PDP-~1 COMPUTER
ELECIRICAL ENGINEERING DEPARTMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

PDP-48
FORTRAN

November 8, 1974

Preface

This memo Ls noet intended to be of tutorial value., It
prasumes 3 general xnhowledge of FPORTRAN, such 88 c¢an be
obtained fyom A FORTRAM IV PRIMER by E. 1. Organick.

Definitions and notation

For clarlty, exsmples of PFORTRAN source statements will
be written 1in upper case,

Procedure means functlien or subroutine, (Extornal pProcsa~
dures are sometimes cailed subdprograms.)} A funchion returns
2 value, and is called by & reference in an arithnetic
exprasaion. A subroutine does not return a value, and is
calied by the CALL statenment.

Mxie f{also known as type) is one of integer, Teal,
logioul, complex, amnd daubleprecision. With very few excep-
tions, all datm® processed by FORTRAN programs are in one of
these modes. (One exception is a procedure rame argument o
& procedure.) The mede of a constant 18 determined by ite
form. The modie of a variable 1s determined by explicit mode
declayrations, 1implicit mode declarations, or the IJKLMN
rule, in that order. The mede of the value returned by a
function is determined in the same way, exeept for intrinsic
and library functions,

The IJKLMN rule is that variables and functions whose
- names begln with I, 7, K; L, M, or N are integer mode, and
othars are real.. Thils rule may be changed by an IMPLICIT
statement.

A dimension declaration 18 & declaration consisting of
the array name followed by a 1list; in parentheses, of the
maximunm values of easch subscript. It may appear in
DIMENSION, LOGICAL, RFAL, DOUBLEPRECISION, INTEGER, COMPLEX,
. and COMMON statements,

A data declaration is & declaration specifying the
initial contents of a variable or array, and may a&ppear in
DATA, DIMENSION, LOGICAL, REAL, DOUBLEPRECISION, INTEGER,
and COMPLEX statements,

An ASF 18 an arithmetic statement function (internal
function defined in & single statement which looks like an
arithmetic assignment statement with subscripted left side).

Seurce program forpRs

A siatement 18 a string of characters up Lo & carriags
return, not counting carriage returna hiddep by centerdot or
in character strings. A centerdot causes all characters up
to and including the next carriage return to be lgnored, and
18 used for continuing statemeni:s on more than one line,
There 18 no limit to the number of continuation lines that a
statement may have. An empty statement or statement with C,
period, or slash as the first character 1is ignored, Center-
dot may unot bte used to continue commenta, Excaept 1in
character stringe, space and tab are ignored. There are ne
other restrictions on format or line position, Speclfically,
statement numbers and the rest of the statement do¢ not have
to cccupy specific "flelds®, sStatements may begln &% the
left margin with no tab, but bewsre of CONTINUE, COMMON,
COMPLEX, CALL, and other statements beglnning with C. These
must be precaded by & spéce or tab if they have no statement
number, %o prevent thelr keing treated as commentis.

Letters may be in upper or lower case, Brackets pay be
used in placs of parentheses, The cage of letters is
ignored, i.e., the names ABC, ABc, and abc zre one and the
S8ME ,

The first non-empty line of a program is the title, It 1s
printed on the typewriter at the beginning of compllation
and 1s not a statement,

Character strings may be written with "numbery® notation
or w2y be enclosed Iin single quotes, In the former case,
case shifts are counted as characters, and they are not
filtered. In the latter case, case shifts ara filtered, and
the string is assumed %o begin and end in lower case, Single
gquotes mAy be placed in the second kind of string by using a
pair of consecutive single quotes. All characters are legal
in elther kind of string. Strings 1in other than format
. statemenis are left Justiflied if they contain more than 3
characters, They are right Justified and considered to be
integer constants 1f they contain 3 or fewer characters,

Arithmetic expressions

A symbol is a string of up to 6 letters or diglts, the
firetv of which is 2 letter, A symbol Ry be used as A
variable, array nsme, function neme, subroutine name, COMMON
block name, or NAMELIST name. Except for COMMON block nAnes,
a4 symbol may de oniy one of the above unless 1t iz a dunmy
aymbol for an internal procedure, in which case 1% may DhAave
one meaning within the precedure and another mneaning slse-
waere,

A variasble is a name for a register in which one data
item may bYe ostored dwring execution. The mode of the
variable determines the 4ype of data that may be stored,

An 1pteger datum 13 a signed integer with megnitude not
greator than 132074 declmdl or 377777 octal.

4 real datum 1s an approximation $0 a veal number. It has
magnitude between 407-75 and £0?§0; or 18 zero, 26
bits (about 7 i/2 deciml digits) of precizion are
kept. It 1s stored in two consecutive words.

A doubleprecision datum has magnitude between 407-39000
and 10739000, or 18 zero. 69 bits (ebout 21 decimal
diglts) of accuracy are kept. It 18 stored in &
consecutive words,

A loglcal datum has the value TRUE, {stored as 1) or
JFALSE. (stored as 0},

A complex datum is & pair of real data, representing the
real and imaginary parts of a complex number., It 1s
stored In four consecutive words, -

The mode of a variadble 1s determined by an expliclt mode
declaration (INTEGER, REAL, LOGICAL, COMPLEX , or
DOUBLEPRECISION statements), or, if none 1s present, frem
‘its first leitter, using an IMPLICIT declaration or the
IJKLMN rule,

An array is & set of variables named by & single symbel.
Individual items are selected by a string of subscripts.
Eech array must appear in a dimension declaration, giving
the number of subscripts end the meximum value of each, Any
reasonable number of subscripts may be used, Each subscript
may vary between 1 and the limit given 1in the dimension
declaration. The items of an array (each of which is 1, 2,
b, or 5 words long depending on the mode} a&are stored in
ascending locations in memory, the rirst subscript “varying
mest repidly.

example - DIMENSION JJ{(2,3)
The elements of the array, in order of increasing
addressg, are s
Jr(a,a) a¥{2,1) J3{1,2) J3{2.2) a5(4,3) II(2.3)

An array reference 18 an aryray name followed by a
parenthesized list of subscripts, Subzeriptcs may be of
arbitrary complexity. The number of subscripta pust match
the number of dimensions given in the declaration, or must
be one., In the latter case, it is 2 ¥linear subseript® and
selects an item from the array as a2 linear lisy,

The mode of an array 15 %the mode of each i1tem in the
array and 1s determined in the same way 88 the mode of a
variable.

