TX~-0 COMPUTER
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

M-5001-23

FLIT--Flexowriter Interrogation Tape:
A Symbolic Utility Program for TX-0

July 25, 1960

TABLE OF CONTENTS

INTRODUCTION
USING FLIT

&. Preparation

B. Examination and Modifications of Stored Information
%o Typing Instructions, Constants and Locations

D. Breakpoint Testing

E. Defining New Three Character Symbols

F. Characters with Special Values

G. BEvaluation of Words

1. Control of Printout Modes

I. Input Radix Control

J. Utility Subroutines

K. ZError Indication and Correction
APPENDIX 1
Ths Symbolic Printout Mode

APPENDIX II

Besumé of Pseudoinstruction and Character Meanings

11
12
13
14
17
17
21

FLIT--Flexowriter Interrogation Tape:
A Symbolic Utility Program for TX-0

INTRODUCTICHN

A neﬁ utility program, FLIT, has been prepared for the TX-0 which allows
the user to test a program in terms of symbolic addresses. FLIT is designed to
replace UT-3 and has taken advantage of the recent increase in memory size to
provide the user with many new features as well as improved versions of the old
ones. The largest single advantage is that the operator may now type in and out
of memory using, whenever he desires, any of the three character tags in his
symbol table as well as any additional ones he may wish to define.

For clarity when typing examples are given herein, the typing done by the
user of FLIT is underlined. Also, when needed the following symbols are assigned

to the invisible flexo characters:

carriage return A?
tabulation -
space
backspace <
delete

Color changes will be indicated explicitly.

USING FLIT

A. Preparations

1. FLIT occupies the end of memory from approximately register 13300 to
register 17777 including the standard end of memory input routine. Obviously

the program to be tested by FLIT may not occupy or use any of these registers.

-2-

2. To use FLIT turn on the flexowriter with the punch switch on and de-
press the start read button. Place FLIT in the PETR and press read in. Turn on
the type in switch. When FLIT has finished reading in, the user may type im-
mediately; it is not necessary to press restart.

3. To inform FLIT of the meaning of the symbols used in your program,
place your binary symbol tape, which was prepared by MACRO SYMBOL PUNCH, in the

PETR and type

table d

FLIT will then read in your symbol table 100 registers at a time. After this
FLIT is ready for use and will be able to interpret constants and instructions
typed either symbolically or numerically or both.

| It is important to recognize that after the symbol ;able has been read
in, FLIT occupies more memory than that implied in paragraph 1. How much more
naturally depends upon the length of the symbol table. Thus for convenience &
provision has been made such that symbol F 1is always assigned a value equal

to the address of the last register not occupied by FLIT. To determine this ad-

dress simply type

o
Il

and FLIT will immediately type out the address of the last free register.
L. To read in the binary tape containing your program or data place the

tape in the PETR and type

read‘g

Then typing

begin Q

will transfer control to your program at the address indicated on the last
binary progrem tape read. To transfer control to a specific register such as

loc, type

begin loc &

Additional features of the pseudo instructions table, read and begin are given

‘in section J of this memo.

5. To return control to FLIT after using a begin command, transfer to

register 14000.

B. ZExamination and Modification of Stored Information

1. Opening a2 register--In using FLIT a fundamemtal idea is that of open-
ing a register so that its constants may be examined and/or changed. This is
accomplished by typing the address of the register to be opened, either symboli-

cally or as an absolute constant, followed by a vertical bar. For example:

reg+ gl
or

2467]

When this is done FLIT will immediately print a tabulation, then the contents of

the register followed by another tabulation. Continuing the example:

reg+2—)} add loc+3————3)

2. Modifying and closing a register--Once a register has been opened
in this manner its contents may be modified, if desired, by typing the change

elther symbolically or as a constant. For example:

reg+2—| add loc+3——| add loc+5

However, the modification is not placed in memory until the user types one of
three terminating characters--tabulation, carriage return, or backspace. The

effect of each of these characters is given in the following table.

Terminating Character Action

and modifies the contents of the open
register if a modification has been
typed. The register is left open.

Returns carriage and modifies the contents

‘z_ : of the open register if a modification
has been typed. The register becomes
closed.

Same action as carriage return except in

addition the next register in sequence is
«— opened automatically. If no register is
open, this character may still be used to
open the next register in sequence.

