_Memorandum _6M=5780
Sheet 1 of 15 Sheets

, Divisipn 6 — Lincoln Laboratory
Massachusetts Institute of Technology

Lexington 73, Massachusetts

SUBJECT: SOME EXAMPLES OF TX-2 PROGRAMMING

To:

Pistribution Eist

From: He "Philip-f’etersoh%u ggg ;Q &62 gg‘.‘g B&L‘ﬁy\

Date: July 23, 1958

Approved: VA _ e

Abstract: Six short programs are presented here to illustrate many

Distribution Lis te

of the somewhat inscrutable features of TX-2 programming.
These programs are called:

Iz A Checkerboard Pattern Generator
II: The Inchworm
I¥I: The Memory Mirror
IV: An Autocorrelation Program
V: The Flexo-Octal Converter
VI: A Binary Read-in Routine

AN

Group 63 Staff Frachtman, H. E.

Arden, Dean (Barta) Frick, F,

Arnow, Jo - Grandy, C.

Attridge, W. Hazel, F, P,

Bagley, P. R. ‘Heartg Fo

Bailey, D, Holmes, L.

Briscoe, H. ~ _Israel; D.

Buzzard, R. Mason; Wmo

Daggett, No Pughe, E. (Servo Lab.)

Dinneen, G. P, Rising, Ho K.

Dustin, D. E, Thomas,; L. M.

Forgie, Carma Tritter, A. L.

Vance, R. R, Zraket, C. A,

1. This document has been prepared for internal use only, It has not heen reviewed 2. The research reported in this document was

o b elenshr Barier disstmmmation. o rebroduclion Tn whole ar i bart of 8 the Depariment of the Now ond the Depart:
material within this document shall not be made without the express written approval ment of the Air Force under Air Force Contract

of Lincoln Laboratory (Publications Office). . No AF 19 (122)-458.



6M=5780 1.

INTRﬂDUGTORY REMARKS;

" The six example programs presented in this paper illustrate many of
the somewhat inscrutable features of TX-2 programming. A few assumptlons,
however have been made by the author about the reader. These assumptions
are:

1) that the reader knows how to program;

2) ‘that the reader is familiar with TX-2 nomenclatures (this
famll;arlty may be attained by studying "The Lincoln TX-2
Computer ,® (6M=4968); and

3) that the reader has a copy of "The TX-2 Programmer's Gulde"
for reference (6M-5807).

NOTATION

The code part of each instruction is written as a group of 3 capital
letters (.ADD‘9 JMP, etc.). Any superscript numbers preceding the code
part refer to a configuration memory location, except for JPX, JNXQ JMP
and SKM instructions, Superscript numbers following a code refer to an
index memory location except for SKM type instructions where this is the
number of the bit in the addressed word, Lower case numbers follow1ng a
code are main memogz addresses.

‘A'colon‘meénsdﬁhold control until the next instruction.® Brackets
mean "defer the address® and imply that bit 2.9 of the address is a ONE.
Lower case letters are hopefully self-explanatory.

To the left of many instructions will be an explanatory notation
using four little lines which show the permutation involved by how they
cross; the active quarters of central machine registers by arrowheads,
and, when necessary, the fracture (or coupling or subwords) by little
cups. This conflguratlon'w1ll be specified by the contents of the indi-
cated configuration memory word.

R A number or word followed by "slash equals® defines the address of
the instruction or constant to the Tight of it. 4 word followed by
fleguals slash® is the name of the register following.

