SUBJECT:
To:

From:
Date:

Approved:

Memorandum 6M-5097-1
Sheet 1 of 20 Sheets

Division 6 — Lincoln Laboratory
Massachusetts Institute of Technology

Lexington 73, Massachusetts

TX-O DIRECT INPUI UTILITY SYSTEM
Distribution List

John T. Gilmore, Jr.
3 October 1958

_LaE

ABSTRACT;

Large high speed memories have arrived. Many of our present
procedures were born of necessity because of limited storage.
It is time to review our present techniques and philosophies
in planning and progremming computer applications. At
present we write programs which perform complicated and
monotonous tasks efficiently and rapidly. But writing and
debugging these programs are also complicated and monotonous
tasks. Now that we have larger memories, why not try writing
programs which will help us with our dirty work? This memo
describes a utility system which is basic in form but unique
in the sense that it assists the programmer in debugging and
modifying his program at the console. This is accomplished by
moving the utility system into memory alongside the program to
be debugged and providing direct communication between the

utility system and the programmer.

Distribution lList:

Group 63 Staff
Bagley, P. R.
Heart, F.

Mayer, R.

Dinneen, G. P.
Ziegler, H.
Vanderburgh, A.
Arden, Dean (Barte)
Attridge, W.

Hazel, F. P.
Hosier, W.

Grandy, C.
Buzzard, R.

Holmes, L.
Bennington, H. (Rand)
Margaret Clark (Rand)
Burrows, J. H.
‘Collins, L. B.
Goldberg, S..

Jones, N.T.

Marnie, G. L.

6M-5097-1

Daggett, N.:
Arnow, J.

Zraket, C. A.
Israel, D.

Rich, E.

Bailey, D.

Rising, H. K.
Frachtman, H. E.
Vance, R. R.

Neeb, Donna (Rend)
Thomas, L. M.
Dustin, D. E.
Tritter, A. L.
Briscoe, H.

Carma Darley
Joseph Thompson (Rend)
Paddock, R. B.
Pughe, E. W.
Rowe, A.

Zreket, C. A.

i1

6M-5097-1

TABLE OF CONTENTS

Page
I Introduction and Preliminary Discussion 1
JI Description of Individual Routines 2
III Subroutines 10
IV Typing Directions for Expedite and Hark 16

v Idees for New Routines - 25

Appendix A List of Coded Operate Class Commands

Appendix B List of English Words Availablé to English
Word Prinper Subroutine

Figures 1 TX-O Memory Reference Chart - B 80354

Block Diagram of TX-O Direct Input Utility System - D 80351
TX-O Octal Graph Chart - DL 1585

Flow Chart Exemple - A 80287

Paper Tape Layout For Read-In Mode of TX»Q - A-68405

S oW

144

6M-5097 -1 - L.

INTRODUCTION ‘

TX-0 is an experimental computer which was built to test transistar
circuitry and a 256x256 maguetic core memory. Its terminal equipment
consists of & photo-electric peaper tape reader, & paper tape punch, a.n
oscilloscope, and an input-output Flexowriter typewriter. Additional
equipment such as magnetic tape, high speed printers, ete., will be added
et a later date. Since it is a test computer, most of the computer time
is devoted to merginal checking and the operatiom of test programs.
However, the fact that such a large internsl memory of 65,536 registers
now exists prompted us to try some new programming techniques in the
time available between test opsretions.

One technigue was to use the bulk of the memory as a secondary
storage medium instead of magnetic drums or magnetic tapes. Wes Clark
wrote a conversion program using this idea. The result was a fast conver-
sion process and one which could translate a flexible symbolic language.
For example, address tegs, address sections of instructioms, and constants
can now be expressed' as English words as wall as code lettérs and mmer-
als. The conversion program has no tape scanning problems and can look
at the whole program to be converted as many times;a.s necessary in a nry
short period of time. A memo describing the rules of the comversion
program's vacabulary is being: written by Wes and should be available soon.

Another valusble technique which will be described in this memo
is that of moving & complete utility sys‘tém intp memory (see Figure 1)
as well as the program (or{p'mg‘namé) to be operated and debugged. Using
the inmput-output Flexowriter typewriter as @ means of commmmication with
the ﬁtility _system, debugging at 'the console ,should be reasonably simple
and convéniento ‘

Debugging at the console™is not new. In fact, it is the oldest
form of debugging. For the past few years it has been regarded as a
great professional sin, but like most sins, it still exists, is rarely
talked about, and hardly ever admitted. High costs and inefficiency

€M-5097-1 2.
are the main reasons why it is condemned. At the~present time most com-
puters rent for epproximately three hundred dollars per hour. The time
saved by debugging at the console of the computer is usually far less
valuable than the cost of the additional computer time. The second
reason is that at present, it is extremely difficult to get an objective
view of what a program is doing or has done while at the console. An
attempt to find out usually requires manual switch settings, limited ex-
aminations by push buttons, or trace program data which is not immedi-
ately available. A parallel argument is that thinking under pressure
promotes poor reasoning and lots of bad guesses. The general result is
wasted time----debugging time as well as precious computer time.

In the face of these arguments, why try to encourage or develop
techniques for debugging at the console? Because in certain situations
and applications the time between the instant that the first iﬁstruction
is written and the moment that the results are produced, are of the ut-
most importance. In such cases any time is more than worth the addition-
al rental cost. Data Processing, Operational Research, and Real Time
problems are rapidly producing’more and more situations like this.v Al-

though these critical situations will involve only a small percentage

of the programs being operated on a given computer, utility systems

must be avilable to handle then.

There is still the problem of the programmer thinking on his feet,
trying to find what went wrong with his program and how to modify it%.
It is this phase in which we are extremely interested.

At the present time most utility programs do not provide enough
immediate information to enable a programmer to find his erroe while he

is still at the console. And if he can find it, few systems are capable
of allowing him to make an immediate change without the proparation of

a card, paper tape, or some other secondary input medium,

6M-5097 -1 3.

especially if he wants to retain the symbolic¢. language of the conversion
program. Another handicap is that he cannot examine any given part of

his progrem without having previously prepared a request card or tape.

And finally, the use of trece programs is desirable only to the extent
that they are simple enough to invite their use by the progreammer. A
tracing program that can give a visual picture of what & program is doing
is of much more value than one which produces reams of printed infofmation.

