TE-0 COMPUTER
MASSACHUSEITS WYITUTE OF 1B C””;O@OL}I

UL
MASEACHUSEITS

PeFeriak Ay

vw
CAMBRIDGE j\.')

M-5001-3¢

THE MIDAS ASSEMBIY PROGRAL

TN

November 26, 1962

(o

H. R MORsE jaN 27 1663

THE MIDAS ASSEMRLY

kq’

PROGRAY

introductlion

Programning for & digitel comryuter lg urlilng the preeloe po-
quence of ingtructions and data which is required to perform o glven
computation., The purpose of an assenbly program is to facillitaie
programing by translating a source longuage, vhleh is convenicont
for the programmer to use, into a numerical representctlon o abject

program, which 1s convenlent for the computer hardware Yo deal with

e

A symbolle assembly program such as MIDAS permltis the programmer o
ugse mnemonlc symbols to repregent instrucsticnec, locations, and other
guantities with which he may be working. The use of symbolic labels

or addrescs tags permits the programmer to reler to instructlons or

the computer memory they may occudy.
MIDAS i: a two pass assembler; that is, 1t normelly procagsces
the source program twlce. During the first pass, 1t enters 2ll aym-

bols definitiors encountered into its symbol table, wi nich it then

uses on Pass 2 to generate the complete object program.

The MIDAS Source languame

A progrem consists of a sequence of rumbers in memory which
may be ingtructions, data, or both. We shall refer to these numbers
as words without specifying vhether they are instructions or not. A
word is denoted in the source program by one or more syllables sepa-
rated by suitatle combining operators, and terminated by a tab oy car-
riage return. A syllable may be defined as being the smellest ele-
ment of the pregramming language which has a numerical or operatlonal

walue. The following are some different types of syllables:

B

1. Integers. £4&n integer is & string of digits, which wilill
be Interpreted &3 an ocetal oy decimal number.

2, Symbols., A symbol is 2 striag of alphanmumerlc characzters
(lowver case numerals and letters, and upper case let-
ters except U, I, S, and X) containing at least one
lztter. The first six characters of a symbol are used

to identify it 1f it is morve than six characters long.

Syllables may be combired with the following operators:

18“1 (one’s complement).

+ or gpace means addition, modulo 2
- means additlon of the one's complement.
means loglcal union (inclusive or).
means loglcal intersection (logical and).

means logleal disjunction (exclusive _qg)w

LR > B - T

means integer multiplication.

A gymbolic expregsion ig one syllable, or more than one sgyllable com-
bined with these operators. We shall refer to +, -, and space as ad-
ditive operators, and U, I, 3, and X as product operators.

Operations are performed from left to right, except all prod-
uct operations are performed before addltive operatlons. It is not
admissible to precede or follow a product operator with any other
overator. In o string of consecutlive additive operators, the last
one seen applies.

The followlng examples of symbolic expressions on the left
have the value listed on the right. (All numbers in this report

are octal unless followed by a decimal point ".".)

*1 wipuaddy ur UeAtd 87 2eTT og397dumod ¥
“goorTd sunjaoddo 4B pPessNOSTP o4 TITH SUOTIONIBUT-OpNasd TBUOTLTPRY
‘meidoad ayq JO pus Yy g830uUs(g 21838
"TE300 UOT3
~onIqgur-opnasd Jo eoousareddr 4¥ou TToun sJequrix

Teutosp s posaxdaasgut aav JuTMOTTOI sI9@2quT TTV TBwgoep

“TOWoep uoTgonIgsur~opnesd Jo aousaraddew 4¥au

TTUN SIoqUMU 78300 88 Pajexdiajul ode (TBWEoop ST

pPajousp ATTBOTIToeds €3aTun) FUTMOTTOJ 8I9593UT TIV 18300
ToTI9Y I-d

19JE suoTlonIgsuT-opnesd Jo gsordwiexs 2mWog CATUURSSE a3 UYTA pesdsoad
03 HOY U0 SYAIN 03 SUOTA09aATP juagaddas YOTUM ‘suofgonajsui-opnosd
POTIBO STOQWAS JO S€SBTO T OSTY DU ‘SUOTLONIASUT (-XT posn LTuoumood
aJI0W B J0J STOQWAS JO £2STSU00 AJBTNABOOA TBRTATUT 9UL °UROTATUTISP
JTOUl JO JoUUEW o4 04 DUIPL0o0" STOqUAS SOTJTSSBTO SYATIW

"BUOTRONAIBUL-OPNosd ' SLOUWAS 3noqy SIOR

°au0 £ DPIOUBADE ST J92UMNOD uoxqeoot'eqq ‘pouldtese

ST DIOM UOBR J02JY ~SYQIH UT ISjUnoo HOLABo0T ' £Q poulumiojep ST
PauBTeEsR ST 47 UOTUA 02 AJOWOW UYL UOTABOOT UL °*paom 83BX038 ®© 8T

UANYE TVTAIBO J0 (82 B L4 PelBUTWEIS] WOTHSaIdXs oTTOoquAs v

02004 wWoofTeo
040002 0t PpE
i1 Sﬂ%”L
"E -
9LLLLL | Ul
QLLLLL gsc-

T €se
2 g1
€ gna
9 X<
9lllLL £~e
g €+
S é

e

Symbols are defined 1in the following ways:

C ..

