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Appendix I: Symmetry

Symmetry In The Plane

Before attacking the problem of symmetry in the complete
game, it 1s helpful to examine the symmetries in the two
dimensional configuration. The first consideration 1s the
number of ways that the square can be orientated so that
the distance relationships of the corners remain unchanged,
regardless of what may happen to tle center. A simple way
to approach this problem 1s to pick any particular corner
and assume it 1s occupied by a particular point. This fixes
the opposite corner and leaves two possible alternatives
for asslgning the two remaining com-=rs. There are four
possible points which could have becuplied the corner orig-
inally, so .there are four times two, or eight symmetrically
equal configurations of the square itself. This could also
have been seen by realizing that there are four equal positlons
which arlise from rotations of 90, 180, and 270 degrees around
the center point, two which arise from rotation around the
"center" lines, and two which arise from rotation around
the diagonals. Filgure IV shows these eight configurations
and a method of generating all eight by systematic application
of only two symmetric operators, rotation around a "center"
line and rotation around a dilagonal.

Next consider the possibility of keeping the four
corner points fixed and all ten line relationships the same,
but changing the location of the remaining twelve points.
Figure Vb shows a way in which the base position of Filgure
Va can be arranged so that the above restrictions are met.

This symmetry functlon can now be applied to each of the
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previous eight positions, resulting in slxteen symmetricaliy
equal positions of the four by four square. These positions
can be generated by the following series, where a and b are
the operators of Figure IV and ¢ 1s the new "constant corner"
operators? acbcacbcacbcacbce.

An analysis of the sixteen squares shows that each

falls into one of the following three classes:

Type Straight Lines Diagonals
Inside 2 1
Corner 2 1
Other 2 0

The fact that the corner squares and inside squares lie on

the same number and type of lines indicates that a symmetry
may also exlst which maps the inside points into the corners
and the cornérs into the inside. By slimply assigning a

corner point to an inslde point, the remainder of the points
can be filled in to form the configuration showr in Figure Vce.
It would have been'possible to f111 in these points In several
other ways, but all of these configurations would have been
symmetrically equal to the one in Figure Ve by appliéation

of one of the symmetries previously discussed.

This new symmetry\can be applied to each of the previous
sixteen positions, resulting in a total of 32 symmetrically
equal representations of the four by four array, ard also
showing that there are only two distinguishable types of
points. The serles of syﬁmetrical operators which will pro-
duce these 32 positlons can be obtained by inserting the new

operator between each pair of operators in the above series.
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Figure V: Other Plzn-r Symmetries
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Symmetry In The Full Array

The problem of symmetry in the full game can be
attacked in the same manner used in finding the symmetries
of the square, The first consideration is the total num-
ber of symmetries in the cube itself, apart from internal
considerations. Again a corner 1is picked and the possible
configurations of the corners which must be unidistant
from that point are considered. There are three of these
corners and therefore 3!, or six possible configurations.
There were eight points which could have been chosen orig--
inally, so there are six times eight, or 48 symmetrles of
the cube 1tself. Table I lists these symmetries and how
they can be generated by successive application of three
basic operators. The values of X, Y, and Z are the binary
coordinates of the corners.

A similar "constant corner" symmetry also exists in
the three dimensional case. The elght corner points remain
fixed and the inside center points are transférmed. Since
the cross-corner diagonals must be maintained, the only
possible variation is a switch of the inner palrs of each
dlagonale This results in changes of the outside non-corner
points, and the entire mapping can be described by the
operator XrYrZr’ where the operator An exchanges the high
and low order bits of the two bit binary number A. Thils
operator can be applied to each of the previous 48 positions,
resulting in a total of 96 symmetrically equivalent positions.

An "inside-outside" symmetry also exists in the three
dimensional case, and 1s described by the operation X;Y,Z,,
where the operator Ay inverts the low order bit of the two

bit binary number A. Application of this operator to each
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of the previous 96 positions ylelds 192 symmetrically
equivalent positions. |

This inside-outside operation is also ilmportant since
it maps inside center points into corrners and outside
center points into interior edge points. This reduces the
number of distinguishable polnts to two, as in the planar

case.