%
A

II DESCRIPTIONS OF INDIVIDUAL ROUTINES

Our first and most lmportant reason for writing a direct utility sys-
tem was to determine what:routines would be most useful in assisting a
programmer &t the console. We therefore began with a minimum of speci-
fications. The programming langusge was restricted to absolute addressed
instructions and constants. This does not prevent: & TX-O progremmer from
writing his original program in relative form. The conversion program
written by Wes Clark has a very flexible language and permits one to
obtain an absolute addressed translation of a program which has been
written in relative form. Later, when we have determined what the ideal
direct utility system should contain we will include a more flexible pro-

éraming language .

At the present time the system contains over a dozen routines. Some
of them are very necessary and others provide services whose only impor-
tance lies in the fact that they reduce impatience on the part of the pro-
grammer. Each routine obtains its required infoma.tion by asking speci-
fic English questions on the console typewriter. The answers are typed
on the same typewriter by the programmer and may be English words or num-
bers depending on the nature of the gquestion asked.

edite

The system was designed around & master dispatch routine called
EXPEDITE. Its job is to read the Flexowriter coded symbols coming from
the typewriter and recognize English words. There is a small English
vocabulary in the system and each stored word has an instruction associ-
ated with it. This instruction tells EXPEDITE what to do once an ii;coming

6M-5097 - k.

word has been recognized. Most of the words are the nemes of the other
routines in the system and the associated instructions inform EXPEDITE
where the routines start. EXPEDITE not only acts as & dispatcher but is
also used by the other routines as a subroutine when they req_uire.English
ansvers from the conSOle. Whenever & word is recelved which is not liated
in the vocabulary, EXPEDI'EE informs the typist of the error. Also, Bhauld
EXPEDITE receive its own reme it will pript out the words in itls‘vdcabu—
lary.

B&i‘k

The comfersion program of the system is called HARK. Using HARK
the progrannaer is able to call for specific registers for examination ang,
if necessary, modification. When an examination 1s requested, HARK trans—-‘
la.tel the bina.ry contents of the requested register into an octal addressed
instruction. If the register contains the binary form of an operate-
'cla.u command for which there ivs e three letter mnemonic code, HARK will
type out the three letters which represent that operate-class command.
When a modification is desired, the programmer may type the change as an
octal instruction, a coded operéte-class command, an octal number, or any
combination of these three as long as they are separated by plus or minus
signe. (Part IV provides explicit typing instructions.) Certain
control keyé of the typewriter allow a prbgramﬁier to examine and modify
a series of’ registers very rapidly. When it is desirable, HARK will
provide a binary punched record.‘ of the modifications (in Read-In Mode
ro'mt) HARK is a.lso capa.ble of recognizing a request to tramsfer control
to any register in the program being debugged. When the programmer is
through with HARK, the Stop Code button is pressed and EXPEDITE is ready
to receive the name of anothér'rquested routine.

Prince
Every utility system must have é stoi‘age print-out routine. Ours is
called PRINCE. It requires three pleces of information from the programmer .
They are:
1. The kind of page layout.
2. How the binary contents of storage are to be translated.
3. What range of storage is to be trasnslated and printed.

6M-5097 - i 5.

To determine the kind of page layout PRINCE types, DO YOU WANT VER-
TICAL COLUMN LAYOUT. The answer "YES" informs PRINCE that each printed
page is to contain two columns of words. Each column will be 100 (6ctal)
words long and the -address sequence will run down the left column and then
down the right. PRINCE will also lay out each page so that the address
of the first word position in the left column will have a factor of 100
(octal). If the first word to be printed does not have an address with
8 factor of 100, PRINCE will print the first word in the left column rela-
tive to its position from the last address with a factor of 100. For
exemple, if the sddress of the first word to be printed is 507, PRINCE
will skip the fii‘st seven positions in the left column before printing}
the contents of register 507. In this way each page is laid out in a
uniform manner. If "NO" is the answer to the first guestion, PRINCE
will lay out 10 (octal) words to a line and 29 words per page. Although
‘the vertical column lsyout printing time is longer than the horizontal,
it is more popular because it has room for comments and is laid out in
the wey in which most programs are written. Sincev PRINCE has only' two
kinds of page layout the answers YES or NO ere sufficient. If more lay-~
outs had been available the question would have been reworded and the answer
would have required specific English word(s); e.g., DOUBLE VERTICAL,
SINGLE VERTICAL, HORIZONTAL, etc.

DO YOU WANT OCTAL INSTRUCTIONS is the next question. "YES", is ob-
vious. "NO", will inform PRINCE that each register in the range is to
be translated as a constant.

The range is determined by the questions, WHAT IS THE FIRST ADDRESS
TO BE PRINTED, and WHAT IS THE LAST ADDRESS. An octal address is required
by the programmer after each question has been typed. It is interesting
to note that PRINCE uses EXPEDITE &s a subroutine when it requires an
English answer and HARK when it requires a numerical answer.

Following the reception of the last address to be printed, the range
is printed out in the desired form. When the range has been printed
PRINCE asks, IS THERE MORE TO BE PRINTED. "YES", returns control to the

6M-509T7-1 6.

first question again. "NO", returns to EXPEDITE.

Punchy
In order to allow the programmer to retain a corrected binary record

of his program, we have included a storage punch-out routine called
PUNCHY. The first question asked by PUNCHY is, DO YOU WANT A TITLE.
"YES". will cause the question, WHAT IS THE TITLE. The programmer then
types what he wants labeled on the beginning of his tape. For example,
SAMPLE TEST PROGRAM 25 FEB. 57. "NO", will bypass the title question and
lead to the question that follows the title punch-out, namely, DO YOU
WANT THE NORMAL INPUT ROUTINE LAYOUT. "YES", will remind PUNCHY to punch
out the Input Routine on tape in Read-In Mode format before punching

the requested range of storage in the normal Input Routine format. "NO",
will inform PUNCHY that the range is to be punched out in Read-In Mode
format. A FUNCTIONAL DESCRIPTION OF THE TX-O COMPUTER (6M-4789), explains
the difference between the two kinds of binary layout. The Read-In Mode
format is better for short ranges. The next twc questions ask for the
first and last address of the range to be punched out. The range is then
punched out and then the question, ARE THERE MORE BLOCKS TO BE PUNCHED
OUT, is asked. "YES", returns control to the questions asking for range
addresses. "NO", causes the question, WHAT IS THE ADDRESS OF THE START-
ING INSTRUCTION, to be asked. After an address has been typed by the
programmer, the question, DO YOU WANT THE COMPUTER TO STOP AFTER READING
IN THIS PUNCHED PROGRAM, is typed. "YES", informs PUNCHY to punch out
the starting instruction in a form which will cause the Read-In Mode

or the Input Routine to stop the computer before transferring control to

the indicated address. "NO", will cause the opposite. Once the YES or
NO has been received by PUNCHY, the starting instruction is punched out
in the desired form and control is returned to EXPEDITE.

