TX~-0 COMPUTER , :
KASSACHUSETTS INSTITUTE OF TECENOLOGY -

CAMBRIDGE 39, MASSACHUSETTS Dl s
/) Hael!

Mo

o {") /’ i '/*"‘/ /« \
f}{)/ / / -w/
SQME USEFUL MICRO- AND MACRO~INSTRUCTIONS

The instruction vocabulary of MACRO II can be enriched considerably
through paremeter assignments &nd macro-instruction definitions. This
memorandum is intended to help psrscns who are relatively new to TX~0 to
acquaint themselves with some of its unusual properties (and peculiarities),
perticularly the microprogremming feature.

Many of the instructions discussed below are not currently defined
in MACRO II. However, & tape containing most of thase Jefinitions is avail-
able from the subroutine library as an English tape (ENG DEFS A) which mey
be copied into the beginning of the users! English tape. This set of
definitions is also available ac a bipary symbol tepe (HN DEFS A) which
may be used to restore MACRO before meking a conversion. The content of
thess tapes is given on the lest page of this memorandum.

1. Oneraté Instructions

The following operats instructions not currently defined in MACRO II
‘are frequently useful. Some of these operations are discussed below in more
detail. -

Instruction Operation
anl = opr 305 ACNIR-»IR (Logical Product)
ena = opr 325 ACNIR -»IR, 0-»AC ("AND" and Clear AC)
orl = opr 105 ACUIR ~»IR (Logical Sum)
ora = opr 125 ACVUIR =>IR, O»4C ("OR" and Clear AC)
lce = lac+com=opr <~IR-PAC (Place complement of IR in AC)
amz = opr 51 AC + (-0)»AC (Add minus zero to AC) '
lag = clect+lad-opr IR + (~0)-»AC (IR minus zero in AC)
cry = opr 12 Ac,g IR-pAC (Carry, see below)
lal = clatcry-opr IR + LR =»AC (Equivalent to lac

followed by cyl)

ran = gyrtcry=-opr (Random Number Generator, see below)
pen = opr 100 (Set AC Bits O and 1 from Light Pen

Flip-Fiops 1 and 2, respsctively,
and clear Light Pen Flip~Flops.)

In the TX=~0 (end meny other mechines), addition is accomplished in two
steps: partial add and cerry. These two operations are also geparately useful
28 cOperate commands.

2,

1.1 Partizl Add

The partial sum of two numbers (x A y) is & number each of whose
bits represents the "exclusive or" between corresponding bits of x and
yo In terms of the Eoolean functions "and" (N }o Yor" (U) and “"not"
(~)c then,

xAy=(xN-y)u (yN = x). (1)

In particular, it czn be geen that

XAO=x ' (2)
xAZ=0 (3)
XN =0 = =3 (&)

Since this operation is essociative, i1t follows from (2) and (3) thet
xAyAy=x (5)

The comxmand lac (IR <»AC) mskes uvse of relation (2), while
lce (~LR ~» AC) uses (4). 1pd (LR A AC =>AC) cen be used to advantage
in a number of ways. For exarple, suppose that it is desired to
combine bits O - 8 of the AC and bits 9 - 18 of the LR into a single
word (the unwanted portions of both registers not assumed to be clear).
Making use of (2) and (5), the desired rosult cen be obtained in two

steps:
1pd

clr+lpd-opr

1.2 Cerry

The carry operation is loosely analogous to the carry used in
pencil-end-paper addition. It may be defined ag follows:

A corry digit 1s a 1 4f, in the nezt less significant bit,
elther AC = 0 and MER = 1, or AC = 1 and the carry digit =1,
The carry digits so determined are partial added to the AC.

Let the result of a carry operation be denoted by AC & MER since (in
the one's complemsnt arithmetic of TX-0) the addition operaticn is
the reszult of the euccessive exzecution of partial add and carry, we
nay write
x+y=(xAy) gy (6)
If we define

z=x Ay
it follows from (5) that

sNyszxAyAy=2x

Hence (6) may be written

zly=(zAy)+y (7)

3.
In particulsar, it may be noted that
0Cy=(0Ay) +ym=2y, (8)
which gives rise to the lal command (LR + IR —#AC), and that
Y Ey=(-yAy) ty=-0+y, (9)
which is represented by amz (~0 + AC =» 4C),

The Instruction cry (AC € IR ~»AC) cen be used in 2 number of
ways. For example, suppose thut it iz desired to sense whether bit 9
of the LR contains & 1 or 0. This can te accomplished &e followsa:

cla

add (777377
cry

trn ha

It cen be seor that if bit 9 of the IR wers 0, cry would not change
the AC, so control wculd bs transferred to ha. If bit 9 were 1, hov-~
ever, the entire AC would be complemented and the transfer would not
be nade.

48 a sscond example, suppose that it is desired to cycle left
the contents of the IR treating the 12 least significant bits 28 a
unit (i.e., bypessing bits O = 5). This is accompliched by

cle

add (770000
cry

1ir (7777
ana

Following this set of operations, the AC and bits O - 5 of the LR will
te clear, while bits 6 = 17 will be cycled left one position (the
former bit 6 going to bit 17).

The instruction ran (= cyr+cry-opr), when used with an appropriate
number in the live register, can be used to produce & sequence of psusdo-
random numbers. In particular, the instructions

cla

add ¢

11r (355670
ran

sto ¢

cen be used rapestedly to generate & sequencs of epproxizately 250,000
random 1€~bit words in register t {eventuxily, a previously computed
valve 1s obtained and the sequence repeats). Plus zero is a good choice
for the initial contents of t. Minus zero should not be used.

b,

To 1llustrate another application of ran, suppose that it is
desired to meke a four-way brench (to locationa b0 through b3) depend-
ent on bits 9 and 10 of the IR. Using the same principie thet was ueed
- before, this is acconplished by

cla

add (777377
cry

trn o+
rantcom=-opr
trn b1

tra b0

ren

trn b3

tra b2 .

2. Macro~inst;ggtionc

The following instruction" sequences occur often enough in many programs
to warrént their definition as macros.

NACRO IPSTRUCTIGN SESURNCE
clad A cla
add A -
llac 4 lir A
lac
llcc A llr A
' lce
move A,B 1lir A
slr B
load A,C 1lir (¢
elr A
acst C,4 add (6
sto A
atep A,C cla
add (€
add A

sto A

test C,S add (~C
trn S

call S 1lir (tre .+2
tra S

subr S,T 11r (tra T
tra S

2.1 Repetitions

4An aspect of programming for the present configuretion of TX-0
that differs from many computers ie the frequent need for repetition
of instructions (e.g. in cycling and shifting). For this purpose, it
is convenient to define & set of macros as follows.

define two P P P terminate
define three P two P P terminate
define four P three P P terzinate
8tCo

Then, for example, if the progremmer wishes toicycle the AC nine places
to the right, he can write

nine eyr.

In some cases, the programmer mé} wigh to Qpecify the number of
ropetitions at some later time by means of & parsmeter assignment. For
exumple, 1f he wishes to cycle left zip times (0 ©zip <£8), he may
write

loc, eight cyl
loc+zipl Next instruction

-]

The binery tzpe will then store cyl in locations loc through loc+8,
then read in over this the following instructions, leaving cyl in
locations loc through loc+zip-l. ’

If & large amount of shifting or cycling is required, it is
generally more efficient to use closed subroutines together with macros,
such a8 the following:

22=,;

define shre C 11r (tra .+2
: tra zz422-C terminate

	01
	02
	03
	04
	05

