7X — O INSTRUCTION SET

CHARACTERISTICS OF THE TX-0O

&The TX-0 is a one of a kind general purpose machine that was produced by
Lincoln Laboratories in the late fifties 22 a test bed for the then new transistor
logical circuitry and core memory.

Its essential features sre given below: -
1. Store Size snd Type:

8192, 18 bit words, with an access time of six microseconds
(magnetic ferrite cores)

2. Active Registers:

1. 18 bit accumulator {called AC)

2. 14 bit signed index register

3. 18 bit in-out register {called live register)
4. 18 bit memory buffer register

3. 10 Devices

&. An on line electric typewriter {flexowriter) which putsz

& 6-bit cheracter code into the live register when & key

is depressed; and types or punches 6 bit character data from
the accumulstor under program control. 10 characte: /sec rate.

b. An on-line paper tape reader {300 character /sec) which
transfera the coded contents of punched paper tepe into the AC.

€. An eon-line magnetic tepe unit which reads and writes on a
6 chaunel magnetic tape into end from the live reglater, under
program control.

d. A cxzthede ray tube displasy for converting the contents of the 4AC
into the position of an intensified spot.

e. A "Light Pen" photocell pickup for picking up the occurence
of diepleyed points and effecting the AC,

f. Linee for connection of aspecisal devices.
g. Toggle switch registers (TAC, TBR, etc.)
h. Neon display lights showing AC, MBR, IR, etc.

4. Internal Representation of Numbers snd Arithmetic System: -
18 bit, ones complement.

3. Addressing: - Direct, indexed and opéerste class. (No indirect or
immediate addressing)

6. Operation Set: - Most arithmetic snd logicel ops, with the exception
of multiply, divide, subtract. Extrexely large range of opevate clase
commands . Mostly commonly used command: -

Indexed Version Direct Action

1dx l1da - Load AC
stx sto - Store AC contents
adx add - add to AC
11x 11r - load live register
slx slr - store live register
1dx - load index register
8xa - store index
aux - &dd to index
trz - jump on zero AC
trn - " " negative AC
tix - " " index contents
tra - unconditional jump
tex - Jump and set index
com - change AC sign
cla - set AC to +0
shr - shift right (divide by 2)
cyr - cyle AC right
cyl - circle AC left
ang - logical "and" of AC + IR AC
ora - logical "OR" of AC + IR AC
hlt - stop computer

In addition, the principal I¢ ops are listed below

dis - display AC contents interpreted as a

pen - if light pen observes & point, set AC bit O to 1.
tac - transfer test AC (toggle switches) to AC

prt - print a character from the AC on the flexo

ril - read a character from the PETR into the AC

Obviously, considering the number of active registers and the
peasible data transfers between them, there are a very large number of operate
and addressable operstions that are both degirable and posaible. A large
number of these do exist.

3

II. ADDRESSABLE COMQQNDS
(A) STORE CLASS

| MNEMONIC OCTAL VALVE OPERATION

Store the digits of the index register in
the address portion of register y. The sign
of XR 1s ignored. The contents of XR are
unchanged. Bits 0 through 4 of register y are

unchanged. l
[}

SYMBOLIC DESCRIFPTION
AND TIMING
== = e — = = PO
STO y 000000 + y Store e(ag)—>e(y)
Place the contents of AC in register y.
- The previous contents of y are destroyed.
Contents of AC remain unchanged.
2 cyecles
SIX ¥ 020000 + y Store AC, Indexed c(AC)=—>c(y+C(XR))
2 cycles
SXA ¥ 040000 + y Store Index in C(XR)z_,~(y)
Address 5-17 =17

3 cycles

ADO y : 060000 + y Add One

Add One to the contents of memory regis-
ter y and leave the results in the accumulator

c(y) +’1—§C(Ac;-—~§
cly

Clear register y
'tO +Oo

and register y. ' 3 cycies
SIR y 100000 + y Store ILive c{IR)—3C(y)
Register
The contents of IR are placed in regis-
ter y. The previous contents of y are
destroyed. Contents of IR are unchanged. 2 cycles
SIX y 120000 + ¥ Store IR. Indexed C(IR)==3C(y+C(XR))
2 ecycles
STZ y alt0000 + y Store Zero 0=3C(y)

2 cycles

.

II. ADDRESSADLE COMMANDS
(B) ADD CLASS

Indexed

MNEMONIC OCTAL VALUE OPERATICH SYMBOLIC DESCRIPTION
ADD y 200000 + y Add the contents C(y) + C(AC)—»C(AC)
of register y to
AC, Contents of
¥y are unchanged. 2 cycles
AIX ¥ 220000 + y Add, indexed. C(y+C(XR)) + c(AC)=>
c(ac)
2 cycles
LX y 240000 + y Load Index c(y)s_,lf—ec (XR)g_y 7
ILoad the index register from bit O C(y)o=——>C(XR),
and bits 5 through 17 of register y. The
contents'of ¥ are unchanged., 2 cycles
4 '
AUX y l 260000 + y | Augment Index c(y)g 5.17 * C(XR)—>
]
The contents of memory register y are C(XR)
added to XR. The fourteen bit number ad-
. ded consists of bit 0 and bits 5 through
17 of register y. Addition 1s ones' com~
plement on 14 bit numbers. 2 cycles
|
LIR y 300000 + y Ioad Iive Register| C(y)—3C(IR)
The contents of reglster y replace the
previous contents of IR. Contents of y
are unchanged. Previous contents of IR
are destroyed. 2 cycles
LIX ¥ 320000 + y Ioad IR, Indexed C(y+C(XR))—>C(IR)
2 cycles
IDA ¥ 340000 + y Load Accumulator c(y)—»c(ac)
The contents of register y replace the
previous contents of the AC. Contents of
¥y are unchanged. Previous contents of the
AC are destroyed. 2 cycles
LAX ¥ 360000 + y load Accumulator, C(y+C(XR))—>C(AC)

2 cycles

e

Set Index

The next instruction is taken
from register y and the address of
the register following the TSX in-
struction 1s placed in the index
reglster. l

i

II. DDRESSABLE COMMANDS
(C) TRANSFER CLASS
MNEMONIC OCTAL VAILUE OPERATION CONDITIONS AND SYMBOLIC DESCRIPTION
y—>C(PC) C(PC)+L—nC(PC)
Timing: 41 cycle Timing: 2 cycles
TRN y 400000 + y Transfer on c(ac)y = 1 C(AC)y =0
Negative AC
h If the AC bit 0 is a one, take
next instruetion from register y.
Otherwise, take next instruction
in sequence. |
{
TZE y 420000 + y | Transfer on c(AC) = Cc(AC) # +0,
gero - or and
If the contents of the accumula- |C(AC) = - c(AC) # -0
tor are either plus zero or minus
zero, the next instruction is taken
from register y. If the accumulator
contents are not plus or minus zero,
the next instruction in sequence
wlll be executed. ‘
|
T™SX ¥ 440000 + y Transfer and Always; Never

C(PC)~—>C(XR) 5 4,

0=>C(xXR),,

Transfer and
Index

If the index register contains
plus or minus zero, perform the
next instruction in sequence with-
out changing the contents of the
index reglster. If the index reg-
ister contains a non-zero positive
number, its contents are reduced
by one and the next instruction is
taken from register y. If the in-

T™ ¥y 460000

C(XR) # +0 and
C(XR) # -0

C(XR) = +0 or

| C{XR) = -0

If c(xn)h =1,

C(XR)+1—>C(XR);

If C(XR), = 0,

-[-C(XR) +1]1~>
C(XR)

e e i ok CLTIVERPIRE S A

dex register contains a non-zero

. -G

B~

IT. ADDRESSABLE COMMANDS

(C) TRANSFER CLASS

MNEMONIC OCTAL VALUE OPERATION CONDITIONS AND SYMBOLIC DESCRIPTION

y—>Cc(PC) c(PC)+1—3C(PC)
Timing: 4 cycle Timing: 2 cyclesl

——
negative number, its contents are

Increased by one and the next in-
struction is taken from register
Y. A zero result will have the
same sign as the initial contents
of the index register.