R And Me

The system contains a read-in routine similar to the Input Routine
described in 6M-4789. When EXPEDITE receives an R followed by a carriage
return, control is transferred to the input routine. Once R has read in
a tape, the routine will print either GO TO of SUM ERROR, depending on

EM-5097 .1 T-

whether or not the tape was read in correctly. In either case control
will be tranmsferred back to EXPEDITE so that & programmer can call for
any one of the various routines in the system before operating his pro-
gran. When he is ready to' operate his program, the word ME will teli
EXPEDITE to transfer control to the starting instruction which was on the
end of the last tape read in by R.

Surprise
The SURPRISE routine is & useful one which reviews all the registers

of a given progrem and types out the addresses of those registers whose
contents have changed from their original form. It is called SURPRISE
because the information it produces usually comes as & big surprise to
the programmer.

After a program has operated and erred, the binary tape is again
placed in the photgelectric reader. EXPEDITE is given control and the
word SURPRISE is typed by the programmer. The tape is then read in by
SURPRISE snd the address of each register whose contents have changed is
typed out along with the present contents and the original contents
(translated as octal instructions or coded operate class commands). The
original contents are restored in each case and when the tape review has
~ been completed, control is transferred back to EXPEDITE.

Find

FIND is a routine which was born when we started to combine several
programs in storage. We found that redundancy and coriquion resulted
when two or more programs were formed in memory. Areas which appeared
to be empiy were being used by other progrems for temporary storage and
programs were killing each other by store instructions or Just strolling
through certain crucial routines. We wrote FIND to help us find and avoid
these difficulties. Its usefulness to a programuer probably depends on
the length of his program and the number of small routines used to build
it. FIHD begins by typing the question, DO YOU WANT TO FIND A WORD,
REFERENCES TO AN ADDRESS, OR SEARCH FOR AN OUTLAW TRN INSTRUCTION. The
three possible answers are WORD, ADDRESS, and OUTLAW.

EM-5097-1. 8.

Word - When WORD is typed, FIND returns with, WHAT IS THE WORD. The
snswer may be an octal instruction, & coded operate~class command, am octal
aumber, or say combination of the three as long as they are separated by
plus or minus signs. FIND then searches the whole ef memory (20 seconmds)
and types out the addresses of those registers which contain that word.
Whena all of memory has been examined, FIND returns cemtrol to EXPEDITE.

If mothing is found, FIND will print NO ADDRESS before returning contrel
te EXPEDITE.

Mdreas - When ADDRESS is typed by the programmer,‘rIND returns with,
WHAT IS THE ADDRESS. The answer must be an octal number. FIND searches
the whole of memory and types out the addresses and coatents of those
registers whose address sections agree with the address specified by the
programmer. When all of memory has been exsmined, FIND will return com-
trol to EXPEDITE.

Outlaw- Have you ever had a program stop in some section of memory that
was mot even part of your program---or worse still, foumd it sitting still
in a block of registers which contained constants instead of instructiemst
How it got there is & good question, and usually & hard ene to answer,
since it probebly did not come to § complete stop as soom as it left yeur
pregram. When OUTLAW is typed by the programmer, FIND returns with, .
WHERE BID fQUR PROGRAM STOP. An octal number is required. As soon as
FIRD receives the address it exsmines that register and those that pracede
it. It doubles back through storage until it finds an imstruction or set
of inmstructions which would cause an uncenditional control transfer. The
address given it by the programmer and the address following the uncondi-
tional trensfer constitute an area which cannot be penetrated by control
except by the use of a transfer control instruction. FIND then searches
the whole of memory and examines each transfer instruction's address
section. If the address section‘s value falls within the area in ques-
tiom, the address of the register and the transfer instruction will be
printed out. When all of memory has been examined, FIND returns con-
trol to EXPEDITE. If nothing is found, NO ADDRESS will be printed

6M-5097. i 9.
before returning control to EXPEDITE.

Flow Chart Display
We mentioned earlier that we felt it was desirable to have a trace

progrem which was able to give a programmer a visual picture of what\his
program was doing while he was at the console. The system has a routine
which does this in & limited way. It is rather primitive but it may give
en idea on how to accomplish the desired result. We call it The Flow
Chart Display Subroutine. It performs two functions, the first of which
is to display the four sides of a given box in a given area of the display
scope. The second functiomn is to keep a record of the sequence in which
requests were made for all boxes. When the subroutine is requested the
main program must supply three pieces of information, namely:

l. The x,y coordinates of the lower left corner of the box to be
displayed.

2. The width and height of the box. ,
3. The Flexowriter code for some letter or numersl which the sub-
routine can use to identify this specific box.

The purpose of the subroutine is to indicate the»control peath in a
program to be debugged. This is accomplished by first dividing the
program into sections and drawing a flow disgram in which each section
is represented as a box. The diagram must be drawn on transparent paper
superimposed on & TX-O Octal Graph Chart (see figures 3 and 4). When the
diagram is completed the programmer notes the coordinates and dimensions
of each section's box by referring to the Octal Graph Chart. In writing
his program, he will insert a transfer control instruction to the Flow
Chart Display Subroutine followed by the necessary information before
each section’s list of in&tructionsL When the program is ready to be oper-
ated, the tremsparent copy of the flow diagram is placed on the face of
the oscilloscope. During the operation of the program, as each seckion
is performed, its corresponding box on the flow diagram will 5e illumin-
ated. In this way the programmer will be able to follow the control path
through his program. The number of times a box is illuminated for one
operation of the section it represents, can be controlled externally

EM-5097-1 0.

(by means of the toggle switch saccumulator). This allows the programmer
to control the speed of his picture or to shut it off completely.

