., If a count of
zero is found, 1002y words will be transferred, If
A(13) is a zerp, data will be read into the sphere
executing the jvk. If A(13) is a one, data will
written from the SsSphere exectuting the ivk, A(15-17)
should contain 1 to pe compatible with future modifi-
cations, but is currently ignored, I1(3-17) specifies
the address in the enterer and will contain zeros in
I1(13-17) since this address must be on a 4% word
boyndary. The address of the data in the sphere
executing the ivk is given in W(3=17), W(8~2) and 1(@=-
2) are ignored, Skip if successful, Locations 2=77 of
core & of a sphere with PRL on may not be read oOr
written,

a2

11

31

51

71

111

131

A \VINNINI Y EAN count AW\ 2\ \

5 & 12 13 14 15 17
I \/////\ address in enterer\ 8 ¢ 8 2 2\

] 2 3 12 13 17
W \YXEZZFAN core address \

¢ 2 3 17
AC Code Actian

The A, I, and W registers of the entering process are
read into three consecutjve words at the address
given jn 1{(3=17),

The three consecytive words at the address given in
I(3-17) are wyritten onto the A, 1, and ¥ registers
of the enterijng process,

Restarts The entering process is restarted byt it will
not have jts PC advanced or AAL indicator cleared,
Hence, ynless the gphere is suppressed, the process

will trap again.

Return, The entering process {s restarted and wil|
have its P¢ advanced and AAL indicator cleared, If
its ESI jndjcator (execute single instruyction) is
on, an ES! trap wil! occur, This makes the enter
appear to "caomplete."

Cayse recoverabj|e iljega| instructjon trap, The pro-
cess's PC s not advanced, nor is AAL cleared, So
that the process will appear to have not yet
executed the jllegal instryction, If the sphere
does not have its illegal instruction retyrn set,
an illegal instryction trap to the superior will
accur,

Return and skip, Simjlar to return (71), except that
the PC is advanced one more time, making the enter
appear to skip.

53

151
Read process number, The process number of the enter-

ing process is read into the AC, and the sphere to
which it belongs (|ow 12 Pjts of sphere capability)
is read into I. (Note - Unless processing is
suppressed, the process number may vary,) This
instruction Skips ynless +the entering process was
deleted (e.g, by jogout or deletion of the sphere)
since jt entered,

171
Read capabilitys Reads the entry capability that the

entering process invoked into A., Skip unless
process has been deleted or unless index of
capability invoked no londer exists, Effect is
undefined jf entry was a fault entry to a sphere's
SUperior.

54

11,3
Iljegal Instruction Return

To avoid some of the time consuming work of letting
faults trap to a superijors a Program may wish to handle jts
own errors, For examPle, syppOse a program executes an jvk
16 expecting a mjcrotape Capability to be there, If index l6
contains a null capability, then the program would get a
recoverable illegal instryction error, 1In this particular
case it might be nice to Pe able to catch this error, assign
the needed microtape, and continue. In another casg, a wuser
might wish to catch his attempts teo reference an illegal
memory lacation, angd ejther assign needed additional core Or
perform some error function, These functions are done

respectively by setting the illegal instryction return or
the jllegal memory reference return,
A program may intercept only recoverable illega] instrucw
tiong. Only the folloywing are unrecoverably illegal; .
hit (77¢074) dsma (7o 2Py
bpt (7T7p0244) min 5
opcode g@ mta G
privileged instructions Ylles e }d*s
attempts to reference @-77 of core 2 when PRL is on,
If a recoverably illegal instruction is execyted, the
procesSs attempting the execution s modified as follows;
W(3=17) contains the address of the illegal instruction,
W(g-2) are cleared, and G(3-17) is set to the illegal

instruction return jocation, All else, including AAL, is not
modjfied, This may require the first instruction of the
error routine to be 2 nop or rpf,

Instruction Actlon
mta 288
Read illegal instryetion retyrn |ocation inte A,
mta 201
Set illegal instruction return from A, Any negative
number in A wjll dijsable this feature,

