PDP-1 COMPUTER
ELECTRICAL ENGINEE%ING DEPARTMENT
M.I.T.

CAMBRIDGE, MASSACHUSETTS 02139

PDP-39

DRUM SCHEDULING TECHNIQUES
in the PDP-1-X

June 8, 1966



- -
DRUM SCHEDULING TECHNIQUES in the PDP-1-X

In the following we assume that the Jjob mix for the
drum consist¢s of 4008—Word transfers intended to move blocks
of a file, and,100008-word transfers called for by the
computation scheduling aslgorithm as it moves progiram lmage
sections in and out of core. We assume that the drum has
a "swap" instruction, which causes the entire contents of
a specified field on the drum to be written from, or read
into, a specified field of core. Thils transfer starts as
soon as possible after the instruction is given, independent
of the current drum address, and occupies one drum revolution.

The drum mover malntains a drum job queue of 4008~word
Jobs and the scheduling algorithm maintaips the queue of
100008-word jobs. The drum mover process; on being restarted
when the drum completes a transfer, flrst checks the scheduling
algorithm's queue, and performs a 10000g-word job if one
is there. If not, it performs the first job in 1ts queue.

The essence of the drum scheduling policy is therefore
implemented in the algorithm which inserts drum jJobs in the
queue: for once the queue 1is set up,‘it can only be
modified by insertion of a new job or deletion of & flnlshed
Job, and neither of these mechanisms will re-order the queue.
Any scheduling policy we design will not, be dependent on
the scheduling of 100008—word jobs, since these are almost

transparent with respect to drum position.



B =

Since 4008—word file blocks all start at drum addresses
divisible by M008, the best performance we can expect from
the drum is 40008 words transferred per vevolution. This is
obtained by placing the drum in operatlion for all even {odd)
numbered blocks, while the odd (even) numbered blocks are
passed over as the program restarts the drum. This is
the best possible performance because delays in the drum
fleld selection hardware mske it impossible to set up a
new drum transfer within the 8.6 us spacing between words
on the drum. ‘ V

Hence, the object of drum scheduling 1s to pack the
requested transfers into as 1ittle time as possible, while
preserving & block of do-nothing time before and after
every block of transfer time. |

Method

The drum queue is composed of three data objects:
a drum job queue head table, 100g words; the drum job space,
140g words; and the overflow table, 208 words. The queue
head table and the overflow table both contain pointers to
drum Jobs stored in the drum job space. A drum Job entity

requires three words with format as follous:

CORE ADDRESS
POINT —>

— WW/ FIELD %mcx
7
Z




...3...
R/W gives the mode of ﬁransfer, FIELD and BLOCK specify the
drum address, CORE ADDRESS is the translated memory address,
and POINT is a pointer to a list of processes to be made
active when the job is completed. Unused drum Job entities
are held on a list.

The queue head table is the scheduling data: the 1008'
words allow us to schedule 1008 blocks or 4 drum revolutions
into the future. There will be a pointer to "now" in the
queue (the queue is a ring buffer). If a word in the
queue points to a drum Jobk, then 1t represents that drum
Job. If a word in the queue has value 4000008, then it
represents "occupied time". A zero word in the queue
represents "available time". |

The drum Job scheduling algorithm is as follous:
first, a drum job entity for the job is created. Then
we attempt to schedule the Job by testing thé four words
in the queue capable of holding this job. We pick the
earliest zero word, and load it with a pointer to the job
entity. Then we set the two words on either side to 4000008.
I all four slots are filled, we place a pointer to the Job
entlty in the overflow table. About once every drum revolution
we try to reschedule the overflow Jobs.

When a drum transfer is actually started, the Jjob entity
1s returned to the free list, and the assoclated words in the
queue head table are zeroed. When the transfer has completed,

we search the queue {linearly) for the next Jjob.



	00
	01
	02
	03