TRA y 500000 + y Transfer Always Never
The next instruction is taken
from register y.
TRX y 520000 + ¥y Transfer, Always , Never
: ndexed. y+C(XR)—»C(PC)

TIV ¥ ‘540000 + y | Transfer on| External External
extegnal level = 0 volts level = -3 volts
Leve

This instruction provides a
means of testing an external
condition, provided said condi-
tion can provide a 0 or -3 volt
level gt the in-out panel connec-
tion 1?be1ed TIV. |

-10-

III. OPERATE CIASS COMMANDS
(C) MICRO-ORDERS
MNEMONIC ACTION SYMBOLIC DESCRIPTION
CLA Clear AC 0=>C(AC)
AMB transfer AC contents to MBR | C(AC)—>C(MBR)
XMB transfer XR contents to MER | C(XR) bits 5-17—>C(MBR) bits 5-17.
C(XR) bit 4—~>C(MBR) bits 0-4. h
MBL transfer MBR contents to LR | C(MBR)=»C(IR)
1MB transfer IR contents to MBR.| C(IR)—»C(MER)
Note: IMB and MBL, if used
simultaneocusly, inter-
change C(IR) and C(MER).
MBX transfer MER contents to XR C(MER)s__ 1,?-)0(XR)5“17
C(MER),—>C(XR),
CYR CY¥cle AC contents Right one C(Ac)i--)C(Ac)J
binary position. ~(AC bit
17 goes to AC bit 0) 1=0,1, . . ., 17
J = (i+1) mog 18
SHR SHift AC contents Right one c(ac)i—-)c(ac)i +
binary position [AC bit 0 4
is unchanged, bit 17 is i=0,1,2, .. . 16
lost) ‘
ANB ANd (logical product) IR C(IR)AC(MER)>(MER)
MER.
ORB OR (logical sum) IR contents | C(IR)VC(MER)-> C(MER)
into MER.
coM COMplement AC C(AC) ® c(ac)

-1~

III.

OQPERATE CLASS COMMANDS

(C) MICRO-ORDERS

MNEMONIC ACTION ~ SYMBOLIC DESCRIPTION .
PAD Partial ADd MBR to AC (for C(MER) c(ac) c(ac)
each MBER one, complement o
the corresponding AC bit.
"CRY | A CarRY digit is a ONE if in cRY[C(AC), C(MER)] = C(AGEC-sAC.

the next least significant
digit, either AC = 0 and

MBR = 4, or AC = 1 and carry
digit = 1.° The carry digits
so determined are partial ad-
ded to the AC by CRY. PAD
and CRY used together give a
full one's complement addi-
tion of C(MBR) to C(AC).

Cy = {c(MBR)Jnc?ACSJ]
Vv [CJAC(AC)J]

i=0,1;c'0,17
J = (1+1) mod 18.

CRY [c(ACYBC(MER), C(MBR)]
= C(AC) + C(MER)

-12-

III. OPERATE CLASS COMMANDS
(D) IN-OUT GROUP COMMANDS WHICH CAN BE USED WITH

CYCLE AND
OCTAL CODE | MNEMONIC ACTION TIME PUISE
631000 CLL Clear Left 9 bits of AC 0.6
632000 CIR Clear Right 9 bits of AC 0.6
607000 SPRF Set Program Flag register from MER 1.6
606000 RPP Read Program Flag register into MER. 1.2
' (inclusive or)
602000 TBR transfer TER contents to MBR (in- 1.1
clusive or)
601000 TAC transfer TAC contents to AC 1.2
(inclusive or)
603000 PEN set AC bit 0 from light PEN FF, and 1.1
AC bit 1 from light gun FF. (FF's
contain one if pen or gun saw dis-
played point). Then eclear both
light pen and light gun FF's.
620000 CPY CoEY synchronizes transmission of in- *
formation between in-out equipment
and computer.
621000 RIL |Read ONE Line of tape from PETR into 108
AC bits™ 0, 3, 6, 9, 12, 15, with
CYR before read (inclusive or)
623000 R3L Read Lines of tape from PETR 108
’ ‘ AC bits 0, 3, 6, 9, 12, 15, with
CYR before each read (inclusive or)
622000 DIS I0S

DISplay a point on scope (AC bits
U:g specify X coordinate, AC bits

9-17 specify Y coordinate).

| The coordinate (0,0) 1s usually at

the lower left hand corner of the
scope. A console switch is gvail-
able to relocate (0,0) to the
center.

~13~

CYCLE AND
OCTAL CODE | MNEMONIC ACTION TIME PULSE
= =5
626000 P6H Punch one SIX-bit line of Flexo tape 108
(without seventh hole) from AC bit
2, 5, 8, 11, 14, 17. NOTE: Lines
without seventh hole are ignored by
PETR.
627000 PTH same as P6H, but with SEVENTH hole 108
610000 EXO operate user's EXTernal equipment I10s
Causes signals to appear at cor-
through | through | [0 nqing terminals on the in-
617000 EXT7 out panel.
600000 NOP Perform No in-out groupr QPeration
630000 HIT Hall the computer and sound chime 1.8
624000 FRT FRInT one six bit flexo character 10s
from Ac bits 2’ 5’ 8, 11, 11" 170

- 14 -

TX-0 UTILITY SOFTWARE

Over the years, many different assembly programs which convert from svymbolic
machine language to binary code; and "debugging''programs for on-line program
correction, have been written for TX-0. The currently used assembly program is called
"MIDAS" and the debugging program '"'DOCTOR".

MIDAS uses programs as input, which are punched on paper tape by flexowriter,
while DOCTOR uses the program assembled by MIDAS, and an associated 'symbol table"
on magnetic or punched tape. The on~line flexowriter is used as an output device
by MIDAS (to note programmer errors) and as an input device by DOCTOR (to change
programs and data). The symbol table (A symbol to address directory) ellows the
discourse to be in terms of previously assigned names, rather than binary or octal.

MIDAS: -

Aa has been mentioned previously, the object of a machine language assembly
program is threefold: - first to recode mnemonic operation codes into their binary
equivalent; secondly, to convert numeric values from decimal notation, to the
appropriate binary value; and finally, to assign specific binary locations to each
data and instruction operand, which can thus be referred to an arbitrary symbol in
lieu of an equivalent binary address.