55

Illegal Memory Reference Return

A program may jntercept any illegal memory reference,
Note that referencing |ocatjons @~77 of core g of a sphere
with PRL on is NOT treated as an illegal memory reference,
but is an unrecoverably i{jegal instruction., The method of
catching the illega| memory reference s the same as that of
intercepting recoverabje iljegal instructions above,
Instructian Action
mta 282

Read illegal memory reference lpcation into A.
mta 203
Set illegal memory reference return from A, Any
negative number jn A will disable this feature,

56

I11.4 Attachments

when a sphere s fijrst c¢reated, it has a core addresSs
space consisting of a single 4K regijon, In the course of
execytion of a program, this quantijty of allocated core
space might be raised or |Jowered in blocks of 4K words by a
mta 287. Memory space acquijred in this fashion is sajd to De
owned by the sphere and ;s referred to as a real core,

It is often found useful to be able to communicate data
between two Spheres, and there exist several means by whicCh
this may be accomplished. Two of the possible solutions are
to et both spheres have capabilities to one or more common
objects (such as an entry capability or drum fijeld), and to
give one sphere a capability to the other sphere such that
the first may employ read/write sphere ivks, Both of these
cases are freguently uSed, especijally when the data is
primarily to be transmitted only one way,

A third alternative is to share a portion of addressable
core space between the two Spheres, In this sharing, one
sphere owns the core space as a real core and the other
sphere receives an atgachment, An attachment acts exactly
like @ real core except for two major things. First, having
an attachment does not imp|y any dedree of ownership of the
associated real core, Attachments will be deleted without
notice when the real core is deleteds Second, the memory
bound of a sphere is nNnot modified when a core is attached;
memory bound refers on|y to the real core owned by a sphere,
However, a mta 206 wi|l indicate the existence of attach-
ments if they are present (see section 1.3 for further
description and a definition of memory bound),

Consider the fol|owing example. Syppose sphere A having
an jnitijal memory bound of 10080 octal creates an inferior
sphere B, and then attaches B's core & as its core 2, B8
would perceive no change in jts address space, but A's
address space woyuld logk ljke the following:

legal lega|
- real illegal B's core @ illegal jliegal jllegal
g 10000 20830 30000 43000 50009 60000

Thus if a process in A should <change A's core ‘location
21567, sphere B woyld find that location 1567 in jts core 7
has bheen changed. Mempry references to an attachment are
directed (efficjently) to the attached real <core region,

One use of attachments would be twe sSeparate spheres that
wish to have a varjables area in common, without the

27

aggravation of sharing a drym fiejd or Creating entry
capabilities for commgnication, Another example would be a

sphere which creates anp inferior sphere and finds attaching
the inferior's core is a simpler method of entering data to
the inferior than performing read/write sphere ivks.

Core ¢ of a sphere with PRL on may not be attached,
Read/write sPhere or process ivks must be used instead,
although reading or writing the C=-Jist 1is, of course,
illega|.

Attaching a spheret's core reguires invoking a capability
to the sphere wjth codes in the AC and I as noted below,

AC Code Action

52

Attach,. The core module of the invoked sphere (the
attachee) specified by I(15-17) becomes attached to
the sphere executing the ivk as the core module
specified by 1(3-5), This instruction wil| succeed
if the attached core exists (as an attachment or a
real core which is not the core 2 of a sphere with
PRL on) and the attaching core is not a real core,
If the attached core is itself an attachment, the
real core the attached core is an attachment to
will be wused, [If the sphere to recgeijve the
attachment already has an attachment at the area
specifijed by 1(3-5), the previous attachment will
be removed. An attachment may be made and main-
tained whether the run indjcator of the Iinvoked
sphere is on or off. Skip if successful,

72
Reverse attach, Similar to attach. The core module of
the invoking sphere specified by I(15-17) becomes
attached +to0 the jnvoked sphere as the core module
specified by 1(3-5), Skip if successful,

Instruction Action

mta 205
Detach. The attached area to be detached is given in
A(3=5), or, if that is zero, A(15~17), The instruc~
tion skips unless jt is an attempt to detach a real
cOore,

