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Abstract

TRIX is a general-purpose, multi-user, interactive operating system. It is designed to support
investigations into communications systems and their semantics in both a research environment and a
“production situation. The communications primitives available to the user have been used to
implement the following modules outside of the kernel:

e 2 file system
¢ terminal support
e an integrated network server

e a window system

TRIX is implemented as a small kernel that has a high degree of portability. This thesis discusses
the evolution and current structure of the kernel and describes some of the ways in which it is being
used.
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1. INTRODUCTION

Early time-sharing systems were primarily motivated by a desire to partition a single physical
machine into many virtual machines. l.ater work was driven by an interest in allowing sharing among
the users of the virtual machines while controlling their access to "private” information; the resulting

systems cmphasized protection and sccurity.

The current trend in operating system development has been towards replacing virtual processors
of a time-sharing system with multiple real processors. These multi-processor systems initially used
tight coupling of shared memory systems, but are evolving towards the loose coupling of a network.
Though this move to geographically isolated processorg ‘makes protection more tractable, it also makes

the cooperation that resulted from timesharing difficult to achieve.

These 'changes in sofiware systems reflect the evolution of hardware in the last two decades.
-Timeshared operating systems were developed in response to the high cost of mainframes: the
individual users of a mainframe each wanted his own machine but the cost waé prohibitive,
Timesharing a mixture of (high priority) interactive jpbs and (lower priority) computationally bound
jobs increased total throughput with little impact on eéch user’s access to the machine. Device channels
and devices using Direct Memory Access (DMA) or-interrupts were developed gave each user an
independent “processor” during 1/0. Since these special purpose processors cost less than a
mainframe, this was an inexﬁensive way to obtain substantial amounts of additional processing power.
However, the current trend towards computatiom\a]ly intensive 1/0 (e.g. high-density bit-map displays)
eliminates much of the asynchrony of 170 to the terminal and reduces the processing power of a
system to that of its CPU clements. Fortunately, the cost of processing clements has decreased to the

point that the use of multiple processors is now economically feasible.

The TRIX Operating System is designed to take advantage of recent hardware developments by
supporting communications in a distributed environment. It gives user programs the same interprocess
communications mechanism that it uses internally to implement various System functions. For
cxample, the object naming semantcs of a file system is not included in the underlying structure of
TRIX. The user’s ability to implement such structures (as opposed to making them system primitives)

demonstrates the flexibility of the available mechanisms.

The hardware configurations on which TRIX can run include processes running on both real and
virtual parallel processors, with varying degrees of coherently shared memory. Many existing

operating systems rely upon the fact that it is casy to achieve coherent memory sharing among



multiple virtual processors running on a single real processor. But, when the bandwidth limitations of
a shared memory bus require more loosely coupled systems, a different communications structure is

required. TRIX has been designed to unify tightly and loosely coupled communications.

The goal of the TRIX design effort [WARDI, WARD2] was to develop zlifnvopcrating system that
is uscful in investigating the organization of multi-processor systems and their supporting
communications mechanisms. Much of TRIX’s power results from a mechanism that does not force a
distjnction.bctwecn local and remote communications. Its implementation is based upon an abstract
machine that minimally defines the semantics of information sharing thercby permitting a variety of
implementation strategies depending on the situation.” This abstract machine lets TRIX use a single
communications primitive for all interprocess communications, witho{lt degrading the performance of
simple tasks that can be run on conventional operating systems. This idea, that tlie ~vi[‘tual machine (as
specified by the kernel) need not be as rigidly defined as the underlying hardware, is a departure from

most common operating systems. -

The original TRIX communications facility (TRIX-0) was a nonblocking, message passing
mechanism. As work progressed this implementation ‘was found to have deficiencies often overlooked
in the literature. These deficiencies led to the development of a revised system, based on a remote
procedure call mechanism. Both the original implementation and the revised systems will be discussed

with emphasis on the tradeoffs that were considered during their development.



2. COMMUNICATIONS SEMANTICS .
This scction outlines a framework for discussing communications structures in isolation from the

surrounding operating systems. The resulting model allows us to compare structures along with

respect to several semi-independent measures:

+

e the types of relationships supported between communicating processes,

e the semantics of the communications system (as defined by a list of "features™ that
it supports),

e the cost of communicating,

e assertions that can be made about the state of the communications system at any
point in time.

2.1. Relationships Between Communicators

-. . Depending on the situation, the relationship between communicating processes can range from
master/slave (requester/handler) to coopefation among equals, and from mutual trust to mutal
suspicion. Because each is appropriate in some situations, a corﬁmunications mechanism should not
preclude any of them. A related issue is whether l‘the communicators can trust that everyone is
~ adhering to the proper protocols, and whether this. adherence is enforced or is simply a set of
conventions. It is important that a malicious proéess be unable to impact the operation of other
independent processes. In a distributed environment with no central authority such immunity can be

crucial since there may be few situations in which the communicators trust each other enough to
N\

obviate enforced conventions.

The passing of control among processes is also an issue. Possibilities include; message based
send/receive, procedure based call/return, and a data driven approach in which the data itself passes

control via rcads and writes.

Finally, the methods by which processes synchronize their actions is also considered a part of the

communications system (though it has oficn been discussed independently inthe literature).

2.2. Semantics

Most communications systems are devcloped from the standpoint of desired functionality. For
example, if a desired application (such as a network server) can not be implemented with the existing
communications mechanisms, during its implementation the required functionality is specified and the

minimum sufficient mechanisms added. Some useful semantic features of the communications



mechanism include the following.

2.2.1. Multiplexing Multiple Requesters Into a Single Handler

An ingredient missing in most communications schemes is a mcchanlism that lets a single
centralized service to simultancously do work for more than one user. Such simultancous service is
difficult to implement because the simplest communication schemes involve some form of blocking
[7/0. In such an environment, it is difficult for one process to interact with many other processes

without blocking on any single one.

2.2.2. Asynchronous Communications

When using a sophisticated communications mechanism we can increase throughput by
partitioning an applications program into multiple activities that can run in bara]lel on the multple
processors of a distributed system. One situation when an otherwise serial program often allows
concurrent activity is during 1/0. To take advantage of this concurrency a user should continue
computing as soon as possible after initiating communications with an 1/O handler. This is most
simply done by making the 170 mechanisfn invisibly asynchronous. For example, doing disk 1/0
through a read-ahead/write-behind cache lets the user continue executing before the actual I/0

completes.

"~ A problem with hiding the asynchrony fron\1 the uscr in this way is tha[ the status returned by
such an 170 operation does not reflect completion of the operation, but rather its initiation. A
consequence of errors not being reflected back to the user is that, when writing through a block cache
it is difficult to guarantee that the information has been stored reliably to disk. One solution’is to
make 170 explicitly asynchronous, but this is more complicated for the user since it requires that he
explicitly synchronize his 170 activities, Note that the fact that two "independent” processes are
communicating does not necessarily imply concurrency; it may be that one process is always waiting

for the other, and that a single point of activity is passed between them,



2.2.3. Flow Control and Artificial Serialization

Two communicating processes are not always maiched in speed. In systems constrained to avoid
communications loops, a common solution to the flow control problem involves blocking the faster
process when it gets too far ahead of the other. This blocking bounds the amount of buffer space (or
some other communications resource) needed to complete the computation. A cleaner solution is 0
limit the faster one in a semantically transparcnt way; in cffect, scheduling becomes more and more
biased against the faster process until a balance is achieved. This solution is not applicable to most
distributed systems because it requires a centralized scheduler to coordinate the biasing. It is generally
replaced by an approach that puts hard limits on the amount of. traffic over each link of the
communications system. But this approach, because it is no longer semantically transparent, can lead
to deadlocks. There are two conflicting goals here, namély the nced to implement flow control

_mechanisms limit the use of resources, and the need to avoid artificial serialization of running
processes. Avoiding artficial serialization (situations in which one process is waiting unnecessarily for
an otherwiée independent process) is important in deadlock avoidance since these unnecessary data

dependencies can not be anticipated easily.

2.2.4. Controlling and Restricting Communications

In systems that support communications among antagonistic processes it is desirable for a module
-~
to be able to restrict what other modules can communicate with it. This restriction can be based upon
AN

either the identity of the communicator or some verifiable capability to communicate.

2.2.5. Use of Tightly and Looscly Coupled Processors

Underlying the difficulty of implementing many of the features outlined here is the desire to
allow the user to deal transparently with all types of distributed situations. For a single
communications mechanism to be able to deal with both tightly and loosely coupled configurations, it
must not depend upon the small latency of Ugh[ly coupled communications. Thus, the semantics of
communications should not be based on shared memory, since it is difficult to map such a mechanism
cfficiently onto loosely coupled processors. However, the use of shared memory should not be

precluded when it is available, since it can often significantly increase performance,
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2.2.6. ‘Transparent Interposition and Encapsulation

A uscful tool in dealing with transparent communications is to allow the insertion (interposition)
of processing in a communications path. This interposition makes it possible to isolate a process from
the rest of the system, thereby "encapsulating” it. Semantically, this encapsulation lets a module’s
functional environment be modified at will. Encapsulation may be used to impl‘cmcnt per-user policies
for limiting resource use (which in turn can be used to support service requests from a network), or to
monitor and control a module’s activity with respect to the outside world. It can replace the concept

of identity on which non-capability systems base their sccurity, and has been valuable in debugging

modules that have complex interactions with other parts of the system. _

2.2.7. Universality of Communications

) “When a system cannot support encapsulation, that shortcoming usﬁally reflects a lack of
universality in the underlying mechanism. -Most existing communications mechanisms do not let the
user pass certain types of system-managed information. The result is that communications with some
system-supported objects must use a mechanism unavailable to the user, and it may be extremely

difficult for the user to build some fundamental constructs (such as naming systems).

2.2.8. Expressing Complicated Relationships Between Objects

~

Though communications typically consists Q\f unary operations on some object (rcad, write, etc.),
it is often desirable to express more comblex relationships. In the simplest of these relationships the
user must test whether two or more independent communications paths are talking to the same object.
Other higher level operations (such as locking a group of communications channels as an atomic
operation) can be built as special cases, but it is difficult to integrate them with the mechanisms that

cope with certain types of failures (e.g. software bugs that cause failures of an application module).

2.3. Costs of Communication

Communications should allow processes of varying degrees of independence 10 transmit
information among themselves (so that they can collectively perform a task), both to synchronize
control and to move data. Measures of the cost of such mechanism must be expressed in relation to

the total bandwidth available to the communicators.

The first measurce of the cost of using a specific mechanism is a communication containing no
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data. Such messages are used to transfer control information, and in an ideal situation would be
comparable in cost 10 a subroutine call with no arguments. In real systems, the existence of
independent tasks running in independent address spaces significantly reduces the control bandwidth.
The actual cost is closely related to the number of context switches that the mechanism requires and
how well the required context switch semantics are supported by the hardware. It is also related to the
scheduling overhead that it semantically requires; a mechanism that requires completely synchronous

behavior will often require significantly more scheduling.

The effective control bandwidth is also affected by the power of the underlying primitives
themselves. If many kernel calls are required for commion operations, it is grossly inefficient to supply

the user with a set of primitive kernel functions from which any desired function can be derived.