(: 2.

S 3.

By pﬁrameter assigmments. A symbol may be aesligned

Ap address tags. A comma following a symbolic expreg-

sion denotes an pddregs tan. If the tag is a single,

value egual to the present value of the location
counter. If the tag is any other defined symbolic
&) &1 o

expreagsion, it will have its value compored with the

present value of the location counter, and an crropy

3

comeent (mdt) wiil be made in the cvent of o disagreo-

S

ment., If the tag is any other symbolic cxproessicn
which is undefined when encountered on Pogs 2, an ey
ror comment 1s made {ust). Use of a defined symbol as

-

an address tag cannot change the value of The symbol.

(]

aunerical value by the uvse of a peramecter aspilgnment.
The form

symbo l=expn)

where symbol is uny legal symbol and exwvr 1s any sym-

———————

bolic expression terninated by a tab or carriage return,

defines gymbol as having the mumerical value of expr.

s oot

Parameter assignments may De used to get table sizes,

define new operation codes, or for other purposes. Thud

cle=ca .”!.ero‘g

defines cle as 700201, which, as an operate instruction,

would clear the AC, 1R, and XR.

As variables. The appearance of a letter or letters in

upper case in any legal, undefined symbol, at any op-

B =
2

pearance of thet symbol, defines that symbol ag a
variable. For each such symbol defined, one regletow
is allocated in a region of storage reserved by the
next appearance of The psecudo-instruction variables.
The inltial contents of tThese reglsters ig undefined.
This feature facilltates the reserving of temporary

storage locations. Example:

I3

<

temp
subr
Temp

o 02

c WO

-t

<

v

variables
Beware: Do NOT try to use upper case letters U, I, S, or X

to denote a vaeriable!

4, As macro instructlons. A symbol 1s defined as a macro-
instruction name by use of the pseudo-instruction de-
fine. Further discusslon of macro insgtructions will

be left untll later.

5. With eduals or opsyn., A symbol may be defined as pre-

cisely equlvalent to any other symbol by use of the

pseudo-instruction equals and opsyn. The usage is:
equals anysym, defsymy
or
opsynt anysym, defsymy
wh:erre the symbol anysym is made logically equlvalent
to defsym if the latter 18 defined. Previously defined

praiaRdutievnd

simbols are redefined. Rouals and opsyn differ in one

5

j 25

regspeet: ¢psyn is effecvive in Fass 1 only. These

may be used to define a logical eguivalent for any
other defined pymbol. Thus gbbreviations may be de-
fined for pseudo-instiuctions if desired. Hote that

equals and opsyn are KOT the same as the equals sign

used in parameter assignments, and are not in general

interchangeable with 1t. Eguals and opsyn are used

to give a symbol a logical or operatlonal value,

while parameter assignments are used to give a symbol

a pumerical value. Beware that 1f you define synonyms

for gtart that either the synonym starts with the let.-

ters g,t.;a.r,t or the word start appears after the use

of the syncnym at the end of the source program tape.

Alvhough the main processor In MIDAS will recognize

gynionyms for start, the part of the progrem which reads

tape will not, and must bhe focled into svopping the

taye reader Iindependently of the rest of the assembly.
The Locatlon Counter

The MIDAS location counter records the assigned location for

each word in the object program. It is set to 20 at the beginning
of each pass, and counts upward modulo memory size. The location

counter may be set to any value by writing
expr|

This sets the location counter to the value of the symbolic expres-
slon expr modulo 213° If expr contains an undefined symbol, on

Pags 1 the location becomes indefinite, and the definition of address
tags is inhiblted untll the location again becomes definite by means

of a defined lecation assignment. On Pass 2, an undefined symbol

-

o g e, s Y wle Y y oy s .
will result in an erwor nescase {(us

P P, N ¥ », 4 %% 4 S IR AR R L2 e 3 .
as zero, and the Locatlon reucing definite. The pocudo-insboucitionn

. e

vorlal
RASESS2T

5 may not be used uben

i . For B p. o Ay @
Tre value of the locaticon counter

s
;J
o
L
e
i
i

Aoy be cutained uy us

the special syllable "." (period). Euomvles:

tze .+E Com
tra nongero Trin -1

1lle foo

The first example trancfers to location nonzere if the AC contaling
any number other than zero, but mero in Tthe AC causes the progran ©o
skip to the l;g instruction., The gecond cxgmple puts the megnitule
of the contents of the AC into the AC by transferring
plement instruztlon until the AC becomes positive., The gecond In-
struction is read orn point minus one

The character .7, ¥

hien preceded Ly an Integer, denctes that
the integer is to be ccnsidered as decimal vegordleas of the effect
of the pseudo-instructlon octal ov decimal. “Point” means location

counter only wicix i€ appears as a distinet gsyilable. Thus,

add . neans add this instruction to AC
20. means 20 decinm
The character [, when not preceded by an expression, denoctes the be-

ginning of a comment. Charvacters following it are igrnored until the

next tab or carriage retum.

Congtants
Constants required by a program will be reserved automavicaily
by MIDAS when eneclosed in parentheses. Thus, if it is required to

get the rumber add 20 into the accumulator; one can write

. P

4 20)

r“y,

ida (ac

_8.

