PDP-1i COMPUTER
ELECTRICAL ENGIMNEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOQGY
CAMBRIDGE, MASSACHUSET?S 02439

POP-45
CERTAINLY

3 December L197A

Introduction

Certalnly asmembles scurce programs written in PDP-L
asgembly language Inte object programs, The source language
provides a convenlent way »f ceding algorithms while glving
the programmer complete control over the content of the
object program, The sovrce program may e read from the drum
or the on-line typewriter. Ths object program mnay bs written
ontoe drum field i or punched ontc paper tape,

Ncte: Sectlons identified with an asterisk {%) may bve
omitted on & flrat reading.

Certainly processes the source program twice. During pass
4 address tags and other syvmbois are defined, and constante
and variables sresg are allocated. Duxring pass 2 the object
program is produced., Mheros, repodtsa, conditionals, and irps
are expanded during both passss.

A semple program written in Certsinly sszembler langusge
1z ahown below,

;s

£2 &b

n=100

o2/

Ay 1sw tab
dap b

. dzm 8

By lac
adm 3
idgx b
S&a ¢
Jap b
dsm

tab, tab+n/

2, 0

05 izc tab+in

start a

The first npon-hisnkt Line le the title, which 1s printad
oy Yhe typewriber, The prozram ends wiith the start peewdo-
instruction, or, if there i3 no 3840t pseudo-insiruction,
with the gnd of %Hhe scurce progrém, 4 progrém mdy be divided
iate several consecubive sectionsz, each wikh 8 $itle and
ataprt pseudo-linstructlion. Thie is uvaeful when the input or
cukput medium is changad teihween sections,

he Source Iangwge

Por clarity, the following symbols are assigned Lo the
jinvisible characters when needed in examples of parts of
S0uUree programs,

caryiage return {cr)
tabulation {tet)

The source program 18 considered to e a serisg af
syllables and separatora. A sepsrator 13 one of ine
followlng characters - gpAce, LaAD, Cr, +, ~.. %X Ay V, <5 D
s my comma, {,), {, }, and slash, A syllsble i a strin
of alphanumeric characters {digits, letters, and peried
preceded and followed by separators,

The most lmportant object in +the scuvce language 12 the
exprassion, which has & numerical value o Dbe used a3 a
storage word of the object program, location assignment,
argument, etc, An expression lg cne or more terms separated
by suitable combining operators. The following are some of
the forms terms can take -

A 8ymbcl 18 8 syllable containing att least cne letjer.
Symbols wey be of arbitrary length, but are vecognized
by thelr first siz chéracters, Ir & aymbol 18
undefined, the exmression in which it appears 1is
undefined, If 1t 18 defined ag a maeoro-instructlion,
pseudo-instruction, or funstion, spacial action in
taken, The memonica for the PDP~4 machine instruc-
tions are initizlly defined as shown 1in Appendix I.

A number is & syllable which 18 & string of diglts with
an optioral decimal veint at the end. The value of a
number I computed module TTTVTT. except that TTITTT
is not changed to O, If 2 number 1a immediately
followed by a decimal point, then it is taken as

- decimal regardlass of the ocurrent radix,

The sylleble censisting of a single point evalustes 4o
the current locatlion, which 18 the address at which

the current instructios iz to Le assembled,

A term consiatihg of upper case cheractsrs is a micro-
program instruction {see msmo FPDP-35), The syllable
must not contain case shifés,

A double quote (%) followed by an upper or lowsr case
character 3is a term., which haz the value of the 7-bit
conclizse code of the characier, The T-bit concise code
of a character 18 its coneclse code, plus 100 if the
characlter 1s in upper case,

Certain psevdo~inatructions generate Lsvrms, Sea the

deacriptione of the peendo-instructions for detallis.

flexo abe 138 a2 term with value 616263

Terms maAy be combined by use of the {ollowing apsprators,
Arithmetic is performed Iin one’s or twe's complement,
according te ths current arithmetic mode, The apithmetlc

mede

i8 set by the preude-instructilons ones and twos, Tt 13

inltially one's,

+

Y
A

S

v

<

or space means additlon., A sum of zero is alvays plus
zZe70,

means subiraction, Minus signs count ouh properly, thus
—w~3 m =3, In one’s complement mode, -0 1s not changed
ko 40,

means bltwlse inclusive or

means bitwisze and‘

means bitwise exclusive or

means integer mualtlply, In one's complament mode,
multiplication 1s med 777777, In tuwols complement
mode, multiplicabion 1s med 2000000,

means integer queotlent. The argument on the left ia
divided by the argument on the right. Division by zero
returns the original dividend.

means raemalnder of integer division. Divisicn by zero
returns zeros. ‘

Qparater Arlovity

- Operations of the same priority are perforwsd from left
o right, Operations of different prioriiles are pariornmed
in the order given in the $abkle below,

umdry + and - {executed firat)

TR A A

d
oy,

¥

binary + and - f{executed last)

N -~ AR
cnes mode b

Two consecublive operfdbtors are asgumned o have zera
between them. The ollowlng are some exzamples of &xpras-
‘slond, giving the values {in cctal} en the right,

expresslcn value, value, .
onas mode twos mode (3P different fram

S :

a3, ?”???”
26214k
=0 ?T”??” G
243 o
2~3 Tﬂﬁ”6 TeiTt
€x3 .
4000007 00003 &£00000G
2v3 3
273 2
273 4
-5R 7*”??3
K3
1355 2
-2V : b
add 40 {00040
clavema 764200 o
+4 TITTT3 TTITS
g, e
3xx2 0
TAZ+30 774032
*x 173

Operations on expressions

tn hrackehs 1z & Lerm with the
Ehoa b used for

of paris of an

An sxpression enclosaed
value of the cxpression, Brackeis way
grouping in order ko Dorce evaliation
expression in 8 certain opder,

> 1

23f3+4) has value 46
Warnlng -~ broclkevs are regoved in &

argument list, or irp Iist, An axtra

sometimes needed to clirvcumvent vthis,

PeNeat TANES; macro
rair of brackebs 4is

An expression enclosed in porertheses is & Serm which
@vaﬁ‘““es e the address of the register Iin the next
conatants ares where the expression 12 shared, See the

desceription of censtants for details,

1io {20); or, 85 usmmlly written, lic (20, assembles an
instruction which places 20 in the In-ouv register by
loading it from & vegisler In the constanks arezs in
which 20 18 stepred,

