MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SERVOMECHANTSMS LABORATORY
Canbridge 39, Massachusetts

MEMORANDUM

SUBJECT: MOUSE--Preliminary Instructions
FROM: Jomn E., Ward

DATE : January 16, 1959

- on s - as - - - o e a e - -

1. Genersal Descri;_)tion

The MOUSE Program was written primarily as an exercise in
programming to learn the features and capabilities of the TX-0. It
was also written with the idea of having a good demonstration program
Tor visltors, and considerable effort therefore went into the displays.

The program permits one to generate or alter a maze and
insert or move a mouse and up to three pieces of cheese by means of
- the light pen under TAC control. Operation of the program and control
of the mouse is also by means of TAC. The program tape includes UT-3
for convenience in working with the program, making special entries,
and obtaining punchout of mazes for later use. A number of sample
mazes have been included at the end of the tape and can be brought
into the computer by successive resd-ins and resterts.

The program occupies substantially all the storage in the
computer between registers 20 and 4707. Of this ebout 1000 registers
are devoted to data storage for the various displays and about 3600
registers to working progrem. Program cycle time depends on the
number of walls and is about 1/2 sec. for typical problems. The pro-
gram contains a few bugs, as described in Section 6 , which may be
fixed sometime.

D,T. Ross wrote the part of the program which involves the
mouse's logic in solving the maze. Displays, TAC and light pen control,
and other features were written by J.E. Ward.

2, Read-In and Starting Instructioms

To operate the program, the display switch must be on, the
flexowriter must be turned on and primed by means of its start read
switch (the program types out comments on the flexowriter under some



- 2-'

circumstances), end the type-on switch must be on.

Place the tape in the PETR and push the read-in button.
After the tape stops, & restart will cause an undeveloped maze with all
walls in place to appear on the display scope. Purther operations with
this display are described in Section 3. :

If one of the sample mazes is desired rather than the "clean
slate” display described above, push the read-in button again instead
of the restart. Upon restart after this second read-in, a semple maze
will appeer vhich contains a mouse and three pieces of cheese. Here
again, initiation of the program from this point is controlled by TAC
as described in Section 3. The remaining three sample mazes can be
brought into the computer and initiated by the same process of read-in
and restert.

The main starting addresses for various modes of operation
are as follows.

(a) Start at 100 erases the wall, mouse, and cheese
storage in the program and new data must be inserted
by means of the light pen.

(v) sStart at 2371 retains the wall, mouse, and cheese
storage but erases the mouse's memory and puts the
program in a start over mode.

(¢) Start at LL0OO is the seme as a start at 2371 except
that the mouse's eating habits are changed (for VIP
visitors only).

(@) start at L4545 after (c) restores the program to
normal operation.

3. Operation with TAC and Light Pen

a. TAC Language

A languege has been established for the switches in TAC. Bit
zero hes the meaning "do," bit 13 means "write,” bit 14 means "erase,”
bit 15 means "wall," bit 16 means "mouse®™ and bit 17 means "cheese."
Switches 1-12 are ignored. A TAC statement must include "do™ plus a
legal combination of the other five switches, otherwise, the program
response is "WHAT 7" displayed on the scope. legal combinations of the
switches are as follows. :

do write walls (booo2k)
do erase walls (ho0014)



do write mouse éhoooaa)

do erase mouse 400012)
do write cheese (&00021)
do erase cheese 400011)
do mouse ko0002)
do over LOo017)

do erase storage (500037)

The last two combinations do not follow eny language rules but are a
convenient means for starting the program over again at registers 2371
and 100 respectively without stopping the progrem.

For convenience, a language card has been mede up which fits
under TAC. The card is mounted by slipping its end under the panel
moulding at the right of TAC, and aligning "do" with bit O. The card
should be kept with the tape when not in use.

b. Setting Up a Problem

In order to set up or alter any maze problem, insert the
appropriate statement in TAC and use the light pen. In erasing walls,
becareﬁxltoholdthepenoverthecentero:rthevallbemgerased,
otherwise, adjacent walls may disappear as well. However, walls can
be put back. In the “write wall” mode, a dot is displayed in the
center of each space where a wall has been erased. Nolding the pen
over this point will cause the erased wall to resppear.

In the "write mouse” and “write cheese" modes, a raster of
 dots is displeyed in the center of each box and & mouse or a cheese
will be written in when & pen is held over these dots. To erase a
mouse or cheese, hold the pen over the mouse or cheese displey.

The program has provisions for insertion of three pleces of
cheeseandwillnotacceptmthanthree, The progrem also contains
interlocks to prevent writing more then one cheese in a given box, with
the excepticn that amy cheese which has been eaten by the mouse can be
written over. Note that in writing a cheese the program will store a
newcheeseintheﬁrs‘bvacantstwegespaceorintheﬁrstshorage
space occupied by a cheese vhich has been eaten. Thus, any cheese which
haabeenea‘benmaybemvedtoanewlocaticnduringthisprocess.

¢, Control of the Mouse

Oncethemzehaabeenset\m,themuaewhestartedbythe
statement "do mouse." The mouse is a clever fellow and will not start
unless at least one cheese is present in the waze. The mouse will stop
and eat a cheese vhen he finds it and will then either (a) go on if there
are other cheeses in the maze, or (b) stop if he has eaten the last
cheese. The three cheese spots which remain are crimbs. After the



=k

mouse has stopped, he can be asked to rerun the maze, retaining his
memory which was built up during the previous run. This mode 1s ob-
‘tained by sayling "do mouse" again., In case the "do mouse" statement
is still in TAC from the previous start, the mouse requires that you
sgy 1t egain by turning the "do" switch off and on again. In case a
rerun with memory is not desired, say "do over" end the mouse will

be taken back to the starting point and his memory erased, after which
"do mouse" will cause him to solve the problem sll over again.