Once a particular register has been closed by use of either the carriage return
or the backspace, further modification of that register is impossible until it
is opened again.

During the process of register modification, it is often desirable to

be able to punch the new contents. This may be accomplished at any time

~5-

that a register is open simply by typing the upper case character

Upon subsequent typing of any of the three terminating characters listed on the
previous page, the current contents of the register in question will be punched
as a one register block including check sum. The following example illustrates

the use of the punch indicator, backspace and carriage return.

reg | cla —| Pe— 2
reg+l—) add t—| add t1 P 2

When the backspace was typed, FLIT punched the contents of reg as a one word
block and opened the following register. Then the contents of reg + 1 were
ﬁodified and punched.

3. Modification color code--FLIT is arranged so that all typing done by
the user while a register is open will appear in red. This feature allows all
modifications made to be easily spotted in a long list of FLIT typings, since
no modifications of memory can result unless the user types while & register is
open. The color feature also warns against possible accidental modification of
a register.

L. Additional interpretation of register contents--If, while a register
is open, any one of the following characters is typed, the contents of that reg-

ister will be reprinted in the indicated manner.

Interpretation Characters

Interpretation
Type as:

iF======================================ﬂ

& constant*
an instruction

I
D a signed decimal constant
0
(o]

Character

a signed octal constant

super- an unsigned decimal constant
8 script an unsigned octal constant

To illustrate the use of these interpretation>characters, consider the

following example:

reg+1001— sto 144 =14k —3f DF100 —3| -e—p
reg+104—| 777767—3| 0-10——| D-8 -] °262135.
— BTTTT67—|

Here we see that register reg+l00 contains the instruction sto 144 which is
144 as an unsigned octal number and + 100 as a signed decimal number. The con-
tents of the following register was initially typed as the unsigned octal con-

stant 777767 because no reasonable interpretation as an instruction was possible.**

This number is -8 in signed decimal and 262135 = [218 -1) - 8101 in unsigned
decimal.
* - Although this character will usually evoke interpretation as an unsigned

octal constant, it will be seen later that this is not always so.

hiad See appendix I on operate class commands.

-7=

5. Examination and modification of deferred register--Once an instruc-
tion has been typed out by FLIT, it is frequently desired to know the con-
tents of the register address by the instruction either as an instruction or

as a constant. The following control characters provide this facility:

Deferred Register Examination

Character Meaning
Iype the contents of the register
(addressed by the preceding word as a
constant.

Type the contents of the register ad-
/ dressed by the preceding word as an
instruction.

If a register has been opened, and the deferred register has been examined by
typing one of the above characters, its contents may be modified by typing the
desired new contents and one of the terminating characters. If the punch indi-
cator is typed before the terminating character, the final contents of the de-
ferred register will be punched as a one word block. These features are illu-

strated by the following example:

reg+40—} add loe—) add 500Py (0——)| add tabPe—2
reg+41]—) sto t—-)l_z - o |
regtho—3 add 500-3 /add tabs| =200205—3 (10255

. 4

Here the user has modified register reg + 40 and then has deferred to examine
the constant in register 500. He has changed this to add tab and has terminated
with a backspace which has caused location reg + 41 to be opened. Both modifica-

tions have been punched by use of the punch indicator. The third line verifies

-8-

the changes and demonstrates the reinterpretation of the word in register 500
as a constant. It also shows how the defer characters can be repeated to show
that register tab (205) contains the octal constant 1025.

6. Typing comments--The character

when used alone informs FLIT that & comment is about to be typed. All comments

will be ignored by FLIT. Comments will be terminated by a carriage return or

tabulation.

C. ZTyping Instructions, Constants, and Locations

1. Instructions, constants, and locations, which collectively may be re-
ferred to as words, may be typed by the user at any time using any combination
of numbers and/or defined three character symbols separated by appropriate con-
nectives such as plus and minus signs. These connectives .are listed in the fol-

lowing table along with their meanings.

Connectives Meanings
% & space means addition
+ a plus means addition
- a minus means the complement of what

follows will be added
unite (logical sum) (inclusive or)

U

A intersect (logical product) (and)

S distinguish (partial add) (exclusive or)
X

multiply as integers

NOTE: Multiply as integers obeys all the
usual rules of sign except in this
case: (-0)(-0) = -0

-Q-

When these connectives appear together in a single word, all of the uniorns,
intersections, partial additions, and multiplications are done first, after

which the additions and additions of complements (subtractions) follow.

