TX~0 COMPUTER
Masgsachusetts Institute of Technology
Cambridge 39, Massachusetts

M=5001~20

FLOAT -~ A FLOATING POINT INTERPRETIVE ROUTINE

16 May 1960

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge 39, Massachusetts

TX-0 COMPUTER
M-5001~20

FLOAT - A FLOATING POINT INTERPRETIVE ROUTINE

Contents Page

Floating Point Description
A, Brief Description
B. Floating Point Numbers
C. The Nature of an Interpreter
D. Orders Available in Float
E. Indexing Operations with Float
1. The Index Register
2. Indexed Operations
3. The Index Decrement
F. Binary Point Conversion
G. Conversion Orders
1. Binary Numbers to Floating Point
2. Decimal Numbers and Floating Point
H. Conversion of Programs Prepared for Float
1. Float Itself
2. Subroutines
I. Subroutine: Scope Plot (Example)
1. Function
1A, Calling Sequence
2. Space
3. Time
L. Method
S. Comments
J. Writing Subroutines for FLOAT
K. Step by Step Operation with FIOAT
L. A Special Multiply Order
M. The Macro Instructions
Appendix 1 - Numerical Constants
a. Powers of 2
b. Powers of 8 .
Appendix 2 -~ Orders in FLOAT 24
Appendix 3 - Halt Orders in FLOAT 26

BN RN B B R RREE EE B B v o mom

Note: Because of last-minute revision in the memo, page 18 is not included.

Paul Brady
Gordon Bell

FLOATING POINT INTERPRETIVE ROUTINE

A. Brief Description

This routine enables the programmer to perform arithmetic operations
on the TX-0 computer. The computer itself is not designed for such oper-
ations; it is much better suited for problems involving work requiring a
series of rapid decisions in logical operations. Its operation ;:ode is
very cleverly designed to enable the coder to wark not only with his numeri-
cal data but also with his instructions. In using FLOAT the programmer
throws away these valuable features to an extent and slows down the com-
puter by a factor of about 50.

FLOAT is an interpretive routine. This means that each order of the
operator's program occupies one register, as at present, but the orders
never enter the memory buffer register. The computer does not obey these
orders at all, but rather the orders set forth by FLOAT, which in turn
looks at the programmers orders to see what to do. If the programmer gives
the arder "fca x" (clear and add x), the interpreter will sense this and

perform the actual process of putting the contents of x in the (pseudo)

accumulator.

Such a method may seem at first to be terribly cumﬁersome and time-
consuming. At present, this is in part true. FLOAT has been written for
expediency and is reasonably wasteful of registers. During the summer of
1960 the program will be condensed so that it is faster and more economical.
When some of the new computer orders are installed, the program will almost
vanish (at least, we hope sol!) and then the floating point interpreter will
become a most valuable tool in solving arithmetic problems. In fact, the
TX-0 will be in a position to compete wery favorably with the 70h in speed
of numerical computation. None of the future changes in FIOAT will at all
affect programs which will be written to make use of the existing program,
except that they will take progressively less and less time to run.

Programmers familiar with the 7OL coding will practically be able to
skim through the following memo. Those not so familiar will probably find
the concept of indexing a little tricky, but once they "catch on" to the
concept, we feel certain they will agree that such a device indeed provides
a counting method superior to that of building counters within a program.

B. Floating Point Numbers

The general method of representing numbers in the TX-0 computer is
to let each bit represent a power of 2, except for bit zero which is gener-
ally reserved for the sign bit. A binary point is always specified. If
the binary point is at zero (all the way to the right) then the next bit
left is 2°, then 21, then 22, and so on. We thus represent an integer.
By setting this point at 17, the first bit to the right is 2-1, then 2‘2,
and so on, specifying a fraction. 1In all cases, the entire number is
contained in one raegister.

A floating point number is really two numbers; the first a fraction,
and the second an exponent. Such practice is not new - we are all accustomed
to seeing 389 written as .389 x 103 . Two registers are used to hold a
floating point number; in the first is a fraction whose greatest magnitude
is almost 1. The second register, the one immediately following in memory,
contains the power of 2 (two) by which the fraction must be multiplied to

make it read the correct number.

Every conceivable positiwve number except zero will contain a one some-
~ where in its binary code. The octal number 50k is written 101000100 and

so has three one's. Taking advantage of this fact, it is our convention

to build up normalized floating point numbers.‘ The frac;c.ional part of a
positive stored number will always have a one for its first bit, bit one,
reserving Wit zeroc far the sign bit. Zero will be represented by having
a<11 zeros in the fractional part of the number. Zero is the only normalized
positive number that will not have a one for its first bit following the
binary point.

You can make & number negative by complementing just the fractional
part. If we are to preserve our convention of positive numbers having bit
1 a one, then all negative numbers will have their sign bit a one and bit 1
a zero. Minus zero is the only negative number which can be stored having
bit one "lit."