Constants

An integer constant is an optlonally signed number, octal
number, or character string of' 3 or fewer characters., An
octal number 18 a numbsr followed by the lettexr 0, A
character string is snclosed in single quotes or 1s preceded
by & number, giving the length of the string, and the lettex
H. ghelcharacters are right justified and filled with zero
on the left,

examples - i23 -423¢ ~iha 'foof

The letter 0 in an octal constant may be In front of the
digits in a data declaration, where the constant cannot be
confused with a symbol,

A real constant is a number with a decimal point, an
exponent pireceded ty E, or both., The exponent may be signed,
as may the entire constant, If there 18 no expeonent, the
number of digits must be {9 to distingulish it Ifrom =&
doubleprecision constant,

& doubleprecision constant is a npumber with a decimal
point, an exponent preceded by <he lettex D, or both, The
exponent may be slgned, as may the entire constant.. If thers
is no exponent, the number of digits must dbe » 9.

A logical constant is .TRUE. or 4B for truth, .FALSE. or
OB for falsehood. the forms T and P are 2lso permitted in a
data declaration, where the constant cannot be confused with
a symbol.

A complex constent is a palr of real constents separated
by 2 commé end enclosed in parentheses. Each part may be
signed, as may the entire constant,.

Note -~ - The form left paren, real part, comma, imeglinary
part, right paren, is legal only for constantes. zA,B+c§ is
1llegal. Use CMPLX{A,B+C)} instead,

A long character string constant is a string of' more than
3 characters, It I1s not one of the 5 data types, and 1is
legal only in data declarations,; procedure arguments, and IO
lists, In a data declaration, it is treated as a list of

integars. In & precedunre argument it is freated as an arrsy,
A long character string 1s lefy Justified and filled with
zerces on the right,

A statement label constant is 2 statement number followed
by the letter 8. It 18 not one of tha 5 date types, and is
legal only in data declarations and subroutine arguments, In
a data declaration 4t 18 used to initialize a variable o oe
used in an assigned GO TO. In 4 subroutine argument 16 is
used to specify an address for an errar ret - The letver S
my precede the number in 2 date declaration, where it
camot be cenfused with & aymbol,

A function reference is & function name followed by =2
parenthesized argument: list. The mode of a function refer-
ence is the mode of the function rame, which, except Jor
intrinsic functions and gtandard 11drary functions, 1z
deternined in the sam: way 2s the mxde of & variabie,

An expression 18 2 conatant, variable, array reference;
function reference, expresslon enclosed 1in parentheses,
expression preceded by a unary operator; or expressions
sgparated by binary operators.

The arithmetic operagors are llsted below

operatoris)

AND.,

-OR,

«THEN .

~-BXOR

NOT, f{unary)
A A,

V QV@
 JEV.

N. Lumary}
~REM.

IS8,

ﬁmﬂ

- IR,

-RBR.

+

= {unary or binary)
X

s

acceptanle mxis(s)

(RS NPy W PR TR T ad ok ok ol =

URRO

> JEQ. .E.

/
? ci?u >°<
ABS. {unary)
eggc i?, p
OEQ‘; L-Ec
-NE,
JAl. L. &
JE. &
Where parentheses are not
computation, operations
below.
ABRS, UNATY -
QIISQ omn QRSG
M.
OAQ A
BV, 7
Vo VW
xx T .P.
/ .REM.
%
+ Dbipary -~
AT, 6. >
NOT, -
AND.,
JEXOR.
LOR.
-THEN,
<sEQ.Vo

[

=

-

(o

@
OOOQ0

]
©
=
®
QO

legical and

logical ox

implies (B or not A}
logical exclusive ar
logical equivalence
dogical negatlon
bitwlae and

bliwise on

bitwise exclusive o
ones complemnent;
remainier

I shifted left by
I shifted 2ight by 7
I rotated laeft by &
I rotated right by J

exponentiate
absolute value

used to direct: the order of
are performed in the order shown

(done firss)

{done last)

where two or nere noen~commutative operators of The same
priority level are used,; the operations are performed from
left to right except for exponentiation, which is performed
from right te left,

All arguments %o an operator are first converted to an
acceptable mode by the smallest possible subset of the
following canversiona,

doublemraecislan » resl
The less aignificant bits of the fraction are discarded,

real -+ doubleprecision
Zeros are appendad to the fraction.

doubleprecision + integer
™e number 18 trunc&ted towmard zero. It is not rounded,
£.7182818284590 » 2 -3.443.5926536 » =3

integer -+ doubleprecision
The fraction is zero.

complex -+ real
The real part is used.

real + complex
Zero is used for the lmaginary part,

real -+ integer
The number 1s truncated toward zero, It is not rounded.
29999 > 2 "’20999 »> «2

integer - real
The fraction is zero.

integer -» logical
Zerg is converted to . FALSE. Anything else 1ig converted
o .,TRUE.

logical - integer
JFALSE, becomes O, ,TRUE, becomes 4.

Except for exponentiation with Integer second argument,
all arguments are then converted to & consistent mode
according to the following 5 steps,

If there are any doubleprecision arguments, all integer
arguments are converted to doubleprecision,

If therse are any re2l or complex arguments, a8ll integer
arguments are converted to reel.

If there are any complex arguments, all doubleprecision
arguments are converted to real.

If there are any doubleprecisicn arguments, all real

argumenis are converted to doubleprecision,

If there are any complex arguments, all real argurents
are converted to complex,

Whanever two or mere arguments undergce the same conver-
sion, the arithmetic cperation 1s performsd on them first,
ané the xesult converted, For example A+I+B+J4Kk 18
rearranged as A+B+C+PLOAT{I+J+K}. 'The integer erguments are
addeqd ss integers and then convertod,

When the second argument for exponentiation is integer,
1% 1is not converted +¢o make it consistent with the first,
that is, the operations doubleprecisiontinteger,
realtinteger; and complextinteger are performed without
conversion,

Bxeept for conmectives (.GT., .EQ., ete.) and exponen-
tiation, the mode of the result 1is the mode of +the
arguments, The result of & connective 18 always logical, The
result of exponentiation has the mode of the first argument.

Except 1n JO lists and arguments to procedures, expres-
sions are always converted to the required mcde, PFor
example, the right side of an arithmetic assignment state-
ment 1is converted to the mode of the left slde, a computed
G0 TO index 18 converted to integer, and the test expression
in & logical IF 18 converted to loglcal, There 18 no "mixed
mode® error.

When the result of an integer operation is not integral
(this may happen in division or exponentiation with negative
exponent) it 18 truncated toward zero, In the forms
realtreal and doubleprecisiontdoubleprecision, the base must
be non-negative, 010 is undefined in all modes,

Executable statements
Statement labels (statement numbers)

Any executable statement may be preceded by a label,
which 18 a decimal integer between 4 and 99999, Statement
labels are used to generate addresses for GO TO and IF
statements, and to indicate ends of DO loops. Iabels are
ignored cn non-executable statements other than FORMAT.
labels on FORMAT statements must not conflict with labels on
exeocutahle statementa.

Arithmetlic assignment

The arithmetic assignment statement consists of a varl-
able name or array reference, &n equals sign, and an
expression. The expression 18 evaluated and stored in the
indicated variable or array element, If the left side is an
array reference, its subscripts may bes of arbitrery com-
plexity and follow the 1rules for array references in
expreszions, The expression to the right of the equals sign
is converted to the mode of the variable or array on the
left by the smallest possible subset of the conversaions
given in the smecticn on expresalons.