For example:

Typing Yields

add 10 200010
10X10X10 1000
-10X-10X-10 ~1000
1X-2+-1X# -6*
070070A000TT7S000007 77
claUlro cal
1adS10 lpd
1od+1o-110 -0

aSb+b

b carried into a¥

D. Break point testing

In testing a large program it is frequently convenient to interrupt the
computation so that partial results may be examined or the state of the program

determined. Two psuedo instructions have been included in FLIT which simplify

this technique. Typing

break bEt g

causes FLIT to set up a break point at location bpt in the user's progrem. If
the user transfers control to his program, and the instruction in register bpt

is reached, the computation will cease and FLIT will print the contents of the

* Order of operation matters in these three cases. Otherwise the results

might be -12, 70, and aS2b respectively.

~10-

accumulator and live register as they are before execution of the order in reg-
ister bpt.

For example:

begin beg ﬁ

bpt] ac T7T777T 1lr 15

4t this point the user may examine registers and make modifications as he pleases.

Then, typing

proceed Q2

causes FLIT to continue operation of the user's program as though the break

"point had not been inserted.®

As many as four separate break points may be set up in the user's progrem

by typing

break bpi, bp2, bp3, ’bplL Q_

Each time 2 break psuedo instruction is typed, all previously specified break

points are reset to normal. In particular, typing simply
. break)

will reset all break points.

* If the user wishes to proceed with a2 modified accumulator and/or live

register he must use the begin instruction as desecribed in section J7 of this memo.

-11-

The pseudoinstruction proceed may be used even though the last breakpoint en-
countered has been reset. For instance, the following sequence of testing might

be carried out:

break bpl 2

begin beg)

ppll—— ac 215677—————)| 1r 3556702
logjJ——| add t—) add t1 2

break bp2 IZ. |

proceed &
bp2l——3 ac 0—) 1r 10012

- Control is returned to FLIT when the first breakpoint is reached. The user
then modifies the instruction in register loc énd changeé the location of the
breakpoint before giving the proceed command.

CAUTION The locations selected as breakpoints must not be registers whose con-
tents are modified by the program under test, since FLIT transplants their con-

tents and substitutes specific transfer commands.

E. Defining New Three Character Symbols
1. There are three different ways of adding to the list of three charac-

ter symbolic address recognized by FLIT.

a. A binary symbol tape may be prepared by MACRO SYMBOL PUNCH and
entered into FLIT as described in section A-3 of this memo.

b. Symbols may be defined directly by means of the equivalence sign as

in the following example:

-12-~

sym: 2475 _,Z.__

These symbols may contain one, two, or three letters or digits at least one of
which must be 2 letter. Symbols may be redefined in this manner unless they are
in FLIT's permanent vocabulary as given in Appendix II. Of course, the previ-
ous definitions are completely lost.

c. Symbols may be defined while a register is open simply by typing

the symbol followed by a comma. For example:

10— hlt — a!' add 203 —3| /hit—) b!n+1 L
g —— add b—y (1)

Here, location 106 has been assigned the symbolic address a, and add instruc-
tion inserted. The location addressed has been filled with the constant +1
and given the name b. Symbols may not be redefined in this manner. The second

line verifies the change.

F. Characters with Special Values

The characters in the following table have been given the special mean-

ings indicated:

Character Meaning
m e
F The last address not occupied by FLIT
W The last word typed either by the user
or by FLIT
L The address of the last register opened

-13-

As can be seen by the nature of the meanings of these characters, their actual
numerical values are constantly being reevaluated during the use of FLIT. The
value of the first is reduced by two for each new three letter symbol defined.
(See section -3 of this memo.) The second special character finds use mainly
in revising a word when its present value is substantially as desired. The
third is used in reopening a register accidentally closed or to refer to regis-

ters near the one presently open.

As an example of the use of these characters consider the following:

F = 131622

W 3 hlt) -1
L-Y——3 hlt ——>+1

Here the user desires to place two of his constants at the very end of avail-
able memory. Note that he had stored halts throughout unused memory before

starting troubleshooting activities.