An address section with a large L prefixing it, as in 763 of Program I,

means the address of "a register containing what is indicated.®

fNal numbers in programs are octal unless otherwise indicated. Numbers
are punctuated with commas separating the meaningful portions of the whole
36 bit word. A single comma separates 9 bit (3 octal digit) quarters when
the word is dealt with in quarters. Two consecutive éommas will separate
the word into 18 bit (6 octal digit) pieces. v

P



w5780 2

I. A Checkerboard Pattern Generator

: The Problem

When a core memory is being checked for operatlng margins,
ihad® pattern of ONES and ZEROS is desired. (see Engineering Note
E-488). One of the worst conditions starts with a checkerboard
pattern which looks like this in each memory pla.ne.

o o o OOHMHO
°© o o HHOOHW
a0 0 HHOOHM
9 00 OOHKHO
® o 0 OOMKHO
¢ o 6 HHEHOOHMH
o o o HKHOOK
(-3 [-3 -] (-] © (-] -] -]

o ¢ o 8 o a & @&

6o 0 © © & a © o

The complement of this pattern is also a checkerboard. The addresses
increase from left to right and top to bot’c.om ‘begmmng with address
000 at the upper left. In the case of a 2562 memory plane, it takes
8 bits to address a row or a columm (16 address bits in all).

If one computes the parity of the two least sn.gnif:.can’o bits of
the row address and the two least significant bits of the column
address, one will find that if the parity of these four bits is odd,
a ONE will be at that address 3 if even; a ‘Z&O will be there. .

The problem is to construct a program whlch generates this pattern
in all 65,536 bits of each memory plane. The program mst f:n.t into
the 16 toggle switch reglsterso «

The Solution

Program I gemrates the checkerboard pattern by using four SKZ
instructions to look at the two sets of 1east=sigmficant address bits.
These bits are 1. 1, 1.2, 1.9 and 2.1, When any one of them is a ONE,
the SKZ doesn't skip and an MKC is executed which complements bit 3.1
of the E register. After examining the four address bits, E register
bit 3.1 will be ZERO for an even parity or ONE for an odd parity,

. The whole address is kept in index register 1 and the DPX at 751# puts
the address in the right half of the E register, leaving the left half
all ZEROS since configuration O is used. After computing the parity,
the left half of E is put in index reglster 2 and the LDE at 763% puts
the word at 766 in E if the parity is even, or the word at 767 if it
is odd. The word in E is stored away at the address and the address .
is counted downo The address was reset by the BSX in 750 to l"?'fh,’i’?"?o
This number is kept in the A register (377,740) which is being simm-

lated by a toggle smtch register as of this wr:.t:.ngo

#The three most 51gn1f:.carrb octal digits of addresses (377 in toggle smtch
‘addresses ) will be omltted for brevity's sake.



6M-5780 3.

OCTAL EQUIVALENT ADDRESS | SYMBOLIC |
02 11 oi 377;7@49 377 750 % 2Rsx* sz._77v;‘777<-1
00 16 01 37T7,T44 | 751 W4 ¥ ¥, °DPxt | e rege—
10 17 41 _377,:7434 752 SKZ2+! e reg-

, il
03 17 61 377,744 753 MKC3e? e reg§
10 47 31 377,744 754 SKZ*e® e regli |
03 47 61 377,744 755 MKC®** e resi
10 47 22 377,744 | 756 SKzte2? e reg‘i
03 17 61 377,744 757 MKC3e? e r@egi
10 17 21 .3779744 377 760 SKZe? e_reg'{;
03 17 61 377,744 | 761 | | MKéael e reg‘i
02 11 02 377,74k 762 \2;%& 2RS¥ e red”
00 20 02 37'7,;76,6 763 [ °LDEZ Lgom
00 30 01 ooogqoo - 764 Ll °ST_E¥ memolf"y
36 06 01 377,751 765 ~1gpxt next —
00 05 00 377,750 R 766 (wbm) JMP réété;rt_ﬁd
77 72 77 %00 027 767 (- word)

‘Progran I A Checkerboard Pattern Generator




- OCTAL

02
00
10
03
10
03

10
03
10
02
00
00
36
00

7

11

16

17

7

a7

1T

a7

17

17

17

11

20

30

06

05

T2

EQUIVALENT

o1
01
41
61
31
61
22
61
21
61
02
o2
01

01

00

'