Simple Q0O TO

The statement GO TO followed by a number causes transfer
of control to the numbared statement,

Computied GO TO

The statement GO TO follewed by & parenthesized list of
statement numbers (separated by commas) followed by a comms
followed by an expression, is &2 computed GO TO. Control
transfers to the statement number whose pesition in the list
is the value of the expression, The expression may be of
arbitrary complexity. If it is not integer, 1t is converted
to integer. If the value of the expression is 1, control is
transferred to the first statsment in the 1llst, efc.

example - GO TO (30,30,25), J+K/2

ASSIGN

The statement ASSIGN, statement number, TO, variable or
array reference, stores a pointer to the specified statement
in the variable or array element, The variable or arrey
should be integer. This statement is used in conjunction
with the assigned GO TO statemant,

example - ASSIGN & TO J{K+L)
Assigned GO TO

The statement GO TO followed by & symbol or array
reference follcwed by a commf f'ollowed by a parenthesized
list of statement numbers, causes transfer of control to the
statement whose pointer was last stored in the variabdle or
array elemsnt by an ASSIGN statement, The parenthesized list
of statement numbers is required and mst contain all
possible statementa to which control may be transferred. The
compiler uses thes information internally.

example - GO TO J(N+L),(3,4,5,44)

The use of an array for assigned GO TO's facilitates certain
¥pushdown stack® operations,

Arithmetic IF

The statement IF followed by & parenthesized expression
followed by 3 statement numbers separated from each other
{but net from the expression) by commas, 18 an sarithmetic
IF. The expression 18 converted to integer, real, or
doubleprecision, and tested, Control transfers to the first,
second or third statement 1f the value 18 strictly negative,
zaero, or strictly positive, respectively.

example - IF (J-2) 10,15,420
Logical IP
The statement IF followed by 2 parentheslzed expression
followed by &ny executable statement other then DO, is a
logical IF. The expression is converted to logical. The
:tat;gggt following the expression is executed if the value
8 . .

example - IF (P ,OR, Q) J = J¥i

e

4 DO loop is begun by the statement DO, a8 statement
number, symbol, equals sign, and 2 or 3 expressions sepa-
rated by comm2s. The loop ends Just after bthe terminsl
statement, whose number 15 given in the DO statement, The
Symbol before the aquals sign in the DO atatement is the
index. The expresaions after the aguals s8ign are the initisl
value, test value, and increment, respectively, They may be
of arblirary complexity. If the increment is misging, 4
{integer) is used. When the DO statement is executed, the
index is set to the initial value, end subsequent statements
up to and including the terminal statement (the “range®) are
executed repeatedly., The increment is added to the index
arter each iteration. If the result is less than or equal to
the test value, the range 18 executed again, Otherwise it
proceeds to the statement after the terminal statement. The
range 1s always executed at least once, Mode converasions ape
performed where necessary to de the addition and testing,
The testing iz done as if by 2 .LE, comective, 8¢ the
arguments are converted o real, integer, Qor
doutleprecision, Because of the way the test is perfovmed
the increment should always be positive, The terminal
statement may be any executable statement other than @0 TO,
STOP, RETURN {unless under logical IF), or anather DO, It is
permissible to Jump in and out of DO loops at any time, The
last velue of the index {(after beinrg 4incremented) is
preserved upon normal exit from a DO loop, DO ioops my be
nested %o any reasonable depth,

CONTINUE

The CONTINUE stetement dces nothing, It is used as the
terninal statement of a DO loop in order tc be able %o go to
the end of the range of the loop.

PAUSE and STOP

The statemunt PAUSE oxr STOP, followed by nothing, an
octal number, or & character atring enclosed is aingle quote
marks, causes execution to atop. If the statoment has @&
number or string, 1t 8 typed out first. The number, if
rresent, will be printed in octal, The STOP statement
terminates execution with the dam instructior, <The PAUSE
statement waits for any character to be typed in and then
proceeds, If & coharacter string i1s given, 1t must be
enclosed in quote marks. "H* formet 18 pot permitted (it
would be ambiguous). The same effect as a STOF statement may
be achieved by running into an END statement (running off
the end of the program or procedure; or by an end of file on
& READ statement when no end-of-file address 1is gilven.

examples - PAUSE PAUSE 777 PAUSE %foof
CALIL,

The statement CALL follwed by an internal or sxternal
subroutine name, followed by an optional parenthesized
argument list, calls the subroutine, The form of the
arguments is discussed 1I1n detall in the section on proce-
dwres,

RETURN

The gstatement RETURN followed by nothing, a number {(for
noen-standard subroutine retuwrns), or a parenthesized expres-
sion ({(for functisn returns), returns from the innermost
procedure., Thils statement 18 discussed in detall in the
sectlion on procedures,

READ and WRITE

These statements are used to effect transmission of data
to or from the outside world. READ or WRITE 18 followed by a
parenthesized 1ist of one or two items, followed by the IO
list, No comma precedes the I0 list, The first item in
parentheses 18 the unit number, which is an expression of
arbitrary complexity. It is converted to integer if neces-
sary. The second 1tem, if present, s&pecifies a FORMAT
statement number or array to be used for "variable format®.
These statements are treated in detall in the section on
input/output,

Declaraticns

The mode declarations (REAL, LOGICAL, COMPLEX, and
DOUBLEPRECISION}

These declarations are used to explicitly specify the
mode of & variebdble, dummy symbel; or funetion name. The mode
word 1is followed by the names to be declared, which are
separated from each other, but not from the mode word, by
commas, Mode declarations may be placed anywhere, except for
declarations on dummny symbolas for intermal procedures, which
must be inslde the procedure definition,

If & function is called in & program, & mode declaration
must be glven unless 1 1s a library or intrinsic function
or the correct mode 1s given by an IMPLICIT declaration ar
the IJKIMN rule. In a PFUNCTION program which defines Aan
external function, the mode muat be declared, either with an
explicit mode declaration or in the PFUNCTION statement
itself, wunlesa the correct mode 123 given by an IMPLICIT
declaration or the JJKLMN rule. In & program in which &an
internal function 18 defined and used, its mode must bhe
declared either inside or cutaide of the definitien, or in
the INTERNAL FINCTION statement itselfl, uniess the correct
mode 13 given by an IMPLICIT declaration or the IJSKLMN rule.