G. Evaluation of Words

1. Often it is desirable to be able to evaluate a word that is to be used
in a program without actually affecting memory. This may be done at any time
without opening a register by simply typing the word to be evaluated followed
by the appropriate interpretation chafacter (See section B-4). When this has
been accomplished, FLIT will automatically type out the appropriate interpreta-~
tion of the word followed by & carriage return. Additional igterpretations of

the same word may then be obtained by typing

|}

~1l=

followed by another interpretation character. Consider the following example:

abe = TTTTTTR
2621430
-0

15 1%

Here the user has determined that abe is equal to the unsigned octal constant
777777 which equals the unsigned decimal constant 262143 which‘eQuals the
signed decimal constant -0.

The "interpret deferred register" characters may also be used when a
register is not open. This permits examination of a register without destroy-

ing FLIT's knowledge of location. For instance

regl——| 11r con 3|2
t(1172
loc/add x 2

«— reg+1] 3 slr t—)

Of course, the contents of a register interrogated by this procedure cannot

be altered, since no register is open at that time.

H, Control of Printout Modes

1. Although it has been assumed so far that FLIT normally prints out
the contents of registers as instructions with symbolic addresses and normally
interprets constants as unsigned octal numbers, a provision has been made to

alter this state of affairs with a considerable degree of flexibility.

-15-

2. Print mode control -- By typing one of three pseudoinstructions *

as listed in the following table, the normal mode of printout may be controlled.

Pseudoinstructions Besulting Action
_—

instructions 2 set normal print mode to
instructions

constants 2. set normal print mode to
constants

constant a,b 2 set normal print mode to

constants for locations
a through b inclusive and
to instructions elsewhere

3. Instruction print control -- By typing one of the pseudoinstructions
as listed in the following table, the normal mode for the printout of instruec-

tion addresses and locations may be controlled.

Pseudoinstruction Resulting Action

absolute p

print all addresses and locations
as octal numbers

symboliec 2 print all addresses and locations
symbolically **

symbolic a,b) print all addresses and locations
whose values lie in the range
a through b inclusive symboli-
cally and as octal numbers
otherwise

* Pseudoinstruetions must always be typed starting at the extreme left-
*

hand margin. FLIT identifies pseudoinstructions by comparing the first three
characters with a list, once four characters have been typed. Hence, it is only
necessary to type the first four letters of a pseudoinstruction, and the fourth

letter need not be correcte.

had For a detailed discussion of the symbolic print mode see Appendix I.

16

)

%+ Constant print control -- By typing one of the four pseudoinstruc-
tions as listed in the following table, the normal mode for the printout of

constants may be controlled.

Pseudoinstructions Resulting Action

octal 2; all constants will be printed as
octal numbers
decimal 2; all constants will be printed as

decimal numbers

unsigned 2 all constants will be interpreted
as unsigned 18 bit numbers

signed all constants will be interpreted
as signed 17 bit numbers

Locations and addresses typed by FLIT will always be in octal regard-

less of the current constant print mode.

5. Utilization of printout modes ~- The versatility of operation of-
fered by the facilities mentioned above is self-evident: however, a few addi-
tional explanatory remarks are appropriate.

The usual mode of operation of FLIT will be that best suited to program
troubleshooting. For this purpose it is most advisable to set the print mode
control to instructions except in the range where the constants are located.

This-can be done very simply by typing

constants a,b J

Then the instruction print mode shéuld be set for absolute except for

within the range of memory that the program itself resides. This is done by typing

symbolic beg, end J

The constant print mode may then be selected as desired.

-17-

This arrangement allows the following conveniences. If a register con-
taining a constant is opened, its contents will be typed as a constant without
further thought on the part of the ‘user. If an instruction not referring to
the program in question is typed, this will be implied by the absolute address.
This feature also avoids the typing of symbolic addresses with large numeric

augmentation; for example

reg+2—)| add end+2674——)

is less meaningful than

reg+}——) add 3241)

I. Input Radix Control

The pseudoinstructions octal and decimal discussed in the preceding sec-

tion also control the radix used by FLIT to interpret all numbers typed in by

the user. The two characters given below may be used to force the interpreta-

tion in either octal or decimal regardless of the current printout radix.

Character o Meaning

Immediately preceding number typed by

. the user will be interpreted as

decimal regardless of the current

radix.

Immediately preceding number typed by

) the user will be interpreted as octal

regardless of the current constant

radix.