377,740
377,744
377, T4
375,744
377, Th4

377, Th4

377, T4l

377,744

377, Th4
37T, Th
377, T4k
377,766
090,000
377,751

377,750

koo o27

Program I

ADDRESS

377 750
751
752
753

 754

755

756
757
377 760
761
762
763
764
765
766

767

- 6M-5780 . 3a.
SYMBOLIC

Z% 2RSXY | ATT,TTT €
Wy, %DPxt e rege-

SKZ2+1 e r'eg.1
o
MKC3e1 e reg:

SKZ1e® eifegﬁ )
t

MKC®+1 e reg;

SKZ1e2 ¢ reg.
|

MKC3.1 ¢ reg:

v

SKZ1+1 e reg.

|
MKC3+! e reg |

|
N Oh\=2_ =2/

°LDE2 | word

e reg

QL

°STE! memo
REERY ry

=13PX* next ——

(word) JMP restart—J

(;_ﬁord)’

A Checkerboard Pattern Generator




6M=’57 80 il o

Note that the word stored away for even parity is the JMZP instruc-
tion at 766 which restarts the process after the address has been
counted down through 000, If one wishes to write the ‘pattern Just
once, put ALL ZEROS in 766 and ALL ONES in 767. TX-2 will halt with
an illegal instruction alarm (ICSAL) if it tries to execute an instruc-
tion with 00 as the operation code. Putting +0 in 766 and -0 in 767
has the advantage that the checkerboard ‘patterns in each dig:.t Pplane
will be identical.

Exercises To Prove To Yourself That You Really Understand

_ By changn.ng a s:.ngle toggle sm.tchg the checkerboard pattern will
be c):omplementedo Whn.ch sw:.tch? (Hlnt° any one or three of four will
do. . .

What would you do to _'put' the pattern just in the lower addressed
half of memory? Upper half? Dﬁ.ddle- quarter?

Two memory planes of the 38 mll ‘not have a checkerboard pattern
in them. They are the parity bit plane and the meta bit (L.10) plane.
What program changes will put ‘the pattern in either plane? (Note:
only an SKM can modify a meta bl'to)



II.

6M-5780 5.

The Inchworm

i The Problem

A classical programming exercise is to de31gn a routlne which
will move itself along through memory, carrying with it as it goes
all necessary constants for repeating this "1nchworm? process. The
program for starting the inchworm on its way must fit 1nto IX=2's
16 toggle switch storage registerss naturally. ‘

The Solution

Program IT solves the problem by storlng in registers Q01 = 007
the program shown. This program in 00l - 007 then forms the one in
010 - 016 which duplicates itself in 017 - 025 and so on. The pro=
gram in togs works like the ones in main memory except for a few

special setting up instructions.

The SPF instruction in 752 specifies that conflguratlon 3 will
permute quarter 3 1nto quarter 1 and e;tend 1ts 51gn 1nto quarter 2.

index register 71 to a =6 from quarter 3 of reglsters 762, 6, 15, etco

This trick allows the inchworm program to avoid carrying constants
per se along with it., Each "old" inchworm setment can simply #fall®
into the newly formed one without jumping around some constants.

Index register 2 contains the constant necessary for the program
to move itself into the next location. Whén moving from togs to
core memory, this constant is 40O 023 and the ESX in 753 fixes it up.
When moving on in core memory, this constant is 000,007 and the RSX
in 76l sets it up.

the 1ast address desired is reached. For illustrative purposes the .
address constant 577,760 was chosen. Since the JPX in 763, 7, 16
etco, jumps wheri the index register is positive, for our purposes it
must be negative until the end is reached. Consequently 1,005,000 is
added to 177,760 and that number (577,760) is set up in left half of
750, Each time an inchworm "segment® is executedS the corresponding
JPX will subtract 7 from the contents of index register 3. When con-
trol gets to the segment in 177,757 = 766, index register 3 will have
become positive and control will be transferred to togs (after a seg-

ment is written into 177,767 to 75) starting the process over again.