(%) An expression preceded by one of the cendltiorsl
pseudo-instructions ifp, ifm, ifz, ifn, or Ifup; and fol-
iowed by a slash, 13 2 tarm with value 4 or O depending on
the result of a teat applied to the ezpressicn. See the
deseription of these preudo-insiructions for detsile,

ifup 8/ has value & if sense switeh 2 18 up, zern
otherwise,

ifz a/Aifp tR/43 has vaine % 3f 2 13 zers and 2 is
pasitive, and 3 otherwise,

Hete that the bitwlse and, or and exolusive or CPeraALLrs
2y be used as logleal operaters with logical vaizea O and

S

(%) A sywbol which 18 the name of & defined function,
dmmeclistely followed by 2 left tracke:t, a 1ist of exprea-
sions separaned by commas, and 2 righlt brseked, is a Lerm
wihose value 1s the mumber returned by the funetion when
calied with the given srguments., If the functilon mame 1s not
foiiowed by a left bracket, the functioen 15 called with oo
arguments, and the nawe alone 318 & terr with the value
returned by the function., See the description of functicns
for details,

Grouping brackets, functicn cslls, constanta; and condi~
tionals may be nested to any reasonable depth, :

The closing paveathesis, cleging bracket, oy slash bhai
2n9s the expressiorn within & censiarnt, conditional, funchion
argument, or gesuplng brackebs may be nmitted, The assembler
will azsume that the ndasing conaracter was pisced 1in thne
lash pealtion that will vesult in & synbactically corpect
expression,

examples - ijo {(RC
Tha asgenbler assumes 2 right paren
Just btefore the or, '

repaat ifz a,feo
Tne assembler assumes & slash before the ovmma,

Uses of Expressionz

The meaning of &n expraession to ferialnly is detsrmined
oy the context in which it appears In the acwrce progask,
The character immediately fellowimg ihe exprevsion usually
indicates its use,

Storage woerd

An expression termina%sd by 2 o or @b I8 a stovage word
and i3 acgembled inkc the object progranm,

axamples -~ Jmp ret
lac abe

The &8 bit numbor which 18 the value of the srpresaion Is
aazligned & locstlen In memery debermined by the loeaticn
comter Iin the assembler. Aftsr edch word 1s stered, the
lacatlon counber is advanced by one, A sterage word may be
anr instruction, & constant, or data, & At o o not
prazceded by an expresaion; or preceded by arithmeflc opsra-
tors eonly, with no syllaules, doses nothing. If a storage
word 18 updefined on pass 2, the usw error massage will be
gliven,

Location assignment

a l1scation

An expression terminsted by a alash ia
2 the value of the

assignment. The current location is set 3
srpression truncubed Lo twelve bits,

example ~ 400/ 82zA
Jmp 200

The above source program part will cause the instructions
gz2 and Jmp 40D %o be arsenbled inso locaticns 100 end 401
of the ablect program, respectively,

An wxlefin2d locatinn sszsignment will give the usl error
masrage,

Addrers tag

An ezpresalion followed by & comma 13 an addrang t82g, I8
the %Rg %5 & aingle uvndeflined symb@13 shat 3ynhsb wiil be
4

-~
ﬁ

2 P "‘

™

defined ton be egual Lo the current locald 1en, B2 S §
delfined expreaslon, iL i3 rn;parad with the current Jlocse
tion, and a disAgrecment will cause an ndb error message oo
be printed, (Uee of %he same mymaou 58 &n address tag huwlce
in cne program 13 & common chuse of this erroy.) 7P the %dg
iz uniefined bub more complicoted Lhan a %iugié gymboLl, 4L
is Agnored on pees 4 and a usk error 18 given on paRs 2.

oxampls - A, Codzm 1 taban
S3XXZ
Jap 2

Wher: the assembler dGefines s symbol s an addresn 3ag, A9
the cozma 1s preceded by & cenberdst, the synhol iz d2fined
i such & way that 1t wWill nat be $ransmistted 45 1IN,

Noke the oppoaifs character of location gﬁ%i%ﬂWﬁqwﬁ and
address tags, A lecaticon assigrment noves the value of an
expressien inte She locatlon counbter, while a tag moves the
location counter inte the symbsl whiech forms the tag,

A geguence such as wab,
a4y

inck of reglstere for a
» the lengtn ¢f the block
e address of the first

is Treguently wused bto reserve a b
table of dava. In the above examnple
“is n, and %&b ia defirmed &8 th
register in the block,

Forpal symbel deflnition

A symbol followed by an equals sign and an expression is
defined ¢to have the value of the expression 1T the expraes-
sion iz defined, If the sxpraession is pot defined; no sotion
is vaken on pass A, and the use error is given on pass 8, A
formel symbol definition cverridez :=ny pravicus definicicn
af the symbol, whether it warsr 2 numeric 4elinl%ion, an
instruction mnemonic, 8 pseudo-instruction, macre, or func-
%ion, If an underbar precedes the aguals sign, the symbod
will be definsd In such & way bthet 1% will ot be
sransmittad to 1D,

examples ~ n=800
Gt
smi=3pl 1L

No storage word 1s generated by & foemal symbol definition.
Comments

A 8iash, when nut preceded by an expresslion. bhaging &
sommant, ALL characters are ignored up to the next capriags
return,

The iocatien countey

The location counter reccrds the address 2t which the
current storage word is to be assembled, It 48 set to =zero
a4t the beginning of each pass and ls advanced by one alter
28ch storage word is sssemblad, Any altempt ¢o assemble &
word, constant, or variable into locatlion 10000 wilil produce
AN IPHm eYTOY. .

exanpl.e dzm 1 CALR
SX¥
ng) ® ~&

assembles inte ¢he geme sedquence of Inatructions as the
axampla given in the sectieon on address tage,

rseudo~instruchisng

Peeudo-Instrmactions are specis)l commands $o the nassem-
bler. They are usually used for generating ceritain typss of
data, controlling the assembly process, printing messz2zes ab
n3sembly time, and defining macroes and functions, Each
pssudo~instruction has one ¢r more names in bhe initial
gynbol table., Other symbols msy be made bo wame pseudo-
Instructione by means of the eguals preudo--inatructlon,
Certainly acts on a pseudo-instruction whenever it sncocun-
tars 1ts rame followed by sny separater 2other than equals
sign, Some of the descriptions below glve names that are
more than 8ix characters long. 3ince symbola are Teccognized
by their {irst six characters only, any pseudo-inaiructieon
name m8y bs shortened o 8ix character:s {for sxample, ohnrsc
instead of character)., They mey not he shortened further
axcept for character and flexe; for which the aliernate
namad chey and flex are defined &in the initial symbol table,