The exponent, stored in the register following the fraction, obeys
the rules commonly used for binary integers. It is not normalized in any
way and is made negative by complementing the entire number. It is self-
evident that to change the sign of a number you must complement only the
fractional part - but you need not concern yourself with this detail in
programming since there is a "change sign" order available to you.

=3

A small but important detail to remember is that in calling for a
nurber from register x, you are really calling for registers x and x+1l.
When you give the order fst x (store in x) you are really staring in x
and x+1l. And when you wish to add in the number following C(x) in
memory, you must add in C(x +2)° The notation C(x) means the contents of x.

Writing a floating point number is not hard and can be done with ease
if you have a desk calculator. If you do not have such a device, pencil
and paper works and for small numbers such as 1, .5, 6.25 and L.75, it will
be just as adequate. The principle is as follows:

35.602 = .35602 x 10°2 000567k = 567k x 10™3

Rule (for the above numbers): Move the decimal point until it just encloses
the first significant figure (in other words, normalize the number). The
power to assign to 10 is the number of places moved. If you moved left,
the power is positive; right, negative.

Binary numbers obey exactly the same rules. Note these examples:

101101101, = ,101101101, +9 +00010001 = .10001, -3

The writer assumes that the reader, having examined the two examples
above, will be able to convert any binary number to floating point. The
chief problem is to get the binary number, and this is where the desk cal-
culator becomes ind’spensible. Here are several decimal numbers. Observe
the method used foar each.

268, = lillg = 100001100, = 1000011, 9,4y = 0.1000011, 114y = 206000,11

2

+268, decimal, is stared in two successive registers as:
11 octal.

Notice that at one point in this operation a zero sign bit is arbitrarily
set in from of the number. FIOAT is designed to interpret this as the sign
bit and to consider everything to the right of it as the number itself.

”hﬁ
Thus, 17 bits are available for number representation.
13,000,000(10) = 611156500(8) = 110001100101110101000000(

2)
= 0,110001100101110101000000, 2k (74

= 306273, 30

Round off has occurred. The number is too large and "complicated" for
exact representation - that is, 17 bits is not enough to contain it exactly.
Note that the bit just followimg the cut-off point was a one. This "one"
was carried into the number and thus the number reads 306273 instead of
306272,

If the reader works at enough of these he will begin to realize that
you need not write these numbers in their binary form. To illustrate this,
the above number:

611156500(8) = (divide by tho make it start with a zero)
= 30627240 x 2° = (each octal number represents 3 binary
places except the first, which is 2 pléces)
= 306273 (round off), 3+3+3+3+3+3+3+2+1 (the 1 comes from
our first division by 2) or 30g.

This last step is a little involwed, and anyone playing with these numbers
for any length of time will come upon it himself, so if you find it just
a little confusing right now, there is no nesed to worry.

Speaking of round off, this would be a good point to mention range
and precision of floating point numbers. 17 bits will allow representation

to about S ar 6 significant figures with a range 2 10/ to 2*131071

24-131071

is a large number and most of the computations will probably involve
numbers much smaller.

To convert decimal nurbers to octal numbers, simply divide the decimal
number by the largest power of 8 which can be contained within it. Write
down the integral number and then divide the remainder by the next largest
power of 8, etc. For your convenience, a table of powers of 8 is included
in the first appendix to this memo.

Fractions are no harder to convert. In fact, on the desk calculator

the writer uses, they are easier. The principle is stated as follows:

“S5-

Assume you have a fraction already stored in memary. It is not a
floating point number, but is rather a number which has bit 1 as 2-1,
bit 2 as 2-2, 3 as 2-3, and so on. The number is guaranteed less than

1l and is positive for convenience sake.

Maltiplying a binary nunmber by 8 is the same as shifting it left
three places. Assuming an accumulator that has these three places avail-
able for inspection, we can read off the first octal digit of the fraction
after the first multiplication by 8. The second such multiplication will
yield the second octal digit and the whole 17-bit number can thus be
examined, 3 bits by 3 bits.

This octal fraction is meant to represent a decimal fraction. Hence,
multiplying the octal fraction by 8 will move exactly the same information
across the decimal point as multiplying the decimal fraction by 8. To
convert a decimal fraction to octal, then, successively multiply by 8 --

+,07954325 x8 = 0,6363u6

063631'»6 x8 = So 090768
-090768 XB = 09 7261}4)4
726141 x8 = 5,809152
.809152 x8 = 6., etc.