58

11.5 Breakpoints and ES]

Sometimes it is yseful to determine some statistics about
a program's behavior. These might be such things as how
freaquentiy a |oop in the program js executed, how many
instructions are executed, or how often a particular branch
in the program is chosen, Thijs ability is implemented by
associating with each sphere a set of three "breakpoint®
registers, and associating with each process an ES] (execute
single instruction) flag. The ESI flag is. F(&) and may be
set only by a write proCess state sphere ivk insgtruyctjon,

Breakpoint registers allow the eaquivalent of ID's super
proceed (-nP) and its multiple proceeds (nP), The breakpoint
registers will be symbolically referred to as bpl, bp2, and
bp3, Use of the breakpoint feature would involve approxi=
mate|y the following Steps,

1) Since the setting of breakpoint registers and ESI are
sphere ivks, it s necessary for the wuser to have a
capabjlity to the sphere in question, In the case where
it is desired to measure a program's performance, it will
be necessary to put the program in a sphere, grant it the
necessary capabilities, etCe '

21 A bpt (772844) instruction must be explicitly put into
the sphere at whatever |ocation is desired,

3) The breakpoint registers are interpreted as follows;
bpl(g~1) 22 not a subPerproceed
10 superproceed, haven't hit bpt yet
a1 hit bpt, proceeding under ESI

11 proceeded, further bpts illega)
bpl(2) ighored .
bpl(3~-17) address of bpt instruction
bp2 w{number of times to proceed)
bp3 instruction to replace bpt, if needed

The chart below should be consulted for the myriad possibil=-
ities available to the yser,

4) A write breakpoint state sphere vk is execyted, and then
the sphere's run indicator is turned on,

Multiple proceeds aver a breakpoint that has been set do not
try to distinguish between Processes that may hit the
breakpoint.

59

Sybperproceeds are set yp in a similar manner. It Is not
necesSary to set a bpt in the sphere, however, nor is |t
necessary to specify an address in bpl(3-17) or a replace=~
ment instruction in bp3, A write process state sphere jvk

must be performed to jnitjally turn on ESI, This will cause
the process to trap to the system after sach instruction
completes, and the number of instructjons executed will be =

the number specified in bp2. Arithmetic on bp2 is in ones
complement.,

The breakpoint and ESI features may be disabled by
setting bpl to 777777 and writing the breakpoint state,

The following instructions are the sphere jvks needed to
perform the read/wrjte breakpoint sState registers.

AC Code Action

152
Read breakpoint state, The three words of breakpoint

state bpl, bp2, bp3 are read into three cansecutive
words beginning at the address in I(3-17),

172
Write breakpojnt state, Similar to 152,

112

Read process state, The registers of the process whoSe
number s in 1 are read and stored in Six conseCu=-
tive words beginnjng at the address in W(3=17), The
order js A, G, I, X, F, and W, The sphere's run
indicator must be off, Processes are numbered
beginning with ls This instruction will fail if the
numbered procCess does not exist or the ryn indjca-
tor is on,., Skijp if successful,

132
Write bprocess state, Similar to read process state,
This will fajl if the numbered process does not
exist, the ryn indicator is on, or the process is
in a wait, Skjp if successful.

69

For clarification of

al| this material, a few examples

are in order, First is a program that will set & hreakpoing
in an inferior sphere (at capability index 14) which will
allow the inferjor to hit the set breakpoint three times
before trapping, It would be equivalent to the code 1D would
need to execute the commands

“fanblel
3p " .

