TX~-0 COMPUTER
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS (2139

M-5001-39~1

THE MIDAS ASSEMBLY PROGRAM

Mugust 22, 1966

THE MIDAS ASSEMBLY PROGRAM

Inbroduction ¢ ¢« ¢ o 0 o o & o

'The Midas Source language . .

©

9

]

@

o < (-] (]

HYore About Symbdols. Pseudo-Instructlions . .

The Locatlon Counter ., . . « «
Constants . o o o o 6 o o o o
Flexo Code Pseudo-Instructions
Hacro Instrucetions . « o o o o
The Garbage Collector . ¢ . .
Repea% o s ¢ ¢ o s 06 0 o o o o
Dimension o o« ¢ ¢ v o ¢ o o o
Conditiongl Assembly . ¢ o o o
The Source and Object Progranms
Relocatable Programming . . .

Foma% ° o [} (4 o L] o ©] (-3 ¢ ©

[

[

@

@

o ® [o

] © L] <¢

Performing an Assembly without Magnetic Tape

Symbol Punch and Symbol Print
The Midas Mag Tape System . .
The Midas On-Line Input Feature
Error StopSs o o o o ¢ o o o o
Trouble Shooting » « ¢ ¢« ¢ o o«

Appendix I. ,
Part 1. Symbols . . . »

2. Pseudo-Instructions

Appendix II.

[

(4]

o

L]

L d

©

©

¢

]

Some Macro-Instruction

Q L o o

-] L4 o @

AT
.19
.21
.23
.24
.26
27
«30
31
34

.35

.38

THE MIDAS ASSEMBLY PROGRAM

Introduction

Programming for a digital compuber is writing the precise
sequence of instructions and data which 1is required to perform
& gilven computation. The purpose of sn assembly program is to
facllitate programming by translating a source language, which
is convenient for the programmer to use, into a numerical
reyresentatioﬁ or object program, which is convenlent for the
computer hardware to deal with. A symbolic sssembly program
such as MIDAS permits the programmer t9 use mpemonic symbols
to represént instructlons, locations, snd other quantities with
which he may be working. The use of symbolic labels or address
tags permits the programmer to refer to iInstructions or data
without actually knowing or caring what specific location in
the computer memory they may occupy.

MIDAS 1s a two pass assembler; that is, it normally processes
the source program twice. During the first pass, it enters gll
synmbols definitions encountered lnto its symbol table, which it

then uses on Pass 2 to generate the complete object program.

The MIDAS Source language

A program conslsts of a sequence of numbers in memory which
may be instructions, data, or both. We shall refer to these
numbers as words without specifying whether they are instructions
or not. A word is.denotéd in the source program by one or more
8yllables separated by suitable combining operators, and termi-

nated by a tab or carrisge return. A syllable may be defined

-0

as being the smallest element of the programming language which
hzs a numerical or operational value. The following are some
different types of syllables:

1. 1Integers. An integer is a string of digits, which wiil
be interpreted as san octal or decimal number.

2. Symbols. A symbol is a string of alphanumeric char-
acters (lower case numerals and letters, and upper
case letters except U, I, S, and X) containing at
least one letter. The first six characters of a symbol
are used to identify it 4if it is more than six char-
acters long. '

Syllables may be combined with the following operators:

+ or space means addition, modulo 218~1'(one°s complement).

- means addition of the one's complement.

U means logical union (inclusive gg).‘

I means logical intersection (loglcal and).

S means loglcal disjunction (exclusive or).

X means integer multipliqationu
A symbollic expression is one syllable, or more than one syllable
combined with these operators. We shall refer to +, -, and
Space as additive opgrators, and U, I, S, and X as product
operators.

~ Operations are performed from left to right, eéxcept all

product operations are performed before additive operations.
It is not admissible to precede or follow a product operator
with any other operator. In a string of consecutive additive

operators, the last one seen applies.

-3

The following examples of symbolic expressions on the left
have the value listed on the right. (All numbers in this memo'

are octal unless followed by a decimal point *.".)

2 2

2+3 5
2-3 777776

2X3 6

U3 3

2I3 2

283 1
-233 TTT7TT6
-1 777776

g i
add 40 200040
calUcon 700240

A symbolic expression terminated by a tab or carriage return
is a shorage word. The location in memory to which it 1s assigned
1s determined by a location counter in MIDAS. After each word

1s assigned, the locatlon counter is advanced by one.

More About Symbols. Pseudo-Instructions.
MIDAS classifies symbols according to the manner of their

definition. The initlal vocabulary consists of symbols for the

more commonly used TX-0 instructions, and also a class of symbols
called pseudo-instructions, which represent directions to MIDAS
on now to proceed with the assembly. Some examples of pseudo~

instructions are:

P-I Action
octal All integers following (unless specifically denoted

as decimal) are interpreted as octal numbers until
next appearance of pseudo-instruction decimal.

decimal All integers following are interpreted as decimal
numbers until next gppearance of pseudo-instruc-
tion octal.

e

start Denotes the end of the program.

Additional pseudo-instructions will be dlscussed at opportune

places.

A complete list is given in Appendix 1.

Symbols are defined in the following ways:

i.

2.

As address tags. A comma following a symbolic expres-
sion denotes an address tag. If the tag is a single,
undefined symbol, it will be defined with numericsl
value equal to the present value of the locatlion
counter. If the tag is any other defined symbolic
expression, 1t will have its value compared with the
present value of the location counter, and an error
comment (mdt) will be made in the event of a disagree-
ment. If the tag is any other symbolic expression
which is undefined when encountered on Pass 2, an
error comment 1is made (ust). Use of a defined symbol
a8 an address tag cannot change the value of the symbol.

By parameter assignments. A symbol may be assigned &
nuperical value by the use of a parameter assignment.

a. The form

symbolaexpr;2
where gymbol is any legal symbol and expr is any
symbolic expression terminated by a tab or carriage
return, defines symbol as having the numerical
value of expr. Parameter assignments may be used
to set table sizes, define new operation ccdes,
or for other purposes. Thus

¢le=calUxr
defines cle as 700201, which, as an operate instruction,
would clear the AC, IR, and XR.

b. A symbol may be defined as an "initial" symbol, and
hence will not be printed by the symbol print, by :
using: 4instead of =. Opsyn and equals will preserve
this distinction.

~5-

3. As variables. The appearance of a letter or letters in
upper case in any legal, undefined symbol, at any appear-
ance of that symbol, defines that symbol as a variable.
For each such symbol defined, one register 1s alloecated
in a region of storage reserved by the next appearance
of the pseudo-instruction variables. The initial
contents of tThese registers is undefined. This
feature facllitates the reserving of temporary
storage locatlons. Example:

@

a
&

sto temp
tsx subr
1lda Temp

o

variables
Beware: Do NOT try to use upper case letters U, I, S, or
X ©¢o denote a variable!

