A Multiple Processor Implementation of the TRIX Ovperating System .
. .

David Goddeau

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Sciencez
at the
Massachusetts Institute of Technology

September 1983

Copyright ©® Massachuseétts institute of Technology 1883

Signature of Author

Department of Electrical Engineering and Computer Science
August 23, 1983

Certified by

Thesis Supervisor

Accepted by

Chairman, Departmental Cocmmittee on Graduate Students

A Multiple Processor lmplémentation of the TRIX Operating System
by

David Goddeau

7

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 1983 in partial fulfiliment of the requirements for

the degree of Master of Science

Abstract

-~

This thesis describes a version of the TRIX operating system modified to run on multiple
processors. The system is designed for an environment in which several processors share
- physical memory and devices over a common bus. It is organized to treat all processors
symmetrically to provide maximum threughput. The issues involved in running a multiprocessor
TRIX are discussed and details of the implementation are described.

The performance of the system is measured and analﬁed, A model is given to predict the
maximum throughput of a multiprocessor TRIX from system parameters.

Name and Title of Thesis Supervisor:

Stephen A. Ward,

Associate Professor of Electrical Engineering and Computer Science
Key Words and Phrases:

multiprocessor operating systems

ACKNOWLEDGMENTS

Many thanks to Steve Ward, Chris Terman, Jon Sieber, all of the members of RTS for their
advice, encouragement, and formatting expertise.

[

This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research (Contract Nos. N00014-75-C-0661
and N00014-83-K-0125). '

. Introduction

1.1 Motivation
1.2 Goals
1.3 Overview

. Previous Work

2.1 HYDRA
2.2 Purdue UNIX

. Hardware

. TRIX

4.1 Philosophy
4.2 Semantics
4.3 Structure

4.4 Status

. Multiprocessor TRIX

5.1 Kernel Structure
5.2 Synchronization

" TABLE OF CONTENTS

5.3 Kernel Synchronization

5.4 Scheduling

5.5 Thread Synchronization

5.6 Interrupts

oo O;

iOG)OD

11

14

14
15
17
20

5.7 System Initialization
5.8 Garbage Collection
5.9 Language lssues -

8. Performance

6.1 Bus Contention
6.2 Kernel Contention
6.3 Utilization

6.4 Results
6.5 Summary

7. Summary

References

1. Introduction.

This thesis describes a version of the TRIX operating system modified to run on multiple
processors. The system ié designed for an environment in which several processors share
physical memory and devices over a common bus. It is orgamzed to treat all processors
symmetrically to provide maximum throughput. The issues mvolved in running a multiprocessor

TRIX are discussed and details of the implementation are described.

1.1. Motivation

With the increasing use of micré'processors.as computing engines, the processor
represents a smaller fraction of the total cost of a computer system. This is particularly the case
in smaller machines and personal computers. “The items which make up most of ihe cost of a
small system are main memory (in increasingly large amounté), display and communications
hardware, secondary storage,-and packaging. This latter includes the power supply, the
backplane hardware, and the box containing the system. Given the low ‘cost of processing
. modules relative to that of system ovefhead, a single system supporting multiple processors
should be a more cost effective source of computing power than a number of single processor
units. The challenge is to create a system which can take advantage of the additional

processing power a second or third processor provides.

It is not immediately appareh?\that adding another processor to a system will provide an
increase in performance. This will depend on both the hardware used to interconnect the
processors and the way in which the software utilizes the additional processor. The general
problem of how to focus multiple processors on a task and manage their interaction efficiently is

ve}y difficult and as yet unsolved.

There are, however, some specific situations in which it is fairly clear how multiple
processors can be used to improve system‘performance. One is the execution of sequential
processes running in a multiprocessing environment. In general, processes specify a separate
thread of activity unconstrained by any other process. This implies that all such processes
could be run concurrently. In a time-sharing environment the concurrency is supplied by a single
processor, but if the processes are run simultaneously on separate processors (or time sliced
onto several processors if there are more tasks that processors), there should be an increase in

throughput.

1.2. Goals

The system described in this thesis is an attempt to apply multiple processors 10 the
parallelism implicit in’ mulAtiprocessing. It is an adaptation of the TRIX operating system capable
of running on multiple processors. It has been implemented on a personal computer which uses
MC68000 microprocessors as the computing element. The pr.dcessors operate over a common

backplane and share a single physical address space.

The main goal of this project was to create a working system that uses several processors
effécﬁvely. To achieve the greatest efficiency, the processors must be as independent as
possible. Thus it is important to avoid Both speciaﬁzaﬁon of processor function and “artificial
serialization" of processor activity. A secondary goal of the project was to examine the various
factors which affect the performance of the system and its effectiveness in a personal computer

environment.

TRIX is an operating systém designed to efficiently supbort concurrency and
communication between processes. lts semantics lead conveniently to an extension which
utilizes multiple processors. Furthermbre, the structure of the TRIX kernel is such that an

adaptation of this sort is possible without disrupting the underlying frameWork of the system.

1.3. Overview

-~

Since this thesis describes aq adaptation of the TRIX system, most of the issues dealt with
are specificly concerned with TRIX. It does not claim to provide solutions to the general
problems of multiprocessor organization; rather, it presents the application of some of these

principles to in a particular system.

The next three sections of this thesis provide some background information. Section 2
describes other multiprocessor operating systems with goals similar to those of TRIX. Section 3
describes the computer hardware on which the systerﬁ was implemented. Section 4 briefly
discusses the semantics of the TRIX operating system. It also describes in some detail the
structure of the TRIX kernel as this is relevant to its adaptation to multiple processors. Section
5 discusses the major issues that arise in this adaptation. It examines possible alternatives and
describes some of the important details of the implementation. Some additional semantic issues
and the consequences of certain system extensions are also considered. Section 6 is

concerned with the performance of the system, in both its current and future incarnations. The

results of experiments with the current implementation are given and various factors affecting its

performance are discussed. A model is presented to aid in predicting the throughput of the

system on different hardware.

2. Previous Work

This section describes two systems which are very similar to TRIX in their goals. These are
the HYDRA system, written at CMU, and a multiple processor implementation of UNlX1
produced at Purdue University. The focus of the discussion is on the relative similarities and

L

differences between these systems and multiprocessor TRIX.

2.1. HYDRA

The HYDRA system[Wulf73, Wulfg1], develobed at CMU to run on the C.mmp
multiprocessor, has many goals in common w.ith TRIX. Amo»ng these is the desire to provide a
minimal kernel which supports the fundamental mechanismskof HYDRA. These primitives permit
the majority of "system" facilities to be implementéd as user level programs. Also, the HYDRA
system is designed to run on a multiprocessor, in particular C.mmp. 'Both TRIX and HYDRA are
built on a computational model of concurfent, communicating processes. Both provide facilities
for "message passing” and process scheduling and .synchronization. However, HYDRA is
deeply concerned with the issues of object—oﬁented programming languages and with protection
and sharing at the object level.” It uses capabilities extensively to implement object protection.

TRIX does not deal with protection at the language object level and does not use capabilities.

The communicétion mechanisms used by HYDRA and TRIX differ considerably. HYDRA
implements a message passing syste\g\a with implicit synchronizatibn. The communication
mechanism is TRIX is an inter-domain procedure call (a procedure call between protected
address spaces). The thread of execution continues in the new domain, possibly concurrently
with other threads in that domain. This allows asynchrony between the various "messages” and

the corresponding "replies", avoiding artificial serialization of message processing.

Multiprocessor TRIX encounters some of the same issues as HYDRA in implementing
~ processor synchronization. The problem isl somewhat more extreme in HYDRA where the
decision was made to use a very "fine-grained” synchronization structure, in which there are
many independently locked data objects. Since TRIX does not deal what objects at that level,

the locking can be much coarser.

TUNIX is a trademark of Bell Laboratories.

2.2, Purdue UNIX

Purdue UNIX[Goble81] is a dual processor adaptation of UNIX implemented at Purdue
University. It runs on a DEC VA'X/78O modified to run two processors and is intended to provide
better throughput to users in a multi-user timesharing environment. The details of the hardware
modification are not important here except for the fact that both.brocessors operate on the
same system bus and therefore share the same physical memory. The project was undertaken
because one dual processor VAX (using the Purdue modifications) is considerably less
expensive than two single processor VAX's. It is therefore quite cost effective if the same
computing power can be obtained in either ‘case. Another reason given is that the system
maintainence and accounting is easier with one system thah with two, for example only one set

of passwords and login ID's are needed.

The two processors in Purdue UNIX operate in a master-slave relationship. The master
processor is by definition the cne that wés booted first and initialized the system. The slave is
subsequently booted if both processors are to be used. The slave processor is restricted to user
mode processing. All system calls and interfﬁpts are handled by the master processor. If a user
process running on the slave processor makes a system call, that process is rescheduled and
the slave processor searches for a new process to run. This organization was adopted because
of the difficulty of interlocking the UNIX kernel to run simultaneously on more than one
processor. Interrupts are handled exclusively by the master processor‘and are lockéd out of the

, N
slave processor by running at a higher hardware priority than the device interrupts.