The most common use of a communications mechanism is for moving data. Thus, the data
_bandwidth between communicating processes is a significant and quamiﬁablevcost of the mechanism.
Anything that forces data to be handled umnecessarily should be avoided. Two specific pitfalls are:
requiring that the data be copied from where it is to some other. place for easy communications, and
forcing layers of a protocol to touch the data even thdﬁgh they have no direct interest in it. We again
distinguish between attempts to avoid unnecessary copying of data in contrast to Sc;mamically

precluding such copying.

2.4. Assertions About the State of the System

The rich communications topology that can result from the use of a gencral communications
mechanism raises organizational problems that are commonly avoided by the hierarchical organization
of most operating systems. For example, in the case of resource allocation, reference counts are not

sufficient to keep track of resource use, and a garbage collected object space of some type is required.

The best hope for reasonable resource management lies in imposing constraints on the use of
communications mechanisms. But there is a tradeoff between overly constraining the mechanisms

(Lhcrcby diminishing functionality) and leaving them unmanageable (thereby dimishing reliability).
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3. CASE STUDIES OF COMMUNICATIONS SYSTEMS

Networks and timesharing systems have existed. for well over a decade. As a result, one might
“expect widely used software systems toi have evolved mechanisms that support robust comimunications.
Although many systems have moved in this direction, each has placed limitations on the use of its
underlying mechanisms that kept it from fulfilling the nceds of many users. W"l’hcse limitiations are a
consequence of the (relatively) low speeds of available networks and the traditional use of timesharing
systems as' multi-user batch systems, both of which have decmphasized the need for generalized

communications.

3.1. UNIX Based Communications Mechanisms

The UNIXT Operating System' [RICHIE] has become a standard for operating system elegance
_ and functionality. However, it contains a number of historical deficiencies which can be traced to its
development at a time when communication was not a driving force. While most of these deficiencies
(notably the minimal support for terminal handling and job control) have been ‘remedied over time,
work to extend the communications mechanisms has had only partial success. In many ways this is
simply a reflection of how well engineered UNIX is: people attemting to add a more generalized
communications mechanism have‘found it difﬁcu}t to extend substantially UNIX’s basic machine
model. More important is the fact that experimenting with solutions to these problems requires
changing the UNIX kernel, an environment 'm\x:/hich it is often difficult to isolate the functionality that

needs to be modified. :

3.1.1. Version 7 UNIX

Communications under UNIX uses three structures:
e signals allow processes to notify each other of unanticipated events,
e a pipeis a synchronized data transport mechanism between processes, and

e the file system’s directory structuré names files and controls their access.

A signal is a user-level interrupt mechanism that permitting a process to designate an interrupt
handler that will be called after a signaling event. Because signals were designed to allow programs to

be notified of user generated interrupts or exceptions (which were expected to occur infrequently), a



-13 -

signal that recurs before the last onc is completely handled may be lost. ‘This problem is aggravated
by allowing one process to signal another using Lhcé kilk) system call. The absence of flow control
(notifying the sender that its signal has been received), makes it difficult to guarantee that signals are
not sent faster than they can be handled.

Another problem is the limited control over the use of the kilk) mc;ﬁanism; only processes

owned by a single user can use signals to communicate. Integrating a uscful control mechanism with

signals requires adding a new mechanism for distributing the capability to send them.

A pipe is a data transport mechanism: a FIFO buffer with two ends, one readable and the other
writable. Communication with pipes is completely “data driven; <ontrol is passed among the
comununicating processes solely in response to the availability of data. As a result, the only functions

pipes support are reading and writing a data buffer.

Like most data driven mechanisms, pipes are simple to use. The implicit flow control and the
limited amount of asynchrony that results ffom the pipelining are sufficient for many simple uses, but
break down in more interesting situations. The most g]aring deficiencies of pipes:

e There is no way for a single server to accept input from more than one user
(because of the blocking nature of UNIX 1/0).

e There is no way to pass control information (to support randomly accessed files or
retrieve the status of a remote file),” a typical problem with data driven
mechanisms.

Even the use of the FIFO buffer is a mixed blessing. Though it effectively pipelines
communications and reduces the latency between processes to allow greater concurrency, copying data
to and from the buffer increases the cost of the mechanism. This copying is semantically nccessary
since there is no way for the writer to be informed when a delayed write completes (signifying that the

writer’s data buffer is available for reuse).

The file system’s hierarchical directory structure supports a single name space for files. Users can
access shared files to communicate. This is the only name space in UNIX. that supports controlled
sharing of information. Unfortunately, other communications mechanisms are not integrated into the
name space. Only directories and files can be named and accessed through the file system; there is no
way to name and distribute access to a pipe. Other communications functions can be built using file
system mechanisms and agreed-upon conventions, but because these conventions are not cnforced by
the system, they are unacceptable for gencral use. (For example, the file creation primitive can be

used to implement lock files and hence synchronization, but users must voluntarily test the lock.)
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3.1.2. Rund Ports

Rand ports [BALZER] integratc an cxtension of UNIX pipes into the file system’s naming
structure. The appeal of integrating pibcs into the normal file naming scheme is that it adds little new
user level mechanism. Unfortunately, it is insufficient in even simple cascs. qur example, the open on
a port simply returns a file descriptor that lets opener communicate with the server. Since the only
access verification is at the point of contacting the name in the file system (rather than after the
handling process is allowed to validate the existence of the requested file on the remote machine),

there is no way for an open request to return a "'remote file not found" error reply.

In addition, every port needs an active process Waiting on it even when it is not in active use.
Though this approach might be adequate to implement a limited number of special handlers
supporting (well known) services, if it were used heavily it ‘would require an unbounded number.of

_idle processes waiting to be contacted. ¥

Ports also support a capacity() call thaf lets the user determine whether an I/0 requést on a port
will block. An additional call awaif() lets the port’s reader block while waiting for any of his ports to
have data available. These extensions let a single handler read from more than one port, thereby

supporting simple multiplexing.

3.1.3. MPX 170 System

The MPX 170 System was introduced into UNIX to allow the uscr to build communications
muldplexors. It takes the approach of separating the communications medium from the multiplexing
mechanism. A channel is the actual communications medium; it supports a superset of the semantics
of pipes, files, and the terminal driver. A group does the multiplexing; it structures the data on both
input and output strcams to identify with which stream the data is associated. By giving the user

warning before blocking, it also supports 1/0O on more than one stream.

Like a RAND port, a channel may be created with a name in the file system. When the name is
accessed, the handling process is notified and may either accept or deny the access. This option on the
part of the handling process is extremely useful in building a network-based remote file access system

since it lets the remote file’s existence be verified before the open completes.

+At one point, 1 developed an acrive inode mechanism for UNIX [SIEBER] which allows specially marked files to ini-
" tiate active processing when they are accessed: the spawned process was connected 10 the opening process by a pipe.
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3.1.4. Conclusions

Most of the work done to extend UNIX has centered around integrating a communications
channcl into the UNIX file name spa&c and allowing a single server to accept service requests from
more than one channel. Little work has been done to address the limitations resulting from use of a

o
data driven communications channel. Although these extensions are acceptable for simple mechanisms
(e.g. remote login) they still do not support random access of remote files. As a result, there is always

an asymmetry between local and remote files.

Another problem is that UNIX's concept of what coﬁstitutes an asynchronous activity (a process)
is too expensive to use in a number of situations. For éxamplc, using multiple processes to implement
a full duplex terminal link program (telnef) involves a full address space context switch on each typed
(or echoed) character; at high data rates this is prohibitive. In simple cases the pdlli’ng mechanism that
_is added 1o blocking 1/0 can simulate real asynchrony, but it is insufficient in vthe more complex cases

that arise when communications takes a more central role in system operation.

3.2. Message Passing Systems

The term “message passing” is used in the popular literature to describe a variety of different
communications schemes. Usually, it denotes a general implementation. In some cases it refers to the
modular structure that rcsﬁks from using such schemes. We will describe a specific style of
programming and use "message passing” to rc\f;\:r to an underlying mechanism supporting it. It is
important in this discussion to understand that the distinction between message passing and other

styles of communications is mainly an issue of emphasis rather than strict functionality.

. In a message passing system [LAUER], the universe is composed of independent proéésscs.
These processes share no portion of their address space, and are long lived compared to the time for a
single communication. The ‘only communications mechanism between these processes is the act of
sending and receiving messages. The result is a master/slave rclationship between two processes in

which one is generating a stream of messages for processing by the other.

A message is a small block of memory in which the sender places all the information the receiver
will nced to perform the requested service. The receiver's action is to dispatch on the function to

invoke the appropriate picce of code.

Message passing systems generally include a capability mechanism to control which processes can

communicate with which others.” A message passing capability is a protected object empowering its
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owner to send messages to another process. To support a communications topology that can change

over ume, messages are allowed 1o contain some number of capabilitics.

The act of communicating involv& pulting a message in the receiving process's pending message
queuc; the fundamental operations are send) and receive(). Send() adds a new message 1o the
pending queue of another process. Receive() removes a pending message from the calling process’s
queue 1o allow it to be processed. Often, receive() lets the user wait for some class of messages based

on their source (source specificity).

A rep() opcration may be included to let the receiver return status information. It can be
modeled as the implicit inclusion of a use-once capability letting the rceeiver return a message. Source
specificity is most commonly used to let a process wait for a reply without accepting any new

P

messages.

- . . Part of the appeal of message based systems is that they map well onto a Joosely coupled system.
There are two reasons for this: First, the message itself is a compact encapsulation of ali information
necessary to satisfy the request for service. Second, all synchrénizatibn is implicit in the queue of
outstandingmességcs waiting to be serviced. Both ﬂme finite message and a queue of outstanding

service requests can be implemented without any tight coupling.

Another advantage of message passing is that it is inherently a split transaction protocol (a
protocol wherein there may be multiple outstanging transactions). Since the sender of a.message can
continue running without waiting for a reply, the outstanding message is viewed as an asynchronous
task that has been spawned as part of the send. This asynchrony important when a communications
medium has widely varying latencies, as does network communications. The ramifications of modeling

a message as an asynchronous task will be discussed in greater detail later.

3.2.1. TRIX-0

TRIX-0 is a message-based implementation of the TRIX kernel -that has been used to
experiment with message passing as the underlying structure in a general communications system, It is
a nonblocking message passing system in which messages are passed across interprocess links known as

porls.

TRIX-0 supports four basic communications primitives: send(), receive(), forward(), and reply().
The forward() opcration allows a process receiving a message to dispatch it to another process and

have the reply go directly to the original sender. It is an optimization to support the message passing
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cqui\'zﬂcm of 1ail recursion |STEELE]L

Each message contains: an operation-code (opcode). some uninterpreted data (passed by value),
an arbitrary size buffer of data (faasscd by reference), and an (optional) pointer to a port that the
receiver can usc. ‘The opcode specifies what request is being made of tljc handling process and by

convention is chosen from a single name space of operations. The data passed by reference (dara

bufffer) is accessed using a pair of system calls, mread() and mwrite().

When a process starts it has a single port, known as the environment port, to which it can send
messages. This is the process's initial contact with the rest of the world. It accepts a number of

messages that let the process access 1/0 devices and the root of a file system name space.