We have thus brought across the decimal point the following octal nunber:
05056, This could be carried out indefinitely, because this fraction does
not have an exact representation. We may write this number in binary:

-05056 (really .05056362) = 0.000101000101110011110010 binary

0.101000101110011110010, -3 binary floating paint
20,2717, -3 * 7 octal floating point

It might be interesting to see just how precisely this number is

represented in our system of 17 bits.
Summing powers of 2:

The original binary number written columnwise is as follows, taking only
17 bits from the first significant one:

Bit Position Power of 2

-0 -1 0 (1/2)
0 -2 0 (/L)
0 -3 0 (1/8)
1 <k 0625 (1/16)
0 -5 etc.
0 -7 0
0 -8 o}
0 -9 0
1 -10 . 0009765625
0 =11 0
1 -12 . 0002L111,0625
1 =13 .0001220703125
1 =1k »00006103515625
0 =15 0
0 -16 0
1 =17 »00000762939453125
1 -18 .00000381L697265625
1 -19 .0000019073L86328125
1 ~20 »000000953671316L0625

Total: .079543113708L96kL (within the limits
of my adding machine)
Five significant figures have been successfully converted; the sixth
leaves something to be desired; beyond the sixth is pure junk. A table of
powers of 2 is also included in Appendix 1.

A mixed number, such as 576.046 is taken as the sum of an integer and
a fraction and should afford no difficulty to the reader. Negative numbers
are best handled by considering them as positive numbers and then complement-
ing the fractional part of the fl. pt. nunber.

Converting the other way - from floating point to decimal -~ is not dif-
ficult and is done in a mammer similar to the above described methods, except
of course reversed. There are programs written that will print out such
nurbers in decimal form as a number with exponent. More will be said about
this later.

C. The Nature of an Interpreter

FLOAT is a routine which must co-exist in memory with the user's program
and data. It has a fixed location and is not available for conwversion to
other locations to suit the programmers' needs. At present, it occupies
registers 30 to 1323 with its entry point at 5"8“ This will be shortened

=

as the summer progresses. PRINT II, an interpretive routine for printing
out many kinds of numbers, is recommended for use with this program. It
begins at 1&008 anc extends to about 26508. In any case, the two programs
together do not occupy registers beyond 2700, leaving a good deal of memory
for users' programs. There are many space-saving orders available with
FLOAT that will enable the user to write wery short programs to do rather
complex cperations.

Entry to FLOAT is gained by giving the orders

r .
tra Sli, where . is the present location

This is a defined macro instruction, "float'". From then on, computer con-
trol is entirely within the interpretive routine and the operator's arders
serve as directions to the interpreter rather than orders to the computer.

FLOAT defines a pseudo-accumulator (fac) and a pseudo~program counter
(fpe). It defines fit=30, the starting address of the program, and flt=5k,
the entry point. There are eight index registers. These four flads are
the only flads defined in the float definitions, but there are some 30 or
so operations which are also defined. The user is safe if he avoids flads
beginning with £ (also p, if PRINT II is to be used).

The interpreter is naturally not as fast as the normal mode of the
TX=0. The TX~0 time per instruction is 12 psec except when an in-out order
is involved. At this point we would prefer not to specify an exact tirne
per arder for the interpreter because sach order takes vastly different
numbers of FLOAT instructions. A safe estimate, and a conservative one;
is an average of 50 machine arder times, or .6 msec. 'ith the new cormputer
code we hope to reduce this to 20 or 25 orders. The arithmetic operationms,
wifortunately, do not take an average of 50 machine arders and if there is
a large number of these in the operator's program, he may find that his
problem requires more computer time than he at first thought it would.

D. Orders Available in FLOAT

This section is intended to be a manual of orders which can be used
with this interpretive routine. Arithmetic orders hamdle floating point
numbers stared in two successive locations, except where indicated: (Cx

means contents of x).

a. Programmed arithmetic

feca x

fad x
fecs x
fsb x
fst x
frmp x
fdv x
fsz x

clear, and add x (all of these, when referring to
the accumulator, mean the pseudo-accumulator)

floating add Cx to the accumulator

clear, anmd subtract Cx from accumlator
floating subtract Cx from the accumilator
store the accumulator in x
maltiply the accumulator by C
divide the accumulator by Cx'”'x

store zero in x. Accumilator unaffected.

be I.ogical operations

fal x

fsl x

add logically C_ (fractional part only) to the
accumulator. Axloglcal add is performed in the
normal computer code by "add" or "pad+cry"

store the logical word in x - that is, stére only
the fractional part of the accumlator in x

c. Transfer operations

ftp x
ftn x
ftz x

fnz x
ftr x

transfer on acc. plus (but not plus zerc) to x
transfer on negative acc. to x (but not minus zero)

transfer on zero to x. Only the fractional part
is examined to see if zero is present.

transfer to x if acec. is not zero
transfer unconditionally to x

d. Operative instructions (not addressable)

fsp
fan
fch
foz
fov

set acc. plus

set acc. negative

change the sign of the accumlator
operate zero - does nothing

skip next instruction if no overflow is mresent.
Always clears overflow indicator (more about this
later)

* 1f divide by zero is attempted, the result will be the largest number
possible of the same sign as the original number in the accumulator. The
divide check test register will be set (dct).

e L

fde skip next instruction if no divide check. Always
clears divide check indicator. The divide check

is 1it if division by zero is attempted.