The performance of Purdue UNIX is affected by several issues. One set of factors is due
to the fact that the system was expected to run more users and more processes than a single
processor system as it is expected to do the work of two VAX's. It is therefore very sensitive to
the amount of main memory present (too little caused excessive swapped and paging), the size
of the file system block cache and the block size (more users means more active files and more
disk transfers). Memory contention is another factor affecting system performance. The
performance decrease from this contention is usually small (about 5%) because of the memory
caching and instruction prefetch buffer on the processors. Programs which did intensive
memory write operations (bypassing the cache) were observed to slow the system performance
to the level of a single processor system. A serious performance problem is the restriction of

one of the processors to user mode computation. The increased number of running processes

.10 -

produce an increased number of system calls; kernel processing can become the bottieneck of
the system. It is recommended that the heavily used application programs be reprogrammed to
reduce the frequency of system calls. In a job mix composed of various compilations and te#t
processing tasks, an improvement of 85 to 90 percent was reported over the throughput of a

v

single processor system.

211 -

3. Hardware

The testbed hardware for this initial implementation of TRIX is a personal computer
designed at the MIT Lab. for Computer Science, called the Nu computer[Ward80b]. The idea
behind the Nu computer is to provide a flexible, modular system built around a general bus
which can support a variety of processing engines. The syster'l;; is also designed to support
multiprocessor configurations, allowing a user to increase the available computational power

available without additional expenses in power supplies, backplanes, and memory.

. The heart of the Nu computer is a bus suppoﬁing 32 bits of address and data. The
arbitration and data transfer protocols of the bus are not dependent on the characteristics of
any particular processor. Several different microprocessﬁrs can be interfaced to the bus and
use the same memory and 170 hardware. All bus masters share a eo;nmon physical address

space and each has access to all memory and devices on the bus.

processor processor
ID=1 ID=2
] l ‘ I Nu Bus
N
meshory 170
AN

Figure 3.1. Nu hardware configuration

-

The bus provides for the operation of either homogeneous or nonhomogeneous
multiprocessor systems. There is an arbitration for each bus cycle which decides which
requesting bus master has use of the bus for that cycle. This arbitration phase can be
overlapping the previous data transfer cycle to conserve bus time. Bus requests are granted
through a daisy-chain mechanism starting at one end of the bus. Processors (and other
possible masters) geographically closer to that end of the bus therefore have higher priority for
bus cycles. However, the bus is designed to be fair; no processor can execute two bus cycles
before any other requesting processor has access to the bus. This prevents processors at the

far end of the bus from being starved of bus cycles and establishes a maximum latency that a

.12 -

réquesting bus master can wait before being granted a bus cycle.

Interrupts are implemented over the bus by a special mechanism called an event cycle.
These are special 32 bit trénsfers which all processors monitor. Each interrupting device has an
event register which can be loaded with an arbitrary data word. When the device requires
service, it obtains the bus through the usual mechanism and"‘broadcasts the contents of its
event register. By convention the lowest four bits of the event data specifies the ID number of
the processor to be interrupted. Processors with a different ID number ignore the cycle. The
processor which matches the ID number reads the event data from the bus. Normally this data
contains the vector number for vthe proper service routine. Thus a processor is assigned to a

device interrupt by initializing the proper event register with its ID number and vector data.

The processor used in the initial implémentation of the Nu computer is a Motorola
MCB8000 microprocessor running at 4 MHz. The processor module contains the microprocessor
chip, memory management hacdwaré, a queue for event data, and an interface to the system
bus. Processor modules determine their identity by reading a four bit processor ID at a fixed
physical address. This ID number is set‘by switches so each processor module can be given a

unique ID number.

The MCB8000 processor provides a Test and Set instruction for implementing
synchronization ‘primitives. This instruction appears on the bus as an atomic read-modify-write

cycle. The integrity of the Test and Set is therefore preserved by the bus.
AN

- The memory management hardware on each processor consists of single level page table
which performs the virtual to physical address translation. The processOr is unable to properly
deal with page faults so the system does not support demand paging. The current processor
interface does not have a cache, although such an addition would be very useful in a

multiprocessor configuration to reduce bus contention.

Upon initial reset, all processors execute code out'of a bootstrap program stored in ROM.
Each processor checks its ID number and branches to a different sections of code accordingly.
One processor (ID number 1) enters a simple debugger and waits for a system initialization
command. Other processors enter a loop polling a flag location in memory. Each processor
waits until the flag contains its ID number and then begins execution at a location found in
‘another reserved location in memory. Thus processor number 1 can selectively start up other

processors by putting the desired starting address in the reserved location and writing the

13-

processor's ID number in the flag location.

The performance of this particular hardware, although adequate, is not optimal for running
a multiprocessor TRIX. The bus utilization of a processor module is fairly high. This is due to

some peculiarities of the MC68000 and the lack of any caches. The result is that bus contention

e

is a serious performance issue. Another drawback of the testbed hardware is relatively slow disk

storage hardware.

.14 -

4. TRIX

TRIX is an operating system designed to deal with the issues of communication and
concurrency in a distributed environment. It is oriented towards users of personal computers
interconnected by a network. It is organized to facilitate both i?}er-machine and intra-machine
communication. The treatment of concurrent activity in TRIX ’is such that an extension to
multiprocessor implementation can be implemented without impacting the semantics of the
system. Tiwe following section discusses briefly the ideas behind TRIX and some structural
details relevant to implementing a multiprocessor system. A more complete treatment of the

issues addressed by TRIX can be found e_lé'ewhere[WardB,Oa,Sieber83].

4.1, Philosophy

Here are, briefly summarized, the main ideas behind the TRIX system.

. The operating system should provide a minimal yet efficient set of
primitives supporting “"process” management, communication, and
scheduling control. These primitives can be considered an instruction set
extension of the: underlying machine, which implements the basic TRIX
abstractions. Most of the functionality commonly associated with
operating systems should be implemented with user level programming.
Only the machine extension and interrupt level device interfacing need to
be part of the system kernel.

. The communication n\iechanism of a system must be built in at the lowest
level. Attempts to graft these mechanisms onto the semantics of existing
operating systems have proven unsatisfactory for a variety of
reasons[Sieber83]. In TRIX, the inter-process communication mechanism
is a central part of the system abstraction and is supported at the level of
the basic kernel primitives. ’

) The communication mechanism must properly provide for possible
asynchrony between processes. TRIX was designed to deal with
communication between processes on separate nodes in an environment
in which processing nodes are loosely connected by a network.
Messages and replys traversing a network are likely to suffer greater
delays than intra-machine transactions. It is therefore crucial that the
communication mechanism does not artificially serialize tasks not
otherwise interdependent (for example by processing messages one at a
time, not acknowledging new message until the current message has
been completely serviced).

The current implementation of TRIX is an attempt to realize these goals. The next section

provides an overview of the semantics of the TRIX system, introducing the TRIX model of

.15 -

computation. It is followed by a description of some of the implementation details relevant to

adapting the system to run on multiple processors.

4.2. Semantics

The object of TRIX is to provide a small but powerfu!."set of mechanisms, essentially a
machine extension, that can be used to build interesting systems. The machine extension
manages a database of system objects provides the basic communication mechanism. Around
this kernel are a very few system handlers which provide such functions as "process”
synchronization and device interfacing.;'The majority of what is normally considered "system"

functions are implemented at the user level.

4.2.1. Objects

In TRIX, what is conventionally though of as a "process" is divided into two objects, a
domain, and a thread. Domains consist of an address space and a set of handles, essentially
_pointers to other objects protected aﬁa maintained by the kernel. Domains are passive objects;
there is no stack, program counter, or register state associated with them. They may, however,
have state in the sense of program data. Associated with a domain is a structure in the kernel
data base which contains information about the state of the domain and the mapping of the
domain address space. Domains, are referred to via handles, which are kemel. maintained
pointers to a port (entry point) i;1\ a domain. Handles on domains are used to read from and
write to domains, or to load the domain (from a handle on a file for instance). They also
encapsulate the permitted communication channels at any instant. Everything in the system,
files, directories, programs, etc., are referenced through handles. A powerful consequence of
this is that various functions can be transparently interposed. For example, a remote file could
seem to a user as handle on any other file, though the. handle may actually be on a network

server. The remote file server will process the same messages as a local file handle and will be

transparent to the user.

Domains are created by a MAKE_DOMAIN kernel call. This call allocates and initializes a
domain structure in the kernel data base. The domain is created empty, with a null address
space. The address space can be later loaded though requests to the domain handler. Domains

are not explicitly freed; rather, they are garbage collected when there are no longer any open

.16 -

handles on the domain (at which point no further access to the domain is possible). Handles are

closed by the CLOSE kernel call.

A thread is a single I‘ocus of execution in TRIX. It contains the execution stack, the
program counters and current state of the task. Threads execute code in a domain, and are
always resident in some domain. There are no restrictions on the number of threads in a domain.
A domain can exist with no active threads. A single user activity is likely to include several
domains (a file system and 170 interface are likely to be separate domains, for example) but only
a single thread. Threads are created by a SPAWN kernel call, which instantiates a new thread
in the current domain executing at a specified point. The new thread is created with an empty
stack (in contrast to the UNIX fork() in which the stack is duplicated). There is no naming
system for threads in TRIX; there is no way for one thread to exphatly reference another.
Communication between threads must take place through a common domain; either though both
threads executing in a single domain, or though data exchange through. windows on shared
domains. Threads are freed when they execute a REPLY from the same context in which they

were SPAWNed.