One feature of the mouse is that he has an energy limit and
will become pooped and stop if he has not found a cheese before his
energy runs out. When this happens, he moy either be fed & cheese by
means of the light pen and the statement "do write cheese," or he can
be asked to rerun with memory by saying "do mouse™ egain. If he is
fed, he will eat the cheese (after the "do" switch is twrnmed off) and
start off with new energy and look for more cheese. If he is asked
to rerun when pooped, he will of cowrse retain his memory of the maze
aafarashehadgottentheﬁrsttimeandwillbeabletogomch
farther than the first time and hopefully find the cheese. Two
different energy levels are used, depending on how many pieces of
cheese were put in the maze at the start. If only one cheese was \
written, the mouse starts with sn emergy of 300 trials or moves and
thesameamomtisaddedtohisreminingenergywbenheeatsacheese.
If two or more pieces of cheese were in the maze at the start, his
initial energy and the increment he obtains when he eats each cheese
is 100 trials end moves. If one is interested in seeing how effi-
ciently the mouse solves various mazes on initial runs and rerums,
his accrued energy when he stops is available for inspection in
register 3116, stored as a negative value. The reset value for low
energy (-100) 1is in register 2170, and the value for high energy
{~300) is in register 2171, Changing register 2171 to a large negative
number, sey -4000, before a one-cheese run would prevent the mouse from
ever becoming pooped.

Ifanwvallsarewrittenoreraaedaﬁeranm,themouse‘s
memoryisemasedandhecannotbeaakedtorerunvitbmemry. A "do
muse"afterchanginganywallswillcausethemuaetocmidarthe
raze a new problem to solve.

If one 1s inconsiderate and places the cheese in an
inaccessible location, or places the mouse in e box with no exits, the
mouse will explore the entire space availsble to him before stopping
and typing out an appropriate comment on the typewriter. He canmot be
moved from this position by "do mouse" unless he is fed or wnless a
wall is written or erased somewhere in the maze. Also, be has unfor-
tunately become so discouraged that he cannot smell a new cheese inserted
in the space accessible to him unless it is rut in the same box with him,
i.e., unless he is fed.



L, Permanent Maze Records

» If in operation of the program a particularly interesting wmaze
is developed and it is desired to save it for later use, the procedure
is as follows. Stop the progrem in the'WEATT loop by making any
illegal TAC statement and transfer to UT-3 (5600) by weans of the Test
mode and the TBR. Type input, followed by punch UOO to 432, and start
at 237T1. This tape will contain the data storage for the walls, the
cheese positions, and the initial position for the mouse. It is not
necessary to return the mouse to the initial position before the punch-
out because the display position for the mouse is in a different
register than the initial position. After punching out the maze tape,
the program can be resumed by typing "go to 1500.%

5. Mouse Behavior

No attempt will be wade here to describe the mouse completely.
However, it may be well to describe the mouse's logic briefly.

The mouse attempts to go straight ehead as far as possible
and will only look to the right or left if he finds a wall in front of
him. As he proceeds, he makes a "path" mark in his wall memory to in-
dicate each wall that he tries and finds open. If he later reverses
this same path, he changes the mark to one which indicates that the path
is blind and therefore should not be entered sgain. Upon a rerun, this
"blind alley" mark has the same effect as an actusl wall. The path mark
- is useful because it prevents the mouse from looping endlessly around an

unconnected wall. As soon as he stumbles on his previous path, as in-
dicated by the path mark, he will realize that he has looped and back up
to the next untried path.

The mouse's present logic is fairly efficient vhen he is going
forward but 1s less efficient when he is backing up, and he therefore
appears to be overly cautious vhen backing up. Subsequent program
changes may improve his backup logic, but these are not planned for the
time being.

6. Cautions end Reservations

The present version of the program bas a few undiscovered
flaws and under some circumstances the mouse has fourth-dimensiomal
tendencies vwhich cause him to blithely ignore walls and the topographi-
cal problem of getting from one edge of the maze to the other. The
only suggestion if this tendency develops 18 to erase his memory by "do
over," or meke apother waze. No guarsntees are given as to when (1f
ever) this type of behavior in the program will be corrected.

Complete control of the program is provided by TAC, and it is
usually not necessary to push the stop button if something undesired is



-6-

bappening. All that is necessary is to say "do" and the problem will
cycle in the "WHAT?" loop. It is also important not to leave the Dro-
grem to go to UT-3 unless the program is cycling in the "WHAT?" loop,
otherwise, the maze will become completely garbled. This is because
the maze is genemtedbycyclingstoragewmdsandifﬂ:ecomputeria
stopped during this process, the maze storege in the program is
vermanently altered. Return from UT-3 should be made to register 1500
if 1t is desired to continue the same problem. Retwrn to 100, 2371,
4400, or L4545 will have actions as described in Section 2.

One final caution is that the mouse has no experience in the
world outside his maze, and outer walls of the maze should not be
erased, otherwise, he will escape into the fourth dimemsion. When this
occurs, verious and sometimes hilarious behavior occurs » but certainly
nothing intended in the design of the program.



	01
	02
	03
	04
	05
	06

