PDP-1. COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
M.I.T.

CAMBRIDGE, MASSACHUSETTS 02139

- FDP-41.

PDP~1-X PROCESS SCHEDULING

June 9, 1966

REV 1 S0

et o

{T\\\,\ {‘ "-»‘ﬁ\ - “ T

N s by

PDP-1-X PROCCESS SCHEDULING

One of the most important facilitles provided by the
PDP-1-X 1s parallel programming. A computation is allowed
to have many processes;Yégggéfbrocesses time~share the
central processor for the duration of-ﬁgé computation's
“quantum”. The executive function of scheduling processes
1s carried out by speclal hardware, with minimal help from
software (the executive). This memorandum describes both
hardware and software aspects of process scheduling.

The processes which are subject to scheduling are
those processes which are active (i.e. not hung in e.g.
i/b wait) and will be restarted in a program‘é:;é==saavaen
which is currently in physical cove memory. Such a process

is called runagble. The runable processes are organized

into a multi-level process queue {or run queue).

The run queue'contains Jjust thbse processes which the
system is "willing" to run at any time. Before describing
the schedﬁling policies applied to this queue, we will
speclfy the internal organization of the queue, and discuss
mechanisms which place processes Iin the queue or remove

them from the queue.

The queue has eight priority levels, numbered from 0
(high priority) to 7 (low priority). There is a 16-word

caueuve head table, which contains pointers to heads and tails

of rings of processes. A process is represented by a process

entity, whilch contains four pointer words and a status word

gueue head table

0

i

2

3

4

5

6 process entities

‘ & . 14 M——\\\
e ™~
shateword \
_states \
—————— e

Figure 1. A ring of two processes at level 7 of the queue.

..3_.
as well as the six words of stateword. In a process entity, |
two of the pointer words link the process in a ring of the
run queue (these pointerg are used for (many) other purposes

when the process 1s not active), and the other two link

the process to its computation entity. “Bactr-computabion
_ ; :
“dllbe—orrrimz—t) (See figure 1.)

There are many mechanisms which cause processes to
enter or leave the queue. Most of these mechanisms affect
only one process at a time, but a few can affect many processes.

These are computation scheduling and the meta-instruction stop.

The computatlon scheduling algorithm will remove processes.
Lie e
from the run queue when it swaps thelr program imagéébéébtun
out of core, and adds processes‘to the run queue when it

brings their program image=—seeéien into core. Frraddietom

The meta-instruction gtop suspends all processes in a
specifled computation, and creates suspended process capabilities
and corresponding new processes at the fault address of the
computation which said gggg. A process is suspended by making

it inactive (and removing it from the run queue, 1f it was there).

-
The following mechanisms involve only a single process.
When an i/o function is started, the process which started
the function ls suspended and an entry is made in the i/o function

‘ started tavle, pointing to the newly suspended process.

When an i/o function completes, the process indicated by
the i/o function started table entry is made active, and, if
runable, is inserted in the queuve at a level determined by the

1/o0 function started table entry. If the process is not

runable, the desired level 1s remembered in the process \k
q;\c w, ¢b_wa
8tatus wc?d aplk the gssoclated computation entity 1§Amarked€°? oo

for priority vestart. v;iéiiiﬁ
RWCT g
On an i/o error (funcilon busy or function tardy), the g
running process (which must have caused this error) is sugpended,
and a suspended process capabllity and a corresponding process
at the fault address 1n‘zﬁ5?sup@rior computation are created.
The same action is taken onyé%éaLpoints, 111ega3 opcodes,JU&§W*C
m44~%49m42nd halt instructions.
When a process gg;gs, the process‘is removed from the
run queue and the process entity 1s returned to the pool
of empty process entities.
When a process forks, a new, empty process entity is
added to the queue level of the forking process, and is made
the process entity of the forked process. Execution of the

computation continues with the forked process.
AR EE iﬁ.fﬂ; W

On an address snag tke running process is
O/YOJ)C& g) Ac

'l’ ddd Lo

-5 |

When a process does an enter, the process ls suspended
and a new process 1s creaved in the executlive, at the address
specified in the invoked entry capability. (The new process
has a pointer to the process which entered.)

Whenever any of these mechanlsms 1s used to modify the
contents of the run queue, it is always necessary to recompute
the number of processes linked to each level of the gueue.

The running count is kept in the 8-word queue pooulation iable.

A simple scan of this table allows us to find the highest

(in priority) occupiled level.