4.2.2. Communication

The basic communication mechanism in TRIX is an inter-domain procedure call and return.
These are accomplished through the kernel calls REQUEST and REPLY, respectively. A thread
executing in a domain can transfer ltseif into another domain (perhaps to use some capability
provided by code in the new domain) by means of the REQUEST kernel call. The return pointin
the calling (requesting) domain is saved on a protected request stack. The thread resumes
execution at this point when a REPLY kernel call is encountered. The thread enters the new
domain with an empty stack. The stack from execution in the previous domain is still existent but
inaccessible. When a REPLY returns the thread to the requesting domain, the stack is restored
to its previous state (before the request). Some information can be passed to the new domain.
This includes a single handle (one of the handles owned by the requesting domain), a small
number of arguments (uninterpreted data words), and a data window. This data window can be
into any borﬁon of the requesting domains address space, into the part of the thread stack
active in that domain, or into the data window passed into the requesting domain by that thread.

This window allows the new domain access 10 external data and is the basic data transfer

.17 -

mechanism in TRIX. Values can be returned by a REPLY call through a similar mechanism.

Below is a list of some of the kernel calls and a brief description of their function.

MAKE_DOMAIN Creates an empty domain and returns a handle. A
domain is garbage collected when all handles on
it are closed.

MAKE_PORT Creates a port on a domain a returns a handle on
it.

SPAWN Creates a new thread with an empty execution

stack. Threads are destroyed when they REPLY
from the context in which they were created.

CLOSE(handle) Frees the handle sp‘ecifiedAby its argument.

REQUEST(handle) . Transfers the executing thread to the port named
by the argument handle, pushes the return point
onto the threads request stack and protects the
current execution stack.

REPLY Returns a thread from the last REQUEST.

RELAY Transfers the executing threads to the specified
port without pushing any return information.

4.3. Structure

The structure of a TRIX system an be analyzed in three sections, the Rernel, the system
domain, and the user domains. The TRIX kernel provides the virtual machine model, which is a
functional extension of the underlying hardware. It manages the fundamental TRIX objects;
domains, thread, ports, and handles, as well as providing a set of communications/control flow
primatives as kernel calls. Kernel calls run on a single kernel stack for all threads rather than
maintaining a separate kernel stack for each process. TRIX kernel calls have the property that

they do not block; the calling thread is never suspended in the midst of executing a kernel call.

The kernel maintains a data base consisting of two main sections. The first contains the
state of all of the various kernel objects, domains, threads, etc., as well as thét of physical
resources such as memory. The second contains scheduling information, which threads are
scheduled to run in which domains and which threads are waiting on some event. Most of the

function of the kernel calls is to manipulate this data base.

The system domain is a special entity in TRIX. It appears to threads as a normal user

.18 -

domain and is accessed through handles on ports by the same REQUEST/REPLY calls. it is
considered separately because it directly accesses the kernel data structures. The system
domain provide functions which need this coupling to the kernel. Handlers in the system domain
include the domain handler, sync handler, and the low level device handlers (that portion of the

device programming which interfaces the user with the interrupt level service).

The domain handler performs certain operations on domain objects. Among these are
READing and WRITEing the domain address space, and LOADing the domain address space
from a file (actually a handle). The domain handler uses the kernel data base in the WRITE and
LOAD operations, for example, as theSe can allocate additional physical memory in order to

expand target domain segments.

" The other handler which closely interacts with the kernel is the sync handler.
Synchronization of threads in TRIX is accomplished through two requests sleep(address) and
wakeup(address) on a sync handle. When two threads wish to synchronize, they must request
and share a sync object. The sleep request removes the thread from the list of scheduled
threads in its current domain and puts t‘ﬁe thread on a special list of sleeping processes. It
records the address on which the thread is sleeping and the sync object (handle) the sieep
used. The thread stays on the sleeplist until a wakeup occurs on the address using the same
sync handle. A wakeup replaces any thread on that address-handle pair back on the active
schedule lists. The wakeup will have\?o effect on a thread sleeping on a different sy~nc handle or
a different address. The address slep\t on is by convention the address of a shared object to be
locked. The semantics (though not the implementation) of this mechanism are similar to those of

the UNIX signal() and wait() system calls[Thompson78].

Within the system domain are also the handlers which interface the user to the 170 device
interrupt processing. User threads treat these handlers like any other and the
REQUEST/REPLY mechanism is used. These handlers are in the system domain because the
user side must be carefully synchronized with the interrupt processing. Actually, two levels of
synchronization are necessary. The first prevents indeterminacy due to user-interrupt conflicts
on data structures (an interrupt occurring when an important structure is in an inconsistent
state due to incomplete user processing). These conflicts are resolved by means of a hardware
priority mechanism with which the user thread can lock out interrupts during the execution of a

critical section (the interrupt does not need to lock out user processing as this is implicit). The

.19 -

second level of 1/O synchronization results from threads waiting on devices for an 170
transaction to complete. This is accomplished via a mechanism with semantics identical to the
sleep and wakeup described earlier. The implementation is slightly different because tﬁe
interrupt servicing is done in the kernel rather than by a legitimate thread, and therefore cannot

L4

REQUEST into the sync handler.

The user domains contain most of the code and data of the system. This includes a large
amount of what is commonly considered "system" functionality, such as teletype drivers and file
systems. This organization reduces both the size and complexity of the kernel and allows users

to supply their own programs providing this f(jnctionality. .

4.3.1. Scheduling

Active threads are scheduled to run in a specific domain. .Each domain, as part of the
associated kernel data structure,™has a list of threads scheduled to run in it. When free, the
processor searches these lists for runnable threads, with the system domain always searched
first. if thére are no runnable threads in the:system domain, scheduling proceeds in round robin

fashion through the list of user domains.

Within a dom;in, threads are run according to a priority system. Associated with each
thread is a priority word, which deterTines its scheduling properties. There is a similar word for
each domain, and the priority of a domgin is set to that of the thread currently running in it. The
priority word contains a numerical priority and two property bits. The rules regarding scheduling

within a domain are:

(1) only the highest priority thread(s) in a domain are selected to run,

(2) a high priority thread will never be pre-empted by a thread with lower
priority, and

(3) a high priority thread will be run before any lower priority thread not
currently running, but is not guaranteed to pre-empt a jower priority
thread already running.

The two property bits specify additional information regarding pre-emption. One bit, when
set, prevents the thread from pre-emption by another thread at the same priority fevel. The other

bit is used to "lock in" a thread's priority into a domain. Even if the thread requests into a

.20 -

different domain. the "locked" domain behaves, with respect to scheduling, as if the thread were
still running in it. Thread priorities are raised and lowered by means of the SPL kernel call
(kernel calls are atomic with respect to thread scheduling and pre-emption), which sets the

thread priority to the specified level.

4.4, Status

The é:urrent implementation of TRIX operates as a single user system. It runs a UNiX-like
command interpretér and many of the UNIX utilities. A set of C libraries aﬁd write-arounds allow
most UNIX programs to run on TRIX wij(h"no changes. The system runs on the 68000 based
computer described earlier and runs UNIX utilities (for e%ample_ Is) about 80% as fast as UNIX

on the same hardware.

.01 .

5. Multiprocessor TRIX

The inspiration behind multiprocessor TRIX is straightforward. A TRIX thread represents a
separate path of activity. ‘Therefore it should be possible to execute several threads
simultaneously on different processors. The goal of this project is to produce a muitiple
processor implementation of TRIX which efficiently exploits this corr'\currency. in order to realize
this goal, several issues which determine the organization of such a system must be resolved.

The two major strategy issues which distinguish the system are:

e How should the system’s tésks should be divided amongst the processors
and, ‘

¢ How the processors are to communicate with each other. -

The philosophy of multiprocgssor TRIX is that all processors are created equal. The system
is symmetric with respect to the way it deals with processors. Any processor can perform any
task in the system, including executing kernel caiis, handling 1/0 requests, and servicing
intérrupts, as well as running user code. There are other possible approaches to this issue. One
alternative is to establish a fixed pairing between processors and tasks. Under this discipline,
processors might be dedicated to kernel processing or interru‘pt handling, or perhaps to running
some commonly used subsystems, such as the file system or network server. A major
disadvantage of this organization is'\'that processors will often be idle because there is no
demand for its assigned activity. The percentage of processing power devoted to each task is
built into the system and is not able to adapt to the needs of users. A symmetric organization
allows processors to perform and task necessary. The percentage of processiﬁé devoted to

particular activities will follow the pattern of demand from the user.

Another approach to managing multiple processors is to use a "master-slave" organization
as in the Purdue UNIX system. In this scheme, one of the processdrs is the "master” and
performs all "kernel" processing, that is all kernel calls, interrupt servicing, and /0 processing.
The "slave" processors are restricted to user level processing. There are two disadvantages of
this organization. First, kernel level processing can easily become a performance bottleneck.
Although all of the processors can be generating system calls, only a single processor can
service them. In a busy system, all of the processes could be waiting for kernel access leaving

the slave processors nothing to do. The other problem with the master-slave organization is that

.00

slave processors must suspend execution of a process when it requires kernel access. Slave
processors must therefore perform a context switch at every system call, since it must find a
new process to run. This high rate of context switching decreases the effective performance 6f
the slave processors. The main advantage of the master-slave organization is that it is fairly
straightforward to implement. It does not require the system ri(emet to be interlocked for
simultaneous execution by multiple processors. This interlocking is difficult to impose on UNIX.
Because of this, Purdue adopted the master-slave organization in spite of its disadvantages.
The structure of TRIX is very different from that of UNIX. Interlocking the TRIX kernel and low
level 170 is quite feasible. This makes the master-slave system much less attractive since the

symmetric organization is more efficient.