Since programs to be assembled by MIDAS are prepared by punching paper tape on a
flexowriter, the character set to be used in MIDAS is somewhat cconstrained. The flexo-
writer character get includes upper and lower case alpha-numeric symbols; a small
number of punctuation symbols " , - . / * |" etc.; and some formatting codes :
color shift, space, tab and carriage return.

Let us now consider their usage in constructing normal operation and dats
coding:

1. Tabs and carriage returns are used interchangeably, and if a number
of them gre used in sequence, all but the first are ignored. They are used to
delimit instructiona. The assembler asssigns sequential locations to instructions
and data beginmning at locsation octal 20, unless a numeric assignment is made by the
progremmer .

2. Strings of lower case alpha-numeric characters (delimited by punctustion
or spacing and not exclusively numeric) are used to denote and refer to symbolic
locationa. Only thé first six characters in s string are used. Some specific 3 letter
strings can ‘only be used for mnemonic op codes. If a string contains a single
capital letter, it becomes a "variable", and the location assignment can be
automatic.

3. MIDAS has two numeric modes: - octal and decimal. A string of numeric
characters is re-encoded into binary from whichever mode was last declared (Normal
mode is octal).

4. MIDAS will interpret an expression made up of only symbols, numeric
constantg, and the arithmetic operators +, -, @#ad X {times) to compute a single
equivalent address:

Thus
add ¢ - b+1

would be interpreted as #n add command, whose address part was the addreas of a minus
the address of b, plus 1.

« 15 =

5. Specisgl characters: - The chsracter . period; , comms; vertical
bar, and (right paren, have special significance in formatting an instruction.
4An instruction is generally made up of & location field; an operation field and an
operand field; and a8 comment field, geparated by the appropriate delimiters.

a) A location field can be one of three forms for a specific
numeric location. It is the numeric field, followed by a vertical bar, and a
tab or carriage return: - ‘
thus: - _
100 | (tab)

b) For a symbolic address, it is the symbol, followed by a comma ,
and & tab.

¢) 1If no tag is needed for the operand instruction or data, the
field may be omitted.

All operande referred to by name in the program must somehow
have a defined location. The one exception is '"variables".

An operation field may be one of the three letter TX~-0 op-codes; one of the
MIDAS "pseudo-operations' or a "Macro-operation', previously defined by the
programmer, (more about this later) or, in the case of numeric data, it may be
omitted. The operation field is terminated by either & space, or ‘for operate class
compsnds with no operends) carrisge return.

The operand field msy be numeric data; & symbolic expression made from one or
more symbelic addresses, or & "literal. The gpecial character "." (period) if

it appears in a symbolic expression has the value of the location of the inatruction
in which it appears.

Example:
&, add b
tze . ~1

A literal operand field is delimited on the left by a left paren "(", and
is interpreted like an immediate address, i.e., as the data to be operated
upon, rather than the address of the data. (This is clearly a programmer
convenience as the assembler must set aside an operand lecaticn for the dats
and refer to it in the instruction). The right paren may be used or elided.

For example: -

a, 1lda (+1)
is broken down by the assembler into: -

&, 1da u

u, +1
A comment field, when not omitted, is delimited or the left by a wertical] .
Comments may be any sequence of characters, and sre terminated by a carriege
return,

Comment fields, and color shifts are ignored by MIDAS.

- 16 -

Peseudo-Operations

In addition to the normal TX-O operation codes, MIDAS recognizes some other
pseudo-operations for internal and bookkeeping reasons. Such pseudc-ops are
inserted in the program in the normal manner. The user has the option, also of
defining his own pseudo-cps. A list of the most useful of these follow:

Octal: - declares that all subsequent numbers are to be
interpreted as base 8 {until a "decimal” op)

decimal: - declares all subsequent numbers to be interpreted
as base 10. (until next "octal" op)

start: - Must be used as the last op of a program. Must specify
symbolic start address, and be followed by one or more
carriage returns.

constants: Normally used at the end of program prior to start - Must
be used if any literals are employed in the program.
{Informs the assembler of where comstants are to be stored).

variables: Similar to constants, but for "veriable", i.e., operands
with one or more capital letters.

character: Declares the operand character to be stored as its flexo
code, suitable for printing out.

define: - Must be used to delimit macr6 instruction definitions
terminate

dimension: Reserve space for operand arrays. Space to be reserved
is given as & literal, and cperands are sepsrated by commas: -

Example:
dimension array (100), index (200)

title block: The title block - althcugh not strictly a pseudo-operation
must be present at the start of a program tape.
It is the first string of characters on the tape, up to
the first carriage return. It appears on the on-line
flexo during assembly, and is punched legibly on the punched
paper tape result of the assembly.

An example of & TX-0 program, written in MIDAS follows: -

- 17 -

EXAMPLE OF PROGRAM FOR THE TX-0 WRITTEN IN THE MIDAS LANGUAGE

Integer multiplication program.

This program computes the signed product of integers a and b, stopping

with the product in the gccumulator. If the product exceeds 217~1 in

absolute value, the program stops at register "overflow".

beg, stz Tt
lda =&
trm 42
tra .+4
com
sto a
ado tt
lda b
trn +2
tra .+4
com
ato b
ade tt
lda tt
cyrT
trmn 43
1lr (opr
tra .+2
11r {(com
glr setagn
1dx Q6.
stz Prod
1lr b

loop, 1lda a

cyr
sto &
trn +2
tra .+5
lac
add prod

sto prod

'temporary register to count whether none, one or both
| £actors are negative

lif factor is nepgative, complement factor and index tt.

'if tt holds 0 or 2, product is positive, otherwise negative

!aet imstructica "com™ or “opr” in register setsgn™.
lset fmdexr to owe less than mwmber o hinmary 4igits to be

*considaxed; sel product initiaily to zero

Estart multiplication loop
|eycle multiplier right, least significant bit to sign pos.

'15 next bit a 12

jadd multiplicand to partial product

trn overflow

lac

cyl

&alr

tix loop

lda

setsgn, 0

hlt
overflow, hlt
2 21
b 10
constants
variables

start

- 18 =

overflow if result negative
cycle multiplicand left

finished?

set sign of product

overflow stop
arbitrary fector value

- 19 «

Mzcro-Instructions

Often certain inetruction sequences appear several times throughout a
program in almost identical form. In such cases the sequence that is being
repeated may be defined as & macro-instruction and given a specific name which
m2y be subsequently used in place of the sequence. In place of the characters
of the sequence that are expected to vary between cccurrences, we may define
dummy sarguments in the macro-instructions definition, these dummy arguments
being replaced by specific arguments on each occurrence of the macro-irstructions.