Finally, we dilscuss scheduling policy for the queue Just
described. The essence of the policy is to run processes
from the highest cccupled level of the queue, bubt to do so
faivrly.
With each level of the queue is aseociate§ a particulasr
quantum time, which must be a multiple (between 1 and 341)
of the subguantum time, which is 1.28 ms. (256 memory cycles).
The scheduling algorithm allows us to switch processes only
at the endé of a subguantum. VWhen we do switch processes,
there are two possible reasons for doing so:
1) A process of higher priority has appeared in the gueue.
2) The current process' quantum has expired, and there
are other processes to run, at this queue level or
lower.
In the first case, we interrupt the running process as
soon as the currenft subquantum ends, and run the first process
in the highest occupied level of the queuwe. The interrupted

process remains at the head of 1its queue level, and contains

-6-
in its stateword a non-zero guantum counter (which records how
far along in its quantum it is). Thus, when this process
resumed, 1t willl finish its quantum (rather thén starting a
fresh one).

In the case of an expired quantum, the process is removed
from its level of the queue and tacked onto the tail end of
one of the lower levels., Its quantum counter will be zero,
indicating that its quantum (at the new level) has not started.
The choice of which level the process enters 1s made by
hardware, and depends on how many quanta the process was given
while if was in execution. After the expired process has been
relinked (o the queue, the first process in the highest
occupled queue level is rprun.

It may be that, at the end of the running process' quantum,
there 1s no equally deserving process. If the above policies
were followed 1in this case, there would be some wastage of
time as we stopped the process, linked it to tﬁe queue,

- searched the queué, and finally restarted the same process
agaln. So thils case 1s recognized by the hardware‘and no

Interruption occurs.

Special hardwarc assists in the schedullng by keeping
running track of quanta and the priority pf the current process;
this hardware determines when either of the above trapworthy
situations exists, and causes a PREEMPT trap or a RND REN
trap (for cases 1 and 2, respectively). The hardware has

a gqueue priority registex QP {3 bits plus a 1-bit extension

QE which indicates when the queue is empty), a current priority

register CP (3 bits plus a 1-bit extension HP which indicates

| 41/*/‘%//{/
- b WM

QP+4CP
"TE ®(3) | | o
Comparstor |——
P r(3) 3 dner . | DEMOTE
L (L L %: 4
.SCHEDULING\(———‘?’et QC
PROFILE
1.0GIC
I |
Qc(s) Qr(8) “"’};@ HOLD COUNT
J} <L 1 l tp 10
¥, ¢ OO
nor noxr
0 ‘~—;<>
QC=0 QT=0
< SUPERIOR
LOCK -
tp 7
E;XE.C—.—O +

UK ICK

Figure 2, part 1. Process Scheduling Hardware

QP>CP - Qer

DEMOTE

—
&S HOLD COUNT

Figure 2, part 2. Process Scheduling Hardware

._9..
when the PDP-1-X has nothing to do), a guantum timer QT (8 bits)

and its extention, the guantum counter Qc'(5 bits). The
register CP contalns the queue level number of the running
process. CP is loaded when we'start £o run the process and
as the process runs, the hardware may change (increment) it.
When the process returns to the queue, its level of insertion
1s determined by CP. The register QP is always reset (by
software) to the level number of the highest occupied level
of the queue (not counting the currently running process
as beilng in the gueue).
The process schedulihg hardware is shouwn in figure 2.
Not shoun or mentloned above, although essential to
efficient operstion of the PDP-1-X, is the speclal break)

and unbregk hardware with its process pointer register.

The break and unbreal hardware deposits and reloads the
stateword of the running process directly frqm the process?
process entity, rather than using preset locations in the
executlve core. The location of the stateword is malntalned
"by the executlve in the proccss pointer register PP (12 bits).
A break recuires five memory cycles to deposit the
statevword, while an unbreak requires eewen. cycles. There 1s
a speclal form of unbreak, called unbreagk fork, which loads
the stateword from one prccess entlty, sets the process
pointer €0 point to a different process entity, picks up
the extended address 1ln the cell after the fork which the
Tirst process exccuted (we assume), and starts the new process
there. This in effect copies the stateword of the forking

process into the forked process at no cost to the system.

-10-

The-#xecutive uses the process scheduling hardware to
decide when to run another process, and merely supplies the
hardwvare with values for CP and QP. The only other computation
required when processes are changed is a bit of pointer
manipulation (in the gqueue head table, various process entlties,
and the contents of the process pointer).

The following pseudo-programs outline executive gction
requlred to start a new process, handle a PREEMFT trap, and

handle a RND RBN trap.

newproc: comment start running the most deserving process;
begln find highest occupled level of queus;
get CP to this level number;

remove first process in this level from
this level and fix up pointers around it;

set process pointer to stateword of thls process;

subtract 1 from appropriate queuwe population
table entry;

find highest occupied level of queue;
set QP to this level number;

start the chosen process cocmment unbreak end;

preeﬁpt: comment program ©o handle PREEMPT trap;
read CP;

return running process to queue at head of ring at
this level;

add 1 tc appropriate gueue population table entry;

go to newproc;

14~
rond.rbn: comment program to handle RND RBN trap;
read CP;

return running process to queue at tail of r-ng
at this level;

add 1 to appropriate queue population table entry;
g0 to newproc;

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11