4. As macro instructions. 4 symbol 1s defined as a macro-
instruction name by use of the pseudo-instruction de-~
fine. FPurther discussion of macro instructions will
be left until later.

5. With equals or opsyn. A symbol may be defined as pre-
cisely equivalent to any other symbol by use of the
pseudo-instruction gquals and opsyn. The usage is:

equals anysym, defsymp

or

opsSyn anysym, defsymp
where the symbol anysym is made logically equivalent
to defsym if the latter is defined. Previously defined
symbols are redefined. Equals and opsyn differ in one
respect: opsyn 1s effective in Pass 1 only. These
may be used to define a logical equivalent for any
other defined symbol. Thus abbreviations may be de-
fined for pseudo-instructions if desired. Note that

-6

equals and opsyn are NOT the same as the equals sign
used in parameter assigrments, and are not in general
interchangesble with 1t. Equals and opsyn are used

to give a symbol a logical or operationsl value,

while parameter assignments are used to give a symbol
a numerical value. Beware that if you define synonyms
for start that either the synonym starts with the let-
ters s, t, a, ©, t or the word start appears after

the use of thé synonym at the end of the socurce progranm
tape. Although the main processor in MIDAS will
recognize synonyms for gtart, the part of the program
which reads tape will not, and must be fooled into
stopping the tape reader independently of the rest of
the assembly.

The location Counter

The MIDAS location éounter records the assigned location
for each word in the object program. It is set to 20 at the
beginning of each pass, and counts upward modulo memory size.
The location counter may be set to any value by writing

expr|

This sets the location ccunter to the value of the symbolic
expression expr modulo 213. If expr contains an undefined symbol,
on Pass 1 the location becomes indefinite, and the definition
of address tags 1s inhibited until the location agaln becomes

definite by means of a defined location assigmment. On Pass

2, an undefined symbol will result in an error message (us-).
The undefined symbo1 is taken as zero, and the location remains
definite. Thé pseudo-instruction variables may not be used when
the location is indefinite.

-7~

The value of the location counter may be obtained by using

the special syllable "." (peried). Examples:

tze .42 com
tra nonzero trn .-1
11lx» foo

The first example transfers to location nonzero if the AC contains
any number other than zero, but zZero in the AC causes the program
to skip to the llr instruction. The second example puts the
magnitude of the contents of the AC into the AC by transferring
back to the complement instruction until the AC becomes positive.
The second instruction 1s read "trn point minus one."

The character ".", when preceded by an integer, denotes
that the integer is to be considered as decimal regardless of

the effect of the pseudo-instruction octal or decimal. ™"Point"

means locatlion counter only when it appears as a distinet
syllable. Thus,
add . means add this instruction to AG
20, means 20 decimal.
The character [, when not preceded by an expression, denotes
the beginning of a comment. Characters following it are ignored

uncll the next tab or carriage return.

Constants
Constants required by a program will be reserved automatically
by MIDAS when enclosed in parentheses. Thus, if it is required
to get the number add 20 into the accumulator, one can write
lda (add 20) |
The word enclosed in parentheses 1ls stored in a block reserved

by the next appearance of the pseudo-instruction constants.

-8~

Duplicate constants are stored only once. Closing parens will
be supplled automatically by MIDAS if the character following
is a word terminator (e.g., tab or carriage return). The
constant word and surrounding parens are treated as a single
syllable whose value is the address of a register containing
the constant word. Constants may be used in constants. The

followling two program fragments are equivalent:

add (add (20)-11r-(30 add g
constants a, add b-1lr-c
b, 20
c, 30

The pseudo-instruction constants may not be used where the

location is indefinite.

Flexo Code Pseudo-Instructions
Three pseudo-instructions are provided to facilitate
handling flexowriter characters in programs. These are:

1. character qc, where g is any of the letters i, m, or
r, which specifies whether the character ¢ is to be
placed in the left (bits 0, 3, 6, 9, 12., 15.), middle
(bits 1, 4, 7, 10., 13., 16.) or right (bits 2, 5, 8,
11., 14., 17.) portion of the word. The pseudo-
instruction, with its argument, is treated as a single
syllable. |

2. flexo abe, where a, b, ¢ are any three flexo characters,
is equivalent to :
character ra+character mb+character lc

3. text gArbitrary string of characters.q, where the arbi-
trary string of characters 1is stored three to a word as
in flexo until the first character g is encountered
again. Neither appearance of q is considered part of
the string. Thus g may be any character not appearing
in the string.

-0~

The following examples demonstrate their usage.

character rf is equivalent to 11010

character mm " " " 222000
flexo thi " " " 100000+202000+-004400=306400
text .this. " " " 306400
002010
Macro Instructlons

Often certain character sequences appear several times
throughout a program in alinost identical form. The following
example illustrates such a repeated sequence.

1da
add
sto
lda
add
sto

HOoQo oD

The sequence:

lda %

add y

sto z
is the model upon which the repeated sequence is based. This
model can be defined as a macro instruction and given a name.

The characters x, y, and z are called dummy arguments, and are

identified as such by being listed immediately following the
macro name when the macro instruction is defined. Other
characters, called arguments, are substituted for the dummy
arguments each time the model is used. The appearance of a macro-

instruction name in the source program is referred to as a call.

~10-

The arguments are listed immediately following the macro name
when the macro instructlon is called. When a macro instruction
is called, MIDAS reads out the characters which form the macro-~
instructicon definition, substitutes the charascters of the
arguments for the dummy arguments, and inserts the resulting
characters lnto the source program as if typed there originally.
The process of defining a macro is best illustrated with

and example:
define write a,b
t8x wr
b"o‘“a
text [a]
b, terminzte

The pseudo-instruction define defines the first legal
symbol following it as a macro name. Next follow dummy arguments
as required, separated by commas, terminated by a tab or carriage
return. Next follows the body of the macro definition. The
pseudo-instruction terminate indicates the end‘of the macro
definitlon. Appearances of dummy arguments are marked, and the
character string is stored away. Dummy arguments are delimited
by the following characters: plus, minus, space, U, I, S, X,
upper case, lower case, tab, carriage return, equals, comma,
bar, colon, and upper case 1, 6, and 9. Dummy arguments must
be legal symbols; any previous definition of dummy argument
symbols 1s ignored while in the macro definition.