" The second major design issue is how the processors should commﬁnicate. In this version
of multiprocessor TRIX there is no direct interprocessor communication. All interaction is
modefated by the system through shared memory. No processor is able to refer to any of the
others; no processor is aware of the existence of any others (except for delays in access to
kernel objects). This has a number of nicé‘ features. For example, the number of processors is
not built into the system; it can be booted with any number of processors in the backplane. Also,
a system which relies of direct communication will have processors waiting for reblies from
other processors, which not only wastes Aprocessor cycles but can lead to deadlocks. It may,
however, be useful at some time to~add an special mechanism by which one processor can
cause an interrupt in another, thus éllowing high priority threads to pre-empt running lower

priority threads.

.23 -

in crder to implement the decisions described above, several modifications must be made

to the basic TRIX system. The following additions are needed:

. A framework which allows multiple processors to run in the kernel.

. A means of synchronizing several processors exe&ﬂing simultaneously
in the kernel.

. . A scheduling system to assign processors to runnable threads.

J Mechanisms for synchronizing threads (at user level).

® A strategy for handling interru‘pts.

. A scheme for initializing’ the TRIX system and gracefully bringing all

processors into operation.

" Each of these issues requires both a policy (or general philosophy of operation) and a

mechanism (particular implementation).

5.1. Kernel Structure

Since all processors are treated symmetrically, each processor must be brepared to handle
kernel calls. Each processor has its own kernel stack mapped into the same section of virtual
address space. Each processor handles traps and interrupts independently on this stack. All
processors share the same kernel coB‘e and data base, mapped intb the same virtual address
space. This data base contains the st;te of all kernel objects, and information regarding the
scheduling of threads in domains. It is through this data base that the processors know what is

going on in the system, and can find out what task to perform.

Each processor has a certain amount of local data. This includes some memory locations
built into the CPU hardware, in particular a Processor ID register, a Bus Error register and a

page map. Each processor also has a structure containing some system data:

Y

struct proc_data{
pointer T_CURRENT;
pointer T_MAPPED;
pointer D_CURRENT;
pointer D_MAPPED;
int dosched;

This structure contains pointers to the current thread run by the processor and the current
domain in which it is executing. It also contains pointer to the domain and thread (if any) that
are'currently mapped in processor's page map, and a flag indicating that the processor needs to
be rescheduled (set during some kernel:'calls). Ideally this "per. processor” data structure would
be kept at some level in kernel stacks. However, this.is inconvenient in the C language so they
"are implemented as arrays in the kernel data’area. Each processor u’ses its ID number {from the
register on the CPU) as its index into the arrays. Another alternative is to keep this data in

separate physical pages, mapped to the same virtual address.

The major resources in a TRIX system are the physical memory and devices and the keme!
objects: threads, domains, handles, po‘?ts, and synchronizers. These are allocated and freed (or
collected) by the TRIX kernel and handlers of the system domain. In most cases the allocation
or de-allocation is requested expliciﬂy by a running thread and can therefore be performed by
the processor executing the thread. In order to implement this resource management, the kernel
must be properly interlocked to Tgsure that the data base describing the various kérnel objects

AN
remains self-consistent.

Each thread has its own stack and state information. This information is kept independently
from the kernel stacks: thus a single thread can be run alternately by many processors (for
example, a thread waking up from an 170 wait need not run on the same processor that put it to

sleep).

5.2. Synchronization

There are two separate synchronization issues in multiprocessor TRIX. One involves the
interaction of concurrent threads, thé other concerns the synchronization of processors
executing in the kernel. When two concurrently running threads are executing the same code
or accessing the same data, there is a need for synchronization to avoid indeterminacy and data

access conflicts. This problem also occurs in single processor TRIX and is dealt with by the

. 05 .

user with synchronization primitives provided by the system. It must be approached with special
care iﬁ a multiple processor environmentvsince often programs implicitly assume that there is
only a single processor. Additional primitives may be found useful for conveniently managing
thread interactions. The second issue, processor synchronization, is only relevant to
multiprocessor TRIX. Since all processors can execute in the ke"r'(nel, it is essential that it be
properly interlocked. Any failure in this level of interlocking could result in a complete deadlock

or system crash.

This system uses several levels of synchronization or mutual exclusion primitives. Each

level is built from the primitives beneath and serves as a foundation for higher level functions.

user level synchronization

thread scheduling mechanism

R’ernel lock

test and set instruction of MCE8000

read-modify-write bus cycle (atomic)

The lower levels of this structure are dependent on the hardware. Atomicity at the lowest
levels is essential. The kernel lock is the basic processor synchronizer in multiprocessor TRIX. It
is uses a binary semaphore implemented with the test and set instruction of the processor. This
locking mechanism keeps the kernel data base consistent and mediates the progress of threads
as they transfer between domains through the kernel. The scheduling mechanism, by enforcing
the pre-emption discipline, provides for synchronization at the thread level. The sync handler
provides the sleep and wakeup requests described earlier. The following section examines the

interprocessor kernel interlocking, thread synchronization is discussed later.

.26 -

5.3. Kernel Synchronization

There are several design constraints on the implementation of kernel interlocks. First, and
most important, the kernel must be safe from any possibility of deadlock. Deadlocks are caused
by processors waiting for each other to relinquish resources. Were this to occur, the processors
involved would cease useful computation until the system wa;restarted. A deadlock in the
kernel would quickly freeze all of the processors in the system. Another constraint is that the
kernel daté base must be kept in a valid and consistent state at all times. Inconsistencies due to

write-write conflicts or read-write conflicts are fatal to the system.

In order to maximize the performanc'é of the system, it is desirable to maintain as much
parallel activity as possible. Task execution should only be serializﬂed in response to the
constraints of that activity. This is difficult in the kernel, since all processors running in the
kernel are competing for the same database. There is a legitiméte mutual exclusion constraint
between them. Another efficieney issue is the amount of time a processor spends requesting
resourcés and waiting on them. This should be kept as small as possible.

5.3.1. Loci of Interaction

Most of this interaction is competition for access to two databases, the kernel object
database and the thread scheduling lists. This section details the various points in the TRIX

-~

kernel where processor interaction can occur.
N

One place where processor synchronization is necessary is in TRIX kernel. calls. These
allocate physical memory and kernel objects such as domains, threads and handles. Access to
the; the corresponding data structures must be interlocked. Kernel calls also modify the active
threads lists used for scheduling threads in domains. For example, the SPAWN call creates a
new thread and schedules it in the current domain. Calls such as REQUEST and REPLY
unschedule a thread in its current domain anld reschedule it in the target domain. These lists of
'sch.eduled threads must be maintained in a consistent state. Therefore, these sections of code

must be kept mutually exclusive.

In addition to kernel calls, a small number of handlers in the system domain also change
the kernel data base. The domain handler may allocate physical memory when handling LOAD
and WRITE messages. Processors executing in the domain handler must therefore be

synchronized with those performing kernel calls. The sync handler alters the lists of active and

.07 -

sleeping threads as is accepts sleep and wakeup requests.

Also in the kernel are the lowest level device drivers. These consist of the interrupt
routines for the devices and‘the handlers which interface to them on the user’s side. There are
two possible sources of synchronization problems in these routines. The first is the possibility of
read-write conflicts on data objects if both the interrupt routine a'\l;wd user handler are executing
simultaneously. The second source of problems in the 1/0 routines involves communication
between the interrupt and user sides. The user side occasionally sleep()s, waiting for the
completion of some 1/0 transaction, an event which is signaled by a wakeup from the interrupt

handler.

User - interrupt exclusion is necessary in a single processor system, but presence of
additional processors complicates its implementation. The user thr'ead.can no longer lock out
interrupts by raising the hardware priority of its processor since the interrupt may be handled by
a different processor, one over which the thread has no control. Conversely, the interrupt
handler can no longer assume that all user processing stopped since it will continue on other

t

_processors.

The fact that both user and interrupt processing on the same/device can occur
simultaneously also creates problems for their synchronization. Typically the user handler tests
some condition, éuch as buffer full or buffer empty, and sleeps until the interrupt routine
performs a wakeup. The problem a?lses when both are executing éimultaneous!y. The wakeup
may be performed after the user\ side checks the deciding condition but before the
corresponding sleep is accomplished. The result is the thread will steep forever, waiting for an
event that already occurred. The "test and sleep” on the user side of a user-interrupt interaction

must be made an atomic operation to avoid such deadlocks.

5.3.2. Some Implementation Issues

One use of the kernel locking mechanism is to make mutually exclusive the sections of
code where processor conflict can occur. There are several issues to be resolved in
implementing this mutual exclusion. One is the granularity of interlocking. Kernel calls generally
have several critical sections of code interspersed with non-critical sections. These could be
interlocked separately or together as a group. Furthermore, some critical sections in these calls

deal with resource allocation and others with scheduling. It is possible to use different locks for

. 98 -

each type of critical section or to group them together.

The advantage of separately locking each critical section is that by locking only those
sections absolutely necessary the latency of waiting processors is reduced. The disadvantage is
that a processor will have to request a resource several times in the course of executing a

5

single call. This increases the overhead of interlocking, and the waiting time of the processor.

The possible advantage of using separate locks for each type of critical section is that it
increases the potential parallelism. The difficulty with using several different locks in the kernel
is that it introduces the possibility of deadlocks. If a kernel call requires more than one resource
(as most do), it must either release one béfore requesting the other or request both at the
outset. Releasing resources is impossible since this would leave unprotected data in an
inconsistent state. Requesting both. locks is a serviceable approach, but if two locks are always
requested together, there is no advantage to having different Iocké. In the interest of simplicity,

they can be combined with no loss:

5.3.3. Kernel Lock Routines

The kernel locking mechanism uses ’Mo global variables for each lock, an integer which
holds the processor ID of the processor which currently holds the lock and a binary semaphore.