Example: 1In the seguence: lda =

add
sto
lda
add
sto
the sequence ¢ lda
add

sto

N ¢ M M0 a0 o

is the model for the repetition, with x, y, and 2z taking on the specific
characterg &, b, and ¢ in the firet case and d, ¢, and £ in the second cszse.
4 macro-instruction "sugment' may be defined as follows:

define augment x,y,z

l1ds x

add y

8to z

terminste

The pseudo-instructions define snd terminate separate the macro-instruction

definition from the rest of the program. define defines the first legal symbol
fellowing it as the macro name and the dummy arguments follow, as required,
separasted by commas and terminated by 4 tegb or carriage return. Next follows

the body of the macrc definitiom, ending just before the pseudo-instructions
termipnate. A

The macro-instructions may be referred to by means of a macro call, consisting
of the macro name, followed by the list of arguments, 1f any, separated by
comnse, and terminated with a tab or cerriage return.

Example: sugment a,b,c
sugment d,e,f

When preceded somewhere in the program by the above macro-definition, the above
two macro-instruction references are cquivalent to the six instructions listed
previously.

Macro definitions may contain other macro defimitions or macro calls. For
further information refer to TX-0 Memo M5001-39, Nov. 26, 1962.

- 20 -

C. Source Programs

A source program for MIDAS consists of one or more flexo tapes, each with a
title, a body, and a start pseudo-instruction. The first string of characters,
terminated by a carriage return, is interpreted as tke title. The start pseudo-
instruction denotes the end of the source program tape and must be preceded and
followed by a carriage return. If a location is specified after the start imstruction
and before the carriage return, pressing RESTART on the computer comsole will cause
the execution of the program starting in that location. An argument of the form
start addr, where addr is some specified location, will cause automatic execution
of the program starting at location addr as soon as the binary or object tape is
read in by the machine.

D. Preparation of Source Proprams in the MIDAS Asgembly Language

Programs for conversion into binary or machine language are prepared on off-
line Flexowriters operated independently of the computer. Typing on the Flexowriter
produces a punched paper tape version of the program for emtry into the computer, as
well as 2 printed version for reference purposes. The following advice on program
preparation is based on the experience of many users.

1. Leave at least six inches of blank tape before starting to punch
a program. This is accomplished by depressing the Tape Feed Switch as well as
leaving the Punch On Switch depressed. Mark tape title and your name on leading
end with & white pencil.

2. Meke sure that the "seventh hole'" switch 1is depressed when punching
a program on the Flexowriter.

: 3. Mske corrections on your tape by turning the knob under the tape punch
until the punched line to be corrected is on top of the punch pins. Press the
"delete" switch to delete that row. If & sequence of characters is to be deleted,
preas the "delete" and "tape feed" switches gimultaneously.

4. 1f correction is to be made on the printed copy independently of the
tape version, make sure the "punch on" key is first lifted.

5. To edit & tape, reproduce the portions of the program tape requiring
changes, making insertions and deletions as necessary. Insert the start of the tape
to be reproduced in the reader mechanism, being careful that the tape is properly
placed with respect to the tape guides. Reading and reproducing (if"punch on'" switch
1s down) is started when the “start read" switch is depressed and continues until
the 'stop read" notch is depressed or a stop code is read from the tape. Stop
codes are ignored by MIDAS. To reproduce large gsections of tape rapidly, turn on the
"reproduce, no print" switch.

6. Type programs, using one carriage return between instructions except
vhere distinct logical divisions exist, where it is a good idea to use two or three
carriage returns. Tabulate your copy so that only address tags and pseudo-instructions
are typed along left-hand margin, instructions are typed starting at the first
tabulation stop of the carriage and comments one or two tab stops after the end of
the instruction.

7. Color shift is ignored by the computer and may be used for
differentiation purposes by the programmer .

«21=

8. It is bad practice to reference addresses by the notation -dn vhere n
exceeds roughly six. A common error is not correcting n when an instruction is
inserted into or removed from the range across which the reference is made. Addreas
tag assignments are safer.

9. For long programs leave frequent blocks of blank tape, say at the end of
every typed page. Tape sections may be easily spliced 1if such blocks containing
no information exist. Splice tape by overlapping the tape ends with feed holes
aligned as they would loock once they are joined, cut the ends with scissors
diagnonally across the width of the tape. To join the two edges, place them side
by side - not overlapping - and cover with scotch tape, then trim off the scotch
tape extending beyond the width of the paper tape.

11I. NOTES ON COMPUTER OPERATION, PROGRAM ASSEMBLY USING THE MIDAS ASSEMBLY
PROGRAM AND PROGRAM DEBUGGING USING THE DOCTOR SYMBOLIC DEBUGGING PROGRAM

A. Program Assembly

The primary input facility to the computer is the photoelectric tape reader (PETR)
Machine language programs may be read into the computer by placing their froant end
in the PETR (7th hole toward the operator) end pressing the READ IN button on the
console.

For normal use the system tape consisting of DOCTOR and MIDAS are stored in a
special section of magnetic tape and may be read into the computer using the CALL
program. To start an assembly, set the toggle switch TBR on the console to trn 20
- {400020) and read in the CALL tape. The computer will rewind the magnetic tape
reel and stop with the load point light (beginning of tape mark) 1lit. This tape
has two load point warks, one near the physical beginning of the tape and one closing
off the area on vwhich the system tapes are stored from programmer use. Manual momentar
operation on the REVERSE key will cause the tape to rewind beyond the interior load
point and pressimg the RESTART button will csuse the MIDAS program to be read from the
magoetic tape into the computer. The machine, when halted with +0 showing as contents
of the AC, ig ready for assembly of programs written in the MIDAS language .

Place the off-line prepared tape in the PETR and press RESTART (not READ IN).
MIDPAS will commence Pass 1 or the first stage in processing the symbolic program and
write intermediate information on the mag. tape. Errors, if any are printed out on the
on-line flexowriter, see Page ___ for the error codes used. Pressing TEST will
normglly continue assembly, ignoring the found errors unless the error is of a type
preventing continuation of the assembly. The machine halts when it reaches the
end of the tape and pressing RESTART causes the commencement of Pass 2 of the assembly
Assembly is completed when the computer hslts without typing anything on the on-line
Flexowriter.

The contents of the symbol table, as genersted by MIDAS, may be preserved for
subsequent use by the DOCTOR program by reading in the program MIDAS MAG. TAPE SYMBOL
PUNCH. The same symbol table may be printed out on the on-line Flexowriter using
the program MIDAS ALPHA SYMBOL PRINT.

Page missing from original document

upper case T causes the symbol table, 1f previously gemerated with MIDAS MAG. TAPE
SYMBOL PUNCH, to be read in and will allow the use of the programmer's symbols in
debugging the progrem. The computer will type the upper limit in memory for DOCTOR
and the symbol table and only locations above this (lower than this value) should
be used by the programmer.

A complete list of the facilities provided by DOCT(R, as well as the action
of typed in characters is attached. Experience is the only reliable teacher in the
use of the program.

One of DOCTCR's most useful features is the "breakpoint”., When debugging a
program, it 13 occasionally desirable to allow control to flow up to a certain
instruction, reaching which the programper would like to examine the contents of the
AC, IR and relevant memory locations in his program. To facilitate this, DOCTOR
vill insert into the user's program a tranefer instruction into itself, which will
cause the contents of the AC, IR and XR to be saved and printed out. It is then
possible to examine arbitrary program locations, make any necessary changes, move
the breakpoint if desired, and continue the program, regstoring all indicators and
executing the instruction which was originally replaced by the breakpoint transfer.