ftb n test bit "™n" of the tac. If off, skip the next
instruction. It is senseless to let n be greater
than 218-

fev take the fractional part of the accumlataor as a

fixed point number and convert it to floating point.
Immediately preceeding this order must be a constant
indicating the position of the binary point in the
fixed point number. More about this later.

frc do the reverse of the above arder. The same holds
true of the contents of the register preceeding this
order.

e, The Halt orders

fhl not addressable. Computer will stop, displaying
program counter in real acc., clear live reg. On
restart, will stop again with pseudo-accumulator
in acc. and live reg. respectively. Restart again
continues program.

fht x Addressable. Same as above, except that live register
on first stop contains location "x". When computer
is restarted, control will go to x.

fhn n Not addressable, but n can be as large as the number
of registers in memory (177773). On first stop, "n"
is displayed in live reg., al.al. 1's in accumlator.
Second stop and second restart same as fhl.

illegal order If an illegal order is given (which is rather difficult
to do), the flexo will type "fio" and "Float" will
execute a fhl stop.

E. Indexing Operations with Float

1. The Index Register

To someone who has never before used an index register, this section
of this memo may be a little confusing. This confusion can be minimized
if the reader will read through once carefully, and then examine the examples
given before re-reading the section.

Eight index registers have been set aside for use with this routine.
They are located in registers 308 to 378. An index register does not con-
tain a floating point nurber, but contains & number of which can be as big
as the size of memory. It really can contain any number at all, but if it
is to be used for indexing it must be positive amd cannot exceed 17777g-

~10-

This is the complete description of the index register. They are set up
with the following commands:

fixx x4n load index register n with the contents of x
flax x,n ° store the contents of index register n in x (loadaddress)

As may have already become apparent, any macro instruction beginning
with f and ending with xindicates an operation involving an index register.
These macro instructions will be defined later on.

An "fio" alarm will result if any indexed order is given where n is
not from 0 to 7, inclusive.
2. Indexed Operations

An indexed operation is an addressable operation whose address has
been modified by the contents of an index register. All addressable oper-
ations are indexable except those which inlerently depend on index registers.
All of the addressable orders described under "Orders Available in FLOAT"
are indexable.

fad x means "take the contents of x and add it to
whatever is in the accumulator."

fadx x,n means "Take the contents of the register des-
described by (x mimus contents of n)
and add to the accumlator."

A numerical example might help:

If index register 2 contained 68,

fadx 1552,2 means add contents of (L552-6) ar LSLk to
the accumulator

The reason for this type of operation may seem a little obscure at this
point, but in a few moments it may become a little more clear.....

In a similar vein, fstx x,n; ftrx x,n; fhtx x,n; and fslx x,n are
all lsgal macro-instructions.

3. The Index Decrement

The index decrement is a mumber, usually positive, not exceeding 17?778
and occurring as part of the program. The exact nature of how the index
decrement is stored in the program may be found by examining the list of
macro-definitions occurring towards the end of this memo. The contents of
the index register may be changed by giving an operation involving a decrement.

-11-

There are only three arders involving a decrement. The first is
quite simple:
ftdx x,n,d Transfer control to x if the contents of
index register n exceed the value "d". If
not, then ignore the order and proceed to
the next one.
In the past example, with index register 2 containing 6, ftdx 6000,2,2,
would transfer because index register 2 is greater in value than 2, the
decrement. The command ftdx 6000,2,6, ar £tdx 6000,2,L4673 would be ignored.
The second command is almost as simple:
ftxx x,n,d Transfer control to x always. When doing
80, increase the contents of index register
n by the value ®d",
If index register 2 contains 68’ the command ftxx 6000,2,L would send con-
trol of FLOAT teo 6000, and in the process, index register 2 would become
6+ = 12/8,

Remember that index register O is an index register, and unlike the
70L, if you here call for index reg. O you will perform an indexed operation.
The third order using a decrement is by far the most useful:

ftix x,n,d Transfer control to x only if the contents
of i.r. n exceed (not equal) the value "d".
These are the same transfer restrictions as
in ftdx. Ignore the order if C (i.r.n.)
equals or is less than the value d. If the

transfer is performed, subtract the value
"d* from the contents of i.r.n.

An example of a program followss |

Suppose you have a series of floating point numbers stored in h0008 on.
You wish to multiply them by a constant contained at 50008. There are 508
such numbers. This means that they occupy 1208 registers. '

aaa, £ 1,(120
aab, fcax L4000+120,1
aac, fxp 5000

aad, f£stx h000+120,1
aae, ftix aab,1,2

The answers will be found from LOOO on. Notice that the first number
multiplied will be the one stored at LOOO, the next, L002, and so on. This

12—

operation will be performed 508 times, because the last time through (the
fiftieth time) the i.r. 1 will contain "2" and the aae order will be ignared.

Another example: Say that you have numbers stored from hOOO on. There
are only three numbers. You wish to put their maximum value in 5000:
(assume they are all positive) '

aaa, flxx 1, (6
aab, £sz 5000
“aac, fcs 5000

aad, fadx LOO0+6,1
aae, ftn aah

aaf, fca 1000+6,1
aag, £st. 5000
aah, ftix aac,l,?