The processor spins in a tight loop until it obtains the lock.

The interlocking of the kernel ié accomplished using two routines lock() and free(). The
lock routine returns the previous value of the lock (presumably this is 0 or the ID of the
processor owning the lock). It does not return until the processor is able to obtain the lock.
Processors waiting for resources are looping in the lock routine. The value returned allows the
locking processor to return the lock to its previous state when freeing the resource. It is
important that a processor running interrupt routines does not blindly free locks that may have
been locked by that same processor executing user code or kernel calls. The routine free{old)
frees the lock only if old is zero. If old is different from zero free() merely checks that the
processor trying to free the lock is the one that owns it, but otherwise leaves the lock

unchanged.

A simple semaphore is insufficient for implementing the lock routine. There are
circumstances under which a processor will try to lock a data base it has previously locked. For

example, this can occur if a processor receives an interrupt while executing a kernel call (

.29

during which the data base is Iocked). The interrupt handler may also need to insure that the
data base is locked to prevent conflicts with other processors. If a semaphore is used to
implement the mutual exclusion, the interrupt side will find the data base locked, even though
the same processor in user mode locked it. This situation results in a deadlock since that
processor is waiting for itself to release a resource. A solution to'{his problem is to keep a
variable in the lock which holds the processor ID of the current holder of the lock. This will
prevent any processor from waiting on itself. Of course if it is essential that a critical section of
code not be affected by interrupts, the processor’s priority must also be raised to prevent it from
taking interrupts. This is not done by the lock(} routine sirjce it is only necessary in a few

sections of code and would greatly increase interrupt latency.

The test and set on the lock variable must be atomic. This is insured by using a binary
semaphore to implement mutual exclusion on the lock variable. The code for the lock routine is

given below in C. -

int locknum; /* owner of lock */
char sem; /* semaphore for lock */
lock(){ -

if(locknum == mynum()) return(locknum);

while(1){
n = spl7();
if(locknum == mynum()) s = locknum;
wait(sem);
if(locknum == 0){
focknum = mynum();

s =0
}
signal(sem);
spix(n);
if(locknum == mynum()) break;
}
return(s);

The signal() and wait() routines are the standard binary semaphore routine-s, P and V,
implemented using the test and set instruction of the MC68000. This instruction provides the
low-level atomicity for the synchronization mechanism. The semaphore is used to provide mutual
exclusion around the test and set of the ownership variable locknum. The spl7{) sets the

hardware priority of the processor to 7 (the highest priority). The spix() restores the priority to

.30 -

its previous value. Raising the priority is necessary to prevent interrupts from occurring after
the execution of the wait() but before the execution of signal(). Were this to happen and the
interrupt handler tried to acquire the lock (in order to wake up a sleeping thread), a deadlock
would occur, since the processor would be waiting on itself. Interrupts are only disabled while
waiting to execute the test of locknum. Since there are onI; a few instructions in this critical
section, the amount of time interrupts are disabled is small. If the lock is in use, interrupts are

re-enabled before trying again.

" The value returned is the previous value of the lock. This is used by the free(oid) routine
to restore the lock if necessary. The free(old) routine checks that the processor really owns
the lock, then clears the locknum variable if its argument is zero. No mutqal exclusion is

‘needed in the free routine.

5.4. Scheduling

There are two problems introduced into. the TRIX scheduling structure by multiple
processors. The first is simply how thé processors are to be paired with runnable threads. Key
issue are safety and fairness. The implementation must insure that no thread is permanently
ignored, and that no thread is run by more than one processor at a time. The second problem is
to maintain the TRIX semantics of priority and pre-emption when it is possible for several

threads to be running simultaneo\Usly in a domain.
AN

In order to insure the safety of the system, the multiprocessor scheduling has been
designed with a state model of threads. Threads can be in one of three states, SLEEPING,
RUNABLE, or RUNNING. Threads are RUNABLE if scheduled to run at some priority in some
domain, RUNNING if currently paired with some processor, SLEEPING if waiting on another

thread (or 1/0).

.31 -

RUNNABLE

\/

wakeup

Figure 5.2. State diagram for threads

Threads change from RU&ABLE to RUNNING when a processor in the scheduling loop
begins to run the thread, from RUNNING to RUNNABLE when that processor is rescheduled.
* State transitions into and out of SLEEPING occur when threads are put to sleep or awakened
by the sync handler or I/O routines. Threads executing a sleep change from RUNNING to
SLEEPING. A wakeup returns threads to the RUNNABLE state, but these threads are not run

until paired with processors.

The state transitions of domains and threads must be carefully protected. Otherwise it is
possible, for example, for two processors to find the same thread RUNABLE, and attempt to
begin running that thread at the same time. This will invariably crash the system as the thread
state will become hopelessly garbled. The key to protecting these transitions |s to insure that
the operation of testing and conditionally changing a thread’s state always atomic (with respect
to rescheduling and pre-emption) and only performed by one processor at a time. This is
implemented using the kernel locking mechanism since transitions only occur from the system

domain or during kernel calls.

Idle processors wait for tasks in a loop, searching through the schedule list of each domain
for a runnable thread. Each processor looks for the next RUNABLE thread to be executed
(searching round robin through domains and checking the highest priority thread in each
donﬁaiﬁ). If a suitable thread is found, the state of that thread is set to RUNNING and the

processor begins to execute code for the thread.

.32 -

The presence of multiple proéessors introduces some complications into the scheduler
implementation, which are necessary to preserve the TRIX semantics. For example, one
consequence of the pre-emption rules is that a running thread is guaranteed that no thread of
lower priority is also running in the same domain. This is an important feature since it allows for
mutual exclusion between threads in a domain (A thread runnin‘é at the highest priority should
be the only thread running in its doma@n). However, in a multiprocessor system a thread at high
priority may request into a domain in which a lower priority thread is already running on a
different processor, which would result in a violation of the guarantee stated above. Similar

problems can arise if one of two threads running in a domain executes an SPL to a high priority.

A solution to this problem is to monitor all points at Which the priority relationsrhips within a
domain can change. These include priority changes through SPL and ;(hread transfer because
of requests. Threads rescheduled in a domain by a wakeup are not a problem since they are
not RUNNING when they appear. In order for a thread to be run by a processor, it must not
only be thé highest priority RUNABLE thread, but the domain in which it‘is to run must not
contain any RUNNING threads of lower pFiority. This condition is checked in the kernel before a
thread is selected to be run.. The priority of a domain is also checked when a thread
REQUESTS into it. A lower priority thread will be placed on the schedule list when entering a
high priority domain but will be set to RUNNABLE and not run until all higher priority threads
are gone. Similarly, a high priority thread entering a domain ir which a lower priority thread is
running will be marked RUNNABLE ;\md its processor rescheduled. When the currently running
threads stop (due to being put to sleep or the occurrence of a scheduling tick), it will be the
next thread to run in that domain. Threads changing their priority with an SPL call are also
returned to the RUNNABLE state if it is not appropriate for it to run at the new priority. This
system preserves the pre-emption semantics of single processor TRIX, allowing mutual

exclusion between threads within a domain.

5.5. Thread Synchronization

The {ssues concerning thread synchronization are largely the same as in single processor
TRIX. In both cases, threads meet in a common domain to coordinate activity. The problems of
simultaneous execution exist in both cases since the order of execution of threads with the

same priority is not defined. In a multiple processor system both may be executing the same

instruction at the same time. Philosophically, the synchronization of independent threads in
TRIX is entirely the responsibility of the user. The semantics of TRIX enforces no policy in this
area; indeed much of the flexibility of TRIX comes from this fact. It does, however, provide

sufficient mechanism for interlocking thread activities.

5.5.1. Priorities

The two mechanisms for synchronizing the threads are the sleep/wakeup requests to the
synb handler, and the SPL kernel call. The sleep and wakeup requests can be used to order
computational events between threads. 'Presumably,'on’e thread checks for the completion of an
event and sleeps on it (actually on some associated aadress). Another thread, upon causing the
event will wake up all threads sleeping on it. A danger arises when the sleep and \yakeup are to
be performed by threads running simultaneously in the same domain. It is possible for a
wakeup to occur while a thread is deciding to sleep on the same event. In this case, the
sleeping thread may never be run again, since the wakeup it is waiting on has aiready
Aoccurred. For this type of synchronizafi‘on to work properly it is essential that one thread be able
to exclude any other thread from performing a wakeup (or anything else) while it is deciding to

sleep.

A similar problem exists in the interaction of the low level 170 handlers with interrupt
service, requiring locking at the l??rnel level. Thread-thread mutual exclusion is achieved by use
of the SPL kernel call. A thread u\sing SPL to set its priority to the highest possible (and keep

‘threads on the same priority from pre-empting) will be the only thread running in its domain after
it returns from the call. The call itself is atomic with respect to pre-emption. Because of the
scheduling rules, even if two threads (on different processors) begin executing the call at the
same time, only one will return from the call still RUNNING. That thread will retain control of the

domain.

It is possible for a thread to lock a domain across a request into another domain. This is
done by setting the priority bit which "locks in" the current threads priority. Other threads are
prevented from running in that domain until the requesting thread returns and lowers the priority.
Since this mechanism allows a thread to retain one resource (domain) while requesting another,
it can lead to deadlocks. For example, if two threads simultaneously lock their current domain

and request into each others domain, it is possible that neither one will be able to run again.