-2 -

The following list describes the action of typed in characters.

CHARACTER

space

+

(
/

carriage
Teturn

backspace

tape feed

tadb

ACTION
separation character meaning arithmetic plus
separation character meaning arithmetic plus
separation cheracter meaning arithmetic minus

register examination character; preceded by an address, causes

the addressed register to be opened, and the location sequence

to be reset to this address. Immediately following a register
printout, it will cause the register addressed therein to be
opened. Opening a reglster causes the contents to be typed out as
an instruction or constant, according to the current mode and makes
the contents available for modifcation.

same ag » but forces printout as octal constant for this examinsatio
same as » but forces printout as instruction for this examination.
if a register is open for exsmination and any expression has been
typed immedistely prior to the carriage return, the value of thsat
expression is stored in the open register. Othervise, no change

iz made.

has the same effect as carriage return, but then opens the next
sequaential register. This sequence 18 not altered by sdditional s
{, or / characters typed after a register has been opened.

same as backspace, but opens the previous register.

same @& carriage return, but opens the register addressed by the
contents of the last opened regiater fafter modification, if any).
Tab alters the sequence of locations.

types out the last quantity as zn octal integer

types out the last quantity as an instruction,

types out the last quantity as f£lexo code, in the order right,
middle, left.

&% & single symbol, has the value of the current location. Following
2 string of digits, means decimal {integer). :

has the value of the location in which the preserved accumulator is
gtored —_—

- 25 -

CHARACTER ACTION
L has the vslue of the location in which the preserved live register

ie stored. Register L immediately follows register A in DOCTCR.

X ' bas the value of the location in which the preserved index register
is stored. Register X immediately follows register L in DOCTOR.

F has the vzlue of the register containing the lowest location being
used by DOCTOR for symbols. Its contents will change from time to
time, &z symbols are defined. Register F immediately follows
regigter X in DOCTCR.

M has the value of the register which contgains the mask used in searches
(see below). Register Mil contains the lower limit of all sesrches,
and M+2 containg the upper limit. Register M immediately follows
register F in DOCTCR.

Q has the value of the last quantity typed by DOCTOR or you.

1 causes the last three characters typed in to be taken ss their flexo
code value. This applies only to letters or numerals.

é print integers in octal.
o print integers in decimal.

when preceded by a legal symbol, csuses that symbol to be defined
az the current location

- when preceded by a legal symbol, causes that symbol to be defined as

the addresa part of the lest quantity typed by DOCTOR or you.

K deletes all but initial symbols by setting the contents of F back to
ites initial value. Any redefinitions of initial symbols are not
affected.

sets the symbol definition value to the expression typed by either
DOCTOR or the operator beforehand. {(See below).

) causes the legal symbol typed immediately preceding the) to be
defined &s the current symbol value, as set by : or ,
s wets the mode in which DOCT(R types out words to symbolic.
C sets the mode in which DOCTOR types out words to octal constants
R sets the mode in which DOCTOR types out locations to relative (symbolic}

0 setg the mode in which DOCTOR types out locatious to octal.

CHARACTER

delete

case
shifts

- 26 -

ACTION

causes DOCTOR to search wmemory between the limits specified in M¥l
and M+2 for words equal to the expression preceding the W. Only
bits masked 1 in reglater M are compared. All occurrences are typed
out with their locations. Typing W alone is an error. DOCTOR will
not search itself.

same as W, but finds all vords not equal to the expression typed
preceding the N

causes DOCTOR to sesarch memory for all words whose address is equal
to that of the expreseion preceding the E.

deletes gll typed input since last DOCTOR printout, unless the
operator has typed an intervening carriage return

inform DOCTJR of the case in which the operator is typing, are
otherwvise ignored.

conditions DOCT(R to insert & breakpoint at the locstion specified
before the B. If no such location was specified, DOCTOR removes the
previous breakpoint. A breakpoint is actually inserted only when a G,
P, or U is executed (aece below). DOCTOR will remove the instruction
&t the bregk location, and will save it for future restoration. The
inatruction at the break-location is only executed after the proceed
is given.

after the bresk trap occurs, causes DOCTOR to proceed with the user's
program. The proceed will cause the imstruction which was at the
break~-location to be executed and control to return to the user's
program at the point at which it was interrupted, after all

registers and indicators have been restored. If the breakpoint was
moved after a trap, control will still return to the imstruction
trapped by the last breakpoint.

execute the preceding expression es an instruction. The breakpoint,
if any, and all registers snd indicators will be set up and saved.

go to the location specifiecd before the G. All indicators and
registers will be restored, and the breakpoint, if any will be
inserted. Typing G alone is an error.

read & binary tape in standard binery block format. The tspe is read
into storage between the limits specified iIn Ml and M+2. If &
checksum error is encountered, the program will stop. it is then
poaaible tc move the tape bsck one block, and press Restart to
continue reading, if desired.

read MIDAS symbol table, and merge it with the existing symbol

table, [Pefinitions on tape tske precedence over definitions in
storsge. The new contents of regiater F are typed out upon completing
reading the symbol section of the tape. Checksum errors are

handled as in Y. A number preceding T is taken as relocation to be
applied to relocatable symbols.

-~ 27 -

CHARACTER ACTION
v vexify: reads a binary tape in binary block format and compares it

882inst memory between locations specified by M+l and M+2. No
change is made to memory. Discrepancies are typed out sas:

location/ memory tape
checksum errors are handled as in Y.

a puts DOCTOR into the title punch listen loop. Charsecters typed in
are punched out in readable format on paper tape. The terminating
characters are tab, carriage return, or backspace, which do the
following.
teb: sets DOCTOR to punch read-in mode dats blocks.

car. ret.: punches a standard input routine and sets DOCTOR to
punch stundard checksummed date blocks.

backspace: sets DOCTOR to punch standard checksummed datea blocks,
but punches no input routine. (a trn 17756 will be punched instead).

- when a register is open, mske the modification, if any, and punch
4 one word block containing that register, in format specified by
H {(wee sbove).

fa:laD punches date blocks from fs through la in format specified by
H(above). £a and la are any sumbolic expressions.

J punch a start (jump) block to the address specified to denote end of
bingry tape.

z zero s£ll memory between register 0 and the lowest register used by
DOCTOR {contents of register F).

fa:laZ zero memory between fa and ls except that part, if any, occupied by
DOCTOR .

HINTS AND KINKS

Breskpoints are extremely useful for investigating misbehavior of long programs.
Pe not try to break at progrem-modified instructions, or TSX's followed by program parameters
to be picked up by subroutines.

If the operator types an undefined symbol, DOCTOR will respond with a U. All typed
input up to that point is deleted automaticslly.

If and vhen attempting to type out & word as flexo code, the typewriter should hang,
pressing Start Read will clear it.

When trying to determine the best symbol to fit a given value, and given two equally
good symbols, DOCTOR WILL pick the one lest defined for its printout.