A macro call consists of the macro name, followed if desired
by a 1list of arguments separated with commnas, and terminated
with a tab or carriage return. The wrlte macro, if called as

follows:

-]l

wrlte Thils gets printed out., nextag
generates the following code:
tsx wr
nextag-.-2
text [This gets printed out. |
nextag,
which with a suitable text-printing subroutine, might comprise
The necessary code for printing "This gets printed out." on
the flexowriter. The argument to be printed, using this format,
muet not contain the characters comma, tab, carriage return or
bar. Comma, tab, or carriage return would end the argument
wvhile bar would terminate the argument of the text pseudo-
instruction. So that comma, tab, and carrlage return can be
used within arguments, the argument quotation characters upper

&

case and ? are provlded. They might be used as follows:

write ¢ This, of course, has commas.y
I% also has a carriage return, 7 , nextag

All characters within a pair of argument quotes are'éohsidered

to be one argument, ahd this entire argument, with the quotes
removed, will be substituted for the dummy argument in the original
deflinltion. MIDAS marks the end of an argument only on seeing
comma, Tab, or carriage return not enclosed within argument

quotes. If quotes appear within quotes, the outermost palr

is deleted. If an ocuter argument quote is Immedlately preceded

by an upper case and lmmediately followed by a lower case, both
case shifts are deleted also. A tab or carriage return immediately
followlng a macro name denotes that no arguments are read. Any

other separating character will be the first character of the

-12-

first argument except space: a space used as a separator will
ke deleted and will not be part of the first argument.

The second argument cf the write macro is a symbol which
is defined ss an address tag each time the macro 1is called, so
a different symbol must be supplied at each call of the macro
to avoid multiply defined tags. MIDAS will supply suitable

created symbols for this purpose, guaranteed to be unique to

each call of the macrc, 1if we write the first line of the
definition thusly: .
define write a|b or define write a,|b

In either case, the vertical bar denotes dﬁmmy symbols following
it will be supplied from special created symbols if not explicitly
supplied when the macro is called. The created symbols are of
the form 000201, 000202,... 000a09, 000a0a, etc. The created
. symbol generator is‘reset to 000801 at the beginning of each
pass. The numbér of created symbols may not exceed 33,695..
Note that unsupplied arguments corresponding to dummy arguments
preceding the bar are plugged in as emply strings. Supplied
arguments corresponding to dummy arguments following a bar suppress
the generation of a corresponding created symbol.

There remalns one problem: How do we plant dummy arguments
in the argument of character r, m, or 1? QOf course, the r, m,
or 1 could be part of the supplied argument, but there 1s another
way. Write, say:

define macro a

°

add (charac r’a inote charac ra does not work as

-13-

. jra is not a dummy argument

The sequence upper case, 1, lower case i3 deleted during the
macro definition, but causes the macro scan to search on each
side for dummy arguments. In this case, g 1s found to be a
dummy argument, and is treated accordingly. If the upper case
i 1s not both preceded and followed by case shifts, only the
1 1s deleted. Example:

define ggge(ﬁﬁgﬁgg rixli6lpq

pno
terminate

type glves lda (charac rf
pno

How may one cause a created symbol to define a variagble?
It will not do to write the dummy argument in upper case, for
then the created symbol would be iﬁ upper case. Since upper
case numerals are not legsl symbol constituents, created symbols
must not appear in upper case. The solution is to append a

 suiltable upper case letter, say z, to the dummy argument.

Example:
define macro |a
sto aZ lcase shift makes end of
tsX subr {durmy argument a
lda aZ
terminate

The varlables would then be of the form 000201z, 0000a02z, etc.

which are perfectly legal and unique variables.

-14-

Created symbols have been introduced to solve the problem
of address tags within macro definitions, but they may be used
in other ways alsc. Same‘examples are glven in Appendix 2.

Macro definitions may contain other macro definitions or
macro calls. Arguments of the macro being called may be used
in the macros it calls or defines with perfect generality. As
an example, let us rewrite the write macro so that it inserts
a suitable text printing subroutine into the object program
at its first call, and then redefines itself so that later
occurrences call the subroutine. This might be done as follows:

define write a
define write c|d Iredefines write when called first time
tsx wr
d"‘."g
text jcl
d, terminate write

write %3’ jcalls new definition
tra zzxgwq

- Wr, 11? 0 jtext printing subr
1x !
1lpkh, ixl
lax 1
aux o"i
pnt
pnt
prtUixl
tix lpkh
ixl
trx 1
zzXguwq, = terminate

Notice that address tags in the text printing subroutine
need not be created symbols, as the tags appear only at the
first call of write. They must not, of course, conflict with
tags used elsewhere in the program, and to insure this, created

symbols may be used if desired. Notice that, in this example,

-15~

the pseudo-instruction terminate has been supplied with an
argument: the name of the macro being defined. If terminate
‘1s followed by a space, it will expect to find this argument,
which 1t wlll compare with the name of the macro being defined.
Unless they agree, an error comment (mnd) will be made. This

permits the programmer to be sure that his defines and terminates

count out correctly. An additional aid in this respect is the
fact that terminate 18 undefined outside a macro definition.
Arguments can, by Judicious use of argument quotes (see
example below), contain sub-arguments. A pseudo-instruction
irp (indefinite repeat) permits the analysis of such an argument.
The pseudo-instruction irp in the macro definition takes one
argument, namely, the dummy argument corresponding to the
argument to be analyzed. When the macro instruction is called,
~ the characters following the argument of the 1irp until the next
matching endirp will be inserted once into the program for each
sub~-argument in the argument being analyzed, and the sub-
arguments will be substituted for the corresponding dummy

argument. Example:

define sum a,b,c
lda a
irp b
add b
endirp
Bto ¢
terminate

sum J, %,1,m°,N

gives:
lda J
add k
add 1
add m
sto N

-16-~

It is quite permissible to have irp's within an irp, analyzing
elther the same or different arguments. The pseudo-instructions
irp and endirp are defined only within a macro definition. If
an 1rp analyzes a null string, the characters in the range of
the irp will be inserted once, and null string will be inserted
for the subargument.

The Garbage Collector

When MIDAS redefines a macro, the space in the macro
instruction table used by the ..1d definition wlll be recovered
if necessary, by a garbage collector. It is important in a long
program to insure that unused macro definitions are abandoned,
that is, that their names are caused to refer to something else
other than the original macro definitions. A suitable some-~
thing else" is the pseudo-instruction null, which does absolutely
nothing. Thus 1f g macro called foo has been defined, it may
be discarded after its last usage by saying:

equals foo, null

which will make the space used by foo recoverable. The garbage
collector is called whenever the combined macro and éymbol tables

are exhausted. If no space can be recovered, an error comment

is made (sce).

