TX-0 COMPUTER
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE 39. MASSACHUSETTS

H-5001-19-~1

August 23, 1961

SCME USEFUL MICRO- AND MACRO-INSTRUCTIONS

The instruction vocabulary of MACRO III can be enriched éonamera.bly
through parameter assignments and macro-instruction definitions. This memo-
randum is intended to help persons who are relatively new to TX-0 to acquaint
themeelves with some of its unueual properties {and peculiarities), particularly
the microprogramming feature.

Many of the instructions discussed below are not currantly defined in
MACRO I11. EHowever, & tape containing most of these definitions is aveilebdle
from the subroutine library as an English tape (ENG DEFS A) which may be copied
into the beginning of ithe users’ English tape. This sét of definitions ia
also available &s a binary symbol tape {BIN DEFS A) which may be used to
restore MACRO befors making a convereion. The content of ‘these tapes ie
given on the laet page of this msmorandum.

1. Qperate Instructions
The follewing opsrate instructions not currently defined in MACRO III

are frequently useful. Some of these operatione are discussed below in more

detail.
Instruction Operation
i1l = lci+alr~opr IR+LE—3AC, AC—IR {equivalent to ial fol-

lowed by cyl)

anz = ana &0 ~{AC/IR)--%AC {ena followed by com) _
anz = ana 50 (ACNALR) + {-0)=?AC (anc followed by amz)
orc = ora 40 ~{ACUIR)~PAC {ora followed by com)
pui = pri+ cyl-opr {prt followed a cyl)

ran = ¢yrt cry-opr {rendom number generator) see helow

-2-

In the TX-0 (and many other machines), eddition is accomplished in two
stepe: partial add and carry. These two operations are also separately useful
as operate commands.

1.1 Partis) Add

The partial eum of two numbers (x A y) is & number each bf whose bits

represents the “exclusive or" between corresponding bits of x and y. In terms

of the Boolean functions "and” (f1), "or® (U) and *not* (-), then,
xAy=(xN=-y)U (yN - x). (1)

In particular, it can be seen that

xAO0O=x (2)
XA X=0 (3)
XA -0 = ~x (4)

Since thie operation is associutive, it follows from (2) and (3) that

TAYAYy ~x ' (5)

The command lac (IR-JAC) makes use of relation (2), while lcc {-IE=PAC)
uaee’ (4). 1pd (IRA AC—PAC) can be used to advantege in & numher of ways. For
example, suppose that it is desired to combine bits O -~ B of the AC and bitsa
9 ‘- 17 of the IR into & single word (the unwanted portions of both registers
neh assumed to be clear). Making use of (2) and (5), the desired result cén
be obtained in two steps:

1pd
¢lr+lpd~-opr

1.2 Carry

The carry operation is loosely analogous to the carry used in pencil-
and~-peper addition. It may be defined as follows:

A carry digit is & 1 1f, in the next less significant bit,

either AC = 0 and MBR = 1, or AC = 1 and the cerry digit = 1.
The carry digits so determined are partial added to the AC.

-3.,
Let the result of & carry operation be denoted by AC € BR since (in the one's

complement arithmetic of TX-0) the addition operation is the result of the suc-

cessive execution of partial add and carry, we mey write

x+y=(xhy) &y {6)

If we define

zZ=xAy
it follows from {5) that

ZAy=xAyAy==x
Hence (6) mey be written

cfya(zAy) +y (7)
In particuler, it may be noted that

0L y=(0Ay) +y =2 | (8)
which gives risé to the lal commend (IR + IR-PAC), and that

yEymlyAy) ty=-0ty, {9)
which is represented by amz (-0 + AC->AC),

The instruction cry (AC € LR-PAC) can be used in & number of ways. For
example, suppoee that it is desired to sense whethsr bit 9 of the IR conteains

al or O. This can be accomplished as follows:

cla

ada (777377

ery

trn ha
It can be sesn that if dit 9 of the LR were 0, cry would not change the AC,
80 control would be transferred to ha. If bit 9 were 1, however, the entire

AC would be complemented and the transfer would not be meda.

—lyn

As & second example, suppose that it is desired to cycle left the con-~
tents of the IR ¢reating the 12 least significant bits as & unit (i.e., by-

pessing bits O - 5). This is accomplished by

cla

add (770000
ery

11r (7777

ano

Following this set of operations, the AC and bits O - 5 of the IR will be clear,
vhile bits 6 - 17 will be cycled left one position (the former bit 6 going
to bit 17).