Appendix IIs Calculation of the Total Number of Positions

To calculate an extremely rough upper bound on the
total number of positions of the board, it can be assumed
that each square can have one of three posslble conditionms,
occupied by the first player, occupled by the second player,
or unoccupied. This results in (3)64 total positions, or
about 3.5 x 1050.

This formulation completely ignores one of the most
obvious restrictions of the game, however, that the total
number of squares occupled by the first player must be
equal to or one greater than the total number of squares
occupled by the second player, depending on who is to
move. Since only an approximation i1s required, it will
be assumed that the total number of positions is the same
for both situations, and only the total number of positions
when the first player is to move will be calculated. This
figure can be obtained by calculating the number of config-
urations when each player has no pieces, one plece, etc.,
and summing these results. This can be expressed math-

ematically by the expression

32
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The result of this calculation will be a sum of the form
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Evaluation of this expression on the TX-0 gave a result
of 0.10 101 000 110 100 110 x 21428, or sbout 2.09 x 10°°,
This figure is exactly the number of ways in which the
board can be arranged when the first player is to move,
but contains a great many configurations which are of no
Interest because the game has already been won, possibly
several times by one or both players.

An upper bound on the total number of positions which
contain four in a row can be calculated in the same manner.
Four of the squares of one player are constricted to lie on
a line, and the number of ways the remainder of the pleces

can be located are calculated. This sum 1s given by the

expression
32
;EE 601 )( (60-n) 1
(60-n)¢ n! / (60«n=n+4)! (n-4)4&
ns=4 on

A similar evaluation gave a result of 2 x 10"+, This figure
must now be multiplied by 76, since the four in a row could
have been on any one of the 76 lines, resulting in an upper
bound of 1.52 x 1029. This 1s an upper bound because the
restriction is not made that no new four in a row be formed
with the remaining pieces, and each position will be counted
as many times as it has four in a row.

A lower bound on the total number of "active", or
non-wén, positions can now be calculated‘by subtracting
the upper bound on the number of positions which contain
at least one four in a row from the total number of positions.
This results in a figure of § x 1028. If these positions
were actually going to be stored in the machlne, a great

deal of space could be saved by storing symmetrically

equal positions only once. A lower bound on the number
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of positions which would then need to be stored 1s given
by dividing the lower bound on the number of positions,
5 x 1029, by the number of symmetries, 192, which ylelds
about 2.5 x 10°® different positions. This figure is
certainly a lower bound since there are not 191 positions
which are symmetrically equal to a given position; for
‘Instance the position with no pleces for elther player is
symmetrically equal only to itself.

This figure can now be multiplied by two, since it
contains only the positions when the first player is to
move, glving a final total of 5 x 10°6. If one bit of
information was to be stored about each of these positions,
with a packing density of 200 bits per cubic inch, the
memory required would bé approximately the size of the earth.

An attempt was made to further reduce this figure by
removing all positions which contained a line where a three
to nothing situation existed, since the choice of a move
in these positlions 1is trivial. This upper bound was
calculated in the same manner as that of the four in a
row.case and contained similar duplication. Because of
the high amount of duplication the figure came out about
4 x 1026,-resu1ting in a negative number of active positions,
and was therefore discarded.

It 1s also interesting to estimate the number of
different possible games. An upper bound can be obtained
as 64!, or about 1089, but this 1s clearly much too large.

A lower bound can be obtained by assuming that each possible
game goes through 64 different positions and that no one
position is encountered in any two games. Then by dividing

the lower bound of the number of active positions by 64, a



lower bound of 5 x 1024 is obtainted.



