Midas Binary Tape Format

Midas binary paper and magnetic tapes use exactly the same format. A
record on magnetic tape corresponds to a block of punching in paper té.pe.
There is blank tape both before and after each record on magnetic tape and

each block on paper tape. All references to block in what follows should
be interpreted as record for magnetic tape.

With the exception of the single word JMP instruction now punched by TN
: |
MIDAS, all blocks begin with two position and length words and end with a %‘

sum check word. There are nev e than 64 4 Tds between, making
a maximum block length ofMer of data words
may always be found by subtracting the first word from the second. The
sum check word contains the sum modul@ 2 -1 of all other words in the
block, including the first two.
TYPES OF BLOCKS

There are four different types of blocks. The types are distinguished
by the first two bits of the first or second word of the block. (The first
two bits of the second word are always the same as those of the first.) The
four types of records are:

Bits Type Remarks

00 Absolute .

0l Relocatable Also called LAC block because LAC = 200000
10 * Library Also called ADD block because ADD = 400000

11 Jump JMP=600000 ,~pet-gat=inptensiisi

ABSOLUTE BLOCKS

The 16 bits remasining in the first word contain the address in core
where the first data word is to be stored. The 16 bits of the second
word, therefore, contain the address Just followingthe one in which the
last data word will be stored.

If you read in a program in extend mode, the reader leader (1oading
routine) will store absolute blocké in the bank they address. Addresses
0 - TTTT will go in bank O, addresses 10000 - 17777 in bank 1, etc. The
loading progrem itself will be in the bank addressed by the address extension
switches.

If you pead in a program in the normal mode, the reader leader (loading
routine) will store absolute blocks whose addresses are between O and TTTT,
inclusive, in the bank it i1s in. Both the loading routine routine and the
information read will be in the bank indicated in the address extension
switches. Blocks with addresses 1XXXX and 3XXXX will cause eratic operation,
and blocks with addresses 2XXXX will be treated as if the 2 were missing.

For example, read in a tape with absolute blocks bank zeéro addresses
(0 - TT77). The address extension togs are set to bank 3. If you are in
normal mode, both loading routine and program go in bank 3x. If you are in
extend mode, the loading routine goes in bank 3, but the program goes in
bank O.

RELOCATABLE BLOCKS

In order that binary programs may be added to each other without need.
to recompile them. MIDAS has provision for punching relocatable binary tapes.
In reading the relocatable blocks, the MIDAS LINKING LOADER changes the
binary values punched in the tape so that the program runs at a location
other than that for which it was originally assembled.

Relocatable programs may have "ENTRY" points, and "EXITS". A routine
is said to have an EXIT if it refers to a register not a part of itself.

For example, a routine to solve quadratics might refer to a square root
routine, e.g. Jsp SQRT. A reference to get data is also called an EXIT,
even though the program doesn't exit there, e.g. lac TIME.

A routine is said to have an entry sny time it gives the definition of
some symbolic quantity for use outside itself. For example, the square root
routire would have an entry of the form SQRT, dap sqrtx. The time routine
would have a register labled TIME, O.

The entries and exits of a routine are runched by MIDAS in symbolic
form in the binary tape. The linking loader remembers the definition of
all entries it has so far found, and the locatlons where as-yet-undefined
exits are used. When a new entry is defined, all the exits which use it are
fixed up to work correctly. On command, the linking loader will read standard
routines off of the library tape to define any entries called for by the routines
used. For example, one can simply call for SQRT without including it in the
binary tapes loaded because it will be defined on the library tape.

The relocatable blocks, then, contain binary information, symbolic infor-
mation, and information which lets the linking loader discriminate between them.
In a relocatable routinethe tape is punched as if the routine were going to be
located starting at O. Thﬁs the first block of the tape will start out with
the words 200000 (relocatable block, starting at 0) followed by 200000+N
where N 1s the number of words in the first block before the sum check. N
is always lOP8 or less.

>

Next in the relocateble block is a word made up of pairs of bits which

tell whether the next nine ltems are:

right.

00 Symbolic

0ol Absolute, not to be changed during relocation

10 ° Relocated by subtracting 4mitigt—eaddress .
11 Relocated by adding initied—widFess - WN:‘

The pairs of bits in this discrimination word are read from left to

The items they refer to may ocq‘hpy»from one, two, or three registers

of space on the tape. TFollowing the nine items will be another discrimination

word, and so on until the place for the sum check is reached. Premature

arrivel at a sum check may cause part of the last discrimination word to be
unused. because the next block will start off with its own discrimination word.
The nine items following the discrimination word are treated as follows:

0ol
11
10

00

Absolute item: Onéwgpgyggg word, transferred directly from tape to core.

Relocated by adding

The initial position of this routine in core

Relocated by subtracting i1s added (subtracted) to the value punched on

Symbolic.

tape to get a result stored in core.

Two words make up the symboli: In the first are punched the
RIGHT 3 letters of the symbol in mod 50, notation. In the
second are punched the LEFT 3 letters o? the symbol in mod 508
notation. The two free bits of the first word are decoded to
mean:

00 An EXIT, add or subtract value of exit (when found)
according as the leftmost bit of the second word is O=add l=sub.

o1 An sbsolute entry. Value stored in the third word is the
value of the entry. ' :

10 Minus relocation entry. Value stored in the third word
minus the relocation¥ is taken as the value of the entry.

1 Plus relocation entry. Value stored in the third word
plus the relocation is taken as the value of the entry. This 1s
the normal entry for use in subroutines.

¥ In adding or subtracting for relocation, a 12 bit address 1s used if the
leftmost bit of the second symbolic word is O, but a 16 bit address is used
if the leftmost bit 1s a 1.

Notice +that symbolic information on the tape does not place information in core
for the routine beiling read, but merely signals the linking loader about the
linkages to set up,

LIBRARY

The first word of a library block is 400000. The second word contains
LOO00O + N where N is the number of words punched before the sum check.

N £ 1658. The data words of the library bldck are taken in pailrs. Each
pair contains a six letter name in mod 508 notatlion. When the linking
loader is scanning the library tape, it looks at these names to gee if 1t
needs any of the routines named. If not, it skips whatever follows the
library block unitl it finds another library block or a Jjump block. If
the linking loader needs anything named in the library block,it reads
whatever follows and adds it to the binary in core.

The names that appear in a library block need not correspond to the
names of the program which follows it. The names in a library block are not
defined as entrys by the linking loader. Therefore, if it is known that the
quadratic routine will need the square root routine, the square root routine
should be gilven the names "SQRT" and "QUADRA". 1In this way, calling QUADRA
will automatically put in the SQRT routine so that later on the tape QUADRA
can use it.

If more than 32 (h08 - 100/2) names are used in a library block, a
library continuation block will follow it. The continuation block will start
with 400100.

JUMP BLOCK

The jump block has identical format to the relocatable block, except
that only one storage word will appear. This word will be a jmp instruction
which will be modified by the exits given. The jump will start the object

program.

	01
	02
	03
	04
	05