Finally, an example of double indexing. Assume you have 68 numbers
from LOOO on, and you wish to convert them to binary numbers and store them
from 5000 on:

aaa, flxx 1, (1 lhB is twice 6g
flxx 2,(6
aab, fcax 4000+1h,1 ,
fltofx O This order, to be described later,

means "convert float to fix, with
binary point at zero (extreme right
end of the accurmlator)

aac, £3lx 5000+6,2
aad, ftix aae,l,2
aae, ftix aab,2,1 This completes the loop. When

Finished, the order following aae
will be executed.
The general idea behind indexing is that if you want an operation done

n times, then you load the index register with a value equal to n divided
by the decrement which is to appear in the ftix instruction, that is, (n/d).
This is not a rigid formula, You could load an index register with, say, 3
and the operation would be performed twice if the decremsnt were 2. Some-
times this is helpful in certain manipulations, but there is no point in
covering the miltitude of special cases which could come up.

F., Binary Point Convention

This section might well have been titled, "Unfortunate but True."
There are two conflicting binary numbering conventions in operation here
and they deserve at least a short explanation:

A bit is indicated by a number from 0 to 17. This is usually a
decimal number, because very few octal instructions refer to specific
bits. We have thoughtfully included such an arder (ftb n) and the programmer
should remember that if he specifies a bit number, it must be in octal.

The term "binary point" is used when referring to a normal binary
number. It specifies the location of the point where to the right are bits
indicating 2 to negative powers, and to the left are bits for 2 to positive
powers. The convention applies only to conventional binary numbers and not
to floating point numbers. The following diagram shows how these two con-
ventions apply to a word in memory:

'BIT INDICATION
rd - \

0123L 5678 9 10111213 1415 16 17
© 0 & 6 6 0 06 06 0 6 0 06 6 0 0 0 0 0
202019181716 1514131211109 8 7 6 5 L 32 1 0-1 =2 -3

v

A 2

BINARY POINT

G. Conversion Orders

Despite attempts to show the ease of converting fixed point numbers
to floating point, there are some times when one would not appreciate having
to sit down with a desk calculator and make these conversions. If you do
not believe this, try .3L4590 x 105 87. There are features available which
enable a programmer to surmount these difficulties:

1. Binary Numbers to Floating Point

If a binary number is contained in the fractional part of the accumu
lator (the order fca x will put any kind of number in fac) the order
"fxtbfl n", where n is the position of the binary point, will cause the
number to be converted to a fioating number. This is a macro instruction

occupying two registers and uses the fev order defined in Appendix 2. If n
is not specified, it will be assumed zero. The newly formed floating point

nunber will be in the accumilator.

~1L-

The arder "fltofx n" does the reverse of the above and changes the
floating point number in the accumilator to binary. It is wery possible
that the number will be larger than the fixed accumulator can handle. If
the floating point number is 568,000/gggnt¥18; 31 gvggﬁg"ighgpgg%fumuiegaggrzero,
upon conversion. If this happens, the overflow indicator will be set and
the resultant in the accumulator will be the correct answer with the over-
flow bits lost. If there is no overflow, the overflow indicator is not
affected. That is, if it was set by some previous operation it will re-
main set regardless of the conditions of this conversion. The fltofx order

uses frc (see Appendix 2) and is the only order which will set the overflow.

The overflow indicator is checked by giving the command "fov". This
is non~-addressable. If the overflow light was on, the next instruction in
sequence will be obeyed. If not, then the next instruction will be skipped.
In either case, the overflow light will be "turned off." It is advisable
to give this order as a dummy instruction before using fltofx if you want
to make sure that any overflow 6ccm;ring will come from the fltofx order
and not from a previous condition (similar to pen on the scope).

2. Decimal Numbers and Floating Point

Memo 5001-18 describes PRINT I, a utility tape for printing out
numerical data from the TX-O. The reader is urged to read this memo
(copies awtainable in the computer room). Print II, an expanded version
of Print I, will bs available when this memo on "Float" is ptinted. Print
IT will be exactly like Print I except that it will contain another order,
pfp (print floating point).

Briefly, Print II is an interpretive routine which automatically sets
up a format and prints out banks of data, flexo characters, or single numbers
from the computer memary. It is entered by typing '"print", a two arder macro
instruction defined

lr .
tra pit

Print II is available as a binary tape starting in register 1400.
You mst define pit = 1400 in your flexo tape using floating point arders
and you must read in the proper Print program. If you plan Yo print out
floating point numbers, you must also define pfp=L60000.