Appendix III: The Mathematical Description Of The Game

The 64 squares of the game are coded by giving their
coordinates on a three axls cartesian system. The x and y
coordinates specify the square's location in the horizontal
plane and the 2z coordinate specifies the horizontal plane
in which the square 1s located. Each coordinate is expressed
with a pair of binary digits and the three pairs are combined
Into a six bit binary number in the following manner,
zzzlyzylxle. For input-output purposes, these six bits
are represented as two octal digits, with the high order
octal digit being composed of 2529¥p and the low order
octal digit being composed of T XoXqe

There are 76 different four square lines in the game,
which can be broken down into the following types:

Type Mathematical Description English Description Number

A Orthogonal to two axls Straight Lines < 48
B Orthogonal to one axis Regular Diagonals L 24
c Orthogonal to no axis Cross Corner Dlagonals 4

Since a carteslan system 1s being used to number the
squéres, all lines can be described by a point on the line
and the slope of the line. In particular, when the point
is chosen to be the square with the lowest octal value and
the slope 1s expressed with the same xyg convention as was
used to number the squares, the other three points on the
line can be found by successively adding the slope to the
base point. Therefore all lines are described by four
octgl digits, the first two specifing the base point and
the second two the slope. These descriptions of the lines

are given in Table II, where the subscript on the type A



Table IIt Descriptiom of Lines

Line Number Type Base Point Increment Diagonal #

00 Ay 00 01
01 04
02 10
03 14
04 20
05 24
06 30
Q7 34
10 40
11 44
12 50
13 54
14 60
15 64
16 70
17 74
20 Ay 00 04
21 01
22 02
23 03
24 20
25 21
26 22
27 23
30 40
31 41
32 42
33 43
34 60
35 61
36 62
37 63
40 Ag 00 20
41 01
42 02
43 03
44 04
45 05
46 06
47 07
50 10
51 11
52 12
53 13
54 14
55 15
56 16
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Table II: (con.)

Line Number Type Base Point Incfement Diagonal #

60 By, 00 05 00
61 20 o1
62 40 02
63 60 03
64 03 03 04
65 23 05
66 43 06
67 63 07
70 By 00 24 10
71 01 11
72 02 12
73 03 13
74 14 14 14
75 15 15
76 16 16
77 17 17

100 By 00 21 20

101 04 21

102 10 22

103 14 23

104 03 17 24

105 07 25

106 13 26

107 17 27

110 c 00 25 00

111 03 23 o1

112 14 15 02

113 17 13 03
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lines denotes the axis to which the line is parallel and
the subscript on the type B line denotes the axis to which
the line 1s orthogonal.

The present state of the game 1s stored in the machine
by assigning one word to each of the 100g squares and 1ll4g
lines. In the 100g words assigned to the squares a 43
indicates that the square is unoccupied, a -3 that 1t 1s
occupiled by.the machine, and a -2 that it 1s occupied by
the player. This coding allows the "state" of any line to
be uniquely determined by a simple arithmetié¢:summation of
the four points on that line. THese sums are kept in the
1145 registers assigned to the lines. The possible values
of this summation and the corresponding situations are
found in Table III.

In order to make lookahead routines run as fast as
possible, it 1s highly desirable to be able to update only
the line sums affected by a particular move, rather than
recalculate the entire table. It 1s therefore necessary
to have a fast way of generating all lines which pass
through a given square. Because of the way in which the
lines have been numbered, it 1s possible to generate the
numbers of the three type A lines which pass through any
square directly from that square's numerical value. The

number of the A, line 1s yzylxgxit408, the A_ line zzzlxsz+208,

y
and the A, line Z222179Y ¢ These are simple calculations to
perform and leave only the problem of finding the diagonals,
or the type B and C lines.

Although this information could also be generated dir-
ectly from the points, it 1s faster to store a table in the

machine which lists the various B and C types for each point.



Sum Machine

Table IIT:

Player None

Line Sum Values

Situation

=12
-11
-10

© 0O ~N 6o oo B N

Lo e
N =~ O

4

O += N W

O + N O

0

1
2
3
4

KB N = O

0

O O O O

HoOH e e

Machine Won

Dead

Dead

Dead

Machine Lost

Impossible

Machine Can Win In One Move
Dead

Dead

Player Can Win In One Move
Impossible

Impossible

Machine Can Force Player
Dead

Player Can Force Machine
Impossible

Impossible

Impossible

Machine Has Possibilities
Player Has Possibilities
Impossible

Impossible

Impossible

Impossible

Unoccupied



S1lnce there are 24 type B lines, five bits can be used to.
1dentify them, and two bits to l1dentify the four type C
lines. In order to obtain the liﬁe number, 60g 1s added
to the type B number and 110g to the type C number.