Path
When the program has stopped, the programmer may obtain a printed
record of the sequence in which the sections were performed. ‘!'hia‘ is
done by transferring comtrol to EXPEDITE and typing the word PATH. The
result is a printed sequence of alpha numeric symbols (81 per lime).
When the print-out is completed, FINISHED is typed by PATH, and control
18 returned to EXPEDITE. |

As an example, the boxes on the flow chart of figure U were lattered
a,b,c,d,e,f,g,h,1,r,m, end s. A printed sequence from PATH might appear
as:

abcdrmgedrmgedrmgeldrmgeldrmgedefgedefs
finished

Be Brief _

| Once a programmer has become familiar with the questiéna of each routine
there is no need to continue the lengthy wording of each question. When
BE BRIEF is typed by the programmer EXPEDITE will reduce each question
in every routine to cne or two words. When it has completed this task

and is ready to receive title requests again, it informs the programmer
by typing YES SIR. '

III SUBROUTINES

In writing the Direct Input Utility System we made an effort to in-
corporate as many subroutines as possible. This was done for two reasons.
First, it makes the job of modifying the system much easier, and second,
it privides a few subroutines that a progfamner can use in his own pro-

gran.

Each subroutiné bas been written so that it must be entered with
& transfer control imstruction in the accumulatoer. The address section

EM-5097 11.

of this instruction should contain the address of the register where
control is to be returned when the subroutine has completed its task.
Unfortunately, TX-O is such a simple machine that it does not have the
equivalent of a Whirlwind A Register, Therefore, it is necegsary to
program the return address when using subroutines. But since the compu-
ter and this system only exist to discover new potentials from large mem-
ories, we have no reason to complain. TX-2, the eventual home of our
large memory, 1is & very efficient computer in every respect. The ideas
developed on TX-0 will be that much more powerful on TX-2.

The following is a list of subroutines in the system’which may be
useful in other progrems written for TX-O:
I. Storage Print-out
A. Vertical columm layout
1. 26 words/column, 2 columns/page
2. initial conditions ;
a. 173560 = +0 = instructions
173560 = -0 = octal numbers
b. 173561 = first address of range to be printed
c. 173562 = last address of range
3. BStarting address of subroutine = 173323
B. Horizontal layout
1. 2o words/line, 26 lines/page
2. initial conditions
a. same as for Vertical Column Layout
3. Starting address of subroutine = 172767
II. Computer Word Print-out
A. Instructions
1. initial conditions _ .
a. 177341 = word to be translated and printed
2. Starting address of subroutine = 173140
B. Octal number (address)
1. initial zero suppression

III.

6M-5097 ¢ 12.

2. Initial conditions
a. 177337 = word to be translated and printed
3. Starting address of subroutine = 177370
C. Octal Number
1. All six digits are printed
2. Initial conditions
a. 177337 = word to be translated and printed out
3. Starting address of subroutine = 177710
English Word Printer

A. See appendix for list of English words available and their
corresponding addresses.

B. The addresses of the words to be printed must be stored -
in the registers immediately following the transfer control
instruction to this routine. The return address must be the
address of the register following the register containing
the address of the last English word to be printed.

C. Starting address of the subroutine = 173700
D. Exeample: print WHAT DO YOU WANT and » carrisge return

WHAT = 174311

DO = 174234

YOU = 17h237

WANT = 17h243

CAR RETURN = 174231

Absolute Address Programming Symbelic Programming

100| elm question, cla
add 200 ndd‘ tn+enswer
trn 173700 trn English
174311 wvhat
174234 do
174237 you
17h243 vant
174231 ‘ car return
110% cla ansver, cla
ete ete
etc ete
200| trn 110 English = 173700

Note: The TX-O Conversion Program writtem by Weés Clark -
knows the addresses of all the words in the vocabu-
lary of the system. This is achieved by & Flexowriter
dictionary tape. Each word on the tape has a space
separating each letter so that should there be a
redundancy between an English word to be processed by
this subroutine, and one which the programmer is using
as an address tag, the conversion program will not be
confused; i.e., e s t vs. test.

6M-5097 -1 13.

IV Computer Word Reader (HARK)

A,

B..

c.

Thais subroutine will reed one word terminated by a carriage
return or tab.

The binary translation of the word will be in register
176737 when control is transferred back to the main progrnm

Starting sddress of the subroutine = 176333

V.. Word Ansver Reader (E)E’EDITE)

A.
B.

cC.
».

This subroutine will read a YES or NO terminated by & carriage
return or tab.

Register 173322 will contain a +0 for YES sand a -0 for NO
when control is returned to the main progrem.

8tarting address of the subroutine = 173307

Other English answers myst be programmed and their words
added to the vocabulary of EXPEDITE.

V1. Btorsge Punch-out

A,

B.

c.

D.

Bccd-In Mode Format
1. Initisal conditions

a. 172506 = first sddress of range to be punched out
b. 172510 = last sddress of range

2. S8tarting address of subroutine = 172041
Normal Input Routine Format
1. Initial conditions

8. 17250h s +0 = Input routine will be punched out
v first in Read-In Mode Format be-
fore range is punched out. :
=0 = no Input Routine leader.

b. 172505 = first sddress of range to be punched out
c. 172507 = lest address of range |

2. B8tarting address of subroutine = 172100

Starting Instruction Punch~out

1. Initisl conditions _ :
a. 172511 = add (starting instruction sddress) if stop

= trn (starting instruction address) if no
stop after read-in is desired.

2. Starting saddress of subroutine = 172203

Blank iape feed-ocut

1. This routine feeds out six inches of blank tape.

2. Starting address of subroutine = 172213

M-5097 -1 Lh.

VII. Flow Cbhart Display and Sequence Record
A. B8equence reset subroutine

1. This routine is used when a new sequence is to be
remembered. It is usually requested once at the be-

ginning of a program.
2. BStsrting address of the subroutine = 1712k6
B. Flow Chart Display

1. This subroutine illuminates the boxes of a transparent
copy of a flow diagram which is mounted on the face of
the display scope. It also remembers the sequence in
vhich the boxes were illuminated.

2. The three registers following each transfer control
instruction to this subroutine must contain the follow-
ing: : ')

a. First reg = octal values of the x,y coordinates of
the lower left cormer of the box to
be displayed. e.g., if x = 10, and
¥y = 300, then lst reg. = 010300.

b. Becond reg = octal values of the width and height
- of the box to be displayed. e.g.,
if width = 7O, and height = 50, then
2nd reg. = 070050.

¢. Third reg = flexowriter code for letter or numeral
used to identify the box being displayed.
The code is written as a six digit octal
number. e.g., if letter = r, 3rd reg.=
010100.