The word cnclosed In parventlhcses 1s stored in a bleck weserved by &

next appearance of the pseudo-instruction ceonstanivs. DTuplicate con-

s

B

I

<3

(4]
1

stants are stored only once. Closing parens will be supplied
matlically by MIDAS 1f the charvacter following is a word terminatbor
(e.g., tab or carriage return). The constant word and surrownding
parens are treated as a single syllable whose value is the address
of a register contalining the constant word. Constants may be usged

in constants. The following two program fragments are equivalent:

add (edd (20)-11r-(30 add a
constents a, add b-llr-c
b, 20
C, 30

The pseudo-instruction congtants may not be used wlere the location

1s indefinite.

Flexo Code Pseudo-Instructions

Three pseudo-instructicns are provided to facilitate handliang

flexowriter chazracters in programs. These are:

1. character ge, where g is any of the letters ;, wm, or D,

which specifies whether the character ¢ 1s to be placed

in the left (bits 0, 3, 6, 9, 12., 15.), middle (bits 1,
4,‘7, 10., 13., 16.) or right (bits 2, 5, 8, 11., 14., 17.)
portion of the word. The pseudo-instruction, with its

argument, 1is treated as a single syllablie.

2. flexo abe, where a, b, ¢ are any three flexo characters,
1s equivalent to

character ratcharacter mbicharacter lc

N

)

(

3. text abvrbitrary string of characters.d , waere the grbi-

trary string of chavacters is stoved three to a word &s
in flexo until the first character ¢ 1s encountered agaln.
Neither eppearance of ¢ is considered part of the string.
Thus g mey be any character not appearing in the string.

The following cuomples demongtrate thelr usage.

character rf is equlvalent to 14040
character mm n " " 222000
flexo thi # i " 400000+202000+004400=306400
text .this. t d u {306400}-
_ 004010

Macro Ingtructionsg
Often certaln character scquences appear geveral times through-
out a program in almost Identical foxm. The following example illu-

strates such a repeated sequence.

lda
add
sto
lda
add
sto

HOLOUD

The sequence:

lda
add
sto

[

is the model upon which the repeated seguence is based. This model
can be defined &8 2 macro ingtruction and given a name. The charac-

ters %, ¥, and g are called dummy arguments, and are ldentifled as

such by belng listed immediately following the macro name when the
macro lnstructicn is defined. Other characters, called arguments,
are substituted for the dummy arguaents each time the model is used.

The eppearance of a pacro-instruction name in the source progvam 1s

wd G

referred to as & call. The arguments are listed immediately follow-

alled, Vhen a

f-aa

p

L/ ing the macro aame when the macro iunstruction :
macro instruction is called, MIDAS veads cut the characters wuwhich
form the macro-instruction definition, substitutes the characters of
the arguments for the dummy arguments, and ingerts the resulting
charactvers into the source program as if typed there originally.

3

Tnez prozessg ofF defiluing a macro 1s best lllustrated with an

example:
define wyite a,b
tax wy
b= -2
text [a}
b, terminate

The pseudo-instruction defline defines the first legal symbol
following 1t as a macro name. Next follow dummy arguments as re-

(; qulred, separated by commas, terminated by @ tab or carriasge return.
Next follows the bedy of the macro definition. Appearances of dummy
arguments are marked, and the character string is stored away. Dumny
arguments are delimlted by the following characters: plus, minus,
space, U, I, 8, X, upper case, lower case, tab, carriage return,
equals, comma, bar, colon, and upper case 1, 6, and 9. Dumy argu-
ments must be legal symbols; any previous definition of dummy argu-
ment symbols 15 ignored while in the macro definition.

A macro call consists of the macro name, followed if desired
by o list of arguments geparated with commas, and terminated with a

tob ox carriage return., The wrlte macro, if called as follows:
write ‘This gets printed ocut., nextag
generates the Tollowing code:

tsx wr

nextag-. -2

text !This gets printed out. |
nexLa x, ‘

C

~gd

vhich, with a sultable text-printing subrcutine, might comprise the
necessary code for printing "This gets printed out.” on the flexzo-
writer. The argument t¢o be @riﬂ%eds usling this Pormat, must not con-
tain the characters comma, tab, carriage return or bar. Comma, tabh,
or carriage return would end the argument while bar would terminate
the argument of the text pseudo-instruction. So that comma, tab, and
carriage return: can be used within avguments, the argument quotation
characters upper case © and ® are provided. They might be used as

folliows:

write © This, of course, has commas.g
It also has a carrlage T=77v1 .2, nextag

A11 characters within 2 palr of argunent guotes arve considered to
be one argument, and thils entire arguuent, with the guotes removed,
will be substituted for the dumny argument in the original definition.
MIDAS marks the end of an argurent only on seeing corma, tab, or
carriage return not enclosed within argunent quotes. If quotes appear
within quotes, the outermost pair is deleted. IT an.outer argument
quote 13 immediately preceded by an upper case and immedlately fol-
lowed by a lower case, both case shifts are deleted algo. A tab cx
carriage return lmmediately following a macro name denotes That no
arguments are read. Any other separating character wlll be the
first character of the Lirgt argument except space: a space used as
a sgeparator will be deleted and will not be pavrt of the first argu-
rent.