Sending a message is a nonblocking operation. In order 10 avoid the problem of a single process
swampiﬁg another with messages a simple flow contrz)l scheme is incl_ude‘df only one outstanding
message is allowed on each port. Thus, communications is not a simple split transaction mechanism
and the user of a port is required to manage a queue of messages wailing to be sent. Hence the
parallel processing that the message "tasks” represent is" artificially serialized. This serialization
represents an unwanted data dependency in the communications system, and without special care can
result in a deadlock. To guarantee that the TRIX-O file system (the most complicated of the handlers
we implemented) could not deadlock, the protocol for looking up a file in a dircctory was made

considerably more complicated.

~

Conceptually a dircctory is simply a process that associates a port with a name. It accepts enter
messages (containing a port and a name) that create the associations, and Jookup messages (containing
a name) that return the associated port. Looking up a compound name should be recursive:
lookup(dir,"n1/n2") --> lookup(lookup(dir,"n1"),"n2")). Organized in this way, the first (outermost)
lookup request is made by the user and the subsequent (inner) requests are made by the file system.
This organization leads to a problem since file system resources will be tied up while it waiting for
‘replys from the recursive messages. (These resources may be significant since the file system is
pcrforming the stack management nccessary to simulate the per-message tasking.) Because any port
can be entered in the directory, these inner requests may be to a process other than the file system. In
that case, the use of resources by the file systém (and thus its reliability) can dcpend upon the
reliability of an unknown handler. Hence it is impossible to bound the resources a file system process
might neced to fulfill all legal requests. In the worst case, it can run out and deadlock. This problem

stems from the impossibility of associating the file system’s resource needs with the process sending it a
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message.

An alternate implementation makes lookup iterative. In this case the entered port can only
affect the initiating process's reliability. An unfortunate side cffect is that parsing a multilevel name

generates a surprisingly large amount of traffic.

Using a library of UNIX system call write-arounds (library routines that emulate the UNIX
environment under TRIX). we were able to compile and run UNIX commands. Our benchmark of
the communications mechanisms and the file system (which ran as a user process) was running the
UNIX "Is -1" command (to list the contents of a directory and the state of each of the contained files).
Its speed was extremely disappointing. Later compaﬁsons with the same command, run under the
version of UNIX (NUNIX) brought up on the same hardware, showed that it was about 1/20 the

latter’s speed.

- .. " Quite a bit of investigation was needed to explain this speed difference. Initially it was assumed
to result from a combination of the relatively slow speed of the disk and the fact that the TRIX-0 file
system had no cache for disk blocks as does UNIX. However, ﬁnplementing suéh a cache resulted in
only a 30% -spcediup. |

Further investigation showea that the most significant mistake consisted of choosing the wrong
set of primitive messages upon which to build file access and other high level protocols. In the name
of aesthetics (and to allow complete encapsulation of processes) we chose an extremely simple set of

low-level primitives, and few of the operations -we desired mapped even indirectly onto them. This

inefficiency was further aggravated by the unduly complicated protocol for opening files.

Under UNIX, N+42 system calls are needed to list a directory with N entries. (One to open the
directory, one to read its contents, and one to get the status of each of the N entries.) Under TRIX-O
the number of messages sent was over 10 times that. Each message represented four system calls
(send(), receive(), reply(), and receive()) not including the mrcad() and mwrite() calls used to access
the data buffer. The file status write-around (fstat()) had the highest ratio of TRIX-0 to UNIX traffic
because its speed was dominated by the time to set up and break down connections, an operation that

we did not anticipate being in the inner loop.

Though this initial implementation was dcmoralizing. it did demonstrate that a message passing

system can support adequate amounts of traffic, if the traffic is used cffectively.
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3.2.2. DEMOS

The DEMOS Opcrating System [BASKETT] is a message based communications system written
for the CRAY-1. The interprocess communications operations DEMOS supports are: send(), receive(),
repli(), and move(). Send() and reply() transmit a message over a }ink 10 aqgthcr process; receive()
waits for and returns the next pending message in a specified class. Four types bf links (request,
resource, reply, and gencral) each allow a slightly. different class of communications. For cxample, a
reply link can only be uscd once; its owner loses the ability to use it after sending one reply message.
The different link types are used to restrict the communications so that two unrelated processes can

only initiate communications through the switchboard. In this way, the.operating system is guaranteed

to have a hierarchical organization and deadlocking is avoided.

A link may contain a pointer to a data area in the sendfng process; move() lets the owner of such
_a link access that data. If the link containing the data area pointer is a réply link this pionter is
~ semantically equivalent to the data buffer included by TRIX-0 in the message itself. This kind of
pointer can be used to emulate shared memory rcgions between brocesses by placing it in a non-reply
link. These shared regions are not supported difectly because of limitations in the memory

management hardware on the CRAY-1.

DEMOS’s communications protocols are general enough to support many system functions.
However, to alleviate probfcms resulting from artificial serialization and to make garbage collection
tractable, it has limited abilities to support opc;a\ting system extensibility. DEMOS’s use of message
passing shows that a message passing system can be used both for interprocess communications and to
structure the operating system itself. These constraints on how the mechanisms are used reflect the
realities of message passing; a pure message passing system is difficult to use in a general way. “Also,

questions as to how the mechanism interacts with virtual memory never arose in the context of the

DEMOS implementation (a CRAY-1).

3.2.3. ACCENT

ACCENT [RASHID] uses message passing more aggressively than either TRIX-0 or DEMOS. It
is philosophically very similar to TRIX-0 in that it tfies to provide a virtual memory system with
transparent network communications. The most significant difference is that ACCENT is committed
to solving organizational problems that led us to abandon the use of message péssing. Because of this

commitment, its message passing mechanism is considerably more complicated than those of TRIX-0
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and DEMOS. In particular it includes the following!

e A software interrupt mechanism which notifies a compute-bound process when an
asynchronous message is received. This is necessary to let such processes respond
quickly to newly arriving messages without periodic polling.

e A limit on the number of messages that can be outstanding on any port. Under
TRIX-0 overrunning this limit would result in the sender getting an crror; this
necessitated the more complicated file system name scarch. ACCENT gives the
sender three options as to how to deal with this limit: the process can be
suspended until there is space, it can return immediately with an error, or it can
return immediately and get an interrupt when space becomes available. “These
options suffice for a number of common situations including: a user process
communicating with a server, a datagram style message that the sender does not
care about, and a server process communicating with a user process.

e A timecout on the receipt of a message. This wakes up the receiver if no new
messages have arrived after a certain interval. -

These extensions are designed to solve many problems that stem from the use of messages to represent
-asynchronous tasks. Though they deal adequately with a number of common situations, when
message passing is used as the basis of all communications special cases arise, requiring additional

mechanisms.

3.2.4. Conclusions

While investigating the performance of TRIX-0, certain issues arose that led us to reconsider
message passing as an underlying communications mechanism. Many of these problems resulted from

viewing messages as independent tasks and the program organizations that support this view,

One organization that significantly simplifies stack management is for a receiving process 10 view
each incoming message as an interrupt. (In the case of ACCENT, a message’s arrival may in fact
gencrate an interrupt.) This organization lets a single stack support all the asynchronous activity but
requires that messages be handled in controlled ways: a message should be replied to (as are

interrupts) before the next one is dealt with.

Programming methodologies which use an explicit return PC for a continuation after subroutine
calls can climinate the use of a stack. Although this type of continuation lets handlers exhibit more
complicated patterns of asynchrony, onc pays the price of being unable to use recursive stack-oriented
Janguages.” The generalized interrupt model is quite sufficient to support (for example) a real time

~process control system, with a single running task and asynchronous events triggering state changes.

In designing and implementing some TRIX-0 subsystems (file system, network server, and
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window system) these conventions were pninfu] to live with, and we felt that forcing users to do so
would limit their interest in using the system. We preferred to view cach incoming message as an
independent task spawned by the sender. To support this implementation, each receiving process ran
a simple multitasking system (including stack management). We fclt thi; additional complexity was

justified, since the use of multiple outstanding messages is what lets the user specify concurrent

activity, hence letting multiple processors work together to increase throughput.

In effcct, the model we tried to approximate is one passing full continuations as embodied in the
message passing of ACTORS [HEWITT] and the MU Calculus [HALSTEAD]. In this model the act of
sending a message spawns a new task and its continuation is ac}ual]y a complcte process state. This
process state is used as the new environment in which processing continues after_ the reply. A simple
return PC was a simple step in this direction, unfortunately too limited for our needs. Implementing a
task stack in addition to the PC was a closer approximation to the desired mechanism; it sufficed to
support the C execution environment but required that the send() mechanism block the sending
subtask unlti] the reply arrived. Hence a message send no longer represented a new task, and another
mechanism was required to provide the desired Ssynchrony. This blocking send mechanism obviates
copying the sender’s stack into -a continuation stack (which is necessary if the sender continues

running).

A deeper problenﬁ with message passing is that it obscures the structure of the underlying
activity. As a result, it is difficult for the Eg-mel to make reasonable decisions about scheduling and
resource allocation. The best-understood of\these problems is scheduling in message bascd systems.
The following example, based on issues that came up during implementation of the TRIX-0 file

system, outlines the problems associated with using message passing.

We first used the interrupt style of message passing. In that case sending a message was
combined with a receive that waited for the reply, and the file system handled only one request at a
time. This approach was undesirable since it limited the amount of overlapped 170, greatly reducing
the system's overall performance. This perfdnnance degradation was especially significant when
communiéating with devices with long or varying latencies (as might be found in a network virtual
disk): in a file system it precluded having more than onc outstanding request to a disk. Thus it was
_impossible to reorder disk accesses to optimize head movement. What should have been viewed as

totally independent tasks turned out to be artificially ordered by the communications mechanism.

An additional drawback to the interrupt-driven approach was that it reduced the overall



reliability of some modules.  In the case of a single file system process doing file mapping for more
than one disk, 'onc disk’s reliability affected the reliability of files on the other. (For example, if due to
software or hardwarc failures the first disk did not respond properly to a message, files on the second
disk were also inaccessible.) In most operating systems this problem is resolved by trusting disks at
least as much as the file system. Thus it is safe to bound the rcliability.of Lhe aggregate file system
with that of the least reliable disk. In TRIX-0 this solution is unacceptable since it precludes some of
the disks (for example a remote network disk) from being user-level objects. In general, an individual

object’s reliability should reflect only the reliability of objects on which it directly depends.

In our TRIX-0 implementation we used a more robust programming model (our user-level
multi-tasking) and decoupled send() and receive() to allow new rcquésts to be handled while a prior
request was outstanding. This model sufficed for our immediate needs but it Becarr;e clear that the
coming shift to a virtual memory system would reintroduce the serialization problem. Because the
1‘(e‘me] scheduler can not "see” the multiprocessing proceeding inside a single process, a "task™ taking a
page fault implicitly sends a message and waits for its reply before any other processing can continue.
The kerr_xe] cannot schedule a new subtask - this must be done by the internal scheduler, and that is
driven by the arrival of new requests or replies. This serialization becomes yet more problematic when
one considers that received messages can contain a reférence to another address space: Accessing that
foreign address space may result in paging to or frorﬁ a device that the receiver process has no reason
to trust. Under conditions of artificial serialization, all data objects managed by the receiver may have
to wait on this (possibly unreliable) paging devicé\. Note that this problem does not depend upon how
~ the message is implemented. Instead it reflects the kernel scheduler’s inability to manage message

parallelism properly. Though message-based systems are isomorphic to procedure-based systems with

respect to functionality [LAUER], they differ in regard to amounts of parallel activity and where such

activity is serialized.