Since such a situation will not crash the system, but merely inactivate the threads involved, it is

not precluded by the system. It is the responsibility of the user to see that it does not occur.

5.5.2. Other handlers

One disadvantage of using the SPL to implement mutual exclusion‘ is that it locks the
entire domain. It may be useful to be able to lock specific data structures or sections of code
within a domain while allowing free access to others. In a teletype handler, for example,
requests on different devices can be processed concurrently, but each device can only deal with
one request at a time. One possible mechanism for dealing with interlocking at this level is a
semaphore handler built into the system domain. It would ac;:ept requests which implement the
basic signal and wait semaphore primitives, as wel as create and close ﬂrequests. Uéing the
same sleeplist as the sync handler, waiting threads would be put to sleep so as not to consume

processor cycles. The corresponding wakeup would come from the signal request.

5.6. Interrupts

Device interrupts can be handled by any processor. The details of the mapping of
interrupts on to particular processors is high}y dependent on the hardware. The hardware on
which TRIX is currently implemented allows each interrupting device to be programmed with the
ID of the processor to be interrupted as:wel! as a service routine vecfor. An interrupt by the
device will only be detected by the proces\sor with that ID. All processors share the same table
of interrupt vectors and handling routines. The devices are usually programmed with the ID

number of the processor which initializes them and this processor will service the interrupts.

Other hardware schemes can also be used. The system could be set up such that all
processors respond to all interrupts but use different vector tables. All but one processor would

immediately return leaving the proper processor to service the interrupting device.

Interrupts are handled using the kernel stack of the servicing processor, so several
processors can take different interrupts without interfering. However, as discussed in the

previous section, proper synchronization between user and interrupt sides of a task is critical.

5.7. System Initialization

A exception to the rule that all processors are considered equivalent is the startup
sequence. Turning all processors loose on the system on powér up would result in chaos. In the
present hardware, on system reset one processor (the one with processor ID 1) executes a
bootstrap routine while all other processors wait in a tight loop. T.He active processor starts the
TRIX system. This task includes initializing the kernel data base, creating a domain for the
system héndlers, and starting up an initial thread. It also initializes the devices and file system,
although this could actually be done at a later point by any processor. When the system is in
the proper state, with a legitimate thread running in a domain, the initializing processor wakes
up another processor which has been looping on soﬁ*ne location since reset. Each new
processor executes some initialization code (which sets up its page mép and clears interrupt
fifo’s), wakes up the next processor, and enters the scheduling loop looking for something to do.
Each processor wakes up the pracessor with the next higher ID number until all processors are
active. It is therefore not necessary for the system to have built in the number of processors

currently running. Of course the processoré must have sequential ID numbers for this to work.

5.8. Garbage Collection

The TRIX used in this thesis is, at present, an experimental system. Several features must

be added to make TRIX useful to a Jarger user community. Some of these features impact
\

multiprocessor operation and this must be considered during their implementation. The most

important of these is garbage collection.

Garbage collection on TRIX refers to the reclamation of system resources no fonger in use,
pa.rticular!y the collection of domains. A domain can be recycled when it is impossible for any
references to be made to it. This is the case when there are no outstanding handles on the
domain (any of its ports). Garbage collection involves checking the active handles list, marking
the referenced domains and collecting the rest. The main issue here is that the handle data base
could be changing during this process due to the activities of processors other than the one
doing the garbage collection. Since there is no inter-processor communication mechanism,
other processors cannot be halted for the garbage collection. However, one property of the
system is that if there are no outstanding handles on an inactive but uncollected domain, no

handles can be created on that domain. Therefore no inactive(collectible) domain will ever

become active again. Garbage collection can therefore proceed independently from other
activities. If the garbagé collector is carefully constructed in the way it examines the handle data
it is not necessary to lock the data during garbage collection. At worst, a newly closed domain
will remain uncollected until the next time the garbage collector is run.

¥

5.9. Language lssues

There are a number of issues brought up_by the interface of TRIX semantics with
programming languages. TRIX is written in the language C[Ritchie78], the system ‘!anguage of
the UNIX operating system. C is essentially an unscoped language; all data is either local to a
given subroutine, and resides on the stack, or glob:ai to all routines, and res‘ides in the data

“segment. This conflicts somewhat with TRIX semantics. A TRIX '!pr.ocess” is split into a thread
and domains. Ideally the domains, supposedly passive objects, should contain only that data
essential to the domain function. This includes the domain text and those data objects which
are shared by all threads running in the domain. Context dependent data, data which each
thread needs independently, should be associated with threads rather than the domain. This
data should reside on the thread stack. The C language imposes the scoping issue on this
decision since all variables which are‘to be accessible to several levels of subroutine are put
into the domain. This mixing contexf dependent and context independent data in the domain
has several consequences. Ong is that the domain must either be restricted to run a single

thread at a time, or provide separéte copies of context dependent variables for each thread.

A similar problem arises when the TRIX kernel is run on multiple processors. In this case
the context is not associated with threads but with processors. There is a set of data objects
which must have an instantiation for each processor. ldeally, these could reside on the kernel
stacks. However, due to the global significance of these objects (many kernel subroutines need
them), C places them in the data segment. It is therefore necessary to maintain an array of

these objects with one entry for each processor.

Aside from the problem of duplicating data, there is also a semantic issue. TRIX domains
are supposed to be static objects, although they do contain some state. The static nature of
domains contributes to the ease with which they can be swapped. This static nature is
weakened by the addition to the domain of non-essential state. One solution to the problems

outlined above is to implement TRIX and the code in the user domains in a lexically scoped

.a7.

language that allows a global area for shared data.

Another issue involving the interface between TRIX and programming languages concerns
the semantics of SPAWN. A ‘new thread is created through the SPAWN call with an empty
stack. This makes the instantiation of threads very efficient since no copying is involved (as in
the UNIX fork() call). However, it could create problems wher; | used with some types of
languages. Since new threads are created completely empty, they have no context in which to
resolve non-global references. This is not a problem in C if threads always begin running at the
start of a function. In a lexically scoped language, though, it could be disastrous if a thread were
SPAWNed running in one of the inner levels of the lexical nesting. This thread would be unable
to properly resolve references to variables in any of the su?rounding levels. Essentially, threads
must be SPAWNed to legitimate entry points into’ the domain, either ex;;;licit or imp!'ig:it ports.
_ This constraint, however, limits the usefulness of SPAWN as a multiprogramming primitive as it

cannot be arbitrarily invoked, to pravide parallel execution, at any point of the program.

6. Performance

The current TRIX systems, both single and multiple processor, are experimental versions to
demonstrate the feasibility of thé TRIX concepts. Although structured to run efficiently, the TRIX
code has not been extensively optimized. The particular hardwarg on which multiprocessor
TRIX has been developed is not very well suited for running multiple'broceSSors in a production
environment. Memory contention is a serious performance problem due to the length of the
processor. bus cycles and the fack of any caching on the processor modules. This particular
implementation of the Nu computer was used for reasons of expediency rather than
performance; the system was available and supported multiple processors in a reasonable

manner.

These considerations aside, it is nonetheless important to characterize the perforﬁance of
the system and attempt to predict its performance on some more suitAable hardware. In the ideal,
a system running with n processors would have n times the throughput of a single processor
system. Unfortunately this is often not the case. Due ‘o several factors, mostly involving the
processor interaction, the real performanée of a multiprocessor processor system falls
somewhat short of the ideal. This section attempts to analyze the major factors which affect the

performance of multiprocessor TRIX. The gba}s of this discussion are threefold,

(1) To characterize the performance of the current implementation;
\
(2) To predict the probable performance of TRIX on other hardware, and,

(3) To discuss various optimizations which could improve the system.

The significant factors affecting system performance can be divided into two sets. One
contains the effects caused by the contention of multiple processors for various shared
- resources. These are bus contention, and contention for use of locked sections in the kernel.
These contention issues are very important because they decrease the effective throughput of
each processor. Thus a two processor system will not achieve, in some sense, the computing
speed of two separate one processor systems. The second set of performance factors are
those that affect the level of processor utilization. It includes contention and synchronization at
the thread level. These latter effects are very difficult to quantify since they depend in large part

on the programming style and system use patterns of the user.

The effect of processor contention on system performance is characterized by considering
the resulting decrease in effective throughput of each processor in the system. That is, each
processor will actually be able to provide a certain percentage of the throughput (instructions /
sec) it could in a single processor system. This percentage describes the effect of contention on
that processor. The effective computing power of an N processor gystem would therefore be
Npp Pk, where pp and py characterize the effects of bus contention and kernel lock contention

respectively. The two factors pp and pi are, in general, functions of N

6.1. Bus Contention

Bus contention significantly affects the throughput of rﬁultiprocessor TRIX on the current
hardware. The degree to which it slows the processors depends on \th'e frequency of bus
-accesses, which it turn depends on the programs they are running. The effect of bus contention
on the current Nu hardware was measured running a compute bound program, PUZZLE. The
program was timed on a single processor system and again on a two processor system. On the
two processor system, both processors ran fhe PUZZLE program but only one was timed. The
ratio of computation times, two proéessor over single processor was 1.4. Due to bus contention,
the throughput of each processor is reduced to 71% (1/1.4) of its value without contention. The
maximum throughput of a dual processor syétem, if both processors are utilized completely, is
therefore 142% of that of a single précessor system. While this is an increase over a single

<

processor system, it is unacceptably low.’