The routlne in 755 to 763 maps itself into 000 to 007, preserving
the address parts of the instructions in 757, 760 and 763 as they go
to 003, 00h, and 007 by the action of the SKN in 757 which skips over
the ADX when bit 3.2 of a word is a ONE., These three invariant
instructions refer to fixed locations so they must not be charged
by the ADX as the other four are., Bit 3.2 was arranged to be ONE in
the invariant instructions and ZERO in the variable instructions.



OCTAL EQUIVALENT
577 760,,400 023
362
3% 214 00 377,751
01 11 02 377,750
02 11 03 377,750
T4 11 T4 377,762
%0 20 T1 377,763
54 17 62 377,744
%1 15 02 377,744
40 30 71 000,007
41 0 774 377,756
70 06 03 377,752
41 11 02 377%761
01~15'02v377g7&4
01 30 0 000,005
© 00 05 00 000,004

This program
001 ®%RSX"* 6
.3.9LQEZ%1.7“

: SKN®*2377,7hb |

2
3
4 5 ADX2 377,744
5 : °STET® 16
6
7

HINKTE 2 —

:~TIPX® 377,752

ADDRESS

377 750

751
752
753
754
755
756
757
377 T60
761
762
763
T64
765
766

377 767

th@n formsg

6M=5780 6o
SYMBOLIC

last address,,1st const
@@nfig 34 set up
1ty ®%sPF 377,751
J L, J, iRSX® 377,750
>33, 2RSX® 377,750
>35< 32*RSXT 377,762
: h TE3TT, T
L) Le CLDET*377,763¢
: SKN®°®e reg
s LADX?®
A
| | ¢ -STE7*000,007
s HLINKT 377,756 )
s"7JPX® restart |

e—-E—
& f—

|| | ¢ *RSX® 377,761
JLd Y, *ADX® e reg

134 *STE 5

JHP 4
this one
040 s24RSX7L 415
1 s °LDE”! 16 &—
12 © SKNSe2377,744
13 s 1aDX2 317;7441
14 : STET: 25
15 tTAINETE 41 e
R +~7IPX® 377,752

| and S0 ON...

Program II

The Inchworm



OCTAL EQUIVALENT
577 760,,400 023
362
34 21 00 377,751
01 11 02 377,750
02 11 03 377,750
74 14 71 377,762
40 20 71 377,763
5447 62 377,744
41 15 02 377,744
40 30 71 000,007
41 0 771 377,756
70 06 03 377,752
41 11 02 377,761
01 15 02 377,744
01 30 00 000,005
00 05 00 000;001

This ‘program

001 :34RSX”! 6

7 f“‘ﬁ
SKN®* 2377, 744

: LADXZ 377,744

: OSTET! 16
s —

: °LDE7?

:+1JNX71
:“7JPX® 377,752

Program IT

ADDRESS
377 750
751
752
753
754
755
756
CTET
377 T60
761

-762 
763
764

765
766
377 767

then forms

13 : ADXZ 377,744

6M-5780 s
 SYMBOLIC
last éddress,,ist ébﬁét
config 34 set up
114 ®%sPF 377,751
' 1 4 ), *RSX2® 377,750

\.__._'J\____/

>3, RSX® 377,750

R, FPURSXT37T, 762

L)) ¢ CLDET*377,763¢
| k H ’SKN3°2e reg

{ H 1ADX2 e reg

1y

L
L +LINXT 377,756

:~7JPX® restart
[+ *RSX2 377,761
| 1aDX2

[

STE71000,007

<

e reg
L { ISTE 5
JMP 1

this one

010 :34RSX72 15

12 : ' SKN®°2377,Th}

14 ~: STET! 25
15 :HIINXTY 11 - J

16 :TIPX® 377,752

and so ON...