Data Gensrating Fesuwdo~Instructions
character and char

The pseudo-instruatinng character {or i1{s abbreviated form
chiar} 1e used to genarate a syllable contslning the concise
codle For & glven charactsr, The name o»f the psewdo~
instructlon is followed by & ssparater, the lebter 1, m, or
r, &nd then the characier $o be tramslated, The letter 1, m,
or » detersines whether the f(ollowling character 138 to be
-placed in the left, middle, or wight six bits of the word,
2apectively., The obher ftwelve bits ars set to zeres, If the
cheracter following tha separator 18 no%t 1, @, or r, that
character itsell is used, and is piaced in ithe right six
bita, The term ganerabed by cheracier may be uszad anywhere
withln an exprasaion,

examples -~ chay ra = 000054
char mp = Q06200
char ia - £30000
char 4 = Q0GOS

flexo and flex

The pseudo-insiruction flexo {ov 1ts abbesviated forn
flex) 1s used to pack three characters Into one word, Tha
three characters lmmediately folliowing the sepaprator after
the pasudo-instruction name ars packed from lelt Lo right.
The resulbing term may be used anywhevre within an axprage-
sion.

example -~ flexo &be = 516263

this iz equivalent &o char laVchar mbVchaxy re

{%) squoze

The peeudo-inatruction syuoze 18 used to encorle 3 aylla=-
bie of up to fhree characters in a formal popuiariy known ag
“squoze code®, The sylisble immediateiy following the
separator alfter the pseude-instruction name ie encoded, ir
the syllable 1s wors than three characters Iin lengsth; the
Pourth, and, if they exist, f£ifsh and sixnth characters ape
encoded, The diglts zern through 9 ars encoded &8 4 through
12 sctal, The letlers & through 7 arc encoded alphabetically
as 43 through 4% octal, Pericd becowss 45 octal. The
resulting values sre teken &2 diglbs ¢f & number reprssanied
in radix 50 octal. This fermet 13 frequently used in symbol
tables, because it cay unambiguously enccde three alphanu-
meric characters in a 16 hit fleld,

examples - squoze foo - 058004
20x%30x50-+30550+3%,

oQuOnE & w2 i3

The fterm generebed by the sgucze pseude-instruction mmy b
used anywhere within an sxpressisn,

text

The pssudo--instruction taxt 3is uesd o6 acsembls an
arbitrarily long string of characters, The character imaedi-
atsly following the separator after the preuvds-instructicn
name 1s used as ihe break character, Follawing characters,
up to but nol inclwiing ¢he next appearance of She break
chavacter, are pocked three to a word ard assembdled inbo the
object program, If the break character which &nds the string
is8 followad by octal digits instead of a sseparator, the
asaambler gnes into Yocsal® mode, in which paixs of digiss
are taken as 6 bit numbers and packed as Af they wers
charactera, When the break chargcter is npext encounbared the
aggemblar preverts toe pormal Ptextk® mede, The ssgemblexr
alternates bstween texfi and oobal modes until the break
character, followed by 3 separatior, i3 found while 1in Lext
mode. Nove that the strisng beging arnd ends ip text mede, and
thers sre alvays an sven numbzr of appearances of the break
cheracter,

examples - text ,abe,T652.de. agnembles Inbo
64,6263
765264
850000

texs SAA4/an0s/a3// assembles into
146162
634300

Because text may generats more than one word of daba, it
should only be used to genevate steovagze words, It should net
be used in constante,; arguments, sha.

Lexty

- The pseudo-instruction text? assembles characters in 7=
bit form, The pseudo-instruction neame I1s followed by a
string in the same format ag for ¢text, 7The T-bit conclse
codes ¢©f the characlters are packaed five per twoe words, lefd
éustifieﬁa Bit 0 of the first word in eseoh pair 13 zera. In

octal® mode, three digits savye wuzed for esch characher,

example - text] Whatve/
asgembles inho
oetal hinsry
2?&?&3 0R04.04 100244000044
O&ﬁ?@i QOCA00ACOALA0R0001
282000 QLOLOCOACT00LN0000

ik} ccouns
The paeuds-instruction ceount 1s foilowed by 2 string of

characteres in the same format as bhex¥, and generabes a Lsrnm
whilch 18 the number of characters in the ateing,

(k) ceount

The pseudo-instruciion ccoun? is feilowed by a aitring of
cheracters in the same format &8s texi7, and genparates a term
which 18 the number of characters in the string, excludling
case shifts,

{%) sr2

The pseudo-instructiion L2 is a2 condisional which genar-
ates 0 during pass one and 1 Surlng pase tws, It may bo used
anywhere within an expressicn,

(%)} 1rsym

The pseudo-instructlon ifsym 13 & conditlieonal which testis
2 syllsble to determing whebher it 13 A mumdber or a symbol..
I the syllable Immedistcely followlng fhe separator alter
ifsym 18 & symbel, 4 18 generated, If net, ¢ 18 generatad,

{§) 1ra

The pseudo-Anctruction ifd debarmines whebher a symbel is
defin=sd, If the syllabie fmmediabely followlng the pseudo-
Instruction name I3 & number o defiped symbol, 1 13
generated, I 1t is an undefined symbol, ¢ 18 gengrased, A
gymbol 18 considered to he defined whether 1t has a numerlio
vilue or is the name of & pseude-instrychbion, micro, or
function, The term generated by ifd nay be used anywhere
within an expression,

{%} ifp, ifm, ifz, and ifn

These four pesudo-instructions apply & test te & numerlce
spgument and generate ong or zZero depending on the result.
Ifp, ifm, ifz, and ifn genevate 4L if and only i +the
argument is positive, negative, zarce; and nonzeYc, respec-
tively. For She purposez of the test, +0 1s positive and
zero, and F7TEIT {~0 in cne’s mede) 18 negative and nonzero,
The expression to ke tested follows the sepsrator after the
paeudo-instruction name and 18 ended by the next unpaired
slash {zeea the sectlon on syntax). If the expression under
test is undefinsed during pise 4, ithe term generated by the
gseudo-instruction iz undefined, I the expression under
test 1z undefined during mss8s 2, the usl ayror I8 given
instesd,

(%) irup

The paeudo-inatruction Iifup &8s used o test & asense
awlieh a8t assembly time, The expression {ollewing the
separator after ifup and ended by the next unpaired slash 1a
taken to be the nmumber of the switech. A walue of 4 is
generated A7 that switeh Is up, zero AL down.