Repeat
The pseudo-linstruction repeat expr, anything, where expr

is & symbolic expressioh defined on Pass 1 and anything is any

string of characters terminated by a carriage return, causes

~47-

anything to be inserted into the program a number of times,
called the count, equals to the value of expr. The anything,
called the range of the repeat, can be storage words, parameter
assignments, macro calls (i1f not contalning carriage return in
an argument), other repeats, or anything else. If repeat is
used in the range of a repeat, both repeats will end on the same
carriage return. Repeat may be used in macros, and dummy
arguments may appear either in the range or the count of the
repeat, or both. If the count of a repeat is zero or negative,
the range of the repeat is ignored.

Dimension

The pseudo-linstruction dimension may be used to allocate
space for arrays. The statement |

dimension namei(size1), namez(sizee),,,,a
causes space to be reserved in the variables storage for the
array names specified. Each name 1s defined ae the location
of ﬁhe first of the block of registers of the length specified.
The array names must not have conflicting definitions elsewhere,

and the array sizes must be defined at their occurence on Pass 1.

Conditional Assembly
It is often useful, particularly in macro instructions, to

be able to test the value of an expression, and to condition
~part of the assembly on the result of this test. For this
purpose the pseudo-instruction 1if and 0if are provided.

Following the pseudo-instruction name there is a symbol called

-18~

a quglifier that determines the type of test; and then an
argument that 1s tested according to the qualifier. The argument
is ended by any of the word terminators tab, carriage return,
comma, or slash. All these terminators except slash do what
they would have done had the conditional not been present;

but slash only marks the enrd of the conditional, vhich is treated
as a single syllable whose value is one or zero. Examples:

repeat 0if vp x+1, macro argi, arggg
a=11f vzxI600000 — ;|
sto p+iirf vp—leQQ

The value of 1if is one if the condition tested for is true,
and zero otherwise; while the value of 0if is zero if the
condlition tested for 1s true, and one otherwise. There are at
present two qualifiers with two corresponding tests:

vp: 1If the value of the expression following is positive
or zero (either plus or minus), the test 1s true.

vz: 1If the value of the expression following is zero,
the test is true.

The first example calls the macro if x>-1. The second
example defines g as one if the two high bits of X are both
zero; otherwise a 1s defined as zero. The third example
generates sto p 1f s is positive, and ggg_gig if 8 1s negative.
It could also be written as: |

sto p+2X0if vps

Conditionals may be used in or out of macros, but may not

contain other conditionals.

~1G-

The Source and Object Programs

A source program for MIDAS consists of one or more flexo
tapes, each with a title, a body, and a start pseudo-instruction.
The title 1is the first string of characters and is terminated
by a carriage return. Carriage return and stop codes preceding
the title are ignored. The body is the storage words, macros,
parameter.assignments, etc. which make up the substance of the
program. It may be void. The gtart pseudo-instruction denotes
the end of the source program tape. It takes one argument,
which specifies the first instruetion to be executed in the
object programs. Start must be preceded by a tab or carriage
return, and followed (after the argument, if supplied) by a
carriage return. READ THE LAST SENTENCE AGAIN. In spite of
all warnings, the number of people who omit the carriage return
after start is amazing. Therefore, take heed.

MIDAS will normally punch a binary object program during
Pass 2 of an assembly. It ﬁill contain a title in readable
characters, consisting of the visible characters in the title
except those following (and including) an equals sign. Next
will be punched an input routine, which is a loader that reads
in the rest of the tape, and which is itself‘read in by the TX-0
read in mode. The binary output from the body of the source
program 1s punched in blocks of up to 100 registers. The end
of the binary tape is denoted by a start block, which is produced

by the pseudo-instruction start. The start block may be of
two types:

-20-

1. The add start block causes the input routine to stop,
and pressing Restart transfers to the address specified.
It is punched by start addr, where addr is a symbolic
expression whose value specifies the starting address.
MIDAS adde add to this and punches 1t on the tape.

2. The fIn start block causes the input routine to transfer
at once to the zddress Sspecified. 1In this case the
argument of start must have the value of add addr where
addr is the address in question., MIDAS adds add

=200000) to this, giving trn (=400000) and punches it
on the tape.

The format of the output 1s subject %o considerable control
by the programmer. The pseudo-instruction noinput suppresses
punching the input routine. The pseudo-instruction readin
suppresses the input routine and punches in readin mode until
the next encountering of the pseudo—instrucﬁion noinput, which
resumes punching in lnput routine format. The normal input
routine occuples reglsters 17756-17777, but an input routine
occupying registers 0-22 will be supplied by the pseudo-instruction
frontloading, which, if used, must be the first thing on the

‘English tape (after the title, of course). This pseudo-instruction
causes the location counter to start at 30 instead of the usual 20.
For fabricating specisl tape formsts or punching start blocks
without stopping the assembly, the pseudo-instruction word 1is
provided. Its argument or arguments, separated by commas and
ended by a tab or carriage return, are punched directly on the
object program tape, and do not affect the location counter.
The tape formats discussed so far are characterized by

having a specific location in core asslgned for each word in

-2

the object program. MIDAS will also produce relocatable tapes,
wﬁich, éy means of a special loader, may be placed anywhere in
menory. Before using this fTeature, described in the next
sectlon, the reader is advised to famliliarize himself with
Memorandum M-500i-34, which describes the relocatable loader

and relocatable system.

Relocatable Programming

The pseudo-instruction relocatable directs MIDAS to assemble

the objJect program in relocatable format and sets the location
counter to relccatable 0. Address tags will be defined as re-
locatable symbols (relocation count +1) as long as the location
is relocatable. Symbols defined by parameter asslgnment will
have a relocation count equal to that of the expression to the
right of the equal sign except that no symbol may have a
relocation count exceeding one in magnitude. A location
assignment puts the location to relocatable or absoluté accord-
ing to whether the relocation count of the location assignment
is +1. or 0. Relocatable also suppresses punching an input

routine, replacing it with a word trn 17000, which, when executed

in the readin mode, transfers control to the entry of the BRS
Ioader. Storage words in relocatable mode may have relocation
+1, -1, or 0; words in absolute mode may have relocation 0 only.
The pseudo-instructlon exit 1is used to define symbols which
are external to the program being assembled. The usage 1is
exlt si, s2, s3, LN

which enters the symbols si, s2, ... 1n the transfer vector and

-00~

defines them as the addresses they occupy thers. Only the first
three characters of these symbols are significaﬁt to the re-
locatable loader. These symbols must not be defined with a
conflicting definltion elsewhere or an error message (mdx)

wlll be produced.