The Inchworm




6M-5780 To

The "flaw in the ointment® is that register 005 will contain
100,023 + 000,007 = 400,032 after the first mapping. The STE
instruction in 005 would have a deferred (indirect) reference to
32 and this is clearly bad. It must be changed to a direct refer-
ence to 016, This is accomplished by the ADX in 765 which adds the
000,007, which by then is in index reg:n.ster 2, to the 000,007 which
remains in the right half of the E register (after the BSX in 76L)
resulting in an 000,016 in the E register. The STE in 766 puts it
away into 005 and the JMP transfers control to 001 continuing the
process in core memory., :

Exercises To Prove To Yourself That You Really Understand

Write a program which uses another approach to the problem of
what to put in the 16 toggle switch registers to make core memory
look as it does above.

- Is it possible to use a JPX in 762 and, if so, what would the
‘program look like then?



TIIT.

6M-5780 8.

Through the Looking Glass

The Problem

If all the- reglsters in any block of memory registers were laid
end to end, what ‘program would put the mirror image of this mess

‘back into the memory block? For example, if the block consisted of
three L-bit words, the transformation would look like this:

Fi ¥, F3 F) T, T3 T, Ty
51 S 53 8, S 83 5 8§
T, T3 T F, Ty Fp i

The Solution

Program III_S which is written with floating addresses, perfoms
this mirroring by the use of configurations and simultaneous cycllng

with only 20 instructions.

Four unusual configurations are needed and these are set up in
configuration memory locations 37, 36, 35 and 3k by the SPG instrue=-
tione

From some register containing the first and last addresses of
the memory block, the A register is set up and the "first® is put
into the address section of the LDA instruction called *top," and

" the "last" is put into the IDB called "bot.® The general idea is

to index thr ough the block, taking a pair of words at a time and
exchanging and reversing them. One word comes from the top half of
the block and the other comes from the ‘bottom halfo If the block
has an odd number of words in it, the flI"S'b pair will be the middle
word used twice. If the block has an even number of words, the first

pair will be the middle two words. The last pair dealt with is alm

ways the first and last words of the block.

. Index register 8 contains a pos:Lt:Lve number which counts back
from the middle of the block to the first., Index register 9 con-
tains a negative number which counts up from the middle to the last.
If there are 2n+#2 or 2n+¢l words in the block, index 8 starts out
with +n and index 9 starts out with -n. These numbers are obtained
from the first and last addresses after only two instructions. The.
first instruction is a SUB which subtracts, s:urrultaneousil.y‘9 the last

- from the first and the first from the last! The left half of the

A reglster then contains m(2n+l) for even blocks and -(2n) for odd
blocks. The right half of A contains the complement of the left half,



top=]

bot+]

again=|

!

Lg}rstgglast

SRS, T top
T O/

1sTA  Dbot

NERRY

s,

=z

Jd,4 ), s

AR 74N 4 &
NERE RS
52 PR
NS 7
SFN o
FTE °e1oee

RSX® [:o10

a reg
L:_19=='9 =1,==
a reg

a reg
last

d, °TCaB | =,71,-1,-1
d, °7cvB [2,2,2,2 |

again ———-J

'+1JNX1

first —m—m

Vi L | OsTA
L4 | °sTB

L=1,-1,=1,-1
| =1,-1,-1,-1
{top)

{vot)

*1JNX9 d:}

d=| “1JPX® top ————“”“_’)

Done, halt or something...

Program III

Memory Mirror

6M=5780

600, 605,200,202

9



st&ft% L4 345pg
: “3'1 36 35 3%
vy, °Lpa.
| | lsTa
L4 4, S

LR e
L L, oS
A i& 1Rsx8

>§%< Ensx"

 top=] ¢%?<$§ 36LDAa
bot< ;%?ﬁjg 3°LDB9“
| © Rsx®
Cagatnd | LL 4, °7cas
b, *7cv
T _+}JNX¥
lli;i 1, °7cen
i“iu. S%CYB
LU L oS
1L L °ste
+;;Ni9
. “

~igpx®

Lt,-1,-1,-1

,(tqulﬁ

. 6M-5780
| 600, 605,200,202

'Lgﬂrst;,laSt

top
bot"

a reg

a reg
a‘reg
first €~—~—————s'
last '}
o |
L_;, 1,-1,-1e’f'

L__r'222” l |
again- ———eln

L:_i,-l’—i’-i
(bot )

.

top ——

e

Done, halt or something...