The second argument of the write macro is a symbol which is
defined as an addresg tag each time the macro is called, sc a differ-

end symbol must be supplied at each call of the macro to avold mul-

tiply defined tags. MIDAS wlll supply suitable created symbecls for

[

(M

] P

this purpose, guaranteed to be unigue ©o each call of the macwo, it

we write the first line of the definition thusly:
define write alb or define write a,|b

In either case, the vertical bar denotes durmy symbols following it
will be supplied from speclal created symbols if not explicitly sup-
plied when the macro is called. The created symbols are of the Ffoim
000201, 000a02,... 000209, 000ala, ete. The created symbol genera-
tor is reset to 000al: at the beginning of each pass. The number of
created symbols may not exceed 33,695.. Note that unsupplied argu-
ments correspending to dummy arguments preceding the bar are plugged
in as empty strings. Supplied arguments corregponding to dummy ar-
guments following a bar suppress the generation of a corrvesponding
created symbol.

There remalns one problem: How do we plant dummy argurenis
in the argument of chargcter r, m, or 1? OF course, the », m, or 1

could be part of the supplied argument, but there is another way.

Write, say:

define macro a

o

¢

add {charac ria inote charac ra does not work as
o , ira is not a dummy argument

<

The sequence upper case, 1, lover case 1s deleted during the macro
definition, but causes the macro scan to search on each side for
dummy arguments. In this case, a is found to be a dummy argument,
and 1s treated accordingly. If the upper case 1 is not both pre-
ceded and followed by case shifts, only the 1 is deleted.

-13-
Exanple:

definz type xiblng
1da (charac r*xU464pq
pno
terminate

type f gives léa (charac »f
pno

How may one cause a created symbol to define a variable?
It will not do to wrlte the dummy argument in upper case, for then
the created symbol would be in upper case. Since upper case numerals
are not legal symbol constituents, created symbols must not appear
in upper case. The solution is to append a suitable upper case let-
ter, say z, to the dummy argument.

Exemple:

define macro |a

gsto aZ | case shift makes end of
t8x subr | dummy argument a
lda aZ

terminate

The variables would then be of the form 000a042Z, 0000a02Z, etec.
which are perfectly legal and unique variables.

Created symbols have been introduced to solve the problem of
address tags within macro definitions, but they may be used in other
ways also. Sone examples are given in Appendix 2.

Macro definitions may contain other macro deflinitions or
macro calls. Arguments of the macro being called may be used 1n
the macros. 1t 2alls or defines.with perfect generality. As an
example;, let us rewrite the write macro so that it inserts a suit-

able text printing subroutine into the object program at its first

2

call;, and then recefines itself so that lotver occurrences call the

(» gubroutine. Thils might be done as follows:

define write a
define write cjd fredefines write when called first time
tsx wr
d-.=2
text jc|
d, terminate write

-} ; - =
write a® fcalls new definition
tra zexgug

WY, 1ix O ftext printing subr
ixl
1pkh, ixl
lax 1
aljx - ”".1.
pnt
pnt
prtUixi
tix 1pkh
ixl
trax L
ZZEZUG, terainate
Notice that address tags in the text printing subrcutine need
not be created symbols, as the tags appear only at the first call
of write. They must not, of course, conflict with tags used elsewhere
in the program, and to insure thls, created symbols may be used if
desired. Notice that, in this example, the pseudo-instruction
terminate has been supplied with an argument: the name of the macro
being defined. 1If terminate 1s followed by a space, 1t will expéct
to find this argment, which 1t will compare with the name of the
macro being defined. Unless they agree, an error comment (mnd) will
be made. This permits the programmer to be sure that his defines and

termlinates cocunt out correctly. An additional ald in thils respect

18 the fact that terminate is undefined outside a macro definition.
(’ Arguvments can, by judicious use of argument quotes (see ex-

cinple below), contain sub-arguments. A pseudo-instruction irp

15w

(indefinite repeat) permits the analysis of such an argument. The
pseudo-instraction 1lrp in the macro definition takes one argument,
namely, the dummy argument corresponding to the argument te be an-
alyzed., VWhen the macro Ingtruction is called, the characters foligir-
ing the argument of the irp until the next watching endirp will be
inserted once into the program for each sub-argument In the argument
being analyzed, and the sub-arguments wlll be substituted for the
corresponding dummy avgument., Example:
define sum a,b,c

1lda a

irp b

add b

endlirp

sto ¢
terminate

sur J, %, 1.m°,N

gives:

lda J

add k

add 1

add m

sto I

1t 1s quite permissible to have lrp's within an 1rp, analyzing

either the same or different arguments. The pseudo-instructiom irp
and endirp are defined only within & macro definition. If an irp
analyzes a null string, the characters in the range of the 1irp will

be inserted once, and null string will be inserted for the subargument.