If tasking were explicit, artificial serialization could be completely avoided. Only those tasks
dependent on a particular paging device would get hung up in case of that device’s failure. The
TRIX-1 kernel is predicated upon the idea that parallel running tasks must be visible and controllable

by the kernel.



3.3. Other Systems

33.1. - TOPS20 Sharcd Memory

The classic example of a shared memory operating system is the MULTICS Timesharing System
[ORGANICK]. However, it introduces a number of complications, such as dynamic linking, which
complicate the issuc of using shared memory as a communications medium. As a result we will

concentrate on shared memory communications under TOPS-20 [J.

Interprocess communications between unrelated processes under TOPS-20 is built around two
mechanisms: a message based interprocess communicatibns mechanism; and regions of sharcd memory
(initiated by mapping the same file into two process’s address spaces). [f this shared memory were
associated with a synchronization mechanism, the result would be a fu‘nc‘tionally complete
_communications system. Programs would not have to loop while waiting for a memory value to
change, a particularly uscful feature. The-use of mapped files to set up shared memory regions
integrates it into the naming and protection of the TOPS-20 file system. Unfortunately, no such
synchronization mechanism exists and the message ‘. based system must be used to pass control

information.

Though the use of shared memory regions permits a high data bandwidth, the result of using
both the message based coﬁmunication mechanism and shared memory is unfortunately similar to
extensions that have been added o UNIX: ncith\cr has a truly general communications structure that
can support the types of investigations we intend to make. Obviously, these shared memory semantics
are not casily extended to the loser coupling of a network. (In fact they have not even been

implemented on a tightly coupled multi-processor system.)

3.3.2. Conclusions

In general, the hardware support for memory management is the primary constraint on
communications data transfer bandwidth. Systems that use shared memory as their only
communications mechanism requirc coherence within that shared memory. This type of coherency can
be described by the following guarantee:

If two processes share a block of memory, and one process changes two locations in
the order X then Y, then the other process will not see evidence that Y changed
before X.

Unfortunately, it is difficult to make this guarantee without requiring that there be only a single copy
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of any shared data. In a single-processor configuration this requircment is acceptable, but in a
multiprocessor situation it requires extra traffic across the communications medium (bus, network, etc.)

to arbitrate ownership of that copy.

This problem becomes apparent in the design of both hardware merpory and software disk
caches: if the underlying copy is shared, the caches need 2 mechanism for invalidating cach other’s
copics. A simple solution in a memory cache is to. make it write-through, but this results in bus traffic
on every u;rite to memory. An enhancement is to have the users "negotiate™ for a single writable copy
of the data which invalidates all readable copies, but such negotiation still requires that all processors
synchrom7e at the point of negotiation. Furthermore, none of these mechamsms works acceptably in a

network environment in which long latencies make such negotiations pro‘nbltxvely slow

3.3.3. Language Based Systems

The goal of the LISP Machine System [WEINREB] is to create a powerful single user software
development base on which large, complex systems can be quick']‘y written and debugged. In contrast
to' the model of communicating independent processeg, message passing in the LISP Machine Flavor
System is simply a canonical form’ of function call with a generic operation. The single shared address
space of the processor is used to let independent tasks communicate and synchronize. Use of single
single, large, uniform address space has sidestepped a number of important design issues. However, it
is at odds with our desire to map single-machin\e’.semamics onto a group of machincs, whether tightly
or loosely coupled. In addition, it makes it difﬁc\ult to isolate segments of a large system: a failure in

one segment often degrades the reliability of unrelated parts.

Many languages (ADA and Concurrent Pascal) support intertask communications, but like the
LI"SP Machine System are wedded to use of a single shared address space and a single language. Our
experience has been that no single Janguage environment can really satisfy all the needs of a diverse
user community. An operating system should support a virtual machine that lets a variety of
languages coexist. In this way common scrvicés (editors, loaders, text formatters, etc.) can be used

across individual language environments.
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THE TRIX KERNEL
4.1. Overview - Organization and Semaatics

4.1.1. Organization

The TRIX virtual machine includes a number of kernel calls extending the host machine’s
instruction set to support control of some strongly typed objects. The kernel also implements the
lowest level device drivers, mapping their hardware implementation into the TRIX communications

mechanism.

4.1.2. Exccution Model

i This section would normally be titled "Proccsses" but TRIX has no snmple concept of a processe

The “locus of control in an address space of resources” normally associated with a process is divided

into two objects: a domain and a thread.

A domain resembles a conventional address spa{ée: it consists of a set of addressable, untyped,
memory words (grouped into contiguous segments), and a set of strongly typed data objects, namely
handles on ports, both of which will be discussed later. In our implementation the handles are among
the objects maintained by the kernel for the user. The user accesses them with corresponding handle-
IDs. The significant difference between a dom'a\i;} and the accepted idea of a process is that a domain
is static: it does not have its own program counter, stack and stack pointer, registers, etc. In future
implementations, a domain’s static nature will simplify the use of paging and other methods of
migrating data to stable storage. The states of important domains can be saved in this manner, and

they will be able to survive crashes.

A thread is a single sequential path of execution under TRIX. As the unit of multiprocessing, it
incorporates all the properties of a "process™ that are not a part of the domain. In general, more than
one thread may execute concurrently in a single domain, and a domain may exist without any thread
executing in it. Each thread can access its own stack as well as the resources of the domain in which it
is exccuting. Also associated with a thread are: saved register contents, scheduling information, and a
data window that will be discussed later. Threads are created with a spawn() call, which initiates

execution of a new thread (with an cmpty stack) at a designated point in the spawning domain.

Under UNIX, a user performing a single task uscs a number of processes, all but one of which is
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waiting for the others to complete exccution. Under TRIX, a user with only a single activity has many
static domains but only one thread. In addition, a domain calling for asynchronous activity (for
example asynchronous 1/0) can achicve it by cxplicitly spawning threads that run in parallel. Because
multiple threads are the sole means of initiating concurrent activity, the spawn() mechanism has been
made as simple as possible, while preserving the functionality ncede'a to support TRIX's
communications mechanisms. This simplicity is rcﬂcctcd in a newly spawned thread’s being given an

empty stack, in contrast with the duplication of the stack necessary t0 support a UNIX fork().

4.1.3. Communications Mechanisms

A port is an entry point into a domain (its handler). It is ‘designed to let other domains
communicate with the domain creating it. Ownership of a port cannot be shared or given away.“In
contrast, some systems (among them ACCENT) let the port’'s owner give away ownership of a message
link’s feceiving end, in order to make the overall system more fault tolerant. When a server is an

active process, this feature may be useful, but the static nature of a domain makes it less important.

Each port is associated with one or more refereﬁces to it (handles), that the user specifies using
handle-1Ds. A thread executing in one domain can use the handle to request service frb_m another
domain by doing a request) on a port into that domain. A request() is an interdomain procedure call
with a stylized convention for passing system-protected information. The corresponding reply()

mechanism lets the thread return to the calling domain. There is also a relay() mechanism that is an
<
N

interdomain branch: a thread running in the new domain will reply to the original requester rather

than the domain exccuting the relay.

The newport() call takes three arguments: one specifies the priority at which the entering threads
will run (after a request) and two data words that will be passed when a requesting thread enters the
handler domain. These words are used to specify the handling function (i.e. the initial program
counter) and a pointer to the database containing information needed to process the request (called
the passport). In this way, the handler can identify on which port a request() was made. (Although

oné word would have sufficed, we supported two because we generally used both.)

Currently, four types of information are passed in a request()/relay() or reply():

1) An optional handle is passed by including its handle-1D. The passcd handle
must be owned by the domain making the request. Since this domain loses
access to the handle when it is passed. it must explicitly duplicate the handle
(with a diyX) call) if it wishes to retain a copy.
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2)  An opcode specifies what operation is being requested. If the operation is a reply
this opcode becomes a replycode, and_ it specifies cither that the request was
successful or the reason for the failure.

3) Up to three words of uninterpreted data pass basic information, operands or
reply status. (Based on our experience with TRIX-0 messages, three words are
sufficient.)

4) In a request, a data window is passed with READ or WRITE access (or both).
Conceptually, the requesting thread carries a pointer to a data buffer. This
buffer is mapped into the handling domain’s address space whenever the thread
is exccuting in it. In actual implementation, limitations imposed by the available
memory management hardware may require that accesses to this data be
emulated with kernel calls. ‘

In a request(), three opcode bits are interpreted by the kernel. One of these bits indicates that
the optional handle is present; the other two indicate what combination of READ/WRITE access is

being passed for the data window. - ‘

Only two bits are interpreted in a reply(): one indicates that a handle is being returned and the

other, which will be discussed later, indicates a "fatal" error during the request.

A thread making a request may use any contiguous regibn of acccssible.memory as its data
window. This region must be either the domain add;ess space, the thread stack, or the current data
window. If a data window is paésed by a relay() the domain’s address space is not included in the
accessible regions of memory. (Otherwise, a reference would be created to the domain’s address space

and the domain could not determine when it was no longer in use.)

~

This decision, to make the data window inaccessible to other threads runnfng in the handling
domain, was based on the desire to have a clean semantic model of how the data windox'v can be used.
In particular, TRIX avoids expanding the data window concept to a real memory access capability.
Our experience indicated that such extension results in a conflict between two requirements: one, that
a capability’s life should extend only extend over the life of the request, and two, a desire to avoid
complications resulting from-the capability’s revocation. In particular, if access were passed out of the
handling domain by another thread's request, it would be effectively revoked when the original thread
did a reply(). This situation could then result in the second thread getting some type of error or fault

when it attempted to access its data window.

An optimal implementation of data windows would avoid the need to copy the data as it passes
through interposed handlers. With proper hardware support, such an implementation would map the
window on some other address space into the handling domain while the thread is running. Due to

limitations on our memory management hardware, access is currently achieved through the ferch() and
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store{) calls, which let a thread move data between the data window and the address space of the
domain in which it is running.

When a port is freed its owner rﬁust be notified so that any resources that have been allocated to
deal with the active connection can be freed as well. The close() request alloxxs the owner of a handle
to give up its use. This is the only request that is specially interpreted by the kernel. For efficiency
the handler is notified only when the port is actually free (the close() request is ignored if there are
other active handles on the port). At the point of a closc() there may be threads executing in requests

on the closed handle; they are completely unaffected.

4.1.4. Kernel Supported Handlers

The kernel implements a few basic handlers that are ‘necded for the initial éxecution of TRIX.
The first group of kernel handlers are the ports into the kernel that are aﬁsociated with low level
device drivers. These handlers translate the hardware interface of the device (device'registers and
interrupts) into the TRIX request/reply semantics. The disk and serial poft drivers are in this class
and handles on them are identical in function to handles on user domains. Note that the teletype
driver, the network driver, and the file system are not in this class of low level drivers bﬁt simply use
the normal communications mechanisms to communicate with the serial port, ethernet, and disk,

respectively.

Another kernel handler is the synchronizer\: It accepts two requests: sleep() and wakeup() each of
which takes a number as an argument. This is the only mechanism that allows a thread to be taken
out of the pool of runnable threads. It is identical to the UNIX slcep/wakeup mechanism which, by
convention, chooses the numbers to be addresses of locked data structures. A sleep() suspends the
execution of the requesting thread until a corresponding wakeup() occurs. This sleep/wakeup
correspondence only holds among calls on handles to the same port. Different synchronizers are
completely independent, but a single synchronizer may be shared by all the domains with handles on
it.