Memory Mirror

v‘Proggam I1T

0

Y]



6M-5780 10,

The next 1nstructlon3 SCAg shifts. each half one ‘place to the
right, leaving =n in the left half and +n in the right half of A
Index registers 8 and 9 are then set up from the appropriate half
of A.

The ba51c 1terative loop starts now and is executed n tlmes°
The inner 1oop is executed 9 times for each of the n. times through
the outer loop, This number 9 is the number of bits in a quarter
of a TX-2 word. If the reader wishes to work through an example
with, let's say, I bit quarters, then he should go through the immer
loop four times., The index register (1) is preset to -8 however,
since the JNX jumps on zero.

The STA and STB instructions (at d-3) have deferred addresses
_whlch they get from "top" and "bot" respectively., This is actually
inefficient timewise if n is greater than 2. Two more instructions
when settlng up could have put direct references to "first? and
"last® in these STA and STB instructions. This would have cost L
memory time cycles. However, each deferred address costs one memory
cycle and so 2n-l extra memory cycles are being executed in the basic
Loop.. This illustrates how one can trade space for tlme or vice
versas

v ‘The ‘two decimal numbers 8 and 9 were used to 1nd1cate general
index registers. Of course, 1 is general t00,

PExercises To Prove To Yourself That'Ybﬁ Really Understand

 ©ne need execute the inner loop only 8 times if a slightly
dlfferent correction is made afterwardso What are the new correct-
ing cycle 1nstruct10ns°

| Configuration 35 is not really needed. What other one used by
Program III would serve just as well?



6M=5780 11.

V. 50 Million Mnltipllcatlons Can't Be qung

_The ‘Problem
In the analysis of electroencephalographic data, the autocorrelam
tion function of the data is often desired (see B, Go Farley)o A
spe01f1c useful example is the followings: about 50 thousand samples
are stored away in memory. Each sample is a 81gn and 8 bits (9 bits
“in all).
We wish to find
3§ = 50,000
53°83+1, for i=0,1,°°°,1000

i=1.

where Sj is the jtP sampie. These 1000 numbers are proportlonal to
the autocorrelation functions

The Sblutibn

_ Program IV computes thls function in a most efficient way time-
wise. The key to the speed is to do four multiplications simultane-
ously. The data, however, must be in memory in a partlcular format9
namely

= Sls 323 53‘3 Sh

0
1 323 839 Shs SS

N
(4]
jes)
o
M1
=
w
[¢;]
A28
Ww.
(]
[eN

3
.

Note that there are four of the 9 bit samples (Sg) in each
TX-2 word and that registers 0, Li, etc. and 1, 5, etc. will contain
eight different successive samples.

The program starts out by settlng up the four special configura-
tions needed and reseting index reglster 8 to 2000 octal (about 1000
decimal). Index register 8 corresponds to the subscript i in the
~summation above.



‘start<

ci|

c24

m=|

Done, display results (the

¥

37

Y4y °LE |0 &

 \ | °*spa | 142,1%0,724,600

36 25 34

~ RSX®|_2000

6M=5780

JJJ | °STE® sums

\

[

|4, 'DPX® m

RSX®| 150,000

44 | °LDA® 000 &

L
25 2K 2PEXA b reg
¢

J 4L CEXA® sums

bd, 4, 24MUL® . . . index® ., .

J14J, 2°ADD b reg

1%, °7ADD b reg

U144, °°aDD® sums

(2RSS *Thon® uns

L4 4 °Sm® sums

=

J

- =47PX® c2

“1gPx® c1

2000 sums). ..