The Garbage Collector

When MIDAS redefines a macro, the space in the macro instruc-
tion table used by the old definition will be recovered, 1f necessary,
by a garbage collector. It is important in a long program to insure

that unused macro definitions are abandoned, that is, that thelr names

N

()

-416~

are caused to refer to socmething else other than the original macro
definitions. A suitable “somethine else" is the pseudo-instruction
nmull, which does absolutely nothing. Thus if a macro called foo has

been defined, 1t may be discarded after its last usage by sayling:
equals foo, null

vhich willl make the space used by foo recoverable. The garbage col-
lector is callecd whenever the combined macro and symbel tables are
exhausted. If no space can be recovered, an error comment 18 made

(sce).

Repeat
The pseudo-instructlon repeat expr, anything, where expr is

a symbollic expression defined on Pass 1 and anythling is any string
of characters terminated by a carriage return, causee anything to be
inserted iato the program a number of times, called the gount, equals
to the value of expr. The anything, called the range of the repeat,
can be storage words, parameter assigmments, macro calls (if not con-
taining carriage return in an argument), other repeats, or anything
else. If repeat 1s used in the range of a repeat, Loth regeats will
end on the same carrlage vreturn. Repeat may be used 1n macros, and
dummy arguments may appear elther in the range or the count of the
repeat, or both. If the count of a repeat is zero or negative, the

range of the repeat 1is ignored.

Dimension
The pseudo-instruction dimension may be used to allocate space

for arrays. The statement

dimensicn namei(sizel), namee(sizee),..¢)‘

=]

causes space to be reserved in the varlables storage for the array

names specified. Each name 13 defined as the locatlon of the first
of the block of registers of the length specified. The array names
must not have conflicting definitions elsewhere, and the array sizes

must be defined zt thelr occurrence on Pass 1.

Conditional Assembly

It is often useful, particularly in macyro instructions, to be
able to test the value of an expression, and to corndition part of the
assembly on the result of this test. For thils purpose the pseudo-
instruction 11f and 0if are provided. Following the pseudo-instruction
name there 1s & symbol called o gualifier that determines the type of
test; and then an argument that 1s tested according to the gqualifler.
The argunent ils ended by any of the word terminators tab, carvriage
return, comma, or slash. All these terminators except slash 4o vhat
they would have done had the conditional not been present; but slach
only maxrks the end of the conditional, which is treated as a slngle

syllable whose value is one or zero. Examples:

repest 0if vp x+1i, macro argi,ar@%;
a=11f vzxI600000 —
sto p+iif vp—le%;

The value of 1if 1s one if The condition tested for is true,
and zero otherwise; while the value of 0if is zero 1f the condition
tested for is true, and one otherwlse. There are at present two

qualifiers with two correspondlng teats:

vp: If the value of the expression following is positive
or zero (either pilus or minus), the test 1s true.

vz: If the value of the expression following is zero,
the test is true.

)

(

()

-18-

The first example calls the macro if xp-1. The second example

defines a as one 1 the two high bits of x are both gerc; otherwise
a is defined as zero. The third example generates sto p if s is posi-

tive, and sto pi+2 1f 5 is negative. It could also be written as:
sto p+2X0if vpsp,

Conditicnals may be used In orx out of macros, but may aot con-

tain other conditionals.

The Source and Object Programs

A source program for MIDAS consists of one or more flexo tapes,
each with a title, a body, and a start pseudo-ingfruction. The title
18 the Tirst string of characters and is terminated by a carrlage ve-
turn. Carriage return and stop ceodes preceding the title are ignored.
The body 1s the storage words, macros, parameter assigrments, ete.
which make up the substance of the program. It may be void. The
start pseudo-instruction denotes the end of the source program tape.
It takes one argument, which specifies the first instruetion to be
executed in the objeet programs. Start must be preceded by a tab or
carriage return, and followed (after the argument, 1f supplied) by
a carriage return. READ THE IAST SENTENCE AGAIN. In spite of all
warnings, the number of people who omit the carrlage return after start
is amazing. Therefore, take heed.

MIDAS will normally punch a binary object program durling
Pass 2 of an assembly. It will contain a title in readable charac-
ters, conslsting of the vislble characte?s in the title except those
following (and including) an equals sign. Next will be punched an

input routine, which 1s a loader that reads in the rest of the tape,

and which is i1tzelf reed in by the T¥-0 read in mode. The binary

~4Gm

cutput from the¢ body of the scurce program is punched in bloecks of

up to 100 reglsters. The end of the binary tape is denoted by a

start block, which is produced by the pseudo-instruction start. The

start block may be of two types:

1. The add start blocik causes the input routine to stop,
and pressing Restart transfers to the address specified.

It is punched by start addr, where addr 1s a symbolic

expression whose value specifiies the starting address.

MIDAS adds add to this and punches it on the tape.

2. The trn start block causes the input routine to transfer
at cnce to the address specified. In this case the
argument of start must have the value of add addr where
addr is the address in questlon. MIDAS adds add (=200000)

to this, giving trn (=400000) and punches it on the tape.

The format of the output is subject to counsiderable control by
the programmer. The pseudo-instruction noinput suppresses punching
the input routline. The pseudo-instructlon readin suppresses the in-
put routline and punches in readin mode until the next encountering of
the pseudo-instruction noinput, which resumes punching in input routine
format. The normal Input routine occupies registers 17756—17777, but
an input routine occupying registers 0-22 will be supplied by the

pseudo-lnstruction frontloading, which, ii used, must be the first

thing on the English tape (after the title, of course). This pseudo-
instruction causes the location counter to start at 30 instead of the
usual 20,

For fabricating special tape formats or punching start blocks
without stopping the assembly, the pseudo-instruction word is pro-

vided. Its argument or arguments, separated by commas and ended by

~20-

a tab or carriage return, are punched directly on the object program
tape, and do not affect the location counter.