The psdéudo-instructlon entry is used to denote points in
the program to which external programs may transfer control.
The usage 1is:

entry si, s2, 83, e
where the symbols si, s2, ... must be defined as address tags
elsewhere 1n the program. The symbols so declared are entered
in the program card. Agaln, only the first three characters
of such symbols are signlficant to the relocatable loader. For
a program wilth both primary and secondary entries, the pseudo-
instruction entry is used twice consecutively,.first listing
the primary and then the secondary entries. To the extent that

the pseudo-instructions relocatable, entry, and exit are used,

they must be used in that order, and no storage words may inter-
vene between them. A program with no entry specified is a main
program, and the pseudo-instruction exit will cause a program
card to be punched with a name of +0, as required by the BRS
loader. If neither entry nor exit is used, no program card
will be provided. Since any program to be losded by the BRS
Loader must have a program card, 1t has been made possible to -
get a program card with a main program entry by using the pseudo~v

Insfruction entry with no arguments. The maximum number of

-23~

arguments of entry is 37; there is no limit on the number of
arguments of exlt.

In relocatable programs, the pseudo-instruction noinput
wlll suppress punching the word trn 17000 at the head of the
object program tape.

Format
MIDAS has few requirements on format. The user should
be aware of the following:

1. Carrlage returns and tabs are equivalent except in
the title, in the range of a repeat, and after start.
Extra Tabs or carriage returns are ignored.

2, Backspace, the upper case numerals except 1, 6, and
9, and the unused characters of the flexo code,
including blank tape with only the seventh hole
punched, are illegal except in arguments of flexo
code pseudo-instructions.)

3. Stop codes and color shifts are ignored except in
arguments of flexo code pseudo-instructions. Upper
case 1, 6, and 9 are similarly ignored when not in
macro calls or definitions.

4o Deletes are always lgnored.

Many programmers have found that adherence to a fairly
rigid format is of help in writing and correcting programs.
The following suggestions have been found useful in this respect:

-2

i. Place address tags at the left margin, and run instruc-
tions vertically down the page indented one tab stop
from the left margin.

2. Surround address tags with color shifts. It looks nice.

3. Use only a single carrlage return between instructions,
except where there is a loglcal break in the flow of
the program. Then put in an extra carriage return.

L, TForget that you ever learned to count higher than three;
let MIDAS count for you. Do not say sto_.+6; use an
address tag. Thils will save grief when corrections
are required.

5. Organize the program by pages, separating each page of
flexo tape with a stop code and some tape feed. Let
the page boundaries coincide with logical divisions
of the program if possible., Fixing one bad page and
splicing in a new one takes about as much time as
reproducing two pages of program, 8o learn to splice
tape.

6. Have the typescript handy when assembling or debugging
a program, and note corrections in pencil thereon as
soon as you find them.

Performing an Assembly without Magnetic Tape
Flrst read in MIDAS. Turn on the on-line flexowriter and

press Start Read. Set the TER to trn 20 and TAC to 0. ILoad

the first source tape into the reader and press Restart. MIDAS
will read the tape in sectlions of about two pages each, and will
stop shortly after reading gtart at the end of the tape. To
process aqditional tapes after the first, press Test. Now begln
Pass 2 by loading the first tape and pressing Restart. For
additional tapes, press Test. At the end of Pass 2, press
Restart again to secure a start block. Tapes should be proeessed}

in the same order on both passes.

~25~

The normal operation of MIDAS may be summarized by the
following table:
Condition AC IR MBR Action on Restart Action on Test

MIDAS or symbol

punch read in 0 =0 -0 Begin Pass 1 Begin Pass 2
End of tape; Pags 1 0 0 0 Begin Pass 2 Continue Pass 1
End of tape, Pass 2 0 0 1] Punch start bloek Continue Pass 2
After start block 0 -0 -0 Restore, begin Begin Pass 1

Pass 1
Error stop -0 -0 -0 Continue, suppress Continue Pass
punching

The normal sequence of operations above can be modified
by use of the TAC. Whenever Test is pressed, bit 0 of the TAC
is examined. If 1%t is zero, the normal sequence is followed;
if 1t is 1, the next 6 bits of the TAC are examined. Note that
bits 14-17 are examined regardless of the setting of bit 0.

The other blts of the TAC control:

Bit 1 Pass 4 if 0, pass 2 if 1. ‘

2 Begin pass if 0, continue pass if 1.

3 If 1, punch if pass 2; if 0, do not punch.

4 If 1, punch input routine if punching; if 0, no input.
This takes precedence over the pseudo-instruction
noinput.

5 If 1, punch title if punching; if 0, no title.

6 If 1, restore symbol table to initial symbols and

pseudo-instructions.

14 (Only with mag tape MIDAS) If 1, input will be
from mag tape; if 0 input method determined
by TAC 15. (See page 29.)

15 If 1, input will be from the on-line flexowriter;
if 0, from paper tape (see page 30).

16 If 1, printout on-line every character processed.

17 If 1, continue processing after an erroxr stop.
Equivalent to pressing Test.

=26~

Symbol Punch and Symbol Print

4 record of symbol definitions may be printed out by reading
in MIDAS SYMBOL PRINT.

A punched record of symbol and/or macro instruction defini-
tions may be obtained by use of MIDAS SYMBOL PUNCH. When
SYMBOL PUNCH is read in, it will feed some blank tape and listen
for a title. Type a title on the typewriter. To obtain both
symbol and macro-instructlion definitions, terminhte the title
with a carriage return. For symbols only, terminate with a
tab, and then type "s" followed by a carriage return. For
macro definitiunslonly, terminate the title with a tab,
followed by "m" and a carriage return. The symbol punch so
obtained may be used with DOCTOR for symbolic debugging, or
iead into MIDAS at a later time for assembling patches or the
like. When a symbol punch is read into MIDAS, TAC 6 is
examined. If off, the symbols from the symbol punch are
merged with any existing symbol table. If on, the symbol
table is restored to the initial vocabulary before merging .
the symbol punch.

A symbol punch may be read into MIDAS by placing the symbol
table in the PETR and pressing "READ-IN.” MIDAS will then
read in the symbol table and halt when it is done. Then
one may load his tgpes which are to be assembled and process
them. The symbol table may be read in at any time during an

assembly. (However, reading it in after an error has occurred

will not correct that error.)

The MIDAS Mag Tape Svstem

The MIDAS Mag Tape System is an optional feature of the
MIDAS programming system. MIDAS Mag Tape Patch i1s a program
which 13 read into memory after MIDAS has been read in gnd
which gives MIDAS the abllity to use the magnetic tape unit
both as an input and an output device. MIDAS Mag Tape Patch
permlts most English tapes to be assembled and ready to run
in only a fraction of %the time required when punched paper
tape cutput iz obtained. Moreover, the English tapes need
be run through the PETR only once at assembly time, thus
saving tape rewinding time and ellminating PETR errors
on pass 2,

Most MIDAS English tapes can be assembled with the MIDAS
Mag Tape Patch. However, the following additionail reastrictions

apply:

| 1. Relocatable tapes cannot be assembled on mag tape.