A mode declaration may give dimension information for
arrays by replascing the symbol name with a dimension
declaration {(following the symbel name by & garenthesized
llet giving the maximum value of eaAch subseripi).

example - LORICAL A, B{4,5,2}, C

A mode daeclaration my apecify initial contents of
variables or arrays by following ©he symbol name {or
dimenzion declaration) by & data declaration, which 1s
enclosed 1n slashes,

example - LOGLCAL A/T/,B{(%4,5,2)/40%.PALSE./,C
The DIMENSION declaration

The DIMENSION declaration specifies the size and syb-
scrint functicon for an array. It consists of the word
DIMENSION followed by a 1list of dimensicn declarations,
separated from etch cther by commas, Each symbol to0 Dbe
declared 1s followed by & parenthesized llst giving the
maximum values of each subscript. Subseripts pay vary
between 1 (not O} and the given iimit, inclusively. Except
in dimension declarations for dummy symbols, the limits must
be 1integer constants, since the compiler needs to know how
much Space to reserve, In dimension declarations for dummy
symbele, the limlts mey be vapriables., This feature, called
%ad justablie dimensions®, facilitates coding procedures that
mnipulate arrays of different sizes, The limits 1in the
dimension declaratien are dummny symbols, anrd the corre-

spording arguments are numbers vy which the calling program
specifies the size of the array belng transmitted,

example - subroutine to transpose & square matrix
SUBROUTINE TRAN(A, SIZE}
INTEGER SI |
DIMENSION A{SIZE, SIZE)
DO 43 I = 2, SIZE
DO 13 J - 13 I"'ﬁ.
K = A{L, J)
AT, .r; - A{J, I)

13 AWJ, 1 =K
RETURN

when this subroutine 1is called with a square matrix and
length of & side as arguments, the subscript funciion and
germinal value for the cuter DO loop will be adjusted to the
8ize of the array.

werning ~ the subscript limits {except poassibly the last)
in the dimensior declsration for a dummy array mst always
match the corresponding 1iimits in the original sarray,
Calling the above subroutins with a second argument semaller
thar the actual size of the array in an attempt to transpose
Juat the upper left corner will not work,

A DIMENSION statement may speclfy initial conftents of &an
array by following the dimensicn declaration by & daia
declaration, which is enclosed in slashes,

example - DIMENSION F0O(5)}/.1, .2; .3, .4, .5/

The COMMON declaration

A COMMON declaration specifies that certain variables and
srreys are to be placed in named blocks of common storage,
where they ca&n be linked by the loader among ssveral
programs,

The word COMMON 1s followed DLy symbols &nd block nemes,
the latter enclosed in slashes. The block names are looked
at only by the linking loader, and may conflict with other
sgﬁgo%s. They must conform te the requirements for FORTRAN
symbols,

The symbols to be placed in common storage are separated
from each o%ther, but not from the word COMMON or the
preceding dlock name, by commas. A comma separating a block
name from the preceding symbol 18 cptiomal,

example ~ COMMON /¥00/ A B, /BAR/ C,D /MUNG/ E,F

Each symbol 4is sssigned to Che bleck whose n2me mosh
recently precedes 1t; or, 1f no block name precedes it in
the statement {or the preceding block name is null), 1t 1e
essigned to a block called ®hlank common®. Within each
block, varisbles and sarrays &re assigned to increesing
addresses in the order in which they appear,

COMMON atatements may be placed anywhere, Dummy symbois
my not be assigned to cormon storage, A COMMON statement
my give dimeneicn information for arrays by replacing the
gymool name by & dimension declaration.

The DATA declaration

The DATA declaration specifies initlal contents of vari-
ables and arrays. It may be placed anywhere. The word DATA
is followed by pairs of varlables lists and constants lists,
the pairs bdbeing separated {rom each other dy commas, In esch
pair, the variables 1l1list 1s a 1ist of variables, arrays,
array elements, or implied DO°s, separated from each other
by commas. The variables list may not contaln dummy symbols.
The constants list 18 enclosed in slashes and consists of
constants, o conatanta with repetition counts, separated by
COmMAS . Conatants must metch the mode of the variables to
which they are assigned,

examples - DATA A/3.0/,B,C,D/%.0,5.0,6,.0/,E,F,0/3x7.0/
DATA (Ql1),Tad,20) /900 0 40540

An implied DO consiscs of a leoft parenthesis, a list of
variables, arrays, array elements. or implied DO's, a comm,
an index name {which is always considered Integer anc 1s
unrelated to any other symbol), egquals sign, initial value,
comnd, final value, commB, increment, and right parenthesis,
The Iincrement and preceding comma may be cmithed, in which
case the increment ia cne. The compiler lterates over the
list, letting the index vary in the same way as 3t would in
& DO statement. Implied DO's may be neated Lo any reascnable
depth, Implied DO parameters ami array elemen® subscripts
are lnteger expressions that may be of arbitréry complexity.
They may not contain references to Aintrinsic or cther
functions, and the oniy variables permitted are indices of
Implled DGfe controlling the expression.

The constante 1list consista of constants separated by
commas., The constanta may be preceded by & positivs integer
end a mueltiplication sign, to indicete that the constant is
to be repeated, Several forms are legal {or constanta in
DATA statemsnts but not in expressions bsczuse they would be
amblguous oxr generate mores thun one date item.

Iong character string constants are legal. They Aare
treated as lists of integer constants, one for each
three characters,

T ard F may be used for loglical constants.

Statement numbers, in either of the forme 1238 or 85123,
mng be used for inltializing varilables for assigned GO
TO '8,

Octel cog;tanbs may be written as of7, 977, ~oT¥, o717
or o~77.

For each variebles list/consiants list pair, the compiler
scans the twe 1lists 1n parallel, nmaking the indicated
asgignments., When either list runs out; the remainder of the
other list is ignered,

The EXTERNAL declaration

The EXTERNAL statement decifres symbols that appear as
argumente te procedures as eniry points to external proce-
dures, <o prevent the compiler from treating them as
variavles. This declaraticn is not needed for symbols that
are already recognizable as entry points. The word EXTERNAL
is followed by the symbols to be declared; sepsrated from
each other by commas, The EXIERNAL statement may be placed
anywhere.

The EQUIVALENCE declaration

The EQUIVALENCE atatement specifies that certain vari-
ables and array elements are o occupy the same locations in
memary., It may be usad to place symbols in specified areas
of common storage, Lo glve special names to cerkaln elements
of an array, to patch programs with misspelled symbols, to
glve a variable different namee in different modes, etc. The
word EQUIVALENCE 1is followed by & 118t of declarasions, each
encloced 1in parentheses and separated faom sach other by
comas. Each declaration contains %woe or more symbels,
arrays, oF 8rray elementis thai are %o be assignaed Bs the
same location, Suhscripts for array elements must be
constants, An array name 18 tirsated as the firat element of
the array,

example - EQUIVALENCE (A,B,0),(D{8},E{(3,1)),{r(2.3}),a}

This declapration may be placed sanywhere, JI% may not be
used on dmny symbols.,

The IMPLICIT declgr&tion

The IJKLMN rule mady be changed by the IMPLICIT siatenent.
- The word IMPLICIT is followed by one or mora declarations,
separated from each other by commas, FEach declaration is &
mode word (INTEQER 2 REA I‘J I0G ICAL’ COMPLEX P or
DOUBLEPRECISION} followed by & parenthesized 1ist of lehters
and pairs of letters, Single letfters mean Lthat symbols
beginning wlith that letbter are to have the specified mode,
unless overridden by 8 rule of higher priority. Pairs of
letters separated by 2 minus sign cause the declaration to
appli £0o all letters {rom the first to Sthe second inglu-
sively,

examples - IMPLICTD REAL(I—N%,INTEOER(A%!;G-Z?
IMPLICIT LOGICAL {A~C,F,R-D)

letters not affected Ly IMPLICIT siatemente are treated
according te the IJKLMN rule. The IMPLICIT statment may be
placed anywhere, Its meaning inside an internal procedure
definition 18 the same as outsids,