The tape formats discussed so far ave characterized by hoving
a specilic location 1n core assigred for each word in the object pro-
gram. HMIDAS willl also produce relocatable tapes, whlch, by means of
a specilal loader, may be placed any where in memory. Before using
this feature, described in the next gection, the reader is advised
to famililaxrigze nimsell with Hemoranduan M-5001-34, which describes the

relocatable loader and relocatable system.

Relocatable Programming

The pseudo-instruction relocatable directs MIDAS to assemble

the object program in relocatable'format and sets the location counter
to relocatable 0. Address tags will be defined as relocatable symbols
(relocation count +1) as long as the location is relocatable. Symbols
defined by parameter assigmment will have a relcocation count eqgual to
that of the expression to the right of the equal sign except that n
symbol may have a relocation count exceedlng one in magnltude. A lo-
cation assigmment puts tie location to relocatable or absolute accord-
ing to whether the relocation count of the location assigoment 1is

+1 or 0. Relocatable also suppresses punching an input routine, re-

placing it with a word trn 17000, which, when executed ln the readin
mode, transfers control to the entry of the BRS Loader. Storage
words 1in relocatable mocde may have relocation +i, -i, or 0; words in
absolute mode may have relocation 0 only.

The pseudo-instruction exit is used to define symbols which

are external to the program being assembled. The usage is

exit si, s2, 83, coesd

&

~24

which enters the symbols s8l, 82, ... in the transfer vector and de-
fines them as the addresses they occupy there. Only the flrst three
characters of these symbols are significant to the relocatable loader.
These symbols must not be defined with a conflicting definition else~
where or an errvor message (mdx) will be produced.

The pseudo-instruction entry is used to denote points in the
program to which external programs may transier control. The usage
is:

entyy si, 82, 83,)

where the symbols si, 82, ... must be defined as address tags else-

where in the program. The symbols so0 declared are entered in the
program card. Again, only the first three characters of such symbols
are signlficant to the relocatable locader. For a program with both
primary and secondary entries, the pseudo-instruction entry is used
twice consecutively, fivst listing the primary and then the secondary
entries. To the extent that the pseudo-instructlons relocatable,
entry, and exit are used, they must be used in that order, and no
storage words may intervene between them. A program with no entry
specified is a main program, and the pseudo-instruction exit will
cause a program card to be punched with a name of +0, as required by
the BRS loader. If nelther entry nor exlt is used, no program caid
will be provided. Since any program to be loadzd by the BRS ILoader
must have a program card, it has been made possible to get a program
card with a maln program entry by using the pseudo-linstruction entry
with no arguments. The maximum number of arguments of entry is 37;
there 1s no limit on the number of arguments of exit.

In velocatable programs, the pseudo-lnstruction noinput will sup-
preas punching the word tyrn 17000 at the head of the object program tape.

(M

Format

20

MIDAS has few redquirements on format. The user should be auarc

of the following:

1.

4&

Carricge returns and tabs are eguivalent except in the

title, in the range of a repeat, and after gtart. Ixtra

tabs or carriage returns are ignored.

Backspace, the upper case numerals except 1, 6, and 9,
and the unused characters of the flexo code, including
blank tape with only the seventh hole punched, are 1ille-

gal except in arguments of flexo code pseudo-instructions.

Stop codes and color shifts are ignored except in argu-
ments of flexo code pseudo-instructions. Upper case
1, 6, and 9 are simllarly ignored when not in macro calls

or definitions.

Deletes are always ignored.

Many programmers have found that adherence to a fairly rigid

format is of help in writing and correcting programs. The followiling

suggestions have been found useful in this respect:

i

B

Placz address tags at the left margin, and run instruc-
tions vertically down the page indented one tab stop from

the left margin.
Surround address tags with color shifts. It looks nice.

Use only a single carriage return between instructions,
except where there is a loglcal break in the flow of the

program. Then put in an extra carrlage return.

Forget that you ever learned to count higher than three;

let ¥MIDAS count for you. Do not say stg .#6:; use an ad-

()

()

P23

dress tag. This will gave griel vhen corrections are

required.

5. Organlze the progran by pages, separatving each page of
flexo tape with a stop code and some tape feed. Let tThe
page boundaries coincide with logical divisions of the
program 1f possible. PFixing one bad page and spliclng
in a new one takes about as much time as reproducing two

pages of program, 80 learn to splice tape.

6. Have the typescript handy vhen assembling or debugging
a progrem, and note corrections in pencil thereon as soon
as you find them.
Flrst read in MIDAS. Turt on the on-line flexowrlter and
press Start Read. Set the TBR to tin 20 and the TAC to 0. TLoad
the first source tape into the reader and press Restart. MIDAS will
read the tape in sections of about two pages each, and will stop
shortly after reading gtart at the end of the tape. To process addi-
tional tapes aftver the first, press Test. Now begin Pass 2 by loading
the first tape and pressing Restartn Por additional tapes, press
Test. At the end of Pass 2, press Restart agaln to secure a start
block. Tapes should be processed in the same order on both passes.