The most complex of the kernel handlers is the domain handler. When a domain is created, the
user is returned a handle that accepts requests to access and modify the resources of that domain.
Among these requests are oncs that allow the initially empty address space to be read, written, or
initialized from a-handle. (The handle is to a file containing an exccutable image.) Another request to

the domain handler allows a thread to begin executing in the actual domain at the initial entry point.
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From here on we will be careful to differentiate between the domain and the kernel domain object.
The former is something in which a thread exccutes, while the latter is a small entry in a kernel table
containing the information about the domain. After a request to a handle on a port created by a
domain, the requesting thread begins exccuting in the domain’s address space. A request to a handle
on the kerne! domain object results in the thread continuing to execute in a sp.é‘bial kernel domain (the

one that also includes the low level device drivers).

All the kernel handlers can be simulated by user level domains but represent mrechanisms (an
interface to device interrupts or the scheduler) that must be supported somewhere in the kernel. The
fact that they fit so well into the normal communications scheme _justifies the choice of the TRIX

mechanisms.

4.1.5. Object Naming

Different TRIX objects are named in different ways. The user references handles using a
handle-ID that is passed (and protected) by the kernel. These . handle-IDs are not constant across
communications: in the process of passing a handle in 'é,rcquest() or reply(), its handle-1D may change
at the discretion of the implementation. This avoids problems that might occur when the rriqchanism is

distributed across loosely coupled processors.

Ports cannot be dircctljr referenced: the handles on a port are indirect references to it. (Creating
a port (using the newpori() call) returns an"\ix}itial handle for the port) It is important in the
development of garbage collection strategies that even the domain that created a port cannot create a
new handle on it without doing a dup() on an already existing handle. Nor is it possible to destroy a

port: the port is freed when the last handle to it is freed (using the close() request).

There is no way to explicitly refer to threads. Implicit to a running thread is its own identity,
and a few calls effect its state with respect to its current domain. The only other relationship among
threads is the hicrarchy imposed by the parent/child/sibling relationship when they are spawned. This
relationship allows the TRIX signaling mechanism, recalk), to reference a tree of child threads. The
ability to deal with subtrees of activity is cssential in a system which has a great decal of parallel
activity. It is often difficult to manage in systems wherevproccsses only have unique names. [f desired,
a new thread can be detached from this hierarchy at the time it is spawned to form an independent

tree.of activity. This is useful for spawning background tasks that run independently.

The possibility of associating a thread with a handle that could be used to control it or kill it was
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investigated and discarded because it does not seem to be required to solve any interesting problems.
The main use of UNIX process 1Ds that our mechanism does not already support is allowing a process
spawned by another user to be killed. Since the handles associated with ‘such threads would not be
available to the process attempting to do the kill(), they do not seem to be uscful. (This mechanism

s

can be built using the existing TRIX mechanism if it is found to be uscful.)

Eventually some ad-hoc mechanism will be added to let the cquivalent of the super-user on
UNIX stob any running thread. It will most likely take the form of a kill handle into the kernel that
will allow a user to ask the kernel to recall any thread and will require some new name space (other
than handles) for referring to the threads. (This type “of blemish is gcncrally needed in a capability
based system to allow it to be used in a production environment.) More significantly, since it requires
that a user have kill handles for all machines on which & thread might run‘as well as a way 1o
determine the machine on which the thread is running, this kill handle does not extend cleanly over a

network. ' -

Domains are referred to with a handle that allows the user to communicate with the actual
kernel object containing the information about the domain. A number of requests exist to allow the

user to manipulate the domain (particularly its address space) if he owns a handle on it.

As this discussion indicates, handle-IDs form the single name space available to the user. At
present the name space is global but this is not of particular interest to the user since (unlike most
systems with a shared name space) a given n;r_:\m is only accessible to threads executing in a single
domain. The resulting protection mechanism is capability based with handle-1Ds playihg the role of
capabilities.

. Any more sophisticated naming/protection functions (for example those normally performéd by
a file system) must be built on these underlying mechanisms. A consequence of this is that there is no
limit placed upon the number of handlcs a domain may own. Such a limit would make it difficult to
build directory objects that can contain arbitrary numbers of handles. In more hostile user
environments, it might be necessary to limit resource use in some way, but this would not be a

semantic limit and it might be very loose in the case of a "trusted” domain.

The use of a single uniform mechanism for all communications and naming allows a domain to
masquerade as a well known service. For example, a network scrver can transparently forward
requests for remote objects 10 a corresponding network server on another machine where the work i$

actually performed. Balancing the power derived from such a system is the difficulty with which it can
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be constrained at all. The powerful- mechanisms that allow the distinction between user and system
software to be blurred also make it difficult to build hicrarchies of dependability (organizations in

which services only rely upon other services that are ar Jeast as dependable (trusted) as themselves).

4.1.6. Preemption and Scheduling

The TRIX thread abstraction allows there to be more than one active thread in a single domain.
In general, it is desirable for the semantics of such a situation to allow all such threads to precmpt each
other. When tightly coupled processors are available, two or more threads can be run at the same
time in the same domain. Unfortunately, programming in an environment with no control over
preemption requires that programs control the use of shared resou;ces by. using explicit locking in
critical tegions. UNIX takes advantage of the fact that a non-preemptive execmion' model results in
code that is clearer than the corresponding code with explicit locking. An undesirable side effect of
\th.is non-preemptive model is that it is difficult to transport UNIX to a symmetric, tghtly coupled,
multiple processor environment. (UNIX runs quite successfully on a pair of processors when only one

of them executes the kernel code [GOBLE].)

The TRIX scheduler supports a siniple mechanism that provides priority scheduling of both
parallel and serialized computations among the threads in a single domain. The spK) (Set Priority
Level) call changes the priority of the calling thread relative to the domain in which it is currently
executing. (Entry to a domain through a port‘\ssets the priority of the running thread tb the priority
specified when the port was created.) This priZ)rity is not a mechanism for guaranteeing real-time
response: it is simply a way to control concurrercy. In particular, it is not meant to make it more
likely that some thread will be run. Instead it allows the user to describe many interlocking situations
very succinctly. (The priority should probably be referred to as the preempiability of the thread, but

history prevails.)

The semantics of the priority scheduling guarantee that a thread running at one priority is never
preempted by a lower priority thread. There is no guarantee that the arrival of a higher priority
thread will immediately preempt one of lower priority. This indeterminate transit time for a request()
is not explicitly visible to the uscr since threads cannot determine the order of opcrations that are not
explicitly synchronized (by executing in a single domain). This property is important since there may
" in fact be intervening domains (including network servers) that actually result in such delays. Note

that two synchronized requests on the same handle must be received in the order they were made. A
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program doing slecp and wakecup requests on a synchronizer handle may conditionally do a sleep
request based on the outcome of some test. It uses the priority to guarantee that threads that might
change the condition (and do a wakeup) are excluded during the period between the test and the
request. If the requests are not received in the order they are sent the sleeping thread will never

5

wakeup (due to the non-counting nature of slecp/wakeup).

A similarly loosely defined concept of unsynchronized time is found when the spl() call is used to
increase the priority. If multiple threads are running concurrently at the same priority and one of
them increases its priority, the scheduler is allowed to delay the effect of the spl() an arbitrary length
of time (by temporarily suspending that thread’s execution). This can be used 10 to maximize the use
of the available tightly coupled processors by allowing the concurrcmf (low priority) threads to run as
long as possible. When the priority of a thread is lowered it iay have to be susptndea immediately if

there are other runnable threads of higher priority.

The scheduling mechanism is further- enhanced by using the two least significant bits of the
priority to specify that: »

e the thread cannot be preempted by threads of equal priority while it continues to
run in the current domain (it stops running in the domain when it does a request()
or reply()). ~

e the priority of the thread will remain associated with the domain during a request()
into another domain. In effect, the requesting thread can be considered to
continue running in the domain during the request.

Though domains are currently scheduled'hsing a simple round robin scheme, it is easy to
envision more complicated approaches that schedule domains based upon the real time latency
requirements of their currently active threads. In addition, each domain could have parameters that
adjust its responsiveness to both the arrival of high priority threads and priority changes. This part of

the scheduling mechanism is semantically transparent to the user and has not been fully investigated.

4.1.7. Exception Handling

An important aspect of an operating system is exception handling. of particular interest in a
highly asynchronous system like TRIX is the ability of a "parent” to abort any current activity of its
“children™: This is often used to recover from some unforeseen situation. An example of this is the
UNIX signal() mechanism which allows a user at a terminal to interrupt any of his running processes.
In many systcms this interrupt mechanism is weakly tied into the mechanisms used to handle hardware

and software cxceptions. In TRIX there is a single mechanism that uniformly handles both: the abort
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mechanism, recall(), simply causes a special exception in a child thread.

In TRIX it would be simple for a thread do a forced reply() in response to any exception. This
is undesirable when the return from a.callcd domain requires that rqsourécs be reset to a consistent
state. Data structures, for example, may be partially allocated or locked. Our chosen alternative is to
allow every domain to designate a handle that will reccive exception requests. When an exception
occurs during a thread's exccution in a domain, a forced request() occurs to this handle. This handle
may be on.anothcr domain (which might be a debugger), or on the domain itself (allowing the domain

to leave its own state consistent).

After either the recall() or the exception causes a.' forced requestf), the resources of the domain
must be made accessible to the exception handler. Since this has to be accomplished using the regular
request() mechanism, there are two possible ways for this access 10 be passed to the handler -- through
_the data window or through a special handle. The data window could be a bseudo data window; it
might peint to a pseudo address space whieh gives read and write access to all the resources of the
excepting domain (even though they are not a single comiguous:regiori of accessible memory). With
this access the called domain could do whatever is necéssary (to attempt) to solve the problem or clean
up before control is passed back. ‘Unfortunétcly, this maps very poorly across networks since it would
require that the entire address space be copied across the network to support the desired semantics
(the transmission of the data window can not be demand-driven since the semantics of the window
prectude any intervention by the windowed dor?x‘ain). The alternate solution of ﬁansferﬁng a handle
with the desired semantics is also less than per\fect; the lifetime of the exception handler’s access

should be limited to the duration of the exception (and its resolution).

The solution we have adopted is to use the data window to give access to the state of the thread
(stéck, registers at the time of the exception, etc.) and to require that the exception handler have a
handle on the kernel domain handler if it needs to access the domain’s resources. This is consistent
with the use of the exception handler as a debugger, since, in general, it has created the running

domain and can have a copy of the domain’s haﬁdle.

Normally the exception handler simply does a reply() to continue running in the excepted
domain. On occasion, the handler must force the excepted domain to do a reply. This double reply
from the exception handler is facilitated by using the bit in the replycode that indicates a fatal error. It

| is sct to force the-double reply. If there is no exception handler, the default is equivalent to a domain

that docs a reply() with the fatal error bit sct (thus forcing a reply() from the excepted domain).
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4.2. Resource Reclamation |

The ability to reclaim and reuse resources that are not currently in use is a central part of any
system. The usc of algorithms and sUﬁcturcs that "get tircd” over time so that the system must be
brought down periodically to invoke some type of restorative mcchanisin isfpnacceptable and, as a
rule, we have rejected any mechanism that loses resources over tme. For exan{plc, the neced to
occasionally compact the disk when using the MERT [BAYER] contiguous-extent based file system is a

serious inconvenience.