The FUNCTION, SUBROUTINE, and ENTRY declarations

The firat two of these statements begin internal or
external procedura definitions, The word FUNCTION or
SUBROUTINE is followed by the name of the procedure and the
parenthesized dummy symbel list, The word FUNCTION may be
preceded by & mode word o specify the mode of the returned
value, Por an internal procedure, the word INTERNAL precedes
everything else, The ENTRY statement is ussd o specify an
alternate entry point to a procedure. ENTRY 18 followed by
the alternate name. No dummy eymbol 1list is glven,

The END declaration

Inside an internal procedure definition, the END atate~
ment terminatas the definition and resumes compilation of
the main program, Otherwise, END indicates the end of the
source program,

The BLOCK DATA declaration

The statement BLOCK DATA, which must bhe the firat
statement in the source program, indicates that the program
1s a "block data subprogram¥. Such 2 program contains no
executable statementaz. It consists of declarations, princi-
pally COMMON declaraticns and DATA declarations initializing
variables and Aarrays in common storage. The block dasa
subprogram 1s used to construct onc or more comaon blocks to
ba linked by the lcader to programs requiring them,

The NAMELIST declaratlon

This statement is used to provide format information rlor
I0 statements that are to be processed by the namelist
interpreter, The word NAMELIST is follcowed by one or more
decliarations separated by commas., Each declaration ies the
name of the list enclosed in slashes followed by 2 list of
variables or array names aseparated from each other by
commas. This statement may be placed anywhere. Dummy symbols
my not sappear in the 1ist, and the 1list name Ay not
conflict with any othexr symbal This statement 18 treated in
greater detail in the section on input/output.

example - NAMELIST /FO0/A,B,C, /BAR/D.E
The FORMAT declaration

This statement provides format information for IO state-
ments that are to be processed bdy the standard formet
interpreter. The word FORMAT is followed by a parenthesized
1ist of format specificetions and slashes, The specifica-
tions need not be seperated if there 10 no ambiguity, or
they may be separated by & commz, If too many consecutive
unseparated specifications are used, the ¥field 11ist over-
flow" error may occur, which can bs corrected by providing
commas, This statement must have a statement number, and mpy
be placed anywhere, It 18 treated in more detail in the
section on inpukt/output,

example - 423 FORMAT{214L5A3,2L4,F6.3,2E8.3)

Input and Output

An end-of-file address for a READ statement may be
specified by placing the statement number (with no S) in
front of the IO liat as if it were the first element. If an
end of file 18 encountered, control will tranafer to the
specified statement. if no end-of-file addresas Js specified,
execution terminates,

example - READ (i,123) 50, I, J, K
will go to statemant 50 on end of file

The 10 list

The I0 list consists of one or more arrays, expressions,
sublists, or implied DO’s separated by commas, In a WRITE
statement the expressions may be of arbitrary complexity. In
2 READ statement, only variables, array elements, and arrays
should be used, In elther case, IO list elements must be of
the correct mode (the mode given in the format statement),
No mode conversion 13 performed, Complex date must be
transmitted with two format specifications for real data (E,
P, o0 @ format). An X0 1ist item should not contain &
f::gtion call that results in the execution ol another 10
statement,

An 1mplied DO is & left parenthesis, one or more I0 list
iteme {including implied DO"s), & comma, index name, equals
81gn, initial value, comna, test value, comma, Iincrement,
and rlight parenthesis., If the increment and preceding comma
are omitted, one (integer) 1s used, The initial value, test
value, and incremsnt may be of arbitrary complexity, The
items under control of the implied DO are processed repeat-
edly, with the index varying exactly as 1t would in an
ordinary DO loop. A sublist is one or more IO list items
enclosed in parentheses., Implled DO"s and sublists may be
- nested to any reasocnable depth. An array name is treated as
if 1% were 1in an implied DO iterating over its linear
sudbscript from bdeginning %o end,

example - ;
mmpponm'r (‘a table of aguare roots®//100{I5FL0.7/))
WRITE (0,123) (J, SQRT(FPLOAT(J)), J = 4,%00)

The unit numbdber

A unit number of zero refers to the typewriter. Other
unit numbere refer to files,

Format statements and arrays

If the unit mumber is followed by & number, it refers to
a PORMAT statement. If it is followed by an array name, the
Svariable format® interpreter treats the text in the array
as if 1% were a format statement, If no number or array 18
specified, the data are transmitted in unformatted *pinary"®
form. The IO 1list sand format statement are scanned 1in
parallel wuntil the 10 list 1s exhausted. If the end of the
format statement is reached, it repeats from the last left
parenthesis,

There are 40 types of bdasic format specifications. All
except X and H may be preceded by a repetition count,

Dw.d =~ Doubleprecision, W is the fleld width, and d is
the number of digits after the dJdecimal point. The
present format interpreter ignores both. This specifi-
cation (with its repetition count, Af any) mey be
preceded by & Sscale factor, which 18 an optionally
signed integer followed by the latter P,

Ew.d - Real {or one part of complex dai;um)0 Similar to D.
Fw.,d4 -~ Real. Similar to D.

gw.d - "General® (real)., Similar to D. The present format
interpreter does not distingulsh between E, F, and G.

Iw ~ Integer {(decimal). W iz the field width., The present
format interpreter ignores 1t

Ow - Octal integer, Similar to I.
Iw ~ Logical. Similar to 1.

Aw - Character. W is the number of characters. They are
packed in an array 3 per word,

nX - Generate n spaces in cutput., It 1s ignored in input.
No data item is transmitted.

nHstring or 'string® -~ "Hollerith®, The string is written
from or read into the format statement. No data item
18 transmitted.

A slash generates a carriage return in output, It 1is
ignored 1in d1input. No data 1tem 1s transmitted,

Format specifications mey be groupsd within parentheses,
A number preceding the left parenthesis will cause the

entire group to be repeated that number of times.
Qutput format

Data items written under control of D, E, F, G, I, O, and
L filelds are separated from each other on the same line by
tabs, A, X, and H fields are not separated., L flelds are
written as ¢ or f.