It assumes processing has ajready been suppressed on the sphere,

dimension bp(3)
dimension end{(4g)

lio (foob1e&777748

law end

mnta

law 4@

ivk 14

hit

lac foobled37 en

dac bp 2

law i =bpt /

dac foobled&37 end

law 69 /

ivk 14 /

hit /

law i 3 /

dac bp 1

law fooble /

dac bp /

lie (bp /

law 172 /
/
/
/

[T

ivk 14
law 22
ivk 14

At this point, a procesgs

/ space for reading in core
v / 42 word block containing fooble

adr in this sphere for data
Put in W regjster
read sphere, 4@ words to be read
perform read sphere ivk
if read lost

/ get old contents of fooble

/ bp3
equivalent to lac (bpt

/ insert breakpoint
wrjte sphere, 40 words to be written
I, W unchanded from previously
write failed
bp2 arithmetjc is ones complement

/ bp2
address of fooble, core # assumed.
bp1(2-1) set to ¢8; bpl(3-17) =-> fooble
address of three words of bpt state
code to write breakpoint state
Write it
code to enabje processing in sphere
Processing is enabled,

or processes in the inferjor sphere

may hit the bpt three times before a +frap to +the above

program will occur, If

any other bpt's are hit, or other

illegal instructions, etc,, occyr, they will produyce the

normal variety of trap,

61

The next example program will cause process 1 in the
sphere at capability index 14 to execute 1888 instructions
and then produce an ES! trap. Any other processes in the
sphere will execute normally, without ESI, Once again, it is
assumed that the sphere's run indicator is already off, and
that a process exists in the sphere that s ready to run,
Addjtionally it is assumed that process 1 is not in a wait,

dimension prestt(é) / space for process state
dimension bs(3) / space for breakpoint state

lio (1 /process 1 to be referenced

law prcstt / address of precstt

mta / Put in W

law 112 / code to read process state

ivk 14 / Set process state

hit / some lossage has occurred

law 4000 / ESI bit in Flag word

adm prcstt 4 / brocess's F register, turn on ESI
law 132 / ¢code for write process state

ivk 14 / wWrite process state

hit / some lossage

law i 4 / Put A(2~=1) = 11 and A{O0~-17) % 777777
dac bs / bpl set

law i 1290 / number of instructijons to be executed
dac bs 1 / hp2 _

lio (bs / address of breakpoint state words
law 172 / write breakboint state,

ivk 14 / Wwrite breakpoint state

law 32 / code to enable processing in sphere
ivk 14 / enable processing

At this point process 1 in the sphere will be ajlowed to
execyte at most 1492 instryctions before causing a trap, If
the process does not ptheryise cause some trap because of
execyting the program in the sphere, then exactly 1000
instructijons later an ES! trap will occur,

62

. 30 e AR A
-
J 1
[T < Ta oy !
LR SSAD

. 2o,
“ /

bl = TEII]smts

! G Z,
i o

isave the instr at ’
ithe address in bpi
§1n bp3, replace
it with opt
s

restart
PPOCEess

_ <G 20| cause
e op2 trap 2
J BN -
4 + ESI
restart procecs

111,171 Communijcation between spheresy Entry Capabjlities

An entry iS a user programmed capability. It Is a means
of commynication among any group of spheres, Use of entry
capapilities involves many of the same things involved in
hand)ing enteéred proCesses, This mechanism is described In
sectjons Il1.2.1 and I1,2,3, When creating an entry, one must
specify the entry address, analogous to the fault entry
address, which gpecifies where the process created in the
entered sphere, analogous to the suyperjor sphere, should
begin executing, The entry capability initially acquired s
a maSter capabjlity, and a|l other granted or shared copies
or dyplications regult in a non-master capabiljty, Non-
master capabjlities are useful only while the master exists,
If the master is deleged, or by granting converted into a
non-master, Aall ivks on the associated non-master capabijli=-
ties become illegal,

Each entry capabjlity hag a six-bit transmitted word, The
trangmitted word of a master entry capability may be changed
but those of a non-magter may not,., Duplication, granting,
and sharing operations Copy the transmitted word without
modification. '

When a non-master capagbility 1is ivk'd, the process
created {in the entered spbhere has its registers initialijzed
as for a fault entry trap (see 1l.2.1), except that I(12~-17)
contains the transmitted word and I(8~11) contains the
variant of the jvk executed by the entering process (process
that the entered process capability points at), The trans~
mitted word is useful for distinguishing between several
simijar non-master entry capabilities withoyt c¢reating a
separate master entry capability for each distinduishable
non-master desired. For example, supbPose sphere A creates an
entry, gives B a non-master with transmitted word g1 and C a
non-master with transmitted word ¢3, By the nature of an
entry capability, when a process in ejther B or C jvk's the
non-master entry capability, 8 new process is created jn A
that gets started at the entry address, The newly created
procesSs in A can gquiCkly tel! whether B or C has caysed the
enter by looking at the transmitted word in I(12-17),