3. The return address must be the address of the fourth regis-
ter following the transfer control imstruction to this
subroutine.

4. Starting address of the subroutine = 171000

5. BExemple: Consider the program flow chart of figure '
Let us assume that we are going to write the request
which will display the box that represents that section
vhich does the indexing and compares XL and XK. The
request is written ih the program just before the
instructions which actually do the indexing and compar-
ing. The coordinates of the lower left corner of the
box are -40, -310. The width of the box is 100 and
the height is 70. The Flexowriter code for g is 110100.
The request in instruction form would be:

100 ¢la
&dd 200
trn 171000
737467
100070
110100
cla
ete.
etc.
ete.
ete.
ete.
ete.
ete.

200 trn 106

C. 8equence Print-out

This subroutine will print out the letters und numerals
which represent the various sections of the program in
the sequence that they were performed.

1.

6M-5097-1 15.

These instructions would
contain the instructions
for indexing the values

and comparing XL and XK.

Using this routine, the sequence may be printfed out at
any time during the operation of the program. If it
is not desireble to continue remembering the whole sew
quence then this routine should be followed by the

Sequence Reset routine.

Starting address of the subroutine = 171257

éM-5097-1 16.

PART Iv. Typing Directions

To use the Direct Input Utility System of TX-0, read
in tape no. i8(latest mod). Be sure the TYPE IN switch
is in the on position and start the program at register
175100. This will transfer control to EXPEDITE which is
the titlee-read routine for the System. If you are not
acquainted with the names of the other routines, type

expedite ahd a carriage return,

This will cause the computer to type out the 1list of
the names.e.g- -

expedite‘p

bebrief
word
address
find
hark
surprise
outlaw
punchy
prince
yes

' no
expedite
me

r

path

If a name is typed incorrectly or is not in the above
1ist, EXPEDITE will inform you of the fact. For example-
let us assume that you typed

be breif and a carriage retumn.

Spaces and upper and lower case are ignored but
misspelling is not anticipated. Therefore EXPEDITE
would have typed out the following:

error bebreif

6M-5007 -1

To transfer control to the system s conversion
program, type

hark and a carriage return.

Case 1, TO EXAMINE A REGISTER:

Type the address of the register, a vertical bar
and an equal sign. HARK will type out the contents
of the register as an octal instruction, a tab,
and then wait for a modification. Since no
modification is to be made, the typist will type
a carriage return and procede to examine some
other register. e.g. examine registers 174 and 300.

T <R,
174 = add 177 il 2

e

typist HARK “typist
- 2R 5

39 =pnr K 2,

typist HARK typist

ase 2, EXAMINE AND MODIPY A REGISTER

Octal imstructions, coded operate class commands,
octal numbers, and any combination of these three
separated by plus or minus signs may be used to
express a modification., e.g. change register 174
to contain add 157.

| .
174 = add 177 >, add 1 :
Rt | & T 7% 57 2,

typist HARK typist

gase 3. MODIFY A REGISTER WITHOUT EXAMINING IT

(174 add 157 2,
typist

7.

6u-5097-1 18
Case 4. MODIFICATIONS OF A SERIES OF REGISTERS

17#|add 157
sto 300
+234

In this case registers 174,175,and 176 would have
been changed to add 157, sto 300, and +234. Each
time a modification is typed and terminated the
current address in HARK 1s indexed by one. Extra
carriage returns and tabs are lgnored.

case 5. EXAMINATION AND MODIFICATION OF A SERIES

OF REGISTERS

174 = add 177 —4 add 157 >
- AN)
typist HARK typist
175 = ito 301‘., ~h _8to 300 v,
typist HARK typist
176] = sto > 230 ™ 4234 2
typist HARK typist

Using the carriage return to terminate a modification
you can see that it 1s necessary for the typist to

- type the next address and an equal sign in order to
obtain the examination. This is not necessary if the
modification is terminated by & period. e.g.

174 = add 177 — add 157, P
\——w—-Jw —_—

typist HARK typist - HARK
175 = sto 301 —A | 8to 300. 2
HARK typist HARK
eﬂfij:sto 230 . . 234, o
HARK typist HARK
G?h sto 400 /-AJ P

HARK : typist

The period will cause HARK to store the modification,
produce the carriage return, type the next address,

the vertical bar; the contents of the register, a tab,
and then wait for another modification from the typist.

EM-5097

case 6. EXAMINATION OF A SERIES OF REGISTERS

The period is alsc helpful when a series of
registers is to be examined without modifications.
wWhen HARK receives a period from the typewriter it
checks to see whether a modification has been typed.
If a modificaticn has not been typed HARK will merely
produce a carriage return, type the next address, a
vertical bar, the contents of the register, and a tab.

ef%f L TyesTT

(174 = add 157 -=» o e

175/ = sto 300 .~ o &

AT6 = sto 23% ~ | o
HARK typist HARK

case 7. A SEARCHING EXAMPLE

Using the pericd it is quife simple to search a
given set of registers and then modify the desired one.
For example if an entry in a table was to be changed
it would not be necessary to know its exact location.
One would merely type the first address of the table
and search for the entry by typing perlods. Of course
if the table was extremely long the PRINCE would be
used instead. Let us assume that we want to search the
table beginning at register 2000 and that we want to
change the first register containing a minus zero to
a one, ‘T}/‘[’ﬁ T

PP

2000l =) sto 125 o)

5001 = sto 100 % . <
2002 = sto 5 ~A . >
2004 = opr 177776 * . <

o4 = o 1 —~ +1
2008 - opx 471771 10 T
HARK typist HARK

case 8. EXAMINATION, MODIFICATION, AND RECORDING

The comma performs the same function as the period
but also enables the typist to obtain a punched binary
tape record of his modifications. When a modification
is terminated by a comma HARK stores the mod in the
indicated register, punches the binary form of the
current address on tape, punches the binary form of
the modification on tape, produces a carriage return,
types the next address;, a vertical bar, an equal sign,
the contents of the register, and a tab.

19.

aM-5097

case 8. continued.
Let us assume that we had to make modifications to

registers 1T74,175,and 176 and that we also wanted a
binary paper tape record as well.

(P
add 177 ~ add 157, &
17 = gto 3014 sto 300, o

176 = sto 230 ~ +234, &

177 = sto 400 — &

D N—— N
HARK typist HARK

The paper tape would contain the following:

First three lines= sto 174
next three lines= add 157
next three lines= sto 175

next three lines= sto 300
next three lines= sto 176
next three lines= +234

This kind of layout is called the Read-In format and
is discribed in 6m-4789, A FUNCTIONAL DISCRIPTION
OF THE TX-=0 COMPUTER .