Though domains, ports, and handles must all be reclaimed, the garbage collection problem is not
simply one of frecing kernel resources. User domains.heed to know when one of their entry ports is
no longer in use. Using the close() request to terminate access to a handle allows the creating domain
to receive a final request notifying it that the port is now free. This request may be‘rform one or more

_of the following functions: »

Often a handling domain (for example a file system) has internal resources allocated
to a port that it can free when the last handle on the port has been freed. These
internal resources normally describe the state.of the object (in the file system example
they include the internally cached inodes that the passport points to).

Another use of the mechanism is to change the state of some other handler. An
example of this is the implementation of an exclusive use lock on a port. One such
implementation is to have an exclusive use request return a new port that can be used
to access the original object while accesses to the old port wait for the new one to be
freed. (Note that we do not try to lock a handle since there is no way to differentiate
among the multiple handles on a given port.)

The most complex cases use the close \request to allow the handler to perform a
termination action. This is similar to the close action in a UNIX device driver that is
used to put the device (real or simulated) into a known state. Examples of this use
are: rewinding a tape unit, formfeeding a printer, and terminating a network
connection that is no longer in use. Notice that these different situations require a
range of processing. Rewinding the tape simply involves putting a command in a
device register, while closing a network connection can require a fairly complicated
protocol exchange (particularly when there is data that has been buffered in the
network handler that must be transmitted first).

When the communications topologies are constrained to avoid loopé, the use of an explicit
close() (and associated reference counts) allows all unused resources to be reélaimcd‘ A common way
of imposing this constraint on the topology is to force it to be built using constructive operations (i.e.
the set of objects with which a domain can communicate is frozen when a reference is created to that
dofnain). Operating systcms often impose this constraint on interprocess communications, and in
UNIX it is derived from the lack of a way to pass file descriptors for pipes to unrelated processes.

This is similar to the constraints that pure applicative LISP places on the data topologics, and in cither
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case the need for garbage collection is avoided.

An alternative (and stronger) constraint is to only allow transformations on the communications
topology that cannot result in loops; this is often used keep a file system trec structured. The UNIX
file system imposes this constraint by limiting the use of the link() system call to create links only to

P

regular files (which are leaf nodes in the file system tree structure).

TRIX does not constrain the use or transmission of handles between domains. As a result, loops
can and do form in the communications topologies. An abstract view of the running system is as a
collection of threads that move from domain to domain across interdomain links (handles). Because
these structures are all implemented by the kernel, the ‘topology is visible even when the user language

is not strongly typed. Therefore the kernel can perform garbage collection based upon accessibility.

The concept of accessibility corresponds to the more s;andard concept c_)f a p‘rocess being active

-in a process based system. A domain is accessible if some series of requests and replies on existing
ports can result in a thread running in it. There is also a stronger concept of a ciomain being

interesting if it is both accessible and some activity in it can inﬂu»Cnce the "outside world" (most often

taken to be the .I/O devices). After investigating LHe feasibility of garbage collecting uninteresting

domains, it was decided to use the computationally simpler notion of accessibility.

The TRIX garbage collector finds all the inaccessible domains (including those that are in
inaccessible communications loops) and frees Lh\em Freeing a domain actually frees two resources: its
(uniypcd) address space, and the (strongly type’d)\'handles it may have. Dealing with the address space
is simple since it is never shared with another domain and there cannot be outstanding data windows
on it (since they must be associated with a thread that could eventually return to that domain and thus

would prevent it from being garbage collected).

Freeing the handles that are currently owned by the domain is more complicated. The first issue

to be dealt with is what thread(s) will be used to do the close requests on the handles owned by a
garbage collected domain. There is no thread whose task is specifically garbage collection; instead, it
is performed by the thread needing the (unavailable) resources. This thread should not perform the
close() requests since that would scrialize the domain requesting the resource on the replies to close
requests to domains with Which it has no connection. A close request can, either for legitimate reasons

_ or bcééusc of the perversity of the handler, take arbitrarily long to execute. (For similar reasons all
the “close requests should be done in parallel rather than in scrics.) Our solution is to spawn the

required threads at the time of the collection. We have bound the number of threads any garbage
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collection pass may require by allowing only one thread to be spawned for cach domain receiving a
close request. This serialization is acceptable since it can only effect the internal workings of a single
domain. That domain can alleviate any problems by immediately spawning an independent thread to

perform the close activity (allowing the garbage collector’s thread to return immediately).

7

A more complicated issuc is determining the semantics of close requests sent by the garbage
collector to a domain that was being garbage collected. Such a request reactivates the domain and
reconnects‘it to the outside world. These requests can be used to give the domain a last chance to
perform any pending 1/0. Among the places this is uscful are: a network driver that must shut down
its connections to the outside world befoge it is collected, and a_file system that must flush any
internally cached information out to a disk. The concept of encapsuléting a resource with state (like
the network or a disk) so that that the state the user see$ is not identical to”the ‘real state is an
important approach to increasing performance (it supports both caching and pipelining) and had to be

ﬁréser\'ed. -

The problem is to allow all domains to be garbage collected when they are no longer used, while
still allowing domains that perform some state caching: to be collected properly. We initially designed
a multipass collection scheme in which the domain would get the close requests during the first pass
and, if it had not been reconnected, it would be collected on the second pass. This seemed adequate
but requires the topology of the communications to be frozen between the two collections to avoid the
chance of missing the fact that the domain had\l')een (at least tcmporarily)-reconnectcd and was thus

AN
not immediately collectible. Freezing the state of the communications topologies during the garbage

collection makes incremental garbage collection impossible.

Our eventual insight was that our model of these caching domains was incorrectly formulated.
Th‘e flushing of the cache can be viewed as an activity that is driven by the event of an incoming
request. It thus requires a final event to guarantee that the state is completely updated. An alternate
view is to see that the dirty cache can have an associated cache flushing task, which corresponds to the
asynchronous flush of a write-behind cache. 'fhough this asynchronous task can be driven by the
request e\fenté, a cleaner solution is to have an independent thread that exists whenever the cache is
dirty. This thread can run at a low priority so that, when there are no other demands being made of
the domain, it can update the out of date state. When the state is up to date, the thread terminates.

Thus, the domain is only collectible when the user visible state is synchronized with the actual state.

The described scheme allows any inaccessible domains to be collected while preserving the
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possibility of a close request notifying an active domain when a port has been freed. The remaining
problem results from the granularity of the garbage collection algorithm. Our model of a domain is
that a thread entering on a port has access to all the resources of the domain. Though this is true, it

ignores the structure of the domain itself.

-

Take the cxample of a domain that is providing the functionality of an environment handler.
(An environment is a detached directory that associates names with the initial handles available to
threads exccuting in a domain.) Though an environment may contain an explicit handle on another
environment, it is not possible to access the handles an environment contains without a handle on the
environment itself. This should lead to an irnp]emeniation in which .each of the environments is a
separateb domain that is treated independently from the standpoint of garbage collection.
Unfortunately, the simplest implementation of an environment combines all the {hésc conceptually
independent handlers into a single domain, an organization that leads to some difficulties in the design

of the garbage collector. -

Although the environment’s implementation only gives an entering thread access to those
handles contained in the associated environment, the éarbage collector secs only the external structure
that gives any thread entering the domain access to all its handles. As a result, the garbage collection

process is overly conservative.

If the domains had been left independent this problem could have been avoided at some cost in
organization. Among the reasons for combining independent handlers into a single domain are:
T ]
e to increase resource sharing between very similar domains.

e to simplify sophisticated handlers that could not otherwise use the simple
synchronization and exclusion mechanisms available to threads running in a single
domain.

Since the garbage collection problems result from the domains being aggregated together, their
solution requires that the internal structure be visible to the kernel while keeping all the handlers in
the same domain. One possibility is to create ports with a subdomain number that identifies how
entering threads fit into the domain’s fine structure. Threads entering a domain are associated with
the subdomain of that port, and can only access handles that belong to that subdomain. This allows
sharing among otherwise separate ‘domains. A newly created port can actually have one of three
numbers: zero (which is the number for globally sharcd rcsourées), the number of the current
subdomain, or a new unique number. Note that though subdomains would not themsclves be

collected, ports entering subdomains would not be assumed to have access to all the damains
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resources. If the subdomains are guaranteed not to have references to cach other, unused resources

will always be collected.

One drawback of this solution is that the enforcement of the subdomain/port association (at the
point the domain is created) cannot be reconciled with the use of a handle for'greating ports. There is
no way the kernel handler can determine the number of the current subdomain without using some
mechanism that would make interposition impossible. This is the reason newport() is a call instead of

a request to the domain handler.

The problem of unused resources not being collected in TRIX is similar to problems that occur
in LISP systems that depend upon a combination of z‘i‘ large virtual address space (with a significant
amount of backing store) and an occasional reboot to start from scratch. For example, in the LISP
Machine System, it is the responsibility of the user to cxpliéitly free open files (‘wi‘Lh a close). If the

last of the references to an open file strcam is garbage collected, the extefnal resources (network

connection, open file, etc.) can not be freed.-
4.3, Implementation

4.3.1. Memory Management

The TRIX memory management subsystem is built on segments (contiguous allocations of
memory) that may be paged and/or swapped .onto some secondary storage device. Because the
secondary storage device is specified with a handle, the system can page or swap to any handler

supporting random access 1/0 (e.g. a local disk or a network disk server).

Segments are created either as a side effect of manipulating the address space of domains or to
support the stacks that are created in the spawning of threads. Though there is no way for Lﬁe user to
directly refer to a segment, they are discussed because of the semantics they impose upon the domain’s
address space. Depending upon the operation that creates a segment, it may be initialized in a variety
of ways: |

e zero filled,
o with data explicitly written to it, or
¢ demand loaded from a handle.
The. semantics of the memory management leaves undefined the time at which demand paged

scgments are initialized from the specified handle (by performing a read request()); the only guarantee
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is that it will occur before the segment is accessed (cither implicitly, with memory references if it is

mapped into a domain, or explicitly, by doing reads and writes on the domain handle).

Segments also have a number of protection modes:
e read-only,
e copy-on-write, or
e write-back on write.

Read-only and copy-on-write pages are not a semantically visible sharing mechanism.

TRIX avoids the temptation to implement Opcrationé in which a large piece of existing address
space must be duplicated (as is the case with the UNIi( fork()). The problem with fork() is that the
address space that is being duplicated may represent an arbitrary pattern of sharing among the address
spaces that were "duplicated” to form it. Such situations make it difficult to imphlc‘mem the copy-on-
_write that is nceded to avoid thrashing at the point of duplication. (Further p-roblems result from the
fact that most memory management hardware [VAX, NS16082] does not properly support arbitrary
sharing on a page level.) Simpler uses of copy-on-write allow an address space to be initialized from a

read-only file; the changes made to the local copy are never the basis for a new version.

The write-back on write mode allows a handle to be mapped into a segment and have changes
made to it be reflected back to the handle with write requests. TRIX minimally defines when this
write-back takes place: | o

a handle that is only accessed by b;i._ng mapped into a single segment will be

consistent with respect to changes made by accessing that segment (both implicit
memory accesses and explicit rcad/writes to the domain handle).