The normal operatlon of MIDAS may be summarized by the follow-

ing table:
Conditlon AC IR MBR Action on Restart Action on Test
MIDAS or Symbol
punch read in g -0 -0 Begin Pass 1 Begin Pass 2
End of tape, Pass 1 O 0 0 Begin Pass 2 Continue Pass 1

End of tape, Fass 2 0 0 0 Punch start block Continue Pass 2

After start block 0 -0 -0 Regtore, begin Begln Pass 1
Pass 1
Error stop -0 -0 -0 Continue, suppress Continue Pass

punching

-4

The normal sequence of operations above can be modified by
(j use of the TAC. Whenever Test ls pressed, blt C of the TAC is ex-
amined. If 1t is zero, the normal sequence 1s followed; if 1t is 1,

the next 6 bits of the TAC arc examined. These control:

Bit 1 Pass 41 if O, pass 2 if 1.

2 Begin pass 1f 0, continue pass 12 1.
3 If 1, punch if pass 2; if 0, do not punch.
) If 1, punch input routine if punching; if 0, no input.
5 If 1, punch title if punching; if 0, no title.
6 If 1, restore symbol table to initlal symbols and pseudo-
instructions.
Error Stops

MIDAS will complain about various amblgulities and error con-
— ditions found 1ln source programs. Some of these have already been

mentioned. An error listing has the following format:

Column 1: A three letter code describing the type of error.
A number following is the depth of macro calls.

2: The octal location in the object program. The
symbol pr means relocation.

3: The symbolic location, in terms of the last ad-
dress tag seen.
4: The last pseudo- or macro-instruction name seen.

5: The offending symbol, if a symbol was in error.

MIDAS will ignore most errors (with exceptions noted below)
and will continue the assembly if Restart or Test (with TAC 0=0) is

pressed; the two are equivalent except Restart willl discontinue punch-
ing on Pass 2 if it was in progress. Turning up TAC 17 is equlvalent
<;ﬂ to pressing Restart after an error stop. This bit 1s independent of

the rest of the TAC.

B

The error conditions are:

Uusg-

ich
ilf

ile

ilx

mnd:

mdv:

In general, undefined symbol. Undefined symbols
are evaluated as 0. Thne third letiter tells vhere
it was found:

In a storage word or argument of pseudo-instruction
word.

In a storage word generated by a macro call.

In the size of a dimension array.

In a parometer assigrment.

In a constant.

In the argument of gtart.

In an argument of entry.

In the count of a repegt.

In an address tag of more than one syllable. This
will frequently be the result of an undefined
macro instruction.

In an argument of 01f or 1if.

fllegal character. The bad character 1s ignored.

Illegal format. Some character or characters vere
used in an improper manner, Characters are lgnoved
to next tab or carriage return.

Illegal entry. Argument of entry is improper and
will be ignored.

Illegal exit. Argument of exit 1s improper and will
be ignored.

Illegal relocation. The relocation is taken as 0.
The third letter ldentifies where it was found, and
?ill b% the same as listed under undefined symbols

above).

Macro name disagrees. The argument of termminate
disagrees with the name of the macro being defined.
First name is used.

Multiply defined tag. Origlnal definition retained,

Multiply defined exit. An argument of exit is pre-
viously defined with a conflicting value. Original
definition retained.

Multiply defined variable. A symbol containing an
upper case letter is previously defined as other than
a variable., Original definition retalned.

(f\

DB -

mdd: Multiply defined dimension. An array name in a
dimension statement has a confllcting definition.
Original definition retained.

ipa: Improper parameter assligrment. The expresslon to
the left of an equal sign is improper. The assign-
ment is ignored.

sce: Storage capacilty exceeded. Assembly canncet continue.
tme: Too many constants: the pseuvdo-instruction congtants

used more than 10. times In one program.

tmp: Too many paramcters: fthe storage reserved for macro
instruction arguments has been exceeded.

tme: Too many entries. Maximum number of arguments of an
entry pseudo-instruction is 37 octal.

tmv: Too many variables. The psevdo-instruction variables
has been used more than © times in one program.
Assembly camnot continue.

cld: Constants location disagrees. The pseudo-instruction
congtantis has appeared on Pass 2 in a different lo-
cation from that found on Pass 1, meaning all the
constants syllables have been assligned the wrong
value. Assembly cannot continue.

vid: Variables locatlon disagrees. The pseudo-instruction
variables has appeared on Pass 2 in a different lo-
cation from that found on Pass A. The conditior is
ignored.

ilae: Internal assembler error. MIDAS has found that it
has made a mistake in assembling the program. De-
liver the error message and & copy and listing of
the source program to & member of the TX-0 staff so
that the trouble may be found. Assembly cannot con-

tinue. The octal location given is the location in
MIDAS where the error was found.