J. Utility Subroutines

Several special features have been incorporated in FLIT which allows the

user to perform program testing more rapidly and intelligently. Some of these

-18-

are similar to those which were available in UT-3, and some of them are new.
These features are provided by the inclusion of a number of subroutines in the
FLIT tape. Their purposes are described in the following paragraphs.

1. CLEAR -- The "clear" subroutine is used to clear portions of memory

as follows:

clear 2 clears available memory

clear a,b 2 clears all memory from "a% to "p"
inclusive

clear a,b,w 2 stores the word "w' in all memory from

"a¥ to *"b" inclusive

Typing clear O, F, hit

will store halt instructions in all available memory registers.
2. TFRINT -~ The print subroutine prints the current contents of memory
according to the print mode settings of section H in a four column horizontal

format as follows:

print a,b &f‘“ prints the contents of registers "a%

through "b" inclusive such as

a|— | add abc—y| sto abd—}.cla— 3| add def2
atl|l——)| trn efg—) hlt —) +1 ——)] -12>
a+10|—— 2000 ——3| -2000 —3| 77 5 2

3. WORDS and ADDRESS -- The "word" and "address" subroutine searches

memory for given word or words with given addresses as follows:

& Assumes signed, constants a+6, b

-19-

word W prints all registers containing the word w
except those in FLIT.

word w,a,b prints all registers containing the word s
that lie in the range & to b inclusive.

word w,a,b,m prints all registers containing words that
agree with the word w where the mask m
has ones, provided they lie in the range
a to b inclusive.

address 1 2

address 1l,a,b 2 same as above except only bits 5-17 of 1
are compared with memory.

address l,a,b,m

L. SURPRISE -- The "surprise" subroutine compares the contents of
memory with a binary tape and prints the registers which are different. The

tape contents are printed in the opposits color. Surprise will not change the

contents of memory * and cannot be used with tapes containing blocks longer than

1008 registers.

surprise ;L compare entire tape with memory and print
discrepancies.
surprise a,b i; compare only for location in the range

"a¥ to "p% inclusive.

5. PUNCH and other tape preparation subroutine -~ If a punched tape

is to be prepared by FLIT the following pseudoinstructions are used:

* As a result the following undesirable situation can arise. If the con-
tents of & register are specified twice on the tape being compared, both
.words on tape will be compared with the same word in memory, and any disagree-
ment will be typed by FLIT in both cases. ;f the second word on tape agrees

with memory but the first does not, the printout will be misleading.

~20~

input 2: punch a standard input routine occupying
registers 17741 - 17777.

punch a,b 2 punch the contents of registers & to b
inclusive in blocks of 1008 registers.
(seme as MACRO)

start 1 2 punch & start block of the form add 1.
start add 1 2 punch a start block of the form trn 1.

(Automatic start)

eed punch three inches of blank tape.

6. Symbol table subroutine -- The following pseudoinstructions control
the list of three character symbols in FLIT:

table 2; add the symbols in a binary symbol table
as prepared by MACRC SYMBOL PUNCH to
FLIT's symbol table.

table a,b Q: read in symbol table as above, but, of
: symbols with values tetween O and 17777,

take only those in the range a to b
inclusive.

Attempts to redefine symbols in FLIT's permanent vocabulary will be
*®
ignored. For other symbols the new definition will be substituted. Two ad-

ditional registers are occupied by FLIT for each new symbol defined.

reset 2; erases FLIT's symbol table leaving only
the permanent vocabulary which is identi-
cal to MACRO's initial symbol list.

The "reset® subroutine causes more memory space to be made available to

the user; however, this space will not be cleared.

7. Read in end testing subroutines -- While testing a program it is

often desirable to be able to read in a new tape and enter the program at
arbitrary points with desired quantities in the accumulator. The following

pseudoinstructions provide these features.

read &

read a,b g2

begin 2;

begin 1 2E ;

begin 1, ac‘}L

begin l,ac,lr Eé

-21e

causes & binary tape to be read into memory.
The tape must be punched in blocks of 1008

registers. FLIT will not read over itself.

as above, but only words located between ad-
dress & and b, inclusive, are stored in
Memory.

transfers control to the starting address of
the last binary tape read in by means of
the "read" pseudoinstruction with the accu-

mulator and live registers set to zero.
(c(ac) = 0, C(IR) = 0).

transfers control to register 1 with
C(AC) = 0.

transfers control to register 1 with
C(AC) = ac, C(IR) = 0.

transfers control to register 1 with
C(AC) = ac, C(IR) = 1r.