{¥) Printing Pseudo-instructions

The three printing pseudo-instructions are used te print
information on the Lypewriter at assembly time. The printout
cccurs during each pass unless @ suitable condltiomal 1s
ussd to prevent printing duwring one of the paares,

printx

The peeudo-instructlon printx 1s follicwed by a characiay
string in the same format ap text, and prinis thatl gering.
No carriage returns or osher characliers are added,

example - gplntz /this is /38/red/ 38/

gr:mm Yphiz is (red shiftlred{black shift;
at assembly bime

printeo

Prints 1z followed by 8n expreasion Serninated by &
carriage yeturn, The expression is evalwated and pripted in
the current radix, No caryiagse reburas o obhar characiers
are added, If the expreasion iz undelined, %he usn sSrYYor
message 1s glven,

printc

Printe 18 followed by one oF more expresslons separated
by comme.s and follsowed by & carviags reburn, The rightoash
six bits of each expressicn are used a3 the comcise cxde fow
the character to be mrinted,

example - printe 61,62,63
Yigp to a8
prints “anc

Paeudo-instructions that (ontrol Object Progyam Pormas
(%) offset

The offset pseudo-instruction reipcates Sthe object pro-
gram, It 18 used to produce progréams that store parts of
themselves on the drum and read those psrss into core at
execution time. Qffset 18 followed by an expresslon which
my be positive or negative, Esch word of the object
progrem, whether written on the drum or punched onto paper
tape, 18 loaded at am naddress which 1s ¢he sum of the
location counter for that word and &the value of the most
recent offset paeudo-imstruction. The aum 1s computed using
the aritametic mode which wvas current at the time the offzed
pseudn-instruction was glven. Offset dees nol alter the
effect of address tags or the locabien counter,

example ~ offaset 40

1.0/
2, dzm i1 10
SX¥Z
J0p a
assembles into
50/ 350310
5% 774622
52/ §00040

The symbol & 1s defined as %0, not 50, because the locatlion
counter contalned 30 a%t the time the address %tag was
. encountered,

affsat, 40

40/ dzm 4 340
SXAZ
Jop . ~Z

assemples inte the same thing, In the third instructien, *.¥
has a value of i2, not 52,

The effect of an offset pseudo-instructlon conbinues
until +the next scourrence of offset. The offset is asauned
to be zerc at the begimning of the pregram, The argument for
offset need nobt be defined on pase 4. If it is undefined m
pasa 2, the uas errcr will occur,

(%) word

The pseudo-instruction word 13 used to punch dilnary words
directly onto the object tape, It hes effect oniy when the
object program is belng pumched anto paper tape. Word 1is
followed by one or more expressions which are separated by
commas and terminated by & carriage retuwrn, These expres-
sions are evaluated and punched directly on the tape. If the
ebject program 18 Gteing punched in dAta bisck format, %he
mest recent block will be ended. If the avguments for word
are undefined on pass 2, the usj errur will zcour,

(%} readin

The readin pseudo-~instructicn directs the aszembler 4o
punch the object program in read-in-mode formaL iretead of
date block format, It has effect only when the program 4is
being punched on peper %Wipe. The inpat routine for date
blocks i1s not punched if readin is uaed.

{¥) noinput

The noinput pssude-instruction directs the asaembler not
to punch the input routine. Noinpub terminates the effect of
readin and forces subsequent output to be in data hKlock
form, Readin, word, and noinput 8y be wused to punch a
program with a speciai input roubtine,

Radix erxl Arithmetic Mode Control

Ai} numbers not followed by a declimal point are interpre-
ted accerding %o the cwrrent radix, All arithmetic is
performed in the current arithmetic wmode. AU the beginning
of each pasa, the radix is #set to vetal aasd $he arithmetic
mode to ones,

ones

Ones sete the arithmetic mode $o eone*s complement,

ftwos

Twos 3Sets the arithmebic mode to SHwoe's coumplement.

decimal

Decimal sets the radix to decimal,

octal

Octal sets the radix to octal., These pasude-instructiona
may Ube used anywhere within an expression, honce an eXpres-
sion mAYy bhe interpreted partly in descimal and partly in
octal . :

{k} radix

Radix is followed by an expression and sets the radix o
the value of th2i expreasion. The expraasion must be defined
on both passes, The usx errcr is glven if this is not the
case,

If the radix 12 greater than zen, 1llegal characters may

be generated by the paeudo-instructlons printe and apell. In
this cfse, the icn errer will occur.,

Automatie Comstent Allcecation

It 18 frequently necesssry Lo asgemble an Insiruntliosn
whose address part is the address of 3 register in which &
constant is stored, The assembler facilitabes Lhis pperstion
by automatically assemdling & register containing & conghant
whenever the constant appears enclgsed in parentheses in an
expresaion, The constant with 1bvs parenbhesez then evaluaies
$0 the address in which the constant 13 aasembied, Thz rignd
parventhesls after the constant zay be {and almont always #s;
omitted. A constant doss not need tn be defined on pass i,
If it is undefined on pass 2 the uac errey will he glven,

example - sas {43
aszembles inte an instruction which skips iF
the accumalator contains 13

constantsa

The actusl constants are saved in &8 table In the
assembler and then assembled in 28 block at the next
appearance of the constants peeudo-insbruction, Dupiicated
constants are combinad and stored in tha same register, The
amount of space allocated for the conztanis area during pass
i wmay exceed the amount &c%ua&ly whed an pass 2, since, 1f
constants are wadefined on pass 4 the assembler is somebimes
ungble to determine whether they ara duplicatad and must
assume that they are not, ‘

The pseudo~-instruction constanits may be usad p w0 8
. Cimes Iin a progren, Each constand 1s placed in the next
constants area vegardless of whether the same consbant
appeared in an earlier constanta area, The programmer should
not make any assumpiions about the oidder of constantzs within
2 consdtants aves,