Troubleshooting

The checking features bullt into MIDAS will detect simple
errors like forgotten tags very simply. Attempting to debug complex
macro definitlions from error messages and blnary output is a much
more difficult proposition. Speclal alds have been provided to sim-
plify this,

(N

2T

1. The pseudo-instructions print and printx take an argu-
menv exactly like text, which MIDAS will print out on-
line during the assembly process. Frintx prints just
the argument and a following carriage return, while
priat precedes this with the first three columns of
an error listing, with the "errvor" code pnt. The argu-

men’ of print or printx may contain dummy symbols if

used in a macro definition.

2. Bit 16 of TAC when on, causes MIDAS to print ocut on-
line every charvacter it processes, Iincluding all macro
expensions. This permits the programmer to let MIDAS

do vhe beoklkeeping when testing a complicated macro.

§ymbol Punch and Symbol Print

A record of symbol definitions may be printed out by reading
in MIDAS SYMBO:, PRINT. An alphabetic or numeric order listing may
be secured by reading in the appropriate tapes.

A punched record of symbol and/or macro instruction defini-
tions may be obtained by use of MIDAS SYMBOL PUNCH. VWhen SYMBOL
PUNCH 18 read in, it will feed some blank tape and listen for a
title. Type a title on the typewriter. To obtain both symbol and
macro-instruction definitions, terminate the title with a carriage
return. For symbols only, terminate with a tab, and then type "s"
followed by a carriage return. For macro definitions only, termi-
ratethe title with a tab, followed by "m" and a carriage return.

The symbol punch so obtained may be used with DOCIOR for symbollc

debugging, or read into MIDAS at a later time for assembling patches

()

-28-.

or the like. VUhen a symbol punch 1s read into MIDAS, TAC 6 is
examined., If off, the symbols from the sumbol punch are merged
with any exlisting symbol table. If on, the symbol table 1g re-
stored to the initial vocabulary before merging the zymbol punch.

Robert A. Saunders

Approved __ 4 jM(

J. B. Dennls

Appendix 1., MIDAS Initial Vocabulary.
Part 1. Symbols

add=200000
ado=060000
adx=220000
ale=640260
all=640230
alo=640220
alr=640200
alx=640031
amz=640050
ana=T40027
anl=640207
ano=T40207
arx=640601
aux=260000
axc=6400641
axo=640021
axpr=640001
bsr=604000
cal=700200
cax=T700001
cla=T000Q0
c¢le=T700040
c11=631000
c1lr=632000
com=600040
¢pf=60T7000
cpy=620000
cry=600012
cyl=640030
cyr=0600600
dis=622000
dso=662020
h1t=5630000
1ad=640232
1a1=T40222

1x1=600303
lac=T00022
1ad=600032
lal=T00012
lar=700622
lax=360000
laz=T00072
1lce=700062
1¢d=600072
1da=340000
1dx=240000
11r=300000
11x=32C000
1pd=600022
1ro=600200
1xr=600003
opr=600000
ora=T40025
orl=640205
oro=T40205
pbb=766020
pbh=626600
p60=656020
pbe=T726000
pTh=627600
pTo=66T7020
pen=603000
pnc=664060
pno=664020
pnt=624600
prt=624000
ric=T721000
rir=721600
r3c=723000
rax=640203

rds=604004
rew=604010
rpf=706020
rtb=604004%
rtd=604024
rxa=700322
shr=5600400
81r=100000
8lx=120000
spf=64T7000
8to=0

8tx=020000
8tz=140000
sxa=040000
tae=T01000
tbr=702020
tix=450000
£1v=540000
tpl=560000
tra=500000
trn=400000
trx=520000
tsx=440000
typ=625000
tze=420000
wrs=6040414
wtb=604014
wtd=60403%
Xac=T00120
xad=600130
*%al=700110
xce=T00160
xcd=600470
x1r=600300
xro=600001

APPERDIX T--MIDES INITTIAL VOCATULARY

Fart 2--Pgeuvdo-~-Ingstructions

character Ingerts numerical value of a flexo character.

constants Denotes location of stored constants words.

decimal Interpret integers as decimal numbers.

define Define macro~instructions.

dimension Allocates space for arrays.

endlrp Ends indefinite repeat.

entry In relocatable programs, puts symbol definitions
into program card for use by BRS loader,

equals Defines symbol as operationally equivalent to
another symbol.

exit In relocatable programs, names subroutines to be
called by entering names in transfer vector.

flexo Inserts uumerical value for three flexo characters.

frontloading Calls for front input routine.

irp Indefinite rvepeat. Analyses macro-inctruction
argument as series of subarguments.

nolnput Suppresses input routine, leaves "readin® status.

null No-operation, ignored.

octal Interpret integers as octal numbers.

opsyn Defines symbol; same as equals but effective
on Pass 1 only.

print Generates symbollce location printout and prints
comrent during assembly.

printx Prints comment during assembly.

readin Punch in readin mode format.

relocatable Punch in relocatable format.

repest Repeats character string.

start Denctes end of program and specifies (in absolute

prozram) starting address.

terminate
text
variables

word

0if

1if

APPENDIX_I--Fart 2 Cont'd.

Ends macro definition.
Ingserts words of flexo characters.
Reserves space for arrays and variables.

Punches word on object program tape.

Has value 0 if condition following i3 true,
1 otherwise.

Hag value 1 1f condition following iz true,
0 otherwise.