Input format

lLeading spaces, tabs, and carriage returns are ignored
when reading D, E, PF, G, I, 0, 8and L data items, Numbers
mist be followed by & space, tabdb, or carriage return. Plus
signs and other extraneous characters are not permitted.
Exponential notation may not be used. L flelds are scanned
until a ¢t or £ is found,

Functioneg and subroutines

Functions and subroutines (collectively called proce-
dures) eare of three kinds -~ internal procedurss, external
procedures, and intrinsic functions. Internal procedures are
those defined in the program in which they are used. An
internal cedure definition 4is an arithmetic statement
funetion i:gF) or a section of source program beginning with
the INTERNAL FUNCTION or INTERNAL SUBROUTINE statement and
ending with the END statement. An external procedure is
supplied by a library, elther the standard FORTRAN libdbrary
or & library of procedures written by the user, 1In the
latter case the procedures may be written in machine
language or as FUNCPION or SUBROUTINE progrems in FORTRAN.
Intrinsic functions are simply arithmetic operators written
in function-like notation.

Because Internal and external procedures have many fea-
fures in common, these features will be described together.

Functlion &nd subroutine calls

Subroutines {internal and external) are called with the
CALL statement. CALL 1is followed by the name of the
subroutine and an optional parenthesized argument list,
Punctions are called by a “function reference®, which i2 the
name of the function followed by a parenthesized argument
lis%, 1n an arithmetic expression. The argument list for a
function 1s required. The compiler recognizes a function
reference by the existence of a symbol, which does not
appesrl in a dimension declaration, followed by & parenthe-
sized list. '

Function and subroutine arguments
An argument %o an internal or external procedure may be

(1} Any arithmetic expression. The corresponding dummy
symbol must be of the same mode. If the expression is
8 variable or array element, the procedure may modify
it {use 1t on 1left side of arithmetic assignment
statement, use 1t in a READ statement, use it as a DO
index, etc.), and the corresponding variable in the
calling program will be modified.

{2) An array name. The corresponding dummy symbol must be
dimensioned and of the same mode. In order to make the
subscript calculatlians in the procedure match those of
the calling program, all dimensions of the dumny
symbol except possibly the last must match those of
the originali array. FPor example, it 18 not possible to
transmit the upper left corner of a rectangular array
by merely using smaller dimensions 1in the procedure
than in the calling program, because the first
dimension is used for computing the correspondence
between & given peir of subscripts and an actwsl

pesition in the array. It is possible, by using 23 the
argument an element of the array other than the first,
to effect &an offset between the array in the calling
program and the dumuy array in the procedure.

{3) An external procedure name., Internal procedures and
intrinsic function namas DAY not be Yransmittsd as
arguments, In tha procedure, the dummy symbol is used
as the subroutine name in & CALL statement or function
name 1in a function reference. In the ca&lling program
the external procedure must be recognized as such Dby
the compiler. Use of the symbol elsewhere 1in the
calling program in & CALL statement or functlon
reference will suffice, If this is not the case, the
procedure name must appear in an EXTERNAL declaration,

example ~ EXTERNAL SIN
CALL FOO(SIN,%,2;

1f the declaration were not used, the compller would
think SIN is a variable,

(8) A character string of more than 3 characters, The
actuyal argument that 1s transmitted 1is an arrey
consilsting of the characters packed 3 per word, left
justified, {A character string of 2 or fewer charac-
ters 1s an integer constant and 1s right justifiled.)

(5) A statement number, This is used for “error exits®.
It may be used only with subroutines (internal or
external), not with functions, The argument in the
calling program i8 the statement number followed by
the letter S. In the subroutine the corresponding
dummy eymbol is the times sign (x). The astatement
RETURN n where n 1is an integer and the nth dumy
symbol 18 x, will return to the statement whose number
is the corresponding argument instead of the statement
following the CALL.

Declarations on dummy symbols

Dummy symbols in functions and subroutines must match the
corresponding arguments. The compller does not insert mode
conversions for procedure arguments, and, except in the case
of intrinsic functions, deoes not check for incorrect corre-
spondence, When an argument is 2 function name, array name,
or arithmetic expression, the corresponding dummy synbol
must have the same mode, which may require a mode declara-
tion in the procedure, If the argument is an array name, the
dummy symbol must also appear in a dimenslon declaration, No
DATA, COMMON, EQUIVALENCE, NAMELIST, INTERMAL FUNCTION,
INTERNAL SUBROUTINE, or ENTRY declarations are permitted for
dummy symbols. The EXTERNAL declaration may be used where
appliceble; but iz not necessary.

Raturn frog functicn or subraunine

Normal retign from a2 subroutine (interngl or exterynl) i3
affected by the RETURN statement with no argument, Exacutlon
resumas A% the statement following %the CALL statement,
Return to an alternate paint 1n the program is effected by

RETURBN n or RETURN (n)

where n is an integer &nd the nth dummy symbol 1s ». The
subroutine will xeturn to the statement whose number is the
argurent corresponding to the x,

example - CALL S{L.M+N,5238,3;

a

INTERNAL SUBROUTINE 5{I,,x;K)
20 IP(I .GE, O} RETURN 3
END
if the conditional 1in statement 20 13 satisfled, contrcl
will return to statement 323,

A value must be specified when returning from an internal
or external function., This may be done elther by placing %he
value in parentheses after the word RETURN or by storing the
value 1n the variable with the same name a3 the function,
and then executing & RETURN with no argument.

example ~ INTERNAL FUNCTION FOO{A,B,C)

L4

RETURN (A+B)

FOO w B+C
RETURN

END
Inside a function {and only inside the function) the name
of the function 1s treated &8 an c<rdinary variable, uWhen &

RETURN atatement without argument is executed, the contents
of that variable are used as the function value,

Alternate entry points

Alternate entry points te internsl or external procedures
may bte specified by mesns of the ENPRY statement, A
procedure may be called by the name given in the FUNCTION or
SUBROUTINE statement or by any name given 1in an ENTRY
statement, In the latter case execution will Dbegin Just
after the ENTRY statement,

exsmple - Immx* L FUNCFION SIN{X}
Y =
a0 10 10
ENTRY COS
¢ if the variabdls y wers not used,; and (0SS stored
¢ 1ts modifled argument baclk into x, the argument
¢ in the calling progiam would be clobbered

No dummy symbol list is given with the ENTRY statement. The
durtyy symbol list given in the [FUNCTION or SUBRGUTINE
statement applies to all entries, All entry points to &
funotion mast have the same mode, Any entry point name may
be used for storing the value to be returned by 8 function,

Internal functions and subwroutines

Internal functions and subroutines are compllied as pare
of the program in which they ere used, without the need to
be linked by the loader, They have Gthe further advantage
that they may use any variables in the mmin program, without
the need for them to be transmitied through a COMMON block.,
They include as a special case the ®arithmetic statement
funetion”, the only type of interna) procedure available in
o8t FORTRAN systenms,

An internal mrocedure definition other ¢tham an ASF 18 a
section of mrogrem beginning with the INTERMAL FUNCTION or
INTERNAL SUBROUTINE statement and enxiing with the next END
atatement. An explicit mode declarstion of an internal
function mey be made 1immediately following the word

examples ~ INTERMAL SUBROUTINE SUBR
INTERNAL FUNCTION FUN{A,B)
INTERNAL LOGICAL FUNCTION LLL(J,K)

Internal procedure definitions, including ASF definitions,
may be placed anywhere in the source program except within
another Iinternal procedure definition. If an internal
procedure definition 18 placed within the main program,
control will pass over it, DO lcops must be nested praoperly
within each internal procedure. It is possible to Jump out
of an internal procedure. Jumping intc a procedure is not
allowed., An internal procedure name may not be used a8 an
argument to any procedure.