Case 9. EXAMINATION AND RECORDING OF A SERIES
OF REGISTERS

This would be obtained by typing a comma in place
of a period.

case 10, RECORDING THE ADDRESS OF THE STARTING
INSTRUCTION ON PAPER TAPE

After a series of modifications are made it

is deairsble to record the address of the starting
instruction. This enables the Read-In mode of TX-0
to transfer control to the program after the
modifications have been read into storage from tape.
7o do this the typist merely types the address of the
starting instructionya vertical bar, and a comma.
eugo i

1Th ,)

This will cause the next three lines on paper tape
to contain add 174(the add signals the Read-In

mode to stop the computer before transfering control
to register 1i74) and then HARK will feed out some
blank tape,

20,

6M-5097..1 2l.

case 11, TRANSFERING CONTROL FROM HARK TO SO
| OTHER REGISTER IN MEMORY ,

To transfer control to some other register in
memory the typist has to type the address followed
by two vertical bars. e.g.

ATH |
Case 12, CONCEALING INFORMATION FROM HARK

We have found that the typewritten copies produced
while using Hark have been very useful records. There
is a feature in HARK which allows the typist to make
comments alongside any of the examinations or ‘
modifications without HARK acting on the information,
whenever the vertical bar is the first plece of
information that HARK receives after a erminating
character, then all the information that is typed
will be ignored until a carrisge return 1is typed.

. e o-so ’ ’

174 =.8dd 177 —u , .add 157~ | add x is now add y 2
&w.Jn’““ — \-’:;ro.iss-’\-L —

Hagk _;y;kr
CASE 13. ERROR RECOGNITION BY HARK

wWhenever an invalid word 1g typeg Hark will inform
the typist by typing the word error and the invalid word
Some examples of invalid words are:

1. Three letter combinations for which there
are no operate class commands. i.e. clu,cpc,&tc.
2. Any alphabetical letter used as a suffix
to an octal number., i.e. 125]
3. The use of o and 1 for O and 1. 1i.e. 200
and 17510.
4, Two letter designations for the four
operation symbols. i.e. ad, st, tn, op, etc.

When HARK does find an invalid word it will not disturb
the current address when it prints out the error,

Case 14, NULLIFY CONTROL

There are many times when a typist will make a mistaie
and discover it before a terminating character has ‘
been typed. To nullify the whole word all that 1s
required 18 the typing of a double x., This will erase
the whole word or address being typed but willl not
disturb the current address. This feature is also
provided, K by EXPEDITE.

éM-5097-1 22.

Case 15. HOW TO TRANSFER CONTROL BACK TO EXPEDITE
FROM HARK

To transfer control back to EXPEDITE the typist
merely has to hit the STOP CODE button on the
typewriter, This will cause EXPEDITE to guard the
typewriter for incoming requests for other routines,

case 16. :SOME EXAMPLES OF LEGAL WORDS

We mentioned that a word may be an octal number,
an operate class command in coded form, an octal
instruction, or any combination of these three
80 long as they were separated by plus or minus
signs. Here are some examples:

i, add 100 +5 =add =110 will be converted to =5,

2, add+add will become trn O

3. +2=1+100 will become +101

4 ,-add=-100 will become(the complement of add 100 or)

trn 477677,

5., cla +200 will become opr 140200

Note. The addition of two coded operate class commands
will not become a new combination. including
the functions of the fwo commands that were
added together...ie. cll+clr # cla.

: cll+elr = trn 140001,

6. 125+4a will cause the current address to be 165.

T. 125+40 | will cause HARK to transfer control to

register 165,

6M-5097-1 23.
SUMMARY OF TYPING DIRECTIONS FOR HARK

Current Address========-===-= gddress|

Examine Current Address=~----- =

Octal Instructiong==<===<===< gto alone .
' add or followed
opr by an
trn address
Octal Numbepr=<=<-<= e=e==-seea=e gix Or less octal digiﬁs

alone; or precededtby a
plus or minus sign.

coded Operate Class
Commandg~===== cemacesss-ee=== gla c¢ll clr clc cal
‘ . ..C¥yr cyl .com,.lac. alr
lpd 1ro 1lad tac ¢tbr
shr hlt dis 1o0s pTh
pébh pbs pT7a pba pnt
pna pne rfa rfl rfr
r3c ric ril rir

Terminating Characters:

i. Carriage return-------{will store modification in

2, Tab====- bbbl il =====)the register whose address
is the current address and
then index the current
address by one., If there is
no modification to be stored
HARK will ignore the tab or
carriage return and the
current address will remain
the same. Hark also ignores
extra carriage returns or
tabs,

3. Period===<cce==ccss<== will store a modification
in the same way as the tab
and the carriage return do
but in addition it will
produce a carriage return,
print the next current
address, & vertical bar, an
equal sign, the contents of
the Pegistef whose address
is now the current address,
and a tab. If there is no
modification then none will
be stored. The rest of the
sequence willl remain the same,

: fM-5097 = 24,
SUMMARY OF TYPING DIRECTIONS FOR HARK continued, ‘

Terminating Characters cont,

4, Comma~~=<=c=cesscccco - performs the same function. as

: the period but in addition
it will record the
modification on paper tap@
in the format of the. -
Read-In Mode. If no.
modification is made then it
will record the original
contents of the register
whose address 1s the current
address and then procede in
same way as the period.

additional Features

1. Recording the address
of & starting linstruc-
tion on paper tape-==- address| ,

2., Transfering control.
to another section
in memory--=-=<-=< ====== address| |

3. Concealing infonmation
from HARK=~=<<=c=e==<s | jnformation &

4, Nullify control===-==-=- xx will nullify a whole
word or address.

5. Tranafering control
back to EXPEDITE*-~=~= preseg the STOP CODE button.

Note: HARK will always type in the opposite color code
o of the typist.