There are two ways to print a block of registers. Either set the mask to zero, set
up Ml and M+2 to enclose the area to be printed and sesrch for any word; or, if
irrelevent parts of memory happen to contain zero, merely do an N-search for zero. If you
change the mask or search limits, it is well to set them back to their usual values when
you are through.

- 28 =

APPENDIX IiI MIPAS ERROR CODES

An error listing hag the following format:

Colum 1:

A three letter code describing the type of error.
A number following is the depth of macro cszlls.

The octal location in the object program. The
syubolic r means relocation.

The symbolic location, in terms of the last address
tag seen,

The last pseudo- or macro-instruction name seen.

The offending symbol, if a symbol was in error.

- 29 -

APPENDIX IV. SUMMARY OF DOCTOR CONTROL CHARACTERS

N EAQAAH PO WO ™y~ ZOTMRUTOW >

Q
)
0

a=z

OO W w

fl -,

L4 v

tepe feed modify
delete

tab

bk sp

car ret

uc, lc

apace

&ll other

accumulator storasge

ingert bregkpoint

print words as constants

punch dats blocks

address search

lowest location in Doctor

go to

enter title punch (header) mode
equale 28 ingtruction

punch start block

k11l defined symbols

live register storage
mask register

not word sgearch

print addresses in octal
proceed

lagst quantity

print locations in symbolic (relative)
print words in symbolic
read symbol table

execute as instruction
verify tape agaimst memory
word search

index register storage
read binary tape

zero memory

nurerzls and symbol constituents
symbol constituents

take a3 flexc code

print as flexo code

print integers in octal

print integers in decimal

set firet argument value

examine register

examine register, print in symbelic
examine register, print in cctal
define gymbol

equals a8 octal congtant

current location or take as decimal
define gymbol as current location
define symbol as address typed
minug

plus

uppeér cese minue - punch this register

and open previous register

delete

wodify and open addressed register
modify and open next vegister
modify and cloge register

set caae

plus

ignored, but respond with X

s

7%/‘ R vror QﬁCélffaM’: - 30 -

ug-

ich

ilf

'ile

ilx

ir=-

mnd:

mdt:

mdx:

mdv:

In general, undefined symbol. Undefined aymbols are evaluated as 0.
The third letter tells where it was found.

In a storage word or argument of pseudo-instruction word.
In a storage word generated by & mecro call.

In the size of # dimension array.

In a parameter assignment.

In a constant.

In the argument of gtart.

In the argument of entry.

In the count of a repeat.

In an address tag of more than one syllable. This will frequently
be the result of an undefined macro instruction

In an argument of Qif or 1if.
Illegal character. The bad character is ignored.

Illegal format. Some character or chsracters were used in an improper
manner. Characters are ignored to next tab or carriage return.

illegal entry. Argument of entry is improper and will be ignored.
Illegal exit. Argument of exit is improper and will be igneored.
Illegal relocation. The relocation is taken as). The third letter
identifies where it was found, and will be the same as listed under

undefined symbols (sbove).

Macro name disagrees. The argument of terminate disagreeé with the name
of the macro being defined. First name is used.

Multiply defined tag. Original definition retained.

Multiply defined exit. An argument of exit is previously defined with
a conflicting value. Original definition retained.

Multiply defined variable. A symbol containing an upper case letter is
previously defined as other than a variable. Original definition
retained.

ndd:

ipa:

ace:

tme:

tmp:

tme:

tow:

cld:

vid:

ige:

- 31 -

Multiply dafined dimension. An array name in a dimengion statement has a
conflicting definition. Original definition retained.

Improper parameter assignment. The expression to the left of an equal
sign is improper. The assignment is ignored.

Storage capacity exceeded. Agsembly cannot continue.

Too many congtants: the pseudo-instruction constants used more than 10.
times in one program.

Too many parameters: the storage reserved for macro instruction arguments
has been exceeded.

Too many entries. Maximum number of arguments of an entry pseudo-instruction
is 37 octal.

Too many variables. The pseudo-inatruction variables has been used more
than 8 tiwmes in one program. Assembly camnnot continue.

Constants location disagrees. The pseudo-instruction constants has appeared
on Pass 2 in g different location from that found on Pass 1, meaning all the
constants syllables have been assigned the wrong value. Assembly cannot
continue,

Variables location disagrees. The pseudo-instruction varisbles has appeared
on Pass & in a different location from that found on Pass 1. The condition
is ignored.

Internal assembler error. MIDAS hss found that it has made & mistake in
asgembling the progrem. Deliver the error message and e copy and listing
of the source program to a member of the TX-0 staff so that the trouble
may be fourd. Agsembly cannot continue. The octal location given is the
location in MIDAS where the error was found. '

=3 -

OPERATE CLASS INSTRUCTIONS RECOGNIZED BY MIDAS

MNEMONIC OCTAL VALUE OPERATION
opr 600000 No operation.
Xro 600001 Clear XR to +0.
iro 600200 Clear IR to #0.
cla 700000 Clear entire AC to +0.
com 600040 - Complement the AC,
cle - 700040 Clear and complement: set AC to -0.
shr 600400 Shift accumulator right one place, bit 0
remainsg unchanged.
cyr 600600 Cycle AC right one place,
cil 631000 Clear left half of AC to zero.
clr 632000 Clear right half of AC.
cyl 640030 Cycle AC left one place.
amz 640040 Add minug zero to AC.
cal 700200 Clear AC and IR to +0.
alr 640200 Place accumulator conterts in live register.
alo 640220 AIR, then set AC to 40,
alc 640260 ALR, then gset AC to -0,
all 640230 ALR, then cycle left once.
lac 700022 Place IR in AC,
lad 600032 Add LR to AC.
laz 700072 Add IR to minus zero in AC.
1pd 600022 Logical exclusive or of AC is placed in AC
(partial add)
cry 600012 ‘ Carry the contents of AC according to bits of IR.

Results of this operation is same as if contents of IR
were added to exclusive or of AC and IR. PAD
followed by CRY is equivalent to LAD.

lce 700062 Place complement of LR in AC

led 600072 Contents of IR minus those of AC are placed in AC.
1al 700012 Place IR in AC cycled left once.

lar 700622 Place IR in AC cycled right once.

&ana 740027 Logical gnd of AC and IR is placed in AC

anl 640207 Logical agnd of AC and LR is placed inm IR

anc 740207 ANL, then clear AC.