Meode of internsl function

The mode of the value returned by an internal function
m2y be specified by a mode word in the INTERNAL FUNCTION
- statement, by an explicit mode declaration (which mey be
inside or outside of the function definition), by an
IMPLICIT declaration, or by the IJKLMN rule. All entry
points must be of the s2ame mode.

Dummy symbols for internal procedures

‘Dumny symbels in internal procedures are not related to
symbols of the same name 4in the main program or other
procedures, Hence a dummy 3symbol may have a type or
dimension declaration in &n intarnal procedure, and the same
aymbol may have a different declaration elsawhere.

Arithmetic statement functions

An arithmetic astatement function is a specizl type of
internal function defined in one statenent, contalining the
name of the function, the parenthesized dummy symbol 11ist,
an equels sign, and an expression giving the value to be
returned,

example - ROO{A,;B,X} = A+BixdxG{2+KxK)

An arithmesic statement funchion is recognized by the fact
that it appears to be &£n arithmetlc assignuent statement
with a subscripted left side, but the symbol on the left
side does not appear in a dimension declaration. S8Since &n
ASF definition cannot contain any declarations, the dumy
symbols cannot bde dimensioned {altnough the function my
contain refarences to other arrays), No explicit mode
declarations are possidble either, so the modes of the dumny
gsymbols will be detarmined by an IMPLICIT dsclaration (if
any), or by the IJKIMN rula.

External functions and subroutines

Some of the yw;r functions (the "standard® FORTRAN
library functions) are known to the cocmpiler. This wmeans
that, Af the name 18 used as &an external function, the
compiler will assume the correct mode for the returned value
unless there is an explicit mode declaration to the con-
trary, No sutomatic mode conversion of arguments will be
performed

The standard library functions are:

name n args arg mode value mode description

BXP 1 real real exponential

DEXP p § doudble double doudble exponential
CEXP i complex complex complex exponential
ALOG 4 rea real natural logarithm
DI1CG 1 double double double logarithm
CLOG i complex complex complex 1 ithm
ALOGLO 1 rea rea common (base 40) logarithm
DLOGiC 4 double double double common (base 10) log
CARG p ! complex real phase of complex numbex
CABS i complex real modulug of complex number
DMOD 2 double double A-[A/B]xB

SQRT 1 real real square root

DSQRT i double double double square root
CSQRT p complex coumplex complex sqQuare root
CBRT 1 real real cube root

DCBRT 1 double double double cube root

SIN r 3 real real _8ine

DSIN p ! double double double sine

CSIN i complex complex complex sine

cos 1 real Tea cosine

Deos i double double double cosine

ccos i complex complex complex cosine

TAN 32 Treal real tangent

DTAN i double double double tangent

CTAN % complex complex complex tangent

cor 1 real real cotangent

pcor 3 double double double cotangent
ccor i complex complex complex cotangent
SINH i real real hyperbolic sine
DSINH i double double double hyperbolic sine
CSINH i complex complex complex erbolic sine
COSH i real real hyperbolic cosine
DCOSH : 8 double double double hyperbolic cosine
CCOSH i complex complex complex hyperbolic cosine
TANH 1 re&l roal hyperbolic tangent
DTANH i double double double hyperbolic tangent
CTANH 3 complex complex complex hyperbolic tangent
ASIN i real real inverse sine
DASIN i double doudble double inverse sine
CASIN i complex complex complex inverse sine
ACOS ! real real inverse cosine
DACOS p] double double double inverse cosine

CACOS 1 conplex complex conplex inverse cosine
ATAN i Teal real inverse tangent
DATAN 1 double 4double @oudble inverse tangent
CATAN 1 complex complex complex invexse tangent
ATAN2 2 real real phase of (B + Al
DATANZ 2 double double double phase of (B + Ai)

The library hes peny other functiona and subroutinesa. Fer a
complete 1listing of these routines, see PDP-50, RELOCATABLE
SUBROUTINE LIBRARY.

The compiler sust know the mode of the value of every
external function, Except in the case of one of the standard
1ibrary functions given above, a mode declaratlion mmy be
fnecessary. The node that the compiler assumes for the value
-af & function is determined Ly explicit mode declarations,
the known modes of standard litrary functions, any implicit
declaration, or the JJKLMN rule, in thai order of priarity.

External procedures written in FORTRAN

An external procedure miy be written in FORTRAN &as a
program whogse first statement is & FUNCTION or SUBROUTINE
statement. The word FUNCTION or SUBROUTINE is followed by &
parenthesized dummy symbol 1ist. The list 18 gptlional in the
case of a subroutine. The mode of the value returned by an
external function m2y be specified by a mode word preceding
the word FUNCTION or by a declaration in the progranm,

examples -~ COMPLEX FUNCTION THETAR2{A,B)
FUNCTION Foo{Xx)
SUBROUTINE SORT{A N}

A FUNCTION or SUBROUTINE program ends with the END state-
ment, as does & main program It sRYy contain internal
procedures (each with its own END statement).

Intrinsic functlions

An intrinasic {sometimes called ®"built in®} function is an
arithmetic operation that 1s used by a conatruct Iin the
source program that looks like a function call Some
intrinsic functions (such as ABS) are translated dJirectly
into machine instruct ons, Others, such &as SNGL, are
trenslated into nne or more calls to library subroutines.