€M~ 5097 25,

IV IDEAS FOR NEW ROUTINES
As you can see, this utility system is very basic, |

We have merclyvsuggested a technique which will enable a programmsr
to see what his program is doing and examine and modify it rapidly while
he is still at the console, ‘

There are some new routines being written now which will be added
to the system at a later date. When we have them written and operating
we will write an addendum to this memo. The following is a list of some
of the new routines and changes:

1. Several display subroutines

2. The flexo paper tape conversion program written by Wes Clark
will be added to the system and will include the feature of
informing the programmer of any illegal words on the flexo
tape and asking him whether he wishes the conversion process
to be continued with the illegal word (s) ignored or corrected.
The correction would be added via the direct input flexo

typevwriter,
.3. The direct input conversion routine, HARK, will have its

vocabulary increased to understand relative and symbolic address
tags.

L. In order to assure the programmer at thg console that the
utility system has not been damaged by his program, we plan on
installing a check routine which will perform a sum check on
all permanent instructions and cons\tants in the system,

S5e Any suggestions for routines or techniques which would increase
the efficlency of debugging at the console will be apprecliated,

———""‘;& -
JTG:bac ' / A «

- Attachments: obn T. Gilmore, Jr.
Appendix A DL-1
Appendix B A-80287
B-80354 A-68405

D-80351

6M-5097-1
APPENDIX A

CODED OPERATE CLASS COMMANDS

CLA = opr 140000 Clear the accumulator

CLL = opr 100000 Clear the left nine bits of the accumulator

CLR = opr 40000 Clear the right nine bits of the accumulator

CLC = opr 140040 Clear the accumulator and complement it

CAL = opr 140200 Clear-the accumulator and live register

CYR = opr 600 Cycle the accumulator one position to the right

CYL = opr 31 Cycle the accumulator one position to the left

COM = opr Lo Complement the accumulator

LAC = opr 140022 Transfer the contents of the live register to
the accumulator

ALR * opr 201 Transfer the contents of the aceumulator to the
live register

LPD = opr 22 Partial add the contents of the accumulstor and
the live register and leave result in AC

LRO = opr 200 Clear the live register

LAD = opr 32 Add the contents of the live register and the
accumulator and leave result in AC

TAC = opr 140004 Transfer the contents of the toggle switch
accumulator to the accumulator

TBR = opr 140023 Transfer the contents of the toggle switch buffer
register to the accumulator

SHR = opr 400 Shift the accumulator to the right one position
(multiply by 2-1)

HLT = opr 30000 Stop the computer

DIS = opr 22000 Display a point on the face of the oscilloscope
according to the value in the accumulator

PEN = opr 100 Read light PEN into Aco and Acy

I0S = opr 160000 In out stop and accumulator cleared

PTH = opr 27600 Punch seven holes on paper tape and cycle AC right
one position (AC 2, 5, 8, 11, 14, 17 Tape 1 2
3456)

PEH « opr 26600 Punch six holes on paper tape and cycle AC right

P6S = opr 166000 Clear AC and punch one line of blank tape

PTA = opr 27012 Punch seven holes and clear AC

A-1

P6A
PRT

PRNA
PNC
RFA

R3C

R1C

M- 5097.. .

CODED OPERATE CLASS COMMANDS (CONTINUED)

opr 26021
opr 24600

opr 24021
opr 24061
opr 141000
opr 1031
opr 1600
opr 163000

opr 161000
opr 161031
opr 161600

Punch six holes and clear AC

Print snd cycle right (AC 2, 5, 8, 11, 1k, 17 -
Flexo 1, 2, 3, &, 5, 6)

Print and leave AC cleared

Print and clear and coamplement AC
Cleaxr AC and stert petr running

Cycle AC left and start petr running
Cycle AC right and start petr running

Clear AC and read three lines from paper tape
(T‘Pe 1,2, 3 4 5,6 AC 0, 3, 6, 9, 12, 15)

Clear AC and read one line from paper tape
Clear AC, read one line and cycle left
Clear AC, read one line and cycle right

APPENDIX B

ENGLISH VOCABULARY 6M-5097 -1
of the '

TX-0 ENGLISH PRINTER SUBROUTINE

2 174170 outlaw 17hlhh
eddress 17h163 print 1Th212
after 174361 printed 174337
an 174413 program 174120
are 174100 punched 174113
srep A7kk2T question 174455
ve 174334 reading 174365
block ‘ 174104 reference 174416
'cer return (;A?:) v 174231 routine 17h271
column 174205) 174160
conme. 174410 search 174h33
computer 174350 ° sir 174474
aid 174k66~ starting 1741k
do 17423k stop 174355
double 174173 tab (W) 174110
find 174400 test 174131
finished ‘ 174135 the 174315
first © 17321 there ' 174301
for 174440 this 174125
in 174372 title 174344
input... 174265 to 174331
instruction 17147 trn 174451
is 17h276 TX-0 174375
last 174325 vertical 3 174200
layout 17hokT want 17hok3
more 174305 what 174311
no 17he26 where ' 174hé2
normal 174260 word 174404
octal 17425k yes 17k222
of 174155 you 17h237
or 17hhok your 1740Th
out 174216

B-80354

(4096) (8192) (12, 288)(16, 384) (20, 480) (24, 576) (28, 672) (32,768) (36, 864) (40,960) (45 056) (49, 152 (53, 248) (57, 344) (61, 440)A
000 10 000 20,000} 30,000 | 40,000 | 50,000 60,000 70,000 100, 000 | 110,000{ 120,000{ 130,000} 140,000} 150,000| 160,000 170,000

1,000 | 11,000 { 21,000{ 31,000 | 41,000 | 51,000 61,000| 71,000{101,000111,000 121,000 131,000] 141, 000| 151, 000 161;000/

2,000 | 12,000 122,000 |32,000 | 42,000 52,000 62,000 72;000 102,000{112, 000 | 122,000} 132, 000] 142, 000 152, 000 162, 000

3,000 13,000 23,000 | 33,000 | 43,000| 53,000] 63,000 73,000|103,000]113, 000 123,000} 133, 000) 143, 000) 153,000 0
% ‘ DIRECT INPUT
| UTILITY SYSTEM
4 000 14,000 | 24,000 34,000 | 4,000| 54,000 64,000 74,000|104, 000114, 000 124,000| 134,000 144,000 154, 000 164, ”
| 5,000 | 15,000 25,000 |35,000 | 45,000{ 55,000| 65,000 75,000 105, 000|115, 000 | 125, 000{ 135, 000} 145, 000} 155,000 165, 000717 11
| | 2 2
6,000 | 16,000 | 26,000 | 36,000 | 46,000 56,000] 65,000]- 76,000] 106, 000{116,000 | 126, 000| 136, 000 146,000) 136,000 166 000176000
7 000 | 17,000 | 27,000 | 37,000 | 47,000] 57,000 67,000| 77,000]107, 000 117,000 | 127, 000| 137,000 147,000 157,000 167, 00077, 00 T0 |
. , "W L & INPUT ROUTINE