- 33 -

MNEMONIC OCTAL VALUE OPERATION
ora 740025 Logical or of AC and LR is placed in AC.
orl : 640205 Logical or of AC &nd IR is placed in LR.
oro 740205 ORL, then clear AC. '
ial 740222 Interchange AC and IR.
iad 640232 interchange snd add: AC contents are placed in the
IR and the previocus contents of the IR mre added to AC.
cax 700001 Clear AC and XR to +0.
a/xr 640001 Place AC contents in XR.
&XO 640021 AXR, then set AC to +0.
axc 640061 AXR, then set AC to -0.
alx 640031 AZR, then cycle AC left once.
8rx 640601 AXR, then cycle AC right once.
RaC 700120 Place index register im accumulator.
xad 600130 Add index register to accumulator.
xce 700160 Place complement of XR in accumulator.
xed 600170 Contents of XR minus those of AC are placed in AC.
xal 700110 XAC, then cycle AC left once.
1xr 600003 Place IR in XR. ‘
xlr 600300 Place XR in IR.
ix1 600303 Interchange XR and IR.
rax 640203 Place IR in XR, then place AC in IR.
rxe 700322 Place LR in AC, then place XR in IR,
hit 630000 Stops computer.
cpf 607000 The program flag register is cleared.
apf €47000 Place AC in progrem flag register.
rpf 706020 The program flag register is placed in AC.
tac 701000 Contents of test accumulator are placed in AC.
tbyr 702020 Contents of test buffer register are placed in AC.
die 622000 Display point on CRT corresponding to contents of AC.
dzo 662020 DIS, then clear AC.
pen 603000 Contents of light pen and light cannon flip-flops

replace contents of AC bits O and 1. The flip-flops
are cleered.

typ 625000 Resd one character from cn-line flexowriter into LR
bits 12 through 17.

MNEMONIC OCTAL VALUE OPERATION

prt 624000 Print one on-line flexo character from bits 2, 5, etc.
of AC.

put 624600 PRT, then cycle AC right once to set up another
character.

pno 664020 PRT, then clear AC.

ponc 664060 FRT, then clear AC to -0.

p6h 626600 Punch one line of paper tape; 6 holes from bits 2,
5, etc. of AC then cycle right once.

p6o 666020 pbh then clesr AC.

p6s 726000 Clear AC and punch & line of blank tape.

pbb 766020 Punch a line of blaenk tape but save AC.

pZh 627600 Same as p6bh, but punch 7th hole.

p7o 667020 p7/h then clear AC.

rle 721000 Read one line paper tape into AC bits 0, 3, etc.

rlr 721600 rle, then cycle AC right once.

ric 723000 Read three line of paper tape.

rew 604010 Rewind tepe unit,

wrs 604014 Select tepe unit for writing s record.

rds 604004 Select tape unit for reading a record.

bsr 604000 Backspace tapae unit by one record.

rtb 604004 Read tape binsry. (odd paritcy)

wtb 604014 Write tape binary.{odd parity)

rtd 604024 Read tape decimsl. {(even parity)

wtd 604034 Write tape decimal. {even parity)

cpy 620000 Transmits information between the live register

and zelected input-output unit.

1.7 MACHINE ORGANIZATION

Let us now consider the general organization of a general purpose machine
so that we can draw some conclusions with respect to the hardware aspects of
constructing it. Figure 1.71 is a schematic diagram of & machine.

The store in this diagram must hold a large number of fixed length operand
words. Typically, 215 words of 2° bits each, (i.e., on the order of 106 bits).
It holds the most numerous single component, and is one of the most critical sub-
systems with respect to speed, thus the cost per bit, po-er level per bit, and
" access time per bit are major factors in the overall system.

These factors, as we shall see, force us to organize the storage subsystem
into a monolithic passive file from which the contents of but a single location
(specified by the contents of a single memory address register) are gated into a
single "memory buffer register'. Following each such access, the store must be
alloved a recovery time before it can again be accessed.

The "'registers" of this system must be capable of holding fixed-length
operand words; chenging their state rapidly; end of driving logical "gates” directly
These characteristics agein constrain the realization of registers, as does the cost
per bit of such "active" storage.

Before proceeding further, let us consider, in general terms, how we wish
our system to operate. Specifically, let us consider the detailed execution of
a program sequence in the machine of Figure 1.71.

U LgaD A
ADD B ‘
STORE C
JuMe U+1 Ce}—A+B+C
A, +6&
B +1 |
c, <=0

with U=+ 1, and thus A, B, and C are at locations 5, 6, and 7
respectively:

!AC
Accumulator

Operat 10::[03
Decoder

Program
Counter

;

M MAR
Hemory o

Register

cll

Index Registe : (:) .

Store

Figure 1.71

-~V

C = A«B
-Vml
oV ~ 0

Schematic

Logical

Figure 1.73a DIODE "AND" GATE

MemoryL——— In-@ut EE%E_
Buffer
Rezister Register

Storage
Register

LEGEND :

-—————’ Data Path

(::) Logical Gating

COMPUTER ORGANIZATION

C = AVB

Schematic

]

Logical

TRANSISTOR
"NOR" GATE
(ROT - OR)

Figure 1.72b

- 17 -

(L

Scheneatic

>l
% U= +W
V=B+4+1U
'y |T
E i

Solutiong: - W=1 U=0
Was0 U=l

Zg é_g. ”';5¢rfec/iv Section /. 7. - 18 -

Figure 1.73

substep: -
1‘
2.

{Memory Access) 3.
op

4.

6.

(Memory Access) 7.
Data

8.

9.

{Memory Access)lO.

ACTION
"1" —mm C(PC)
C{PC) ——s~ C(MAR)
C{STORE)~—#» C (MBR)
MAR
C(MBI;; —— C(0D)

C{MBR) ——am C{MAR)
Addreas

C(PC) + 1—m=C(PC)

C{STORE)——&=~ (MBR)
MAR

C(MBR) ——» C(AC)
C{PC)———&» C(MAR)

C{STORE)&= C {MBR)

op MAR

11. C{MBR)——s~ C{OD)
C(MBR) ——a» C{MAR)

12, C{PC) + 1—aC(PC)

{Memory Access)l3. C{STORE)——w= C({MBR)
Data MAR

14. C{MBR) + C{AC)—mm=C{AC)

16, C(PC)——p C(MAR)

(Memory Access)l7. C(STORE)—g C{MBR)
MAR

ep

18. C{MBR)——p C{OD)
C (MBR) ———pp C{MAR)

19. C(PC) + 1 —pC(EC)

{Memery Access)20.
data

C{AC)——> C(STORE)

21, C{PC)~———p» C(MAR)

(Memory Access) 22. C(STORE)~—@»~ C(MBR)
MAR

°p

23 C (MBR)————pp C (OD)
C (MBR)———po~ C(MAR)

C {MAR)——— C{pC)

* Memory Access {op)
After 24, repeat from 24.
step 10.

COMMENT
Program is set to start at 1.
Memory 1s set to retrieve C(1)

Contents of Location 1 goes into MBR.
op code bits (LOAD) go into Decoder.

Address bits go into MAR
(location 5)

Program counter incremented to +2.

Contents of Location 5 go into MBR

Plus 4 goes into the AC from MBR
2 ———f-MAC
Next instruction is fetched.
"ADD" op to decoder

6 to MAR

3—b-PC

+1—p»MBR

Add 1s executed and +5 {3z result
(lst time)

3-—p-MAR
C{3)—~ MBR:

"Store'" op to decoder
> to MAR

4 —pp PC
+5—=C(7)

4—~PC

"IJMP" op to decode.
22— MAR

2—epc

Although not exercieed in this somewhat useless program, the index register
(1If called for by an operation code) would be used prior to memory accesses for
data (such as between step 12 and 13 for an indexed ADD).