Autoratlc Variable and Array Allascation

Certalnly will automatically allocate one register of
memory for 2 variable or temporary 1f the name of the
variakle szppears with an overbay, The govarbar may be
enywhere withlin the mame, 0Only one appearance of the name
needs an overber, The symbol will be defined %o have & value
ef the address of the register which 1s allocated, A
variable must have been previcusly undefined on piss 1, The
mdv error will occur if %this is not the case,

dimension

The dimension pieudo-instruction declares a symbol &S AR
array or table %o ke automatically allocated, Dimensicn is
followed by & series of array declarations separated by
commas and terminaied by a carpiage return, Each declaration
conslsts of the ayray name optionally followed by ita length
enclosed I1in parentheses, I the length specification 18
absent, the length 1s azsumed €o be 4. The length may be any
expression, which must be defined on pass 4., The usd error
will occur if the array size i& not defined, Each array name
will be defined az the value of the address of the first
word of the array, An array name mast have been previcusly
undefined on pass L, Yhe mdd error will occeur if this 12 noj
the case, ‘

example -~ dimension al%0},b{20}),c{d),4

declares a, b, e, &and d as arvays of 40, 20, 1, and 4
words respectlvely. The declarations for ¢ and 4
could have been accomplished by thelr appearance
Wwith an overwkar in any expression,

variables

All varlables and avrays are placed in & variables area,
which the assembler construmets when 1t encounters the
variables pseude~instruction, This pseude-instruction may be
used up to 8 times in a2 program, Each variable or array is
placed in &the next variadbles area after the overbar op
dimensicn pseudo-instruction that declares 1t., The program-
mer ghould not make any assumptions about the order of
variables and arrveys within an area, The initial contents of
variadtles and arrays are not assigned by the assembler.

The use of dimension, consgtants, and variables 18 abown
in the preogram helow,

sum
=400 o
imensiocn {abin}

102/

8, iaw tab
dap b
dzm s

ba lac
adm 8
idx b
sag (lac sab+n
Jmp b
asm

yariaples

constants

staxrt a

T™hia will produce bhe same ovject program &s the exauple
given in the intreduckion, except that 8 1z not inisialised,
and the relative order of 8 and tab in the variables ares is
unknoun, The avray ¥2b is nobv inloialized in 2lther sxsaple.

repeat

The pseudo-instruction repeat is used %o make Lhne aszem-
blexr process part of the sovrce program a specifled number
of times., The pseudc-instructicn is follewed by the count,
which may be any expression and is terminated by 8 comme,
The characters following the comme up o and including the
next carriage return are the vange. The ascembiar Ybehaves
exactly 23 if the range had been typed & number of Simes
eurl to the count,

example -- repeat 3,ril 63 vk 300
is treated as 1f i% were
ril 6s ivk 300
ril 68 ivk 200
il 6a ivk 30G
ansther example

z=0
repeat 3,2-2+10 ¥l repeat I, yey4d Y+

18 trented as if 1t wera

2=0

z92-+3.0 o0 repeat 3,y~y+i v+z
22%4+4.0 ¥ repeat 3,y=y+d vz
Z2=2+4.0 y=0 repeay 3;y«y+l vz

uhich 1s treated as if 1t were

2 =)

Zwz+0.0 y=0 y=y+d Coy+E
gy i y+e

yay+i y+z

z=z+3.0 y=0 y=y+i vz
=yl yx

Yy y+a

22450 y=0 vyl Y2
yey+L y+z

ymzy"f":i‘h y"}'ﬁ

which agsenbies inkto the seguence of words
11,12,13,24,22,23,31,3R,33

The count must be definite or both passes, oy the uar error
will ccour, A negatlve count 15 taken as zero,

The repeat range snds on the firad carriage return not
contained within Dbrackets., ‘These bhrackets are not to be
confused with the brackets used for arithmetic grouning.
They serve only to ®hide® carriags returns and prevent them
from ending the repeat range, The bracketa are removed, that
is; the assembler bshaves &3 Af the range without the
brackets had been typad the specified number of times, If a
bracket is immediately precedad by an upper case shift and
foliowed by A lower case shift, both case ghifts are removed
also. In order te permit brackets to appear within the
range, only the outermoat pair is removed, Whers repeats ars
nested, cne pair iz removed at each level, Thus, in order to
place the arithmetic expression 3x[8+5] within three levels
of repeats,; three extrs pairs of brackets miat be used even
when there are no carriage retuxrns to hide,

repeat 1,[repeat i,[repeat 1,[3x(#+5]]]]
becomes |

repeat i,[repeat 1,[3x{8+5]}]
which becomes

repsat 1,{3x[4+5])]
which becomes

3x[3+5]

Macro-instractions

A macro-insbruction is 3 user~defined "abbreviatisn® fov
& givan string of characters. Macro-inatrucktions are crsated
by wuse of the define and Sterminate pseuvdo--instrustisns,
Subsequent appsaranczeés of the mscerc~instruction name cause
the macre o be ®called”. 7The assemdler behaves exactly &a
1P the characters that form the definition had been Typed in
piace of the call., A mcro-inatiruction call my supply
srguments that are inssrbted inte the definition at specified
painks, The charsactera that are substituted for the call are
the Yexpension® of the macro, Macro-instmetions and fune-
tions must be defined vefore they are cailed,

examplie with no arguments

{definition) define abs
2pa
cEf

verminate

{calll lac x
adbsa
dac y

i® treated as 1f 1% were
lao x
apR
CHa
dae ¥y
example with twe arguxents
{definition) define move 2,0
e &
dic b
cerminats
{call} move J,K+3
1s treated as 1f it were

iio
440 3

another

{definition) define clear &a,b
law a
dap ,+1
dzm
idx ,-1
888 (dzm a+b
Jmp c"3

terminate

(call) clear tab,100
18 treated as if it were

law tab
dap .+1
dzm
idx -1
sag {(dzm tab+100
Jmp 0"3
define and terminate

The pseudo-instruction define 13 followed by the name of
the macro to be defined and then the list of “dummy
symbols®, separated by commas and terminated by & carriage
return. The following text, up to the appearance of the
pseudo-instruction terminate, become the definition, All
appearances of dummy symbols within the definitlon are
removed and marked as placeg where arguments are to be
substituted when the macro 18 ¢alled. The actual definition
begins with the character after the 42ab or carriage return
that ends the dumy symbol list, It ends on and includes the
separator before the terminate pseude-instruction. In arder
to permit macro or function definitions within a macro,
appearances of define, function (see below), and terminate
are counted, The macro ends on the first terminate not
paired with & define or function, If terminate 1a followed
by & separator other thanm tab or carriage return, & symbol
must follow, It 1s compared with the name of the macro being
defined, A disagreement causes the mnd error, This 1is
somatimes helpful in debugging complicated macroes,