In the machine a six digit octal number is stored
for each square. As was previously shown, there are
only two types of points, which are either on one B and
no C or three B's and one C. If the point 1s of the former
type, the four high order octal digits are zero and the
B number is contained in the low order two:octdl &igits,
If 1t is of the latter type, the high order octal digit
1s four plus the ¢ line number and the low order five
octal digits are the three B line numbers combined ByByBy.

These numbers are given in Table IV.



Table IV: Point To Lipe Constants

Number

400420
1l
12
510564
21
00
04
25

610623
15
16
700767
0ol
20
24
05
10
402461
512525
13
14
612662
702726

704665
614721
17

44~

9]

Bz
00

04
00
04
04
00
04
00
0l
05
Ol
05
05
0l
05
ol
02
06

02
06

14
15
16
17

14
15
16
17

26
23

27

20

2l
25

22
26

23
27

24
20

25
21



Number

10
514466
404522

13

22
516427
11
12
406563

Table

IV: (con.)

¢ By
1l 06
0 02
06
02
3 03
2 o7
03
o7
o7
03
1
0 03

10
11
12
13

26
22

27
23
24

20
25

21
26

22
27

23
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Appendix IV: Some Rules of Forcing Wins

One o6f the most important known strategical rules about
Qublc concerns planar arrangements which will allow a forced
win in that plane. These situations are taken to be indepen-
dent of the state of the rest of the game, which may or may
not be important, depending on the state of the lines which
intersect squares on which the opponent is forced. If the
opponent generates a three in a row on a line outside the
plane, then that line must be blocked and the simple planar
situation no longer exists, but this does not happen fre-
quently.

Figure VI shows all possible arrangements of three
squares in a plane, affer symmetry reductions. The con-
figurations are classifled as three in the core squares, a-d;
two in the core squares, e-n; one in the core squares, o=x;
and none in the core squares, y-cc. Fourteen of these 29
configurations result in a forced win and those wins are
indicated in red. Of these fourteen wins, three are trivial
configurations where a three in a row existed at the start,
whiie of the fifteen non-wins, five contain-no two in a row
and are therefore trivially non-forcing. Of the remaining
21 "interesting" configurations, eleven are wins and ten
are note.

Configuration dd shows a normalized set of nine squares
from which the three must come 1f the confilguration is to be
forcing. All sets of this set are not necessarily forcing,
for some do not even contain a two in a row. Of the 15 possible
configurations that can come from this set, eleven are forcinge.

A more general rule can be stated for the entire game
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which covers many forcing situations directly and which will
apply to all forcing sequerices at(some time during the process
of carrying them out. Given any two lines which contain two
in a row, if a sequence of lines exlsts which contaln one in
a row and intersect each:.othef on empty squares, and two of
these lines intersect the two lines with two in a row on
empty squares, then a forced win can be executed, if the
forces do not establish a force for the opponent, as dis=-
cussed before. The procedure for following thls force 1is
gquite simple, first force on one of the two in a row lines
and choose the square which is on the intersection with the
one in a row line. This establishes the baslic poéition again
but the number of one in a row lines has been reduced by one.
The repeated application of this process will eliminate all
the one in a row lines and the firal move will develop three
in a row on two lines for the win.

Considerable ingenuity can be used In order to develop
sequences which curve back on themselves in such a way as
to minimize the ratio of number of pleces needed to number
of lines in the sequence. It 1is also possible to fold the
1ines back in such a manner that only one two In a row is
needed to start with. Consider the configuration of pleces
12, 32, 61, 64, 73, and 76. The only existing two in a row
i1s on the vertical line through square 12, where forcing
moves car be made at squares 52 and 72. By choosing 72 as
the forcing move, two new two in a rows are developed in
the top plane and the previous conditions are met. Consec-
utive forces at squares 70, 60, and 62 will produce a win
at elther square 73 or square 76.

Although these rules are quite interesting and useful
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to the human player, they were not particularly suited

for use by the machine and were not included in the program.



Flgure VI: ‘Planar Forces
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