2. The results of WORD pseudo-instructions do not appear
in the mag tape output. ,

3. Standard mag tape format 1is always obtained on the
mag tape output even though input mode format has
been specified in the English program. (Mag tape
format is described below.)

4. A1l tapes processed on pass 1 are reprocessed in the
Same order on pass 2 automatically. Although this
1s usually the case without the Mag Tape Patch, there
is no longer any choice.

5. The binary program must contain the same number of words
on pass 2 as 1t does on pass 1. No ordinary program

wlll ever violate this restriction. This restriction

does not apply to constants.

~28-

To use MIDAS Mag Tape Patch:

1.
2,

3.

5

Read in MIDAS.

Read in MIDAS Mag Wape Patch.

Run pass 1 on all English tapes using the same procedure
as with ordinary MIDAS. During pass 1 MIDAS will write
out each gulp of the English tape onto mag tape. MIDAS
leaves enough room betwesen the blocks of Engliish tape %o
write out the binary program later on pass 2.

Begin pass 2 byipressing RESTART when pass 1 is complete.
There i1s no need to reload the English tapes in the PETR.
MIDAS will rewind the mag tape and run pass 2 automatically.
The 1tle of eaci English tape will ba printed out when
it is encountered on the mag tape. The wrlting of the
start block 1s automatic. If there are no errors in the
English tape MIDAS will halt st the end of pass 2 with +0
in the accumulator and will begin another pass 3 when
RESTART 1s pressed. If errors occur, pressing either
RESTART or TEST will resume the assembly.

MIDAS checks the checksum of each record that it reads or
writes. If an error 1s found, the program will rewrite
(or reread) a block five times before giving up. If the
error cannot be corrected, MIDAS will halt with -0 in the
accumulator, live register, and MBR, Pressing RESTART
will cause MIDAS to make five more tries. If MIDAS fails
again, load a fresh reel of tape into the magnetic tape
unit and begin pass 1 over again.

& punched paper copy of the binary program can be obtained
by setting the TAC to 670000 and pressing TEST to start pass 2.
A start block is automatically punched at the end of pass 2.

T4AC il4 may be used to cause the input for pass 1 to
be taken from the mag tape. This 1s useful if one 1is assembling
several tapes together, and discovers an error on one of the
tapes. When this tape has been corrected, put TAC 0 and TAC 14
up, TAC 1 and TAC 2 down, set any other appropriate TAC bits,
and press TEST to perform pass 1 on the first tape with the
irput from mag tape. To take additional tapes from mag tape,
leave the TAC set as it is except for putting TAC 2 up, and |
press TEST for each addltional tape to be taken from the mag
tape. When the corrvected tape is %o be read in, put TAC 14
down, and place the %ape in the PETR and press TEST, 'Any
addltonal tapes must also be vead in this mannef; éhey cannot
be taken from the még tape. Then continue with pass 2 in the
usual mannex.

A "symbol punch" on mag tape is obtalned by reading in
MIDAS Symbol Punch at the end of pass 2. If bit 3 of the TAC
is up at that time, a punched paper copy of the symbol punch
wlll be obtained simultaneously as with paper tape MIDAS. The
sywbols on mag tape can be used by Doctor.

A symbol print can be obtained as with ordinary MIDAS.
MIDAS mag tape format 1s as follows:

-30-

1. A record headed by a store-class instruction is s
binary block and has the same formet as a paper tape
binary block (first address, complement of the last
address, data, complement of the checksum).

2. A record headed by a transfer-class or add-class
instruction is a start block as on paper tape.

3. A record headed by an operate-class instruction
contains part of the English source tape which
MIDAS read on pass 1.

The Mag Tape Input Routine program will read into memory
a program having the MIDAS mag tape format. The Mag Tape
Input Routine extends from register 17742 to register 17777.
This is slightly longer than the standard input routine, and

users whose programs use all of memory should take notice.

| It is occasicnally desirable to make simple corrections
to an assembly without preparing additional input tapes off-line.
This feature can be especially useful for defining symbols
which were left undefined inadvertently, or to set parameters
affecting the assembly. The MIDAS On-Line Input Feature
enables the on-line flexo tb communicate with MIDAS as if the
input were coming from paper tape.

To use this feature set TAC 15 = 1, and press RESTART or
TEST as appropriate. This may be done at any time during an
assembly. Make sure PUNCH ON is depressed and begin typing.

~31-

MIDAS will buffer all input up to the word "start", and
wlll then process the entire typed input. Should you make an
error, set the TAC (=0, press TEST, and begin anew. Make sure
all inputs beglin with a title and end with "start" followed
by a carriage return. To return to paper tape operation, set
TAC 15 = 0. This patch is compatible with the MIDAS Mag Tape
System.

Error Stops

MIDAS will complain about various ambigulties and error
conditions found in source programs. Some of these have already
been mentioned. Arn error listing has the following format:

Column 1: A three letter code describing the type of

error. A number following is the depth of
macro calls.

2: The octal locatlon in the cbject program. The
symbol r means relocation.

3: The symbolic locatlon in terms of the last
address tag seen.

4: The last pseudo~ or macro-instruction name seen.
5: The offending symbol, if a symbol was in error.
MIDAS will ignore most errors (with exceptions noted below)
and will continue the assembly if Restart or Test (with TAC
0=0) is pressed; the two are equivalent except Restart will
discontinue punching on Pass 2 if it was in progress. Turning
up TAC 17 is equivalent to pressing Test after an error stop.
This bit is independent of the rest of the TAC.

-3

The error conditions are:
us- : In general, undefined symbol. Undefined symbols
are evaluated as 0. The third letter tells where
it was found. -

W In a storage word or argument of pseudo-instruction
word.

- m: In a storage word generated by a macro call.
a: In the size of a dimension array.
p: In a parameter gssigmment.
¢c: Ina constént.
8: 1In the argument of start.
e: In an argument of entry.
¥: In the count of a repeat.

t: in an address tag of more than one syllable. This
wlill frequently be the result of an undefined maero

ingstruction.
i: In an argument of Qif or 1if.
ich Illegal character. The bad character is ignored.
11f Illegal format. Some character or characters were

used in an impreper manner. Characters are ignored
to next tab or carriage return.

ile . Illegal entry. Argument of entry is improper and
will be ignored.
ilx Illegal exit. Argument of exit is improper and will
. be ignored.
ip- : Illegal relocation. The relocation is taken as 0.