The name of an intrinsic funct on may not be used in
another context elsewhere in the program, If, for example,
it 1s used as A variable, it will be a variadble throughout
the entire program, and its meaning as an intrinsic function
will Dbe dJdiscarded. Similarly, any dimension, COMMON,
EXTERNAL; etc, declaration, or explicit mode declaration not
in agreement with the correct mode, will remove the meaning
of & symbol as an intrinsic function, It 18 not necessary to

declare the mode of an intrinsic function,

Arguments to intrinsi functions nmust mateh the require-

mentse gliven below for number,

arguments will be performed,

Autometic mode conversione of

name n args arg mode value mode description
DFLOAT 1 integer doudble convert

FLOAT 1 integer real convert

IFIX i resl integer convert

DBLE i real double convers

SNGL i double real convert

REAL i Qomplex real real rart

AIMAG i complex real imaginary parc
AMOD 2 real real A-[A/B]xB real remainder
MOD 2 integer integer A-[{A/B]xB remainder
ABS i real real fA]

IABS 2 integer integer Al

DABS i double double JAl

AINT 1 resl real sign{Ajx(ja]] {truncate)
INT 1 real inveger signfAlx[jal] (truncate)
IDINT i double integer slgn(Alx[]JAj] {truncate)
SIGN 2 real real {2 jxs1gn(B}

ISIGN
DSIGN
DIM
IDIM
CMPLX
CoNJa
AMAXO
AMAXA
MAXO
MAXL
DMA X1,
. AMINO
AMINL
MINO
MINL
DMINL

%% % UEEBRER » oo w

Because

functions to perform mcde conve
are rarely needed,
where automatic mode conversion does

DBLE,

ete.)

integer
double
real
integer
real
complex
integer
real
integer
real
double
integer
real
integer
real
double

internal procedures,

(real)
used,

integer
double
real
integer
real
complex
real
real
integer
integer
double
real
real
integer
integer
double

For

|A [xslgn{B}
tA | xsign{B)
A-min(A,B)
A-min(4,B)
A + 1B
complex conjugate
maximamn
maXximun
maximum
maximunm
maximum
minimun
' minimum
miniomam
minloum

- minimumn

of aubomatic mode conversion, the intrinsic

rsion {IPIX, FLOAT, SNGL,
in arguments %o external or

not %ake place, the use of these explicit mode converslon
functions may be required. _ p
square root of the integer J, SQRT{FLOAT(J)) must be

SQRT(J} would result in an uncorrected mede mismatch.

example, to calculate the

APPENDIX I
Use of the Compiler and Loader
Simple Compilation

A simple compilation is & compilation of a main program
that calls no external procedures which are not stored on
the FORTRAN tape (See FPDP~50, RELOCATABLE SUBROUTINE LI-
BRARY, for a 1ist of evailable subroutines and where they
are stored)., In order to compile & FORTRAN main program it
i1s necessary to have the microiape containing the FORTRAN
compiler mounted on tape drive n, The compilation 1s begun
by typing the command

nF

to ID or to ET (For complete descriptions of these programs,
see PDP-23, INVISIBLE DEBUGGER (ID}, and PDP-22, EXPENSIVE
TYPEWRITER (ET)). The compiler will type the title {first
nonempty line) of the program on the typewriter as it begins
the compilation, Any errors detected by the compiler wlll
cause informative messages to be printed,

If the compilation falls, control will be returned to ID.
If the compilation 1s successful, the loader will be started
autcmaticelly, When the loader types ."options - %, type &
carriage return, If loading is successful, the size of the
loaded program will be printed, Otherwise, an error message
will bde printed, The locaded program will be placed onto drum
field 1 and into core. If the loaded program 18 more than
4096 words long, only the first 4096 words will be pleced
onto drum field 4. Control is passed to 1D,

Execution of the program may be begun by typing
P
or
icea

to ID., 1If the program crashes, control will be returned to
ID which will type a message of the form?

XXXEXTT hls {(These are ID‘s standard messages for in-
or indicating that & halt instructlon or an
yyyyyel zzzzz 1llegal memory reference has occurred)

To stop & running program, hit the call button, This will
also return control to ID. From ID, control may be returned
to ET by typing

E

or a fresh copy of the program {or the first 4096 words of

the program if the program is longer than 4096 words) may be
cbtained and execution sterted by typing:

o) {zero underbar}
18y
1020

Compiling & Subroutine or a Funciion Subprogram

The procedure for compiling & subroutine or a function is
the same as that for compiling & main program, except that
at the termination of compilation the loader is not started
but rather control is passed to ID. If the compllation was
successful, the object flle can be placed in & lidbrary, This
is done by saving the object file on any microtape contaln-
ing a file system (any of the public tapes numbered 1
through 7 will do). The obJject program c¢an be saved by
typing the following sequence of commands?

nF {n 18 the number of the drive on which the file
tape is mounted)
8 fortlib progname {progname 1s any desired file name
fnine or fewer characters})

b

{Por an explsnation of what these commands do, see PDP-42,
MICROTAPE FILE SYSTEM). At the end of this sequence ID 18 in
control and the compiled subprogram 18 stored on the
microtape mounted on drive n. The next s¢ctlion explalns how
to compile 2 main program which calls subprograms saved on a
library tape. '

General Compilation

To complle & main program which uses subprograms that are
gsaved on a library tape, proceed as in the case of & simple
compilation., At the end of a successful compllation, the
loader prozram will be saterted, When the loader types
"options ~ ", type the number of the tape drive on which the
libary tape is mounted followed by & carriage return, The
loader will then search all files on that library tape whose
first name is Frfortlid® for procedures that have been
referenced, One external procedure may reference other
external procedures, All will then groceed ae in a simple
compllation,

Loader

The loader combines relocatable files Iinto binary pro-
grams. The operation of the loader may be more closely
observed by the use of various options which may be selected
when the loader types "optiens -~ ¥, At this point, various
characters may be typed, Each character specifies an option.
If a character which doea not correspond %o any option 1is
typed, the loader will type “options - ¥ again,

CHARA CTER
any digit

OPTION

The digit 1s taken to be the unit number of
& tape drive containing & library tape.

Print a load map giving the name, location;
gndd iensth of each procedure that i1s
caded.

Print every reference %o an external proce-
dure., This optien ia only effective if
the load mep option is alsc selected,

APPENDIX IX

Featuras Not Implemented
Non-standard subroutine returns {i.e, RETURN 3).
BLOCK DATA subroutines,
NAMELIST IO.
variable format 10.
Entire arrays in IO list.
Complex item in JO list,

I0 to devices aother than the typewriter through WRITE and
READ statements, ‘

Scale factors {P fleid) in FORMAT statements,
H forma%t input.

Use of an intermal functicn name as & "variable” inside of
the internal function definition, in any acontext other
than the following:

FAME = expression
RETURN

The focllowing intrinsic functions &re not implemented:?

DIM

IDIM
ATA XL
MAXA
AMINL
MINL
DMAXA
DMINL

APPENDIX XIX
Encan Bugs

doubleprecision T real does not work, The nECLSSAry convenr-
sion falls to occur,

The uwee of Internal functions in expressions is dangerous.
Temporaries used by +the statement calling the intermal
fenexicn may be altered during the evaluation of the
internal {function,

Erceedlngly long cnaracter atring constants {1.e. sthousands
of characters) will not complle,

FORTRAN coded external procedures (funciions or subroutines’
Wil not werk cerveetly 4Af they ars loaded into core
medules obher tham O and they contain srrays that age
nelrther Iin common noy parameters to the procedure, The
load map opticn of the loader can be used to detect this
cordition. This bug may be avolded by putting all arrays
occuring in FORTRAM coded subprograms in COMMON blooks.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