~15-

Assuming that the reader has read the memo on Print I, he must be
sure that the order pem L (or less than L) is given before the pfp arder
because there is a maximum of L colums available for printing out of
floating point numbers. Also remember that each nurber requires 2
storage locations so that if he wants 5 numbers printed out he will have
to specify that the location of the fifth number is (location of 1)+(8).
I1lustration:

pem L
pfp LOOO
to LOOL

The results from the on~line flexo are:

Looo l ~.3L7825 5 5000000 12 - 246300-1

In the above example, the 5,12, and =1 will be printed out in a dif-
farent colaor of the fractions. These three exponents are to the base 10,
The accuracy is not quite so good as the number representation - thus,
1.000000, which can be represented quite exactly as a floating point number
- may be printed: .999986-0.

If the reader frowns upon this as being too coarse, the three programmers
who have worked on PRINT II will take great delight in having the reader
submit his own routine which prints these numbers.

To enter PRINT II, just type "print" on the off-line tape. It is not
necessary to give an arder that will leave FLOAT. Similarly, when finished
giving print orders, just type "float" and control will automatically be
transferred to FLOAT:

fea x
fst y
print
pem L

rip z
to zz
float

fda q, etc.

There is available a subroutine which will convert decimal numbers
represented in floating point fashion to real floating point numbers. Hence,
the number h863§ stored as integers in the floating accumlator will be

o+

converted to a floating point number, LB6.32.

The calling sequence will be

fts cvt

with the number toc be converted in the accumulator. This will be per-
formed by a separate subroutine, not a part of FLOAT and as such will have
to be read in separately as with any conventional subroutine.

H. Conversion of Programs Prepared for FLOAT
1. FLOAT Itself

location of stored parameters: (FLOAT is fixed in memory)

30 - 37 (all octal) Index Registers

Lo Program Counter (as add instruction)
Lkl and L2 Pseudo Accumilatar

h3 Overflow Indicator

Ll Divide Check Indicator

Sk Entry Point of Program

60 (f£1t+h) Return Point from Subroutines

FLOAT is available in binary form only. The above locations will
always remain the same despite revisions in the general program so that
programs written for FILOAT will not become obsolete. Later on, the binary
location of PRINT II may be changed, but the ariginal version will still
remain available. Those desiring to use FIOAT will find a box of English
definitions available in the computer room. The contents of this tape are
reproduced in Appendix 2. If one wishes to use floating operations, he
should read in this tape befare reading in his own tape during conversion
time. If he does this, he is free to use any of the orders previously
described in this memo.

Entry to FLOAT is obtained as such:

XXX
Xx0K

xxx (xxx refers to any normal computer
xxx orders such as cla, 1lr, add, etc.)

float

EEE S

"fxt x" leaves the floating mode and transfers
comtrol to register x. If the next
order is to be taken, use fxt .+1l.

-17-

The English tape, remember, defines a large number of symbols and macro
definitions, all beginning with f. PRINT I English tape also defines
many symbols beginning with p.

Convert tapes in the following sequence on Pass 1 and 2:

A short title tape of your program.
"Float Define"
"Print I Define" if desired. Remember
to define on your program tape

pit = 1L0O

pfp=L60000

Read in and convert your program.

In operation:

Read in FLOAT, FRINT II and any other converted
subroutines you wish.

Read in your program.
Transfer control to YOUR program, NOT to float.
2. Subroutines
It is expected that there soon will be a good number of subroutines
available for floating point operations. The most common of these will
be square root, sine and cosine, matrix multiply, tangent, etc. They
are all entered by the command:

fts ~--
Example:

fts srt (square root)
errar return
normal return

Enter with the argument in the accumlator (pseudo-accumulator) and
give the transfer command. The error return will occur if the argument
was negative, and the normal return will occur if the argument was acceptable;
the answer will be in the accumlator. Some routines may not have error

returns:

fts sin
normal return

If you wish to use any of these subroutines, examine their write-ups
(available in the TX-0 subroutine file) and convert them with your program.
They may be located anywhere in memory except, of course, where FLOAT is
stored.

The following page is intended as a sanple write-up:

-19=

(This subroutine may or may not exist as such - it is merely included as
a sample. Consult the subroutine file to see if there is in fact a scope
plotting routine.)

SUBROUTINE: SCOPE PLOT
1. FUNCTION

Plots a point on the scope given coardinates in floating point.
x coordinate in location z, y coordinate in accumlator.

1A. CALLING SEQUENCE

fts scp ¥y coordinate in floating accumulator

Z x coordinate location in z

OCTAL total range, x direction, power of 2

OCTAL total y range expressed as power of 2

OCTAL location of x=0, y=0 expressed in
TX~-0 scope coordinates

pen or opr pen for pen command, opr if no pen

error return x exceeded specified range

error return y exceeded specified range
normal return :

2. SPACE

Occupies 30y registers, uses L constants, and 10g registers of
common storage specified tt, tt+l, etc. .

3. TIME
Approximately .02 seconds. Varies gregtly with values involved.
L. METHOD

Coordinate is divided by range and then converted to binary number
using fltofx arders in FLOAT.

S. COMMENTS
This subroutine requires FIOAT in memory far its operation.

Arthur Wellesley

J. Writing Subroutines for FLOAT

Even if you do not plan to write any subroutines, you should skim
through this section so you will understand what happens when a subroutine
is called for.