In oxder for the assembler to recognlze & dummy symbol in
the definition, the symbel must be preceded and follawed by
separators or non-=alphanumeric chavacters such as overbar,
underbar, centerdot, or 1llegal characters, In some cases 1t
1s desirable o subsbltute an argument adjacent ¢o an
alphanumeric character, such as a symhel, This would require
adjoining a dummy symbel with another symbel, which makes it
impossible for the assembler to determine where one symbol
ends and the other hegina, To prevent this difficulty, the
separator single quote 18 provided, A zingle quote separates
the symbols, permitting recognition of the dummy symbol., The
single quote 1s then removed and doe@s not appear in the
expanaion, If it is immediately surrounded by case shlfes,
they are removed &lso,

example -~ define type X
law char r'x
ivk 400
terminate

type q then becomes

law char rgq
ivk 100

The use of rx without the single quote would have prevented
recognition of x. Where the coun® of defines, functlions, and
irps 15 noanzero, 1.e, in & definiticn or irp within a macro,
single quotes are not removed, 3ince they will presumably be
needed agaln,

macro calls

A macre 18 called whenever it3 name appears followed by a
separator other than egquals sign., If the separator 1s tab or
carriage return, thsere are no arguments, Otherwlse the
following characters, vp t2 the next tab or carriage return,
form the argument 1ist. The arguments are separated from
each other by commas, They do not include the commas,; the
separator after the macro name, or %YtYhe tab or carriage
return after the last argument. In order to permit comma,
tah, and carriage rebturn in an argument, these characters
may be hidden inside brackets in the same way that carriage
returna are hidden in 2 repeat range. The outermoat palr of
brackets 4s removed from each argumeni. The arguments are
then substituted as character strings for the dummy symbols
in the definition, and the resulting expansion 18 substitu-
ted for the rmacro call, After the expansion has been
processed, assembly resumes with the character after the tab
or carriage return that ended the argument list,

If more argumenis are supplied than the number of dummy
symbols 1n the definltion, the extra arguments are ignecred,
If too few arguments are supplied, &the empty character
string 18 used for the missing argumente, unless & symbol is
generated,

(%} mgenerated symbols

It is sometimes helpful to have 8 macro generate sne ov
more symbels to be wused as address tags,; ete, within the
macro, For this purpose dummy symbcls may be declared to be
candidates for generated symbels, If a slash appears in the
dunmy 8s8ymbol list, all the following symbels are candidates
for symbol generation, If; at the time the macrs is called,
the argument corresponding &o such a symbel 13 missing, the
assambler will generate a symbol and use 3i% for the
argument. A new symbol 1s generated for each call, Generated
symbols are of the form ,g0004, ,g0002, etc, If the argument
is supplied, it overrides the generatsd symbel,

example -~ define ifzero x/.

Sz :
Jmp y
X

Ys

terminaie

The generated symbol provides an address for the instruction
te Jump over x without knowing how many words x wlll become,

ifzero [(iac a
das b
lio c]

becames

8za
Jmp .g000%
lac a
dac b
1ic ¢
- Z0004, ,

{%J stop

The pseude-insiruction stop causes an immediate exit from
the most recently entered macroe, function, or 1ivrp, The
ageembler btehaves ag if it had reached the last character of
the definition; and continuves from the character after the
call,

(%) Punctions

Functlona are similar to macros, bun thelr arguments ave
treated as numbers rather than chayacter strings, and they
return numerle valuss, When s function is ealled esch
argument Iis evaluated {the arguments must be expressions),
The old values of the dummy symbols are saved, and the dunmy
symbols are temporarily defined to have values whieh 8re She
values of the arguments with which the funchion 1s teing
called. While the function 1s being expanded, references to
dumny symools refer %o thely temporary values, When the
expansion 18 finished the dummy symbols are restored Lo
thelr previous wvalues, Dummy symbols may be redefined within
a funclion withocut affecting the previcus valus or the
actual argument,

example

(definition) function fack y
repeat ife y.,rebturn 2
return facti{y-%lxy
terminate

{call) ite {fact{5]~3

The single argument to the functlon fact 1s 5, Three

& subtracted from the result returned by fact, Hence
this Instructlon will load the I reglster with 447
decimal .

By Sransmitiing arguments and values aa npumbsers, functions
avoid some of the difficulties encountered when macraa
transmit grguments and valuyes to each other,

functicn definiiion

Punctlions are defined with the pssudo-instiructiocna func=
tion and Sterminate, The syntax 15 the same as for macros,
except Lthat 2ingle quate 48 never needed, since the assem~
bler dces no% need ¢o recognize dumny symbols 1in the
definition, Dumny symbols do no% have character strings
substituted for them, They wemain in the definition, and sny
reerences ¢o them refer %o thalr temporary values,

function calls

A function 18 calied when 1i%s name appears In an
expression follcwed by a separator other than eguals sign,
If that separator 18 not left bracket; the function is
called with no argurents; and the function name 1t3elf is5 a
term with 2 value which i3 the value returned by the
function, If the separator felleowing the funcition 18 a leflt
bracket, the arguments follow, separated by commas and
terminated Dby & right bracket. The functicn name with its
bracketed argument list 1s then a term with a value which 1s
that returned by the function. An undefined argument on pass
i1 will cause the cerrespending dummy symbol 6 be undefined
during the expansion of the function. An undefinad argument
on pass 2 will cause the usa error to cccur, Xf a function
is called with more arguments than there are dummy symbols
in 1%s dummy symbol 11s%, the extra arguments ave ignored.
If too few arguments are glven, the missing arguments are
assumed to be zero., This provides a way fer a function to
use temporary variatles that will be correctly handled if
the function 13 recursive,

reburn

The pseudo-instruction reiturn effecta exit from a fune-
$lon and determines the value of the functlon call, It is
fellowed by an expression which is the wvalue. If the
expression is undefined on pass 1, the value of the funchbion
call is undefined, If 1% is undefined on pass 2 the usy
error occurs,