The third letter identifies where it was found, and
?111 b? the same as listed under undefined symbols
above).

mnd

mdt:

mdx:

mdv ¢

mdd :

ipa:

sce:

tmp:

tme :

tmv:

cld:

cad:

,.233._,

Macro name disagrees. The argument of terminate
disagrees with the name of the macro being de%inedo

First name is used.
Multiply defined tag. Original definition retained.

Multiply defined exit. An argument of exit is pre-
viously defined with a conflicting value. Orginal
defirition retained.,

Multiply defined variable. A symbol containing
an upper case letter 1s previously defined as
other than a variable. Original definition retained.

Mul€iply defined dimension. An arrsy name in a
dimension statement has a conflicting definition.
Original definition retained.

Improper parameter assignment. The expression to
the left of an equal sign is improper. The assign-
ment 1ls ignored.

Storage capacity exceeded. Assembly cannot continue.

Too many constants: the pseudo-instruction constants
used more than 10. times in one program.

Too many parameters: the storage reserved for
macro instruction arguments has been exceeded.

Too many entries. Maximum number of arguments of
an entry pseudo-instruction is 37 octal.

Too many variables. The pseudo-instruction variables
has been used more than 8 times in one program. :
Assembly cannot continue.

Constants location disagrees. The pseudo-instruction
constants has appeared on Pass 2 in a different lo-
cation from that found on Pass 1, meaning all the
constants syllables have been assigned the wrong
value. Assembly cannot continue.

Constants area deficlent. Insufficient space was
saved for constants when the pseudo-instruction
constants was encountered on Pass 1, and any following
program wlll overlap the constants area used, unless
given a specific location assigmnment by means of |.
The condition is ignored.

Two possible recoveries are finding where the
constants area ends (by means of the SYMBOL PRINT),
making a location assignment on the English tape
after the constants pseudo-instruction, and
reassembling the tape, or making a patch with
DOCTOR to replace the constants that have been
clobbered.,

=34

vld: Varlables location disagrees. The pseudo-instruction
varigbles has appeared on Pass 2 in a different
location from that found on Pass 1. The condition
is ignored.

lae: Internal assembler error. MIDAS has found that it
has made a mistake in assembling the program. De-~
liver the error message and a copy and listing of
the source program to a member of the TX-0 staff
8o that the trouble may be found. Assembly cannot
continue., The octal location given is the location
in MIDAS where the error was found.

Treubleshooting
The checking features built into MIDAS will detect simple

errors like forgotten tags very simply. Attempting to debug
complex macro definitions from error messages and binary output
is a much more difficult proposition. Special sids have been
provided to simplify this. . o

1. The pseudo-instructions print and printx take an
argument exactly like text. which MIDAS will print
out online during the assembly procesé. Printx
prints just the argument and a following carriage
return, vhile print precedes this with the first
three columns of an error listing, with the "error"
code pnt. The argument of print or printx may
contain dummy symbols if used in a macro definition.

2. Bit 16 of TAC when on, causes MIDAS to print out
online every charactér it processes, including all
macro expansions. This permmits the programmer to let
MIDAS do the bookkeeping when testing a complicated
MACYo.

-35~

Appendix 1. MIDAS Initial Vocabulary
Part 1. Symbols'

add=200000 ex6=616000 1r=721600
ado=060000 ex7=617000 r3¢=723000
adx=220000 h1lt=630000 rax=64020
alc=6402690 1ad=640232 rds=60400
all=640230 1al=T40222 rew=0604010
alo=640220 1x1=600303 rpf=706020
alr=640200 1ac=700022 rtb=604004
alx=640031 1ad=600032 rtd=604024
amz=640050 181=700012 rxa=600322
ang=T40027 lar=T700622 shr=600400
anl=640207 lax=3600090 81r=100000
ano=T40207 1laz=700072 81x=120000
arx=640601 lee=T700062 spf=64T7000
aux=260000 1ed=600072 sto=0
axc=640064 1da=340000 8tx=020000
axo=640021 1dx=240000 stz=140000
axr=640001 11r=300000 sxa=040000
bsr=604000 11x~320000 tac=T701000
cal=700200 1pd=600022 tbr=702020
cax=T00001 110=600200 tixsl60000
¢1a=700000 1x7=600003 £ 1v=540000
¢le=T00040 nop=600000 tpl=560000
c11=631000 opr=600000 tra=500000
¢11=632000 ora=740025 trn=100000
com=600040 or1=640205 trx=520000
epf=607000 oro=T40205 £ax=240000
epy=620000 pbb=766.020 typ=625000
cry=5600012 pbh=626600 tze=420000
eyl=640030 p60=666020 wra=6040414
eyr=600600 pbs=T26000 wtb=604014
a18=622000 pTh=627600 wtd=604034
dso=5662020 pTo=667020 xag:gﬂﬂiao
ex0=610000 pen=603000 'Xad=600130
ex1=611000 pnc=664060 xal=700110
ex2=612000 pno=664020 xce=T00160
exg=61 000 pnt=624600 x¢d=600170
ex*=514000 pr{=624000 x1r=600300
ex5=615000 r1e=T721.000 xre=600001

~36~

APPENDTX I~--MIDAS INITIAL VOCABULARY

character
constants
decimal
define
dimension
endixp
entry

equals
exit

- flexo
frontloading

irp

noinput
null

octal

opsyn
print

printx
readin

relocatable

Part 2--Pseudo-Instructions

Inserts mmerical value of a flexo character. (8)
Denotes location of stored constants words. (7)
Interpret integers as decimal numbers. (3)
Define macro-instructions. (10)

Allocates space for arrays. (17)

Ends indefinite repeat. (15)

In relocatable programs, puts symbol definitions
into program card for use by BRS loader. (22)

Defines symbol as operationally equivalent to
another symbol. (5)

In relocatable programs, names subroutines to
be called by entering names in transfer vector. (21)

Inserts numerical value for three flexo characters. (8)
Calls for front input routine. (20)

Indefinite repeat. Analyses macro-instruction
argument as series of subarguments. (15)

Suppresses input routine, leaves "readin® status. (20)
No-operation, ignored. (16)
Interpret integers as octal numbers. (3)

Deflines symbol; same as equals but effective
on Pass 1 only. (5)

Generates symbolic location printout and prints
comment during assembly. (3#3

Prints comment during assembly. (34)
Punch in readin mode format. (20)
Punch in relocatable format. (21)

w3 =

APPENDIX I-=-Part 2 Cont'd.

repeat Repeats character string. (16)

start Denotes end of program and specifies (in absolute
program) starting address. (19)

terminate Ends macro definition. (10,15)

texs Inserts words of flexo characters. (8)

variables Reserves spéce for arrays and variables. (5)

woxrd Punches word on object program tape. (20)

0if Has value 0 1f condition following is true,

1 otherwise. (47)

1if Has value 1 1f condition followling is true,
0 otherwise. (417)

~38-

APPENDIX I
SOME MACRO-INSTRUCTION EXAMPLES

Followlng sre some examples 1llustrating some more complex
uses of macro-linstructions. All of these examples use so-called
"information carrying macros." Basically, an information earrying
macro is a nsme assigned to a charascter string which has provision
for using or modifying the string. Three different methods are
used for retrieving the information in the following examples.