6.1.1. Caches

One technique for reducing bus contention is the use of caches on the processor modules.
Caches reduce both the average memory latency seen by the processor and the amount of bus
traffic it generates. However, with multiple processors there is the problem of maintaining

consistency between multiple copies of data.

processor processor
D=1 ID=2
cache cache
] l] l Nu Bus
memory /0

Figure 6.3. ‘Cached Processors

&

There are several strategies for dealing with this issue. One is to.desién the caches to monitor
all transactions over the bus and update or invalidate cache entrys whenever the cached
location is written. This of cgurse implies that all caches must be .write-through. The
disadvantage of this scheme is that it gre@tly complicates the cache hardware necessary. A
simpler mechanism is to not cache all writable shared pages. In the TRIX environment this can
be done fairly conveniently. In general, domain text and thread pages can be cached with the
exception of those passed in a REQUEST data window. The cost of context switching is
increased by such caching since the\processor’s cache must be invalidated (or at least part of
it) when transferring into a new domain or executing a new thread. The text segment of the
kernel is read only and hence can be cached, but the kernel data segment cannot be cached
since it is shared by all processors and frequently altered. Because the number of shared,
writable pages is relatively small and it is known which pages are shared, the expedient of not

caching these pages should be effective.

6.1.2. Modeling the Effect of Contention

Bus contention causes an increase in the average bus cycle time seen by the processors.
This increase is due to two different sources. One is that the bus is characterized by a maximum
bandwidth (number of bus cycles per second). If the number of cycles per second desired by
the processors exceeds this, cycle requests will be queued by the bus arbitration mechanism.
This will cause the average length of bus cycles to increase and therefore cause the effective

speed of the processors to decrease.

.41 -

The second éffect depends not on the average rate of memory accesses, but on the
variation of the access rate over short periods. If all processors in a shared memory system had
a constant, identical accessArate and their total access rate did not exceed the bus bandwidth,
they would not experience any increase in cycle time at all. During an initial startup transient,
the requesting times of the processors would synchronize. Aftgr this phase, each processor

would have its own time slice of the bus and would not face any further competition for its

cycles.

bus request

| K T I .
Proc A |) ‘ ! I Y.
K T = |
Proc B N I i l l l .
3k . |

waiting ' syREHTENTZed

Figure 6.4. Processors with constant inter-access time T

Processors are slowed by bus contention even on unsaturated busses because their access
N

rates are actually subject to variation, This means some fraction of a processors cycle requests

will occur when the bus is busy. When this occurs, the requesting processor must wait until the

current bus master is finished.

Figure 6.5. Effect of variable inter-access time

It is also possible that this processor may have to wait for the requests of other queued

processors to be serviced. Some variation is found with an uncached processor because of the

.42 .

differences in execution times and operand accesses among instructions. The variation is
greater with a cached processor since a cache filters the stream of memory requests from the
processor, sending only a fraction of them on to the bus. Cache misses tend to occur at random

intervals as seen from the bus.

Models predicting the behavior of a bus contention system can be mathematically very
complex. However, a model which is both mathematically tractable and applicable to interesting
systems can be developed using results from queueing theory. The model assumes an
unsaturated bus serving requests from multiple, cached processors. The bus is treated as a
service facility which provides memory cycles to queueing customers, the processor modules.
The arrival process (processors requesting bus cycles) can be approximated by a Poisson
process1 with an arrival rate of Nr, where N is the number of proces:sors and r is the rate at
which a single processor‘generates bus cycles. The service time, s of the bus is its cycle time
and is assumed to be constant (This is reasonable assuming memory is all approximately the
same speed). These processes characterize an M/D/12 queue[Kleinrock?S,Coffman?B]. Given
that the bus is not saturated (Nrs <1),‘*the average number of customers in such a system

(those waiting and currently being served) is given by

(Nrs)2
=Nrs + —-—-"—, .
Q =Nr. +2(1—Nrs) (6.1)
The average length of a bus cycle as seen by a processor is
Nrs?2
=54+ — 2
ST 3(1=Nrs) (6.2)

The graph below shows the normalized average bus cycle time seen by each processor as

a function of the bus utilization, Nrs. The curve increases slowly when the bus utilization is low,

1Given the details of the cache architecture and the sequence of memory accesses, the pattern of cache
misses can be completely determined. However, from the point of view of the bus, cache misses occur at
random intervals. Furthermore, the occurrence of misses is a memoryless process; that is, a miss is equally
likely to occur at any point in time. '

2The three characters refer to the arrival process, the service process. and the number of servers respective-
ly. The M signifies an arrival process with a Poisson distribution. The D signifies a constant (Deterministic)
service time.

but extremely rapidly as the bus becomgs saturated. In this region, from Nrs =.8 and up, the
model begins to break down. As the bus utilization approaches 100%, the model predicts that
the length of the queue and therefore the average waiting time become infinite. This is becauée
the model does not take into account the fact that processors waiting for or using the bus do
not generate additional requests. This effect is greatest when the'éverage number of processors
in the queueing system is close to the total number of processors. The model is therefore
inappropriate for analyzing systems close to saturation (as is apparent from the graph above).
The model also predicts a small amount of contention in the single processor case due to the
same effect. For unsaturated systems, the effect is sm.’_:ﬂlrand results in the mode! predicting a

slightly longer average bus cycle than would actually be observed.

" T/s
12

107

—
—frn

2 4 6 . 8 1 Nrs

Figure 6.6. Average bus cycle time vs. Percent saturation

When the bus is saturated, processors will accumulate in the queue, waiting for cycles,
until the average access rate of the remaining processors is less than the service rate (bus
bandwidth). In addition to the queueing cause by variations in inter-request times, there is a
fixed ox;erhead due to these waiting processors. In the limit, Nrs >>1, the average bus cycle

time seen by any processor will approach Ns if queued requests are serviced in FIFO order,

Thus the true curve describing effective bus cycle length will not exhibit the rapid increase in

the vicinity of Nrs =1 seen in the curve above.

The model can be applied to Nu computer system on which TRIX currently runs. The bus
utilization for each processor is about 38%. Using this value, the model prgadicts a throughput for
each processor which is 83% of that of the same processor running withc')m bus contention. The
performance degradation predicted by the model is greater than that observed. This is
unsurprisiﬁg since the total bus utilization is 76%, approaching the limits of the models
applicability. '

Caching decreases the effect of bus conteﬁtion on processor throughput in two ways.
First, by reducing the rate of bus accesses it reduces the amount of actual con}ention. Second,
it somewh.at insulates the processors from the fact that the effective bus cycle length has
_increased since only a small fraction of memory accesses actually reqhire bus cycles. These
effects can be seen in the table below. 1t gives the predicted bus cycle length (normalized) and
the processor degradation factor for various conf:igurations of a system in which each processor

contributes a bus utilization of 10%.

Average | Average Effective
N | Nrs queu?a‘. cycle processor

N
length length throughput

2 | 020 0.23 1.12 98%
3 | 030 0.36 1.21 98%
4 | 040 0.53 1.33 97%
5 | 0580 075 1.5 95%
6 | 0.60 1.05 1.75 93%

7 | 070 1.52 2.1 89%

Because of the dual effect . of caching on bus contention, the amount that processor
performance is reduced is actually very small. Even in a heavily loaded system, bus contention

only reduces throughput by 11%.

6.2. Kernel Contention.

Another situation where processors compete for access to shared resources is found in
the kernel. Since the kernel data base is interlocked, only one processor can use it at a time. If
several processors simultaneously desire access to the locked structures, all but one will spend
time waiting in the lock routines. This waiting time decreases the effective speed of the

processor in much the same way as bus contention, though at a higher level.

The degree to which this kernel contention éffects performancé depends on thé.fraction of
time each running thread (and therefore each processor) spends. in the kernel. This fraction is,
in turn, dependent on the program executed. The table below shows the results of profiling
some typical programs. Computation intensive progréms such as PUZZLE spend very little (less
than 1 6) time in the kernel. The C compller which uses a fair amount of 1/0, spends about 10%
of its time in the kernel. Small utility programs such as the directory list program Is, can spend
up to 60% of their time in the kernel. ThlS large percentage of kernel time comes from the fact
that these programs are very short and do very little computation. In the case of Is, a significant
part of the time spent in the kernel 1s due to the overhead of readlng in and executmg the

\
command file.

Program | User | System | Kernel

puzzle 98% 0% 1%
c68 90% 1% 8%
is 18% 23% 58%

The degree to which waiting for access to kernel structures decreases the effective
performance of processors can be estimated using the queueing model developed for bus
contention. The model is somewhat less apt in this Case since the service times for kernel
accesse‘s (average amount of time spent in a locked section) is not constant. It can still provide,

however, an idea of the magnitude of this effect. The table below shows the amount of

performance degradation expected from kernel contention assuming a mix of tasks which spend

15% of their time in locked sections.

Eftective

N | throughput

2 97%
13 94%

4 90%

B.2.1. Optimization

There are several ways in whichlthe system can be optimized to reduce the amount of time
programs spend in the kernel, which in turn will reduce the performance effects of lock
contention. The most straightforward of these is to optimize the kernel routines so that they run
as efficiently as possible. This iE worthwhile even for a single processor TRIX and must be done
when TRIX is converted to a production system. Aside from this, there are some structural

changes to the kernel which should reduce the frequency of locking.