If a function exits by means of the stop pseudo-
instruction or by reaching the end of ¢he definition, 1t
returns no value, In thls case the function call 18 treated
as if 3%t were not there, If the call appears by itself
followed by a 3t cor carriage return, no steorage word is
generated and the locatlon countsr 18 not advanced,

{k} Tieratisn {Indefiniie Repeatb)
{ p 4

The pseudo-instructions Irp, irpe, and irplnf ciuse the
azsenbler to repsatedly process pari of the zource program,
usually under control of a iist, The pseudo-instracticn
spell causes the assembler ¢ process part of the source
program once, under contrel of an expression,

irp

The pseudo-instructlion irp causes the assembler to scan &
list and process a given plece of the souree program cnece
for each item on the llst, inserting that item at =zpecified
points in the text being processed, The psewdo-instruction
name 1s followed by & aingle dummy symbol followed by
arguments, which are separsted from %the dumy symbol and
from each other by comras and terminated by a carrlage
ratwn or tab., The arguments avre handled In the same way s
arguments for macros, that i1s, brackets hide comma,; ¢ab, and
carriage return, and the cutermost pair of brackets 4is
removed from each sargument, The characters following the
argument 1llst, up to but not including the pseuds-instruce
tion terminate, are the yange of the irp, The range is
procassed once for each argument In tne iist, That argument
13 substituted for each appearance of the dummy aymbol 4in
the xange, A3 in the ciase of mecros, single quote may be
used to asslat In recognition of the dummy symbcl,

Executlion of the pseudo-instruction stop within an irp
causes immediate exit from the entire irp, even 1f there are
more iterationa thet have not hegun,

example -

irp wa,b,c
Iac w'i
dac wt2

terminate

becomes

lac ai
dac a2
lac bi

define sum x
Irp wex

add w
terminate
terminate

sum {a,b,c]
becomes

Arp wea;bye

a8dd w

terminate
which becomes

add &

add ©
add o

irpe

The 1lrpe pseude-Insitruction la aimilay to iyp axcepli that
sach oharacter in the argument string 18 & geparate argu-
ment, Brackets de not hide carrizge returns and are nng
removed,

example -~

irpe wyabe
law charac riw
ivk 400
terminate

hecomes

law charsc ra
vk 400
law charac b
ivk 400
iaw charae ro
ivk 400

irpinf

The drpinf pseude-instruction uses no argument list or
duwmy symbol, It repeats its range indefinltely (untll the
a8%op paevde~instruction 1s executed).

apell

The spell pseudc-instruction i3 followed by an expres~
slon, & commd, and a dummy symbol, The range of the spell is
processed once, with esach appearance of the dummy 8symbol
repiaced by the numerical representabion {in the current
r3dix) of the value of the expressisn, If the expreasion is
undeflined, the usn ervor will scour,

example =
spell exp,w
printx fw/
Cerminate
du2s exactly the same thing as

printo exp

Miscellaneous Pseuds~instructions
start

The start pseudo~instruction indlcates the end of the
source program or program section, It is optionally fellowed
by an expression to be used as the starting address for the
program, If the obJject program 13 being punched on paper
tape, the starting address is used to punch the Jump block,
After the tape finishes reading in, execution of the program
begins at the specified address, If Certainly was started at
location 102 {as by "N® from Expensive Typewriter), the
starting address 1s placed in the program counter when
conbtrol 1s returned to ID,

(%} equals

Equals is used to define &2 symbol as an alternate name
for a pseudo~-instructien, macro-inatruction, or function,
The pseudo-instruction is followed hy two symbols separated
by a comma, The firat is defined to have the same valuve and
meaning as the second, whether the second 158 a pseudo-
instruction, macro, function, or numerical symbol, The
praevious definition of the first symbol i’ lost, If the
second sSymbol 18 undefined, no action is taken,

example -
equals end,start

defines end as an alternate name for the pseudo-
Instruction start, Start may now be redefined by
another use of eguals without changing the meaning
of end, Note that if end had been defined as a
macro, such asc

define end
start
terminate

then subsequent redefinitlon of start would affect
end also,

The eguals pseudo-instruction differs frem the formal
aymbol definition (definitien with the character %=%)} in
that the second argument i3 always a symbol, not an
axpression,

The equals pseudo-instruction operates on hoth passes, In
some applications a conditional 18 needed to prevent it from
aperating on pass 2,

Pregram Format

While Certainly has few regquirements con format, mny
programmers have found that adherence %o a rfairly rigid
format 1s helpful in writing and correcting programs, The
folliowing suggestions have been found useful in this re-
spect.,

Place address tags at the left margin, and run instrug-
tions verticelly dewn the page 1indented one tab stop
from the left margin.

Use only a single carriage return between Ilnstructions,
except where there 1s a logical break in the flow of
the program. Then pubt in an extra carriage return,

Forget that you ever lsarned ¢ count higher than five*
Let Certalnly count for you. Do not write Ydac ,+46%,
usge 2an address tag. This willl save grief when
correcticons are requlired.

Have & listing handy when assembling or debugging a
program. Carefully note corrections therecn 23 soon a8
they are found 8¢ as to mintain an up-to-date
Listing.

Az maero-instructions must be deflined before they are
used, put these definiticns at the Dheginning of the
program.

If the pseudo-instructiens wvariables and constants are
veed, place them a%t the end of %he program, Jjust
before start.

Assembly Pracedure

Certainly normally reads the source program from Expen-
Blve Typewriter's text buffer and places ths chject program
oen drum field 4., Howevsr, many variaticns in procedwre aye
pessible by typing contrel characters on the typewrlter,

When Certainly is started at location 102 (as it 1is when
the ®*N® commend 1s given 4in Expensive Typewriter), 1t
automatically goes through both passes of the assembly and
returns to ID &8 if the sequence 2, 8, 8, and b had been
typed. It directs ID to place the starting address of the
program in the program counter, read the symbol table, and
unsave drum field 1 {which ccntains the object program§ into
core.,

When Certainly is started at location 104 {(as %% is when
the “M* commend 1s given in Expensive Typewcliter), it
Aistenis for control characters from the typewriter. After
each pasa on & program section, 1t listens fer more control
characters,

Whenever sensas swiich 4 18 up, Certalnly types eut every
character of the source program, including expansions of
repeats; macros, functlions, and Iirps, This is useful when
debugging macros,