The instruction ran {= cyrtery-opr), when used wiih an appropriate
number in the live register, can be used to produce a sequence of psuedo-random

numbers. In particular, the instructions

cla

add t

11r (355670
ran

sto ¢
can be used repeatedly to generate a sequence of approximately 250,000 random
18-bit words in register t {eventually, a previously computed value is obtained
and the sequence repeats). Plus zero is a good cholce for the initial contents

of t. Mirpus zero should not be used.
To 1llustrate another application of ran, suppose that it is desired
to m2ke a four-way branch (to locations b0 through b3) dependent on bite 9

and 10 of the ILR. Ueing the same principle that was used before, this is ac-

complished by

cla

add (777377
cry

trn .+
rantcom-opr
trn bl

tra b0

ran

trn b3

tra b2 .

2.. Macro-instructions

The following instruction sequences occur often enough in many programs

to wvarrant their definition as macros.

MACRO INSTRUCTION SEQUENCE
clad A cla
add A
llac & llr A
lac
licc A 1ir A
1lco
move &,B 1lr A
slr B
load A,C 11r (C
glr A
acst C,A add (C
ato A
step 4,C cla
add (¢
add A

sto &

test 6,8 add (-C
trn S
call S 11y (tra .+2
tra S
sudbr S,T 1ir (tra T
tra $§
3. BRepetigions

4An aspect of programming for the bresent configuration of TX-0 that
differs from m&ny computers is the frequent need for repetition of instruc-
tions (e.g. in cycling and shifting). The peucdo-instruciion repeat may be

used for this purpose. Ingerting
repeat n, ins

into & program causes the instruction ins to be assemb-led n successive times
‘in the binary program. For example, if the progrémmer wishes to cycle the
AC nine places to the right, he can write ‘
repeat 9, cyr .
A x;xora detailed description of this psuedo-instruction is given in Preliminary

Operation Imstructions for MAGRO III (M-5001L-35).

In some cases, the programmer may wish to specify the number of repe-
titione at some later time by means of & paremeter assignment. For example,

if he wishes to cycle left zip times (0% zip <8), he may write

repeat =ip, cyr

Y

If a large emount of shifting or cycling is required, it is genereally
more efficient to use closed subroutines together with macros, such as the
following:

zz=,
define shre ¢ 11r (tra .+2
tra zz+22-C terminate
repsét 18, shr
slr .+1
0

The programmer c&n then shift right zip places by writing
shrec zip

where zip could be any combination of constants or paremeters whose sum lies

in the interval (091810)°

In some cases it may be desirable to repeat some operation a variable
nunber of times, depending on the result of an earlier computation. This can
be accomplished in a similar way. For exsmple, if it were desired to muliiply
the contents of the LR by the AC, knowing that 0< AC <7, the following se-
quence could be used:

com
add (tra 413
8t0 .+2

cla
0

repeat 7, lad
In a similar way, a variable number of shifts or cycles cen be ob-
teined by defining appropriate calling sequences as macros and using the same
kind of closed subroutine as the one above under shrc C.
4. Remerks
Undoubtedly, other generally useful instructions or instruction se-

quences have been developed by TX~0O users. It is recommended that these tech-

-
8

niques be documented {for the gocd of the cause and the barishment of dis-
organizad labor)-.

Hopefully. meny of the instructions discussed above will be made ob~
solete by the more powerful set of hardware commands that is planned for the
TX~0. The full potentizl of the new commands can best be realized through

communication between the users.

| DEFINE A

1ll=lal+alr-opr pnl=prt+cyl-opr anc=ana 40
anz=ana 50 orc=ora 40 xx=hlt
ran=cyr+cry-opr
define adde C add (cC terminate
define clad A cla add A terminate
define clac C cla add (cC terminate
define acst C,A add (C sto A terminate
define step A,C cla add (cC .
add A sto A terminate
define 1lire C l1r (C terminate
define 1llac A 1ir A lac terminate
define 1lcc A 1lr A lce terminate
define move A,B 1llr A slr B terminate
define load A,C 1llr (C slr A terminate
define test C,S add (-C trn S terminate
define subr S,T 1llr (tra T : |
tra S terminate
define call S subr S, .+2 terminate

start

	01
	02
	03
	04
	05
	06
	07
	08
	09