(4,095} (8, 191) (12 287) (16, 383)(20, 479) (24, 575) (28, 671)(32,767) (38, 863) (40,959) (45,055) (49, 151153, 247) (57,343) 61, 437) (65, 535)
TX -0 MEMORY REFERENCE CHART

Fie.1l

o-}uoss:

MEr

CONTROL TRANSFER
TO PROGRAM
BEING DEBUGGED

LY
CONTROL

TRANSFER
ROUTINE

BE BRIEF "YES SIRY G0 TO" OR *'SUM ERROR" R %
- READ-IN £
REDUCES WORDING Rmm:.'é z
OF QUESTIONS VB BRIEF R F~‘
Z
. . J I
PUNCHY "FINISHED" "FINISHED SURPRISE [|
STORAGE PUNCH OUT ROUTENE ;&ﬁw%';TEM || {
READ-IN MODE OR INPUT ROUTINE “PUNCHY? ISURPRISE" PROGRAM
FORMAT 4 :
f e | I
| ? PRINCE "FINISHED" "FINISHED" PATH | |
| | STORAGE PRINT OUT ROUTINE ROUTINE | | [ProToBECTRIC
| | PRINGE" PATHY SEQUENCE [| | PAPER TAPE
| | OCTAL INSTRUCTIONS OR CONSTANTS [RECORD | |
[| ! ' — i 1 I
CORRECTED BINARY RECORD i | HARK STOP CODEBUTTON FINISHED" | FIND i | |
R _ FIND
OF THE PROCRAM ‘ I | : CONVERSION ROUTINE MEMORY | | | ©
HARK® - SEARCH
| | | | USED FOR EXAMINATION AND MOD}- HARK FIND ROUTINE | | |
! | I | FICATION OF STORAGE | | |
T ORIGINAL BINARY
! | | | | A . I " | | | TAPE OF THE PROGRAM
! | ANSWERS I | ANSWERS mmmmoﬂs' |CURRENT D | | | 5'2833,'& I Iﬁ%ﬁ?ﬁ;as I 'f;",l‘;‘;
| |1 I | wso | | ADDRESS MAIN DISPATCHER [e | wose contents | was ReaD-IN
| QUESTIONS QUESTIONS | QUESTIONS o InFoRMA REQUESTS FOR REQUESTED ROUTINES | | | HAVECHANGED | CORRECTLY
QUESTIONS I ano AND THEN | Aon | D | | FROMORIGINAL 0/ oo
ltapeTme storace | |mopiFica- i | | rorm ' \F NoT
| PRINT-OUT | | | 1 TioNs | [| | |
T o IR VT R
LIST OF QUESTIONS ANSWERS
L I I | Al o || s | | |
N
| | ‘ | | | NAMES || NAE OF INFADRMA"ONI | ! ! |
| | ‘ | | reavesteo | QuEsTions | | i
| | | | | | ALSO | |'RoUTINE CONCERNING |
|] | tRROR | | mewory | | ! ! |
|I | : i ‘ i INFORMATION | | | | | | |
: | : | | H I | | |
! I Y | ¥i v 1 i i
FlG.2
TX-0 DIRECT INPUT UTILITY SYSTEM

DL-1585
B-REDVCY.

400 437 477 537 A577 637 67T 137 o] 040 100 140 200 240 300 340 377

377 k144
340 . - ns 340
300 - 300
240 ; 240
200 : - 200
140 : 130
100 : , — 100
040 : - ! 040
o o
737 - . - ‘ 737
-
677 |+ 677
637 . " (637
577 v 577
537 : 537
477 477
437 | v ' % 437
400 » ‘ 400

400 437 477 537 577 637 677 737 (o] 040 100 140 200 240 -300 340 377

"TX-0 OCTAL GRAPH CHART

A-80281

/D|SPLAY SCOPE BOUNDARY

—— atte v ondt ot i S—— o —— — v——— —— o o— AR N, S Gn— — . foin. — O— —— —

T

_ SET
wmeeetd | ML T AL
\ VALUES
' 9
by
INDICATE
5 NEW CASE
5
'
< ||*: * 2% [TREAT
c @ X
rex; Yo |
(R r :
%o lI%e Xps¥%y [TREAT
=’
D R ~
| -"R”‘Fl :
"\..Anti‘= b
f X e Xl Xe
- (& M
S XX ' 2, 4%,
t el “xK R™TF
E
X <% _
PR
XXy
% LY
'G 14
XU> X INCREASE
SIVALUES BY 2(K+)
H
FIG. 4

FLOW CHART EXAMPLE"

——— —— ——— — — — —— — — — — A NS w—— — D A — I — S — — — —

A-68405

ACCUMULATOR TAPE CHANNELS
0123456 7891011121314151617 112]3[4(5/6] 7
als|c|ple|lF|c|H|T|d|K[L|M|[N|O|P|Q|R clt]i[2]o]lr]e

blelhlk|n|q|e
REG ADDRESS REGISTER RAERNEED
o1 234567891011121314151617 [B|E[H[K|N[Q|e®]| DIRECTION
alb cjdle|f|g[h|i]j|k|L|Im|nlo|p|qlr AlD[GlJIMIP|® OF
TAPE
AN AST
EXAMPLE: STORE THE OCTAL
WORD 356321 IN
REGISTER 40 OCTAL
AC IR MAR
oftirfijofifififojo]t[iTolt[o]o]of1] [o]c] [o]oJoJo]o]o]oJoo]1]o]o]ol[o]0]

AC IR MAR

(3 5 6 3 2 1] [st]
\

w YO IF THE TAPE IS HELD SO THAT

DO N — IT IS MOVING FROM LEFT TO

RIGHT WITH THE SEVENTH HOLE
NEXT TO THE BODY, THE DATA
\ WORD AND STORE INSTRUCTION
CAN BE READ OCTALLY IN HOR-
ZONTAL FASHION.

DIRECTION
OF
TAPE

FIG.5
TAPE LAYOUT FOR READ-IN MODE OF TX-0O

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	A-01
	A-02
	B-01
	Fig1
	Fig2
	Fig3
	Fig4
	Fig5