Certalinly assigns and dismisses the punch as needed, When
fhe cbject program is punched on tape, ¢the first program
sachlon 18 normally preceded by the title, punched in block
letfers, followed by the iInput routine, The program itself
is punched in checksummed data blocks of up to 200 words
each. If the title contains a centerdot, the centerdot and
all following characters will not appear on the tape, The
tape format may be changed by contrel charscters and the
pseudo-instructiong readin and nolnput,

Centrol Characters

input medium
e Expensive Typewriter text buffer
y online typewrliter

output medlum

a drum field 1
1 paper tape
W without output {just check for errors)

special format {for paper tape output)

g get {turn en)

x exchange {turn off)
(g,%x}4 input routine (loader)
[gox]1 label (title)

assemnbly control

8 begin next pass
c continue same pass on next program section
i begin pass 14 |
2 begin rass 2
o forget (initialize everything)
z assign and zero drum field 2
K print constants and variables areas
exit
b back to ID, leaving symbel table in core where

Uop® ~ommand can read 1t

m melicrate source pregram (back te Expensive
Typewriter)

Error Messages

Upcn detecting an svror, Certainly will print . line in
the folliowing format,

Y

aasa Psl ¢ d e

where aaa 18 & three letter code indicating the error, p,1
1s the page and line numbers at{ which the error cccurred {if
input is from Expensive Typewriter text buffer), c is the
symbolic address {relative to the last tag), and d 18 the
name of the last pseude-instruction, macro, or functioen. In
the cage of an error caused by a symbol, e is the symbol,
Pollewing is & 1list of error mesgages and the action taken
if assembly is continuved,

soe

pce

4

cce

nce

ich

ien

rpm

1irf

ipi

mdd

Symbel. table capacity exceeded, No recovery,

Pushdeown capacity exceeded {nesting of repeats,
macros; functions, and irps 18 too deep., The
pushdown list i3 cleared and assembly
stares over at the top level,

Censtants capacity exceeded {more than about %00
constantsso The current constant will evaluate %o
zero,

Macro capacliy exceeded and the garbage collector
could vecevser no space, No recovery.

I1legal character. It 13 ignored,

Tllegal character gensrated by printo or spsll because
radix is greater than ten, The character 13 ignored,

Wrap arcund memory. The lsacation counter has
exceaded T777. It will e reset to zero,

Tllegal format. Characters are ignored to the next
tab or carriage return,

Tliegal pseude-instruction, A pseuvdo-instruction is
ueed In an 1llegal context. Same recovery as 1ilf,

Multiplie definition of a variable (& symbol with an
overbar was previously defined). The old
definition remaina,

Multiple definition in dimension {(a symbol in a
dimension declarstion was previously defined).
The old definition remains,

Maltiple definitien ef n tag, A defined tag dces
not match the location counter, The tag is
not redefined,

usw

3138
nay
ust
war
ad
use
usX
nea
ipa

nEsl

Tmy

cld

Undefined symbol An & sborage word, The aymbol 4is

In

k£
&an

in
No

giggﬂvi? ZEr0, All&e§¢mr mgsaﬁgasm?egénnimg wilth
refer to undeflinad symbols and are
identified by the third lebiter as follgws?

a location aassignmentd,

2 constant,

& eonditional {17),
a numeric print {printo, printe, or apell),

a Jump block {argurment for word),

argument faor astart,

argument for offset,

argunent for a function,

argument for resurn,

an addrsae fag that is nob a singls symbol,

a repeal counb,

an array size for dimensieon,

a formal symbol d@finitiun({%i@h aquals sign).

an argurent for radix,

constants ares. The constant 18 assembled as zero,

FTilegal ferpml symbol assignment, It 13 igonorsed.

¥acrs or functlon name dlsagrees with name after

Mlera-progran arpor (3

berminabe, The original name 13 ussed
23 o

ipper cage letters do nes form &
iezion). Same recovery as 11F.

mlero=-program inst

Variabkles location dizagress between passes 4 and

2. The lpeation is fovesd b0 agree,

Too many variavles arasd. The pseudo-instruction

variables is ignored.

Conatants location disagress bebwseen passes 4 and

2. The location is furcesd %o 2zree,

Tao xany conghianis areasn, The paeuda-irnstruction

constants ig lgnorad,

ry g ey e B, w3y T 3 PRI iy oy i sy e, #S - =
Consbenta ares ULon long (langers o pAass 2 than on

pass %), The constants ares 1a btruncated,

ant End of text reached in improper context {e.g., in
the middle of a macrc definition)., The current
pass 1z ended,

,25}
3s

58

a8
98

and
iox
xor
zct
1xr
Jap
cal
Jda
lac
lio
dac
dap
dip
dio
dzm
adm
add
sub
1dx
isp
sad
sas
mul
div
Jmp
J8p
skp
szf
8zs
824
8pa
sma
szm
820
spl
sni
8P4
clo
sf't
ral
rll
rcl

Appendix I
Initial Symbolz

sal
sil
scl
rayr
rir
rey
88D
sir
aer
law
lan
iot
tyl
ekn
cks
dac
ase
caQ
ism
esm
cbhs
dra
rbt
wat
843
lel
iga
repr
tyo
apy
ivik
opy
nop
cdf
sefL
lia
lal
BWp
cmi
ol
oFa
cle
lag
el
Lok
alk
frk
gl
bpt
eRm
ilem

rpf
&pf
AR
bam
iam

665000
666000
667000
674000
672000
273000
75000
676000
677000
700000
To7TTT?
720000
720004
T20027
720033
720050
720054
72005
720054
T20055
TEO056
720063
720237
Waak??

3574
°2L6‘“
“E‘i"v ‘.W
730003
730007
?&oooo
760000
760000
760000
760040
760020
7600450
760060
7604.00
?60900
764000
761200
762200
764000
770040
”700%

% GOk2
?“004
?700&%
T700kE
TTO04T
??Qﬁ%o

770054
eéﬁﬁg?
TI00855

dam
aam
e2n
eim
mta
hlt
dam

770055
770056
770060
770064
770070
170074
TTo0T77

Appendix II -~ Congles Cndes

£

ractex Concise Code
64
62

A O O O FWNPONYHELCEZ MO0 0SS MRNG TR AD OO oM
Fomear AU N 2 S NREREOHHENTODWO RO RUMIQYRDQI >
AR
XS

e
*

3

*

/
downghify T2
upahiflt T4
Rpace 00
backspaes 5
tab 36
carriige rebtuwn TT
black shift 34
red shift 35
pEop onde i3

X il
~3
a3

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