The command "fts x" is identical to'fxt x". It was given a different
coding to make it easier to distinguish between the two when examining a
program. Your subroutine, then, will be entered in real computer mode.

If you plan to use FIOAT in your subroutine you should do the following:

1. Save any index registers you plan to use.
This is done by "llr fit+n, slr y", where

y is the location of the storage register.
Before returning tothe user's program you
must restore these registers.

2. Save the program counter. (fpc) This is
accomplished in the same way. This must
also be restored later.

You are now free to type "float". You need not worry about defining
"float", as the user will already have in macro the English tape of definitions.
When you are ready to return to the user's program, leave FIOAT with fxt .+l or
. £xt to somewhere in your program. After restoring the necessary registers,
give the order "tra f1t+L". This will cause the computer to resume operation
in "Float", taking as the next instruction the one succeeding the programmer's
uftg" order. If you wish to skip one instruction (as in the normal return
with square root), increment the program counter (fpc) by 1 before transferring
to flt+h. The program counter will contain as an add instruction the location
of the register which contained the fts instruction when your subroutine is
entered. Your subroutine will be. entered witha cleared real accumulator.

If you do not use FLOAT in your subroutine, you of course do not need
to save any registers. When finished, give the command""tra £lt+4" and the

next order will be followed.
K. Step by Step Operation with FLOAT

The computer console has two switches, "Stop Cl" and "Stop 02"., If both
these switches are turned on (along with "Suppress Chime" for the benefit of
the nerves of all those present) the computer will stop twice on each instruction.
The first time, you can read the memary buffer register to see what order is
going to be obeyed, and pushing restart causes the order to be carried out.
Pushing restart again brings the next order to memory buffer, etc.

FLOAT has such a provision. Bit 2 of tbr has been reserved for
such a purpose. If bit 2 is on (raised), the computer will stop twice
on each operation of FLOAT.

The first time with the instruction in the live register, and the
program counter (as an "add" order) in the accumlator; the second time
with the fractional accumlator in the real accumulator and the exponent
in the live register.

The very first stop using this system will cause the accumlator to
be displayed. From then on the sequence is "order, accumlator, order,
accumlator, etc." If you wish to have the program continue in its normal
manner, simply turn off bit 2 of tbr and push restart.

L. A Special Multiply Order

If you ever wish to multiply anything by an exact power of 2 (say 6hL)
you may do so by giving the order:

fmp2to n , where n is the power of two. In the above example, n is
6 because 26 is 6. n my be any size, plus or minus. It is not restricted
to be within 177778.

This is a macro instruction involving six arders, but they are not
floating point orders and they will take far less time to execute than the
one order, fmp x, where x contains the mumber in question. This order is
worthwhile if speed is a consideration.

M. The Macro Instructions

One of the big advantages of the TX-0 computer is that you may debug
a program using machine time and utility programs. For this reason, it
would profit the programmertto understand the macro instructions ftix, fadx,
etc., so he could alter them if he wished to using a utility tape.

Indexing is accomplished with the arder "fir n". If "fir n" preceeds
an indexable instruction (and it does not have to be immediately preceeding
it) then the indexable order is modified by the contents of i.r.n.

fca x is not modified while

fir 2
fca x is exactly equivalent to fcax x,2

All of these orders are defined at the end of this memo.

The decrement is a do-nothing arder by itself - it is defined as
nfid d"* and d may be plus or minus.

When FIOAT runs across such an order it ignores it completely except
that if a ftx, ftd, or fti order is given two instructions later it then
examines the fid order to see what the decrement was.

fid 4

feca x

fmp y
fst z makes no use at all of fid, but

fid d
fir n
fti x uses the fid arder to determine the decrement to be applMed

to index register n. The arder "ftix x,n,d" is in fact defined as such.
Notice that the fir order here does not modify the address of x, but simply
tells the fti order which index register to look at when comparing the
contents of the decrement to the index. It would be ridiculous to make

fti an indexable order - a few moments thought on this point should convince
" the reader that this is indeed true.

The prograrmmer is urged to use the macro aders in wﬁting a program
using indexed operations. He will find them quite similar to the orders
employed by the 70k computer - but he must realize that "fcax x,n" is really
a two instruction operation and if he wishes to write such an arder using
UT-3 or another utility tape he must remember to write it

firn
feca x

The only macro-instructions not adequately described by the above
paragraphs are fxtofl, fltofx, and fmp2tc n . By reading the macro-
definitions at the end of this memo the reader should be able to under-
stand how thess orders are set up.
Note that ftix .~5,1,2 is not equivalent to fid 2, fir 1, fti .-5
because in parameters of a macro instruction the (.) is defined as the
address of the first (fid) arder. ftix .-5,1,2 is eouivalent to fid 2,fir 1, fti .-7.