Beyond this there is no guarantee as to when the handle will be read or written. In particular, if the
-same handle is mapped into two different segments there are no guarantees of consistency between
them. This ambiguity is important because it allows multiple copies of the data to exist when
appropriate for increased efficiency in a distributed environment without precluding sharing when it is
feasible. Whether sharing or copying is used in any situation will depend upon hardware

considerations such as the underlying memory management architecture.

Because these modes of memory mapping are not defined to require consistency, ﬂae mechanism
is not a communications mechanism but rather a way to make programming simpler. Applications that
need stronger guarantees for synchronization or atomicity should cxpiicitly implement them with other
communications. The one support given the user is that the kernel domain object will react to an

update request by writing all the dirty pages from the segments mapped into domain. The request
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returns when all the dirty pages have been cleaned once (by then some of them may already be dirty

again).

The data window, as passed in é request(), is simply a reference to a segment with a base,
bounds, and access mode (read and/or write). The distinction between the E{SC of the data window
and typical shared memory secmantics is that we have not defined the semantics of the data window to
specify whether it is a copy of the data in the original domain or a real pointer to the original copy.
This ambiguity is again completely intentional. Though we take no issue with the use of shared
memory to increase efficiency, we object to guarantecing the semantics to be those of a consistent
single copy of the data. By leaving the semantics minimally defined it becomes a detail of the
implementation. Like the lack of definition of the order of opcrations-in many compiled languages (to
leave code ‘generation minimally constrained) we take ‘the same liberty with ’respect to the

implementation of the data window. Even in a single implementation it may at different times be

defined to be a single consistent cépy of the data or multiple copies of the data. The guarantees of
consistency we give the user are that:

e any readable data will be read out of the calling domain’s address space sometime
after the request() initiates and before the fetch(), and

e any data modified with a store() will be reflected back into the calling domain
before the the request() returns.

Although the data remains in the address space of the rcquesting domain, there is no guarantee that

the requester will be able to coherently access the data window during the request().
N

Current uses of shared memory fall into four categories:

e to save physical memory space by reducing the number of copies of shared read-
only data (particularly the text of pure procedures),

e 10 extend the address space of a machine by allowing multiple processes to act as
one large process, '

e to support missing features that can be built with shared memory (particularly
synchronization mechanisms), and

¢ to make communications more efficient, even in the case of independent processes.

The sharing of read-only data is simply a method of saving physical memory and 170 bandwidth.
Since it is not semantically visible to the user it can be ignored. The use of large address space
machines make'sharing unnecessary for extending address spaces. TRIX eliminates the other uses of
sharing by supporting the necessary primitives in the system and using semantically transparent sharing

for efficiency.
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4.3.2. The RLqucst/chlv Mechanism

The request()/reply() calls are the basis of the TRIX communications mechanism and, because of
this, they have a significant cffect upon the overall performance of the system. This section will

discuss in greater detail the implementation of these mechanisms.

There are two stacks used in processing most TRIX kernel calls: the thread (usecr) stack and the
kernel/interrupt stack which is used to support the kernel machine extension by guarantceing the
availability of a stack to handle interrupts, traps, and exceptions. Unlike UNIX, which uses an
independent kernel stack for each user process, TRIX needs only onc kernel stack per physical

Processor. -

The thread stack is used to run user level programs and is mapped out when a new thread is Tun.
Conceptually, a new thread stack is created when a threaé does a request into a domain. In the
-current implementation, the memory segment containing the stack of the requesting thread is extended
(if necessary) and remapped to protect the portion in use before the request. This. reduces the
bookkecping requ1red to deal with threads at a request while prcservmg the semantics that would
result from a new segment being allocated. In addmon to the protection issues, isolating the execution
of a thread in the handling domain from the state of the thread before the request is. important
because it allows a pair of independent threads to be used to simulate the mechanism in a loosely
coupled environment. To sﬁpport requests across a network, each machine has a network handling
domain that, upon the receipt of a request, sem\i% a message to a counterpart on the remote machine.
The remote domain then spawns a thread to actually process the request. This would not be

transparent if the state of the requesting thread was accessible after the request.

The only time the kernel deals with the thread stack is to remap it (for protection at a
request/reply) and to automatically extend the memory segment if a memory fault occurs with the
stack pointer out of range. A third, independent, stack is used to save the protected portion of the
thread state across requests (the request stack). Included in this state are: the current domain, the
thread priority, the machine registers (during a call), the thread stack mapping, and the currently
accessible data window. This stack was not combined with the alrcady existing thread stack because it
would have resulted in some unacceptable interactions with the use of virtual memory:

e it could have required paging to push the request stack entry onto the stack during
a request call. We avoid the need to allow kernel calls to restart on a page fault by
climinating the possibility of a page fault from anything other than a user level
fault and the fetch and store calls.
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e garbage collection would require paging the user stack to access the request stack,
and cach of the required pages would only contain a single request stack clement.
In general the resources used by the requcst stacks are minimal when they are
packed into pages.

To understand the implementation of the request and reply we will outline the sequence of
actions that they involve. Initially the user is running on the thread stack. (This is the case even when
we are running in a "system” domain.) To call into the kernel, the thread must execute an appropriate
trap instruction, which will leave it running in supervisor mode on the kernel stack. Since some traps
resulting from hardware interrupts will cause rescheduling similar in nature to that done explicidy by
user invoked traps, it is the responsibility of the kernel to save the user state (registers) on the request

stack.

When it has been determined that the call is request the following occurs:,

e The current top of the request stack is pushed and a new element is initialized with
the new domain and the inital register values (in particular the program counter
and the passport).

o Any passed handle is validated and the handling domain is made its.owner. The
passed data window is then validated to determine that it represents a valid access
to a legal segment and this information is also saved on the request stack.

e The user stack segment is remapped to protect the used stack.

e The thread is taken out of the scheduling list of the requesting domain (affecting
its priority) and . scheduled to run the handling domain. This may result in the
current thread being runnable or may require that the thread be suspended in
favor of another thread (if for examp]e the handling domain already has a higher
priority thread running in it).

AN
Finally, the return from any trap results in a test to map in the current domain and the current
thread stack (either or both of which are ignored if they are the same as the currently mapped domain

or thread). Then the user registers are restored and the thread continues running.

The relay (and reply) are similar but they avoid pushing (or popping) an element. In all cases

there is some scheduling activity and a remapping of the address space.
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4.4. Open Problems

4.4.1. Scheduling

The spl() mechanism is not quite sufficient in that it does not allow groups of threads to be
viewed as being totally indcpendent. This is often desirable when two independent handler domains
are combined into a single domain. A thread that wants to lock out other threads with which it is
interacting must lock out even the independent threads of the same priority. The priorities cannot be
allocated among the independent handlers since then only the highest priority thread will actually run
and there will be some artificial serialization between the handlgrs:, A more sophisticated scheme
_could couple the priority to the subdomain number described in the garbage collection section. We
have postponed solving this problem until we have more” experience with the use of the pridrity
) mechanism (particularly in a multiprocessor environment). '

4.4.2. Instantiating New Objects

Because we have not been able to uniformly; resolve the question of how to create a new
instantiation of an existing object type, we currently use an ad-hoc method. In a strongly typed
language the type of a created object must be known at compile time by giving a proper and precise
declaration. This declaration is precise enough that any two objects created with it are considered to
be the same type. ’\‘ | .

\

TRIX is, unfortunately, a weakly typed environment in which the type of a handler is best
defined by the protocoi that it obeys. (The protocol is the set of OPCODES to which it responds.)
This makes it difficult to describe the type since even the protocol is not complete information: the
protocol of a "file with incore caching of data” and an "uncached file" are the same, yet they are not
interchangeable. Nor is it possible to ignore the stable storage device with which the file is associated
since it may be that the user will prefer one disk over another (for example a local disk may trade the
cost of hardware against the longer latency and lack of availability of a remote disk). The LISP
Machine flavor system allows types to be dynamically created by specifying the protocol they must
obey (including protocols specifying user transparent aspects of the functionality like buffering). This
is an extremely powerful mechanism that requires a great deal of runtime support and a single

~ program address.space: in cffect the creator must be able to ascertain the internal structure of the

created object. This does not extend to the C/TRIX environment.



A further issuc is deciding with whom a prog‘ram'should communicate to create a new file or
directory. Onc possibility is a server that accepts a protocol list and returns an instantiation of the
simplest known object that obeys it. This protocol list would have to capture semantic fcatures (e..g.
buffering). Alternatively it could associate objects and object type names, which would require an
additional global naming scheme (in addition to the OPCODE namcs). Thom';gh this server could be
global it would be more powerful to have it be part of the local environment of the creating domain.
This would allow new objects to be made known to the server without impacting the entire distributed

system.

The alternative to this approach is to create by éxample. If you want a new object of a given
type you ask an existing object of that type for a new one. This has the appeal of avoiding any

explicit notion of object type and is the approach we are intending to pursue.
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5. THE 'I‘RlX OPERATING SYSTEM

The TRIX "system", as distinguished from the kernel, is the set of user domains that provide the
services normally associated with an operating system. These services include: the file system, the
terminal/window manager, and the network protocol driver. The current irl?plcnicntadon combines
some of these services into a single domain known as the systent domain. The only difference between
this system domain and a normal user domain is that the system domain is always mapped in. This

reduces the cost of context switching into the system following a request to one of these services,

A file system generally performs two major functiAons: making a convenicnt form of stable
storage available to the user (the function of a file), and‘r allowing objects to be named (the function of
a directory). TRIX creates an object (file or directory) without a name (a handle is returned to the
user). This object (or in fact any handle on any object) can then be associated with a name by doing
an enter{name,handle) request to a directory. For a variety of reasons most oberating systems do not
separate these functions and it is impossible-to talk about an object without its pathname. In UNIX,
the creai() call requires a pathname, and the file is associated with the file system of the directory that
contains it. Linking to existing files is also done by séecifying two pathnames (the current name and
the new name). Referencing file system objects only by name solves the problems of:

e keeping the file system strictly tree structured, and

e avoiding links between independent (mounted) file systems.

-~

" In contrast, TRIX must deal with a numbe{ of the complications that UNIX ignores. When a
handle is entered in a directory it must be transformed into a pointer that can be stored on stable
storage. For now, the TRIX kernel does not support storing a stable representation of a handle.
Adding kernel support for such a representation would require additional mechanism to make it
unforgeab]e. (Note that the unstable handles are kernel implemented communications capabilities and

as such are protected by the kernel.)

An interim solution lets a file system .transform handles on its own domain into stable
representations. These can be regenerated by creating a new port on the file system (a function that
exists) and the problem of forged stable representations can be ignored. A new mechanism (the fold)
call) was added to let the file system determine whether an entered handle references one of its ports.
The fold() call determines which local port the handle is associated with and returns the PC and
‘passport that would be passed into the domain on a request on the handle. (If the handle references

another domain's port, fold() rcturns an crror.) The number of the local port is stored on stable
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storage (in the standard UNIX dircctory representation).