Its action would be: -

C(IR) + C({MAR)——» C(MAR)

‘Prom the brief sequential description, we are in a much better position to
consider the form of the logical gating connections in figure 1.71. Most of
these connections involve the transfer of data, unchanged, from one register to
another, others involve adding before transfer, and some (such as to Store and
1I¢) are highly dependant upon the actual hardware involved.

Let us now return to the logical calculus in order to use it as a design
tool for these functions.

The link between the logical calculus, and the design of switching, or logical
circuits was first pointed out by Claude Shennon, in a famous Master's theais.
Shaonon noted that in a contact network, there are only two states of interest at
each switch, or for the network as a whole: - continuity or non-continuity, (short
or open circuit). If the logical value "1" were used for continuity, then a series
connection behaved as & logical "AND''; and & parallel connection as a logical
Ilm " .

Thus:

A B f = A.B

‘ > f = A+B

Where A and B ere
contact networks having
B logical value "1" if
closed.

In high speed electronic switchiny networks, diodes and tramsistors have
largely replaced relay contacte, however, the ssme tools of analysis and synthesis
are applicable.

Por an electronic switching network, the two atates of interest may be two
distinct voltage levels. For the circuits of figure 1.72 such a choice might be -V
for a logical '"one' and zero for a logical zero. The "AND" circuit of 1.72a can
best be understood in terms of the properties of a diode, which looks like & short
circuit for current flow in the direction of the arrow symbol, and an open circuit
for current flow in the reverse direction. Thua, if a number of diodes with the
indicated polarity are connected to a minue voltage through a load resistor, and
any of the diodes are connmected to an input voltage of zero, then the ocutput
voltage will also be zero. If all the diodes are connected to logical ones
{~V inputs) no current will flow through any of the diodes, and the output will be
~V, i.e., & logical one. With inverted dicde and source voltage polarities, 1.72a
becomes an "OR" circuit.

Unfortunately, diode logical circuits have no inherent gain, and/ggggglogical Vs
circuits capable of supplying power are needed. L

One such circuit, which appeare to be extremely versatile, is the transistor "N(
gate of figure 1.72b. If the base connection {horizontal lead in the symbol) 1is helc
to zero volts, no current flows through the transistor to the supply, and thus the
output voltage ie -V. If negative current flows from the base; it 1is amplified many
fold, and the output voltage drops to zero. Since each input has the sume effect,
the output of the NPR gate is the "NOT" of the "OR" combination of inputs; thus,

a single input NPR gate is & logicszl inverter.

Two'NOR" gates msy be crose-connected to form a "flip-fleop", the most common
form of active register storage.)

From the defirition c¢f & NJR gate, it cen be seen that if the output of one
gate {(in the flip-flop comnection) i& one, the other must be zero. If a short
"one" pulse is fed to beth imputs, the £1lip flop will "toggle" tc the opposite
statée. Similarly, if & one is fed to one irput and a zerc to the other, the flip flc¢
will assume the corresponding stete. If both inputs are zero, it will hold the
state it 1s in.

The schematic box of 1.72c will be used to represent a flip-flop. It should
be noted that N@R gates are not perfect elements. They have & non-trivisl cost
(< $101); finite time to switch, and thus &n upper bound on switching rate,
{Mainly due to rise storage, and fzll time of the transistor) on the order of
107 - 108 /sec, and since power is drawn, they can only drive a small number (called
fan-out) of similar elements (ebout 10}.

- 21 -

Section 1.31 INSTRUCTION OPERANDS

An instruction operand for our general machine must clearly specify two
pleces of informetiom: -

a) What is to be done - the operation (such as add, store,
Jump, etc.) : :

b) Where to £ind the necessary desta.

. With respect to &), ve merely must decide on a unique binary code for each
different operation that is to be performed. Usually the number of different
operations that we wish to perform is small compared to the possible combinations
that can be coded into N op-code bits. For hardware reasons, however 28 pay
be »» number of ops. The op-code bits are usually coded at the far left {(most
significant bits) of imstruction operands.

With respect to b}, our choices are usually much wider, depending upon our
mode of addreseing .These modes include: -

1. No zddrezs foperate class)
2. Immediate Address

3. Direct Address

4. Indexed Address

5. 1Indirect Addreas

1. No Address: In this case, the operation to be performed involves
orly the contents of active registers (for example - change the sign of the
accumulator, shift the accumulator right one place, etc.), and thus, the entire
operand word can be treated as &n operation code.

2. Immediate Address: This relatively rare form of addressing uses the
contents of the rest of the operand word itself, usually coded as a positive
binary number, as the dete to be operated upon and, thus, can obviously save
some memory accesses. The renge of such dste operands is clearly less than in
4 normsl data operamd. For exsmple, if our word length ie M bits, and the og
code usee N bits, we can only accomodate data operands between zero and 2M-N) .

5. Direct Address: This iz the predominant mode of addressing, and in
thix case, the M-N address bits &re interpreted as a binary number, giving the
wmemoTy adcéress at which the operand can be fouad. Thus, as a directly sddressed
ingtruction, "add A" is interpreted as: add to the accumulator the data operand
which is located in store address "A". ({Note that "Add" would have a unique
code, and "A" represents the binary decoding of the address bits.)

&. Indexcd Address: In this mode of addressing, the contents of sn "index
regirter" are first added (or subtracted) from the address bits of instruction
operand before the instruction is executed. In thie way, it is possible to
mcdify the address of an instruction (for vector or array operstions, for example)
without having to change the data in the instruction itself.

Thus ,"add indexed A'would be executed as 'Add the contents of (A + contents
of index)".

- 8a -

5. 1Indirect Address: In thie addressing mode, the addreas bits are
interpreted as the addrees of the address of the data. Thus, "edd indirect
A'" would be executed as: &dd the contents of (the address specified in the
address part of A). This would obviously require an extra memory access to
acquire A before treating it as an operand address.

One common form of coding such instruction operands is to set aside
specific bits for each mode of addressing inside the op code itself

op code binary address or data

f e S
/ —, by
indirect address bit

index register specification bits
{these may be more than one I.R.)

"Immediate” bit

"Operate Class" bit

Operation bits

Section 1.32 MACHINE CODES

When describing progrem steps directly., we will usually use symbols for
operations, and gddresses; aa well as decimzl numbers, as ppposed to the
equivalent binary ccde. Such a procedure hu: the berefit of eliminating sowe
strictly clerical (but error prone) transliterations that can be better done by

machine. The usual format for such & sc-called machine language program step
is:

Loc, Aéf b
Symbolic location Mnemonic for the Symbolic location for
of instruction operation code operand
operand ™~ ~— J

or the value of the operand

A_v
b, 4 + 9999 N

Machine language programs are usually writtern, one line per sequential step;
transcribed onto some form of machine-reasdable document {such as punched cards,
or punched tape); and then translated into the actual binery coded operations and
addresses, as well zgz binary data by "assembly programs".

The operstion repetoir and hardwvare configuretion of the object machines
snd the punctuation and format conventions c¢f azsccisted machine languages sare
sufficiently diverse so that it is more profiitable to consider each such
"language" as a specisl caze when specific machine: are considered.

	00
	01
	02
	03
	04
	05
	06
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	_1
	_2
	_3
	_4
	_5
	_6
	_7
	_8
	_9