K. ZError Indication and Correction

1. FLIT has five error alarms associated with its use. They are all

typed by FLIT in red and have the following general meanings:

Identification

; | Meaning

error

indef

flit

sumchk

An uncorrectable error has been made:
perform the previous operation again.

The immediately preceding typed charac-—
ter is improperly used and has been
‘ignored; type the correct character
without starting over.

The immediately preceding word contains
an undefined three character symbol;
take required action.

The preceding operation has involved
memory space currently occupied by
FLIT, or, an attempt was made to
redefine & symbol in FLIT's permanent
vocabulary.

A sum check error occurred in reading a
binary program or symbol tape.

—22-

2. When the user of FLIT realizes that he has made a typing error, he may
delete all that he has typed since the last carriage return or tabulation by

pressing the delete button. For example:

address a Hdelete] xxxx»2

3. The alarm "f1lit" is also used to warn against an attempt to redefine

a8 three letter symbol more than once by means of the comma. For example:

a:30,2

39— trn20—) a,f1it—)

APPENDIX

I. The Symbolic Printout Mode

When FLIT types instructions that are not operate commands in the
symbolic mode, it types the operation code (add, sto 1llr; etc.) followed by &a
space followed by the largest three character symbol in its current symbol
table which is less than or equal to the address, followed by a plus sign and

the difference needed to make up the true address value. For example:

add a
add a+2

In the case of operate class commands, an instruction mnemonic will
be typed if FLIT can find one in its vocabulary whose value agrees exactly with
the word to be printed.. Otherwise, it types opr n, where n is the difference

between opr and the word to be printed. Thus:

600000Topr)
 630000Th1t)
630001Iopr 300012

-.2-

II. Resumé of Pseudoinstructions and Character Meanings

A. Pseudoinstructions:

»

instructions
constants

constants a,b

absolute
symbolic

symbolic a,db

octal
decimal
unsigned
signed
clear

clear a,b
clear a,b,w
print a,b
word w
word w,a,b
word w,a,b,m
address 1

address 1,a,b

address l,a,b,m

type as instructions

type as constants

type as instructions except between

aand b

type addresses as numbers

type address symbolically

type addresses as numbers except

a and b
interpret constants as
Interpret constants as
interpret constants as
interpret constants as
clear available meﬁory
clear from a to b
insert w from a to b
print registers a to b
search for w
search for w from a to
search for w from a to

search for address 1

octal
decimal

unsigned

slgned

horizontally

b

be masked by m

search for address 1 from a to b

search for address 1 from a to b

masked by m

condition of FLIT when read in

Pseudoinstructions cont'd:

surprise compare tape with memory
surprise a,b compare tape from a to b
feed * feed thres inches blank tape
input punch input routine
punch a,b punch memory from & to b
start 1 punch start block
start add 1 punch automatic start block
table read symbol table tape
tablg a,b read symbols if between a and b
reset ‘ reset symbol table
read | read program
read a,b read program between & and b
begin start program

\ begin 1 start program at 1
begin 1,ac start program at 1 with ACC = ac
begin 1,ac,lr start at 1 with C(ACC) = ac and

C(IR) = 1r

break bpl, bp2, bp3, bpl stop when breakpoint is reached
proceed proceed from last breakpoint

break erase all breakpoints

B. Characterss:

-—1% make modification if register is open
;L close register and make modification
(_

close register, open next

i

equals as a constant

I equals as an instruction

D equals in signed decimal

0 equals in signed octal

© ~ equals in unsigned decimal

i & equals in unsigned octal
/’ | | register referred to containe the
instruction
(| - register referred to contains the
constant

plus

+ plus

- '~ minus

U unite (logical sum; inclusive or)
A intersect (logical product; and)
S distinguish (partial add; exclusive or)
X times (integer multiply)

F address‘of last free register

W last word typed

L ‘ last register opened

: is now defined as

R interpret as decimal

) . interpret as octal

- 5=

open register specified; or allow
comment

punch new contents of register last
examined

delete all typing since last tab or
carriage return

separates pseudoinstruction arguments;
or defines three letter symbol as
present register address.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	A-01
	A-02
	A-03
	A-04
	A-05