Probably the most frequent requests for the kernel data base are due to processors
looping in the scheduler. Idle processors (those not currently running '.any thread) loop,
searching through the lists of scheduled threads. This has to be done while the data base is
locked, otherwise threads and domains could be inserted or deleted from these lists while they
were being read causing confusion. This can be a large overhead on the kernel interlocking,
“delaying processors which need to lock the kernel to do something useful. An optimization can
be made to the scheduling loop code which will greatly reduce this overhead. After one pass
through the list of threads, if no suitable thread is found, idle processors should sit in a loop
(having unlocked the kernel) testing a NEW_WORK flag. Occasionally the processor would time
out-of the loop, and repeat the search (hoping the situation has changed). The NEW_WORK

flag would be cleared after an unproductive search for a thread to run and set when a new

.47 -

thread is spawned or an existing thread awakened, immediately breaking processors out of the
idle loop to run newly available thread (this keeps the processors from waiting for the time out

when there is work to be done).

Another method of reducing frequency of kernel calls is to_ decrease the number made by
commonly used subsystems. One way this can be achieved is' Aby designing the 1/0 structure
with a minimum number of "levels of abstraction"”. Each level typically makes multiple requests
to the neit lower level, and each request requires kernel intervention. Careful design of these
utilities can reduce this overhead. Another approach'is allow very low-level, frequently used,
trusted systems to bypass the normal reg'uest/ reply mechanism and use direct procedure calls

instead (system utilities can probably be trusted more than typical user code).

Decreasing the granularity of kernel interlocking is not likely to decrease contention since
each processor must still spend the same amount of time in locked sections. Although the time
spent in each locked section would decrease, the number of times locked sections would be
requested would increase. Their produ_ct, the utilization of the locked sections, would remain
about the same as would the average l!waiﬁng time. In fact, overall performance is likely to
decrease since the effect of locking overhead will have increased. Another possible approach is
to use several separate interlocks in the kernel, each lock protecting a separate section of the
data-base. For 'example the scheduling and unscheduling of threads can be interlocked
separately in each domain. A proé%ssor executing a wakeup, for example, would not interfere

\

with processors in other domains. However, most kernel calls must use several resources so the

advantage of separate locks is unclear.

6.3. Utilization

The remaining factors which affect system performance are functions of the user’s
programming and working styles. They include the degree of contention between threads for
access to 170, and the manner in which thréads are used as programming constructs. These
affect perceived performance by determining the extent to which multiple processors are

utilized.

One issue is the degree to which user domains support multiple running threads. A given
domain, say a file system or network server, can be kept always at high priority, so that only one

thread at a time can run in it. This assumption simplifies writing the code of the domain since

data objects and critical code sections do not have to be explicitly interlocked. However, this
means threads may occasicnally have tlo wait to start executing in the domain because another
thread are already running in it. This in itself is not a problem since the processor that was
running the thread immediately searches for a new thread to run. However, the overhead of
switching contexts in order to run a new thread will decrease '{hat processor's productivity. In
addition, it is possible that the processor will remain idle because there are no other runnable
threads. It is worthwhile, especially in commonly used subsystems (file systems, terminal

interfaces, etc.), to code the domains so that they can support more than one thread at a time.

6.3.1. Device Contention

At the lowest level of 170, transactions-are naturally seriaﬁzed‘. Only one physical disk
block can be accessed at a time; only one character can be sent to a TTY at a time. As threads
compete for access to IO devices, bottlenecks will occur since these tasks are processor
independent. If a two processor system is supporting twice the number 61‘ users as a single
processor system, the amount of 1/0 and disk transactions can be expected to double (more or
less). This can lead to bottlenecks unless the 1/0 resources have doubled. Often increasing the

size of the various system caches {such as the disk block cache) can help.

6.4. Results

A series of experiments with multiple thread tasks were run to measure the performance of
TRIX. One conclusion from these was that TRIX running on the current dual processor Nu
hardware is dominated by bus contention and disk latency. One experiment ran two copies of
the PUZZLE program simultaneously. This program was chosen because it is small and
computation intensive. The effects of disk latency are therefore at a minimum. This task was run
on three configurations, a single processor system, a two processor system with one processor
immobilized in a tight loop (though still requesting bus accesses), and .a two processor system

with both processors active. The execution times are shown in the table.

.49 -

Experiment Time (s.)
1 proc. 59
2 proc. 1 active 80
2 proc., 2 active 41

The difference between the first and second entries is‘dye to bus contention. The difference
between the second and third entries shows the effect of utilizing a second processor. Both
processors are completely utilized in this task, and the speed at which the task is éompieted is
actually doubled. The results of experiments with I/O bound programs are of course less
impressive. Utilities suc»h as Is are dominated by disk and’ system overhead and run serially on
the dual processor systems. The majority of taslfs, mixs of compilation, compute bound
programs, string parsing, run faster on the dual processor system, but not nearly twice as fast.
Oné important factor affecting system performance or; the current hardware is that many

programs are dominated by disk accesses, which must be performed serially.

6.5. Summary ~

The maximum throughput of eaéh processor in a multiprocessor system is limited by two
factors: bus contention and kernel lock contention. The effect of each of these can be analyzed
separately and modeled to predict the maximum performance of TRIX on different hardware.
The effect of bus contention depends on the number of processors in the system, the average
access rate of each processor, and the cycle time of the bus. The effect of kernel contention is
determined primarily by the fraction of time a given job mix (when run serially) must spend in the
locked sections. For a system with two cached processors running tasks spending 15%, an
atypically large fraction, of their time in locked sections, the performance of each processor is
reduced by 3% by kernel contention and 2% by bus contention. The maximum throughput of the
system would be 190% of that of a single processor system. Adding a third processor should

bring the throughput to 2.7 times that of a single processor system.

- 50 -

7. Summary

A multiprocessor TRIX system has been built which meets the stated goals. The syétem
treats all processors symmétrically, assigning any task to any free processor. The kernel
supports execution by multiple processors simultaneously. Operatsons on critical sections of the
kernel data base are locked to insure the safety of the system. The opera’non of the system is

free from deadlocks between processors.

The structure and semantics of TRIX allow it to be adapted to a multiple processor
implementation fairly elegantly. Kernel calls provide -only the minimal functionality needed to
implement the virtual machine model. Mosth"system" fea‘gures are supported at user level. This
reduces the problems of interlocking the kernel. There are only a small qumber of kernel entries
whiéh need to be monitored, and ‘processors pe(ss though the kernel quickly. This means that
the latency for processor access to the kernel is small, so mutual exclusion on the critical
sections in the kernel does not greatly. degrade performance. The interaction of the TRIX kernel
with the input-output systems is very small. Only at the lowest level of device handling, the
interface of the user thread and the interrdpt level processing, is the kernel involved at all. Even

at this level, the amount of interlocking needed is small.

In contrast to TRIX, the UNIX 1/0O systems are all part of the kernel. This makes the UNIX

kernel much larger and more complex than the TRIX kernel, with much more interaction
\

between the various subsystems, suc{\ as 1/0 and processes control. Because of this, the UNIX

kernel is difficult to properly interlock.

The performance of multiprocessor TRIX running on the current incarnation of the Nu
computer hardware is dominated by bus contention and disk latency. Bus contention on this
hardware limits the maximum throughput of the system to about 140% of that of a single
processor system. Discounting the effect of bus contention, the performance of the system
when running compute bound tasks approaqhes twice that of a single processor. The increase

for 170 bound tasks is naturally less.

The major factors affecting the maximum throughput of the system are bus éontention and
contention for locked sections of the kernel. The effect of these has been modeled for a system
in which several processors with caches share a common memory bus. The throughput
predicted by the model depends on the parameters of the hardware and the characteristics of

the job mix. A typical choice of pararheters yields predictions for relative throughput of 180%

- 51-

and 270% for a two and three processor system, respectively.

At some point, it becomes an economic issue whether or not to use additional processor in
a system. There is a point of view Which holds that a multiprocessor system is not worthwhile
unless all of the processing elements are fully utilized. This position becomes increasing
obsolete as processing elements become cheaper. A more appropriate péfspective is concerned
with whether the set of tasks running on a system are completed as quickly as possible.
Additional processors will increase the effective computing power of a system, but this increase
is subject to diminishing returns. The increment added by each processor diminishes as

contention effects begin to dominate the system. There is, however, an optimum point on the

cost-performance curve

- 52 -

REFERENCES

[Coffman73] E. Cofiman, and P. Denning, Operating Systems Theory, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey,1973.

7

[Goble81] G. Goble, and M.Marsh, A Dual Processor VAX 11/780, Purdue University, 1881.
[Kleinrock75] L. Kleinrock, Queueing Systems, John Wiley & Sons,Inc., New York, 1975.

[Ritchie78] D. Ritchie, and B. Kernighan, The C Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1978.

&

[Thompson78] K. Thompson. "UNIX Implementation", Bell System Technical Journal, Bell
. Laboratories, Murrey Hill, New Jersey, 1978.

[Sieber83] J. Sieber, TRIX: A Communication Oriented Operating System, M.S. Thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1883.

[Wardg0a] S. Ward, "TRIX: A Network-oriented Operating System", Proceedings of
' COMPCON '80, San Francisco, 1980.

[Ward80b] S. Ward, "An Approach to Personal Computing”, Proceedings of COMPCON 80,
San Francisco, 1980, <

[Wulf73] W. Wulf, et.al, HYDRA: The Kernel of a Multiprocessor Operating System,
Carnegie-Mellon University, Department of Computer Science, 1973.

[Wulig1] W. Wulf, R. Levin, and S. Harbison, HYDRA/C.mmp An Experimental Computer
System, McGraw-Hill Inc., New York, 1881.