A remaining file system problem results from the dichotomy between stable storage structures
and thc communications structures ﬂfat TRIX supports. This is an extension of the problem of
garbage collecting the environment handlers that were combined into a sillg}c domain. Unlike the
environment cxample, a directory-may contain references to another directory that the kernel cannot
see. (These are the internal links that are folded for stable storage.) Because the internal links in the
directory structure use a reference count scheme to free resources, it is still important to keep the file
system in a hierarchical tree structure. The solution, garbage collecting even stable storage, will have

to be closely examined to evaluate its cost. ‘ P

These problems do not stem from the use of the TRIX communications primitives to implement
a file system; they simply reflect using the power of fhe TRIX mechanism to build a rriore
interesting” file system which was, for reasons of convenience, based on .the UNIX disk format.
They could have been easily solved by a using a file system structure that is just like that of UNIX,

(one that only allows objects to be entered in directories by name).
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6. EVALUATION

6.1. Functionality

Our experience using TRIX to implement interesting communications structures indicates that it
is functionally quite powerful. For example, the file system implementation is straight forward and

demonstrates functionality that few if any, systems in general use today could match.

Another functional test is how completely a UNIX environment can be emulated Our system call
write-arounds successfully support UNIX code that does not make use of fork(). Although individual
uses of fork() can generally be replaced wiALh a spawn() call, there is no clean solution that can be used
in all cases. This results from two aspects of the UNIX machine model:

e the semantics of the UNIX process fork /excc/wait system calls, and

e theuse of shared file descriptors (which is also associated with fork() and exec()).

The fork() mechanism does not map onto the TRIX thread spawn mechanism. A version of spawn()
extended to duplicate the spawning mrqad’s stack would be functionally close to the 4.1BSD UNIX
‘vfork() call. (Kernel support of the stacfc copying is necessary since the parent thread’s stack is not

available to the spawned thread.)

Fortunately most programs do not make explicit use of fork(). Instead they use the system()
routine which inc]udes the entire fork/exec/wait sequence; it can be emulated successfully under
TRIX. The limited use of fork() f;ﬂ\ects that, even under UNIX, fork() and exec() are difficult to use.
For example, they do not interact properly with buffered 170. (Output buffered before a fork() may
be written twice if the accompanying exec() is delayed.) The shell is extremely careful to deal with

these issues.

The final incompatibility involves sharing the file offset among the users of an open file
descriptor. Although this mechanism is not widely used by UNIX programs, it is crucial to the
implementation of the shell construct "(a ; b) > output” (which concatenates the result of running the

o

command a" followed by the command "b"). By sharing a common pointer into the output file, the

execution of "b" continues writing at the point that "a" stops. Our view of this problem is that it is

"t

incorrectly formulated. A correct model of the situation is that both command "a" and "b" want to
write to a non-random access (serial) file. We prefer to make this explicit by inventing a serializer
object which can be interposed between the user and a random access file. It will encompass the

shared pointer and allow intermingled writes to the single file to work properly.
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Another way of achieving UNIX compatibility is ruscd by MERT, which ran a UNIX
environment as a system process. The ability to encapsulate a user domain is sufficient to build an
independent UNIX environment. This cnvironment would support the fork/exec primitives as well as
the shared 170 offset. The problem would be allowing the UNIX subsystem to interact with the more
sophisticated TRIX environment. This approach was avoided because we wanted to do more than

create a new UNIX implementation with dynamically loadable device drivers.

6.2. Current Performance

It is difficult to measure TRIX’s current performance on the Motorola 68000. Running single
user, programs have as good or better performance under TRIX as under the UNIX implementation
on the same hardware. As this UNIX implementation is the basis for a” number of commercial

ventures, this is a reasonable comparison.

Programs have two modes of operation: user mode computation (which will of course be
unchanged since the same instructions are executed) and s'ystcm supported computation (which is
mostly 170). Our performance measurements have indicated the following:

o TRIX gives better real time (wall clock) performance than UNIX because it has a
shorter path to initiating the (asynchronous) 170 transactions.

e TRIX does more computation in performing 1/0O. Running single user this
computation took the place of what would normally be running in the idle loop.

TRIX’s greater computational needs areialleviated by the fact that the its struéture is much more
amenable to multiprocessor configurations [GODDEAU]. The most successful multi-prbcessor UNIX
implementation is the PURDUE Dual-Vax UNIX system. It runs user processes on two processors,
but forces all supervisor code (system calls and interrupt drivers) to run on the master CPU." Though
this is extremely effective when the job mix is compute bound, an I/0 intensive job mix may run
slower bacause of the additional context switching require to move a process to the master processor
and back. TRIX exacts no penalty for compute bound job mixes and allows greater concurrency in

processing system calls.

Furthermore, an examination of where TRIX is doing its extra computation indicates iwo
bottlenecks that could be considerably better tuned. Much of the penalty results from the abstraction
‘used to implement the file system and terminal handlers. They use the TRIX request()/reply()
mechanisms to communicate with the disk and serial port respectively and they do not take advantage

of the fact that they run in the privileged system domain. One possible optimization would be to let
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the system domain access a number of the kernel calls directly (with a subroutine call) rather than the
trap that common users are required to use. This would not affect the semantics of the programs but

would allow a number of the simpler calls to run considerably faster.

An unforeseen result of the unoptimized implementation was 10 demonstrate how far the
mechanisms could be pushed. Often a communications mechanism is developed to support some small
portion of the communications that a system uses (for example, remote login). lts success in that
limited domain is then used to argue that it could support all the communications that occur. -Our
extensive use of the TRIX mechanisms demonstrates that generalized communications can achieve
acceptable performance.

&

6.3. Future Performance

To allow this project to be exported to heterogeneous distributéd systems, TRIX was designed to
avoid depending upon the speciat purpose architectural features of any indijvidual machine. This
section will outline a few modest changes in the machine architecture that would increase TRIX's
performance.

Some kernel calls (like spl()) often simply change a value in a table, and actually require kernel
intervention a small fraction of the time, fn the case of the system domain, the traps used for these
calls can be replacéd by subroutine calls that run considerably faster. The use of a microcodable

machine would allow a number of the\'simpler kernel calls to execute in microcode, extending this

performance improvement to common user domains.

Since TRIX does more context switching than UNIX, a fast context switch is very important.
Under UNIX less than 1 of 4 system calls result in a context switch between procésses. (On the
PURDUE UNIX, any system call from the slave processor results in two context switches.) Under
TRIX, the ratio will be far closer to 1 to 1. (Keeping the fsystem domain permanently mapped

reduces the effective number of context switches to that of UNIX.)

Most architectural changes necessary to increase the performance of a context switch can be
isolated to the memory management hardware. The following would be useful in a TRIX machine:

e a very fast switch requires that we do not have to load a series of segment or page
registers (as is the case in the NU).

e an cxccuting environment is composed of two orthogonal segments (the domain
address space and the thread stack) that are changed indcpendently. A single
process description register (as is found in the National Semiconductor 16082) is
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not sufficient. The PO and P1 concept of the VAX is far better.

e 10 protect the stack during a request some protection window (perhaps a base and
bounds register) is also desirable. Otherwise, the stack segment must be remapped
even if it is independent.

e if the hardware will allow a window 10 exist on a segment, the data window
mechanism could map the data into the handling domain,. Then, fetch() and
store() degenerate to block move instructions. This is more important than might
be immediately apparent, since doing the data window access validation in
software is a fair amount of work in an inner loop.

One implementation that would support all these necds is to divide the user address space into
three segments which, like the VAX PO and P1, would be designated by the high order address bits of
an access. In addition to independent page maps for each of these segments, they should include base

and bounds registers that can be set to a byte boundary.

The commercially available microprocessor that comes closest to this m;Jdel of a TRIX machine is
the Intel 80286. lts segment based memory management System is sufficient for TRIX (though it does
not support paging). The drawback of this machine is that segment descriptors are not cached on the
processor and loading one (in a 28 bit pointer referencé) is rather slow. This is less a problem
associated with TRIX’s needs, than one of briﬁging up a weakly segmented language like C (that

includes pointers).
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7. Summary

The TRIX projects’s stated goal was to built a system supporting investigations into the
communications needed to support distributed computation. The result is a small, portable
implementation of a communications system based on remote proggdare calls. It lets the user
experiment with ideas in communications and distributed systems that would otherwise require
extensive "kernel hacking" if they had been attempted under most cxisting systems. Despite this

additional ﬁnctiona]ity, TRIX’s performance is comparable to that of UNIX.

More significant than the resulting software system Were the lessons learned during the project.
The current TRIX implementation is the third in a series. - The first built a system around a data
driven communications mechanism. This is an appealing organization since it stresses what seems to
be the main problem in communications, moving data. Based upon this ‘ex‘pcrience, we learned that
the non-data portion of a communications mechanism is far more impcﬁtant than moving data. Issues
of synchronization -and out-of-band- signaling quickly dominate both the implementation and the
structure of the programs that are communicating. Ei*cmuaily, the implicit synchronization that
seemed $O appealing at the start got in the vi'ay of more complicated program organizations. This
contradiction is what led us to abandon the idea of simply extending the UNIX communications

mechanisms.

The sccond formulation, TRIX-0, was a message passing system similar to several others

<
described in the literature. Our choice\‘ of message passing was an evoluﬁonary outgrowth of
investigations into data driven communications. First, the data-driven stream was reorganized into a
stream of data packets (with headers that give information about the sender). This change facilitated
mechanisms to support multiplexing. Eventually, this drift towards message passing was replaced by a

formal system.

Our initial enthusiasm for message passing was dampened by experience. Although message
passing is a reasonable choice for simple program organizations (those that view an incoming message
as an interrupt to be handled), in more complex organizations its use obscured the program’s
underlying structure. These more complicated organizations view the incoming message as
independent task to be performed. They include window managers, file systems, and networks. In a
message passing system the available concurrency is invisible to the scheduler and there can be

artificial serialization among otherwise independent tasks.

The most recent step has been to make concurrent activity explicitly visible to the kernel. To do
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so, the normal concept of a process is divided into two independent components: the domain (a
process's address space and resources) and the thread (the process’s active portion including the
registers and stack). A simple synchronization mechanism allows multiple treads to cooperate in a
single domain to perform a task. The actual communications mechanism is an interdomain remote

procedure call (request/reply) which lets a thread exccute in a new domain.

Perhaps the most important aspect of this organization is that threads running in different
domains may always run in parallel. Unlike threads in a single domain, this parallel activity does not
depend upon the processors being tightly coupled. Thus, the TRIX communications structure gives
the user more than just a way to implement a window system; it allows a software system 1o be

described so that it can be distributed over a loosely coupled network of machines.

" A key feature of TRIX is the minimal way it dcfines the implementation of data transmission.
For a particular situation, it does not specify whether the ransmitted data is passed by copy or
reference. Often systems are over specified, to the exient that the definition constrains the
implementation. Just as many computer languages ‘often leave the order that operations are
performed undefined, we see a need to do the same for the semantics of the virtual machine provided
by the operating system. By leaving aspects of the mechanisms underdefined and potentially
inconsistent, TRIX’s communications semantics can be mapped .onto a number of implementations.
Thus a single mechanism supports communications among domains on a single processor, a number of

tightly coupled processors, and a network of loosely coupled processors.v
<

At this point we feel comfortable in claiming that the stated goal has been achieved. Among the
projects built upon the basic kernel described above are a simple window-style screen manager and a
multiprocessor implementation of the kernel. Unfortunately, although TRIX has been used
extensively over the past year, hardware limitations (particularly the lack of a network interface) have
prevented us from pursuing some of the projects that originally motivated this work. Among the areas
requiring further investigation are integrating access to remote files in a distributed file system. Our

next implementation of TRIX will run on hardware that can support these investigations.
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