23

Appendix I
Numerical Constants

a. Powers of 2

B n 2™
1 0 1.0
2 1 0.5
b 2 0.25
8 3 0,125
16 L 0.0625
32 S 0,03125
6k 3 0,015625
128 7 0.0078125
256 8 0.00390625
512 9 0,001953125
102l 10 0. 0009765625
2048 11 0. 00018828125
L096 12 0,000244140625
8192 13 0.0001220703125
1638k 1 0,00006103515625
32768 15 0, 000030517578125
65536 16 0. 0000152587890625
131072 17 0.000007629391453125
26214l 18 0. 000003814697265625
b. Powers of 8
n g"
0 1
1 8
2 6L
3 512
i 1096
5 32,768
6 262,1hh
7 2,097,152
8 16 5216
9 134,217,728
10 1, 073,7h1,82h
11 8,589,934,592
12 68,719,1176 736
13 549,755,813,388
i1 4,398, oh6,507,10h
15 35,184,372,056,832
16 asz,mi. 976,15h,656
17 2,251,799,811,637,2L48
18 18,01L,398,493,097,984
19 10,115,187, 9Lk, 783, 872

=2l=

Appendix 2
Orders in FLOAT

The following is a summary of the definitions appearing in the "Float
Definitions" Flexo tape.

£de=740006

£it=30
fpe=£1£+10
fac=fpe+l
fit=fac+l13
define
float
1lr .
tra flt
terminate
£id=0 index decrement, y
£tp=020000 transfer on plus to x, but not plus zero
£+n=0L0000 transfer on nmegative to x, but not minus zero
££2=060000 transfer on zero to x
£nz=100000 transfer on non-zero to x
fca=120000 clear, and add x
£ad=1L0000 (floating) add x
" £cg=160000 clear, and subtract x
£sb=200000 subtract x
£st=220000 store accumulator in x
£mp=21,0000 multiply by x
£dv=260000 divide by x
£xt=300000 leave floating mode, go to x
£+s=320000 transfer to subroutine at x
£ht=3L0000 halt, then on second restart transfer floating control to x
£tx=360000 transfer with index register n inc. by y. Requires fir,fid
£1x=L00000 loads index register n with C,_,. Requires fir
£t1=120000 If i.r.n. grtr. than y, goes to'x,(n-y) to n. If not, ignore.
£1a=41;0000 load address x with C (index register n). Fir required.
£ir=560000 used to specify index register. n mst be 0 >n)7
££r=600000 unconditional transfer to x
£32=60000 store zero in x. Accumlator unaffected.
££d=500000 trns only if index exceeds decrement. C(index reg) not changed.
£al=520000 add logical contents of x to fraction of ps. accumlator
£31=5L40000 stare only the fractional accumlator in x. x+1 not changed
££b=620000 test bit n of tac. If off, skip next instruction o
Fhn=6L0000 halt, display n in live reg., all 1's in acc, See Appendix 3
fev=660000 convert fix to float. Used after fid
fre=T00000 float to fix, use after fid ,
v Use of an undefined instruction, such as 720000, causes fio alarm
£h1=7L0000 halt, then proceed. Not addressable.
£sp=TL0001 set plus. Not addressable.
£an=740002 set negative. Not addressabls.
£ch=Th0003 change sign. Not addressable.
foz=TLO0OL gﬁ:ra’oe zero - does not:
fov=TL0005 p next instr. if no owflw. Always clears indicator.

same as fov, except for divide by zero check. Not addressable.

-25-

Other macro definitions (besides float)

define
falx X,N
fir N
fal X
terminate

Similarly, these arders are defined:

fslx X,N flax X,N
fcax X,N fszx X,N
fadx X,N flxx X,N
feax X,N
fsbx X,N
fstx X,N
frmpx X,N
favx X,N

define
ftox X,N,D
fid D
fir N
fix X
terminate

similarly,

ftix X,N,D
ftdx X,N,D

- define

fxtofl N
fid N
fev
terminate

define
fltofx N
fid N
frc
terminate

define

fmp2¢o B
fxt .+1
add fac+l
add (N
gto fac+l
float

- terminate

Start Sk

~26-

Appendix 3
Halt Orders in FIOAT

Each of these orders stops the computer twice. The first stop dis-
plays certain information in the live register and the real accumlator,
the second stop displays the pseudo~accumilator. Pushing restart after
the second stop continues the program.

Order First Stop Secornd Stop
fhl, halt and proceed
live reg: clear exponent of accumulator
(real) accum: program counter fraction of accumulator
BBt x, halt and transfer :
live reg: location of next inst. exponent -=—-==e==
(real) accums: program counter fraction ——====——«
fhn n
live reg: halt number, "n" axponent ==—w==————-
(real) accum all 1's fraction ==ee—eeeaee
illegal order

flexo types "fio" and then an fht order is carried out

stop on each instruction - occurs if bit 2 ofk test buffer reg. is on

live reg: instruction to be executed exponent==----
(real) accum: program counter fraction====-=

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	19
	20
	21
	22
	23
	24
	25
	26