The first two examples illustrate a method of locating
coding at a remote place in the program. It is sometimes
cenvenient, 1n the middle of a program, to specify flexo text,
subroutines, or other material to be inserted at an out-of-the
way place. The macro name remote, followed'by arbitrary material
as an argument, saves up such material for all users of remote
until the macro-instruction here is used, which unloads all
the stored information into the program at that point.

In the first example, listname is the information carrying

macro. Each call of remote calls in cons to concatenate the

new information onto the end of the old. The key to understanding

the example 1s in the definition and use of listname. In order
to feed the information in listname into some macro which can

make use of 1t, listname must be called (expanded) and the
characters therein fed to the macro to make use of them. This

is done by feeding the name of the macro to use the information
to listname as its argument. The expansion of listname genefates
the name of the user, followed by two arguments: the name 118t~

name itself, followed by the information characters in listname.

«30-

Thus the user macro can be one which deals with several different
information carriers, each of which carries its own label. The
point is that in order to generate a function of the information
in an i.c.m., first take i.c.m. name of the function name. The
i.c.m. £lips the function name in front of the informatlion as
it expands.

Exercilse: (enerate the expansion of the following code:

remote alfa
remote ‘add T

- 8%to 7?
here

The second example has remote as the i.c.m. The definition
of remote 1s such that remote effactively redefines itself,
adding on to 1ts definition anything fed 1t as an argument. The

here macro redefines listname so that when remcte next cails it,

1% unloads 1tself into the program instead of into a new definition
of remote. The definitions as written here are not self-resetting:
the appearance of here does not leave either remote or listname
1n condition to be used again,

Exercise: Define a macro setup vhich establishes the correct
initial definitions of remote and listname when 1% is called.

Insert calls of getup in appropriate places so that the definitions
of remote and listname are properly initiallzed, and are reset
by use of here.

The purpose of the third example is to allow indlscriminate
use of the pseudOeinstructions octal and decimal in macro
definitions without disturbing the current radix outside of

macro calls. To this end, the system definitions of octal and

40

decimal are saved in the name foctal (real octal) and rdecml
(real decimal). Then octal and decimal are defined as macros
which, 1n addition to setting the current radix, also append

o radix to a 1list of radices called list. To restore the
previous radix, the macro oldradix peels the top entry off the
1lst and discards it, then sets the current radix to the top of
the entry of the remaining 1list. The iist, after use of decimal
and pctal would look in part like this:

define append newrdx
1ist newrdx, 6rocta19, 6rdecml, 6roctal, 6error999
terminate

The method used for manipulating the list is similar to that
of example 2. Note how the third argument of list is added
%o and deleted from. |
Exercises: Determine the definition of oldradix corresponding
to the above definition of gppend. Expand decimal and determine
its effect on the list.
The last example illustrates the use if irp, 0if &ndlgg_o
The macro decliprt prints out on-line at assembly time the
numerical value of its argument in English words. Zero suppression,
slign, and numbers ending in "teen" are all handled correct.y.
The i.c.m. info contains the text to be printed out, and is
handled similarly to listname in the first example. The
sequence info redefine appears so often in the original that the
macro in has been defined as a shorthand for it. The conversion
to decimai is handled by the usual method of depletion of powers
of ten. Zero suppression is handled by the indicator 8up.

)

jremote macros-method i, S. R, Russell

define remote a

listname é

cons éa 9.9 7

termin

define listrname user
user listname,
terminate

define cons 12, name, 1iil|user
define name user
g user name, °i1
i2
terminate name
terminate cons

define here
listname 2ndarg
define listname user
useyr listnanme,

terminate listname

terminate here

define End%rg a,b
termin
’start

iremote macros-method 2, A. Kotok

define remote a
listname a
termin

define listname ii|i2
define remote 12
509 listname i1

terminate remote
terminate listname

define here

define listname info
info
terninate listname

remote
terminagte here

start

D

joctal-decimal pushdown, S. D. Piner

opsyn reoctal, octal
opsyn rdecml, decimsl

define octal
append roctal

termin
define decimal

append rdeeml
termin

define error
print [Too many oldradix pullups. |
list roctal, ervor

termin

define list radix, prevrdx, rdxlist
define append newrdxz o9
1ist newrdx, %radix’, ¢prevrdx, ‘rdxlist
newrdx
terminate append
define oldradix
list prevrdx,rdxlist
prevrdx
terminate oldradix
- terminate list

list roctal, error
start

=43

fdecimal print macros, D. A. Gross

define declprt number
z=number

repeat 0if vp z,in minus
repeat 1if vp z| ~1if vz
repeat 11f vz z| I1if vz

| I1if vz

repeat 1if vz z

info write

redefine
terminate

define decli?2 a
X=a
sup=0
deplete 100000.
teen=0
integer
place hundred
deplete 10000.
intergy
deplete 1000,
integex
place Thousand
deplete 100,
teen=0
sup=0
integer
place hundred
deplete 10.
intergy
deplete i
integer

terminate

define redefine y
define info user, data
user y data
terminate info
terminate redefine

redefine

define in g
info redefine,a
terminate

define arg a,b
sup=l
repeat teen,in a
repeat 1i-teen,in b
terminate

deci2 -z
z.,deci2 z
2Ii,in zero
z2U4i,in minus zero

define deplete g

v=0

repeat 9,repeat 1lf vp xX-a, xX=x-a y=y+1
terminate

define integer

intl “‘arg eleven,one’, “arg twelve,two’, arg thirteen,three’
¢arg fourteen,four’, “arg fifteen,five’, ‘arg sixteen,six’

éarg seventeen,seven’, ¢arg eighteen,eight’, ‘arg nineteen,nine’’

repeat 1if vz y, repeat teen, in ten
terminate

define intergy
int1 Steen=1,1in twenty,in thirty.in forty,in fifty,in sixty
in seventy,in eighty,in ninety?’

repeat 0if vz y, sup=1
termin

define intl k
=1
irp k
repeat 1if vz y-j,k
J=J+1
endirp
terminate

'derine write b
printx |b]
terminate

start

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