Any of the entered process ivks listed in sectjon I1,2,4
may be used with entered process capabilities generated by
inveking entry capabilijties,

A sphere that wishes +to 9uarantee an enter can occur
should set its process hoard,

64

111.2 Entry Instructions

Instruction Action

mta 387
Create master entry. A(l2-=17) contaijns desired capias-
bility index; if g the first free index is wused,
1(3-17) contajns desired sntry address, Skip if
successful,

ivk <master entry>

Change transmitted word of master entry capabil
A(12~17) becomes new transmjtted word and A(Q
must be clear,

ity.
-11)

ivk ¢<non-master entry>
Hangs the process executing the vk, creates an
entered process Capability pointing to the state of
the hung process's registers at the time of the
ivk, creates a new process in the sphere containing
the master entry capability and injtializes reg=
isters as described above. Section 11,2,1 gives the
three conditions necessary for this trap to occur,

C-list index mm jn sphere A is the master entry capabili=-
tys C-=list index xx in sphere B is a non-master capability
associated with entry mm, The number nn in the ivk nnxx may
vary from @ to 17 (4 bits) and is the variant of the ivk, C~
list index c¢C js the entered process capability created
after the ivk nnxx was execyted,

SPHERE B SPHERE A
\ c=list \ \ c-list \
AN AN AN AN
AU AW \mm\ master N\ \
AN AN \ \entry cap.\ \
NN AN AN AN
\xx\ entry AN N NN
\ \Ncapability\ \ NN NN
AN A \ce\ent, proc,\N A\
NN AN \ \capabilijty\ \
AN AN AN AN
\ o\ \ \

ivk nnxx

65

TN

1V, pisowned Objects

An object in a spphere's C=|ist may be deleted without
deleting the correspondging object, If an object exists in
the system, some sphere somewhere must own it, and there
must be a path from the nrroot nodev, the C-list of the
timegharing system, to the object in guestion, If sych a

link does not exiSts, or is broken, the system wil| free the
resoyrces represented by that object
v . Tﬁ_\\
One very well known Program, Spacewar, in mahy of its

versjons performs the followings: creates an inferior sphere,
copies all of core jnto the inferior, and, passes the number
of shins playing to the inferior, starts the inferior
runnjng, disowns the gpheére, then dismisses, At this polint
the console couyld be logged out and Spacewar would continue
to ryn, even though the orjginal owner has been deleted from
the system, Disowning actually is equivalent to a grant oOf
the specified capabiljty to the Administrative Routine Of
the gystem so that in fact the "disowned” object is owned Dy

the system,

Any sphere may request ownership of any disowned abject,
Absentee computations must be performed using this techm

nigues

Instructions Actian

mta 581
Disown capabjjity, Capability in I(6~11) is disowned,
An index is returned in A which shou|d be used to
reown the object when desired, Skip if successful
and cCopy of the capability is placed in I, The copy
of the capabijity at the index given in 1(6-11) is
removed from the C-list,

mta 502
Own capability. DisSowned object whose index s in (6=

fejars 11) is reowned onto capability 1(12-17) (or first
Intey free index if 1(12-17) is zero), New jndex of the
%whw; Kt capability in the sphere executing the mta 502 is

29 |

returned in A, Copy of the capabijlity is placed in
1. Skip if successfuls, If -not successful, the safe
action s taken ag for a mta 485,

If a disowned sphere attempts to reown jtself, assuming
ne other sphere hag a capapility to the disowned sphere in

questlon, then the sphere will be deleted from the system

A Qo 27—
s vy "o ey’

	00
	15
	43
	44
	45
	46
	47
	48
	49
	49a
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66