Program IV  An Autocorrelation Program

12 °



| B | €M-5780 . 12a.
~ starts] vV & | °*spe | 1k2,140,724,600

37 36 35 34 ,

RSX® 2000

i yuyy emEL0 <

V¢4 | OSTE® sums

RSX®| 150,000

c2< L4 4| °LDA® 000 «—

m= 4l 34MUL®. ..index®...

8SEXA b reg

L <
o &
X

J 1) PEXA® sums
(14 2°ADD b‘reg
12525; 37ADD b reg

di_i#b 3°ADD°fsums‘

‘;%;§<;,37ADD° sums

L4l | °sTa® sums

~4JPX® c2 - J

“1JPX8 c1 - v -

Done, display results (the 2000 sums)...

Program IV An Autocorrelation Program



6-5780 13.

The outer iterative loop then clears the i th current sum register
and ‘puts i 1nto the address section of the MUL instruction at m. Index
register 9 is set to 150,000 octal (about 50,000 decimal), Index 9
corresponds to the subscript j in the summation. This outer loop is
executed about a thousand times.

The inner loop computes one complete summation (fixed i) taking
four samples at a time. After the multiplication, the A and B regis-
ters look like this:

B o= Iy Ly Ly, I

where P is the most 51gn1flcant 9 bits of the product and L is the
least significant.

To eliminate round-off errors, the sums of each whole 18 bit pro-
duct are accurmlated. To put the 9 bit pieces of the product together,
the A register is exchanged with the B register in such a manner that
the result looks like this:

L h LR

B = Py Ly PL Lh

These four 18 bit nnmbers are then added to the current sum which
is a 36 bit number. Notice how the sign extension feature allows a
signed 18 blt number to be added to a signed 36 bit number.

Index register 9 is counted down by L (11) since only every fourth
reglster of four samples need be multiplied. This means the inner loop
is executed only about 13,000 times instead of 50,000 times. :

The whole program with its 50,000, 000 multlpllcatlons will take ,
8 minutes if the overlapped memory featwre is used (i.e. if instructions
and data are in different memories).

Exercises To Prove To Yourself That You Really Understand

' The data should extend to register 152,000, Why?

Write a program, u51ng approprlate configuratlons (no shifting)
and the TSD instruction, which will read the samples into memory in the
desired format. This program would operate in the Epsco Datrac (an
analog-to-digital converter) sequence., Each TSD will put a signed 9 bit
number into quarter 1 of the E reglstero Ignore In-0ut Select 1nstruc=
tions. Nine instructions will do nicely.

Write a new imner loop to Program IV which handles data with only
one sample per word. Five instructions including the JPX will do it.
This inner loop will have to be executed the full 50 million times.

How long will it take? .



V.

6M-5780 ke

The Flexo-Octal Converter

The Problem

In the begimning of a binary computer's programming life, it is
difficult to communicate with the machine.. A series of programs must
be written to "bootstrap® one's way into easy communication. This

bootstrap series might go like this:

First) A three (or so) word program in toggle switch storage
which would allow words to be written into memory one at a time.
Call this Plo

‘Second) A short routine to convert programs to binary which
have been typed on a flexo in a ngldé, s:me'le s fixed-address format.
€all this P2. Associated with P2 is a program to to punch out storage
as a binary tape and a program to read in this b:Lnary tape. Pl loads
P2 into memoxy . P2 converts the punch-out and read-in programs. The
punch-out program punches out P2, the read-in routine and itself.
From now on, the read-in routine can read in P2 and the punch-out
routine, eliminating the need for Pl.

Third) A longer routine which converts programs typed in a Sym-
bolic code s relative-address format. Call this P3° P2 converts P3
and punches it out, eliminating the need for P2.

‘Fourth) 4 routine to convert programs ty"ped in a symbolic code,
i‘loatlgg address format (PLh). Pl is written in P3 format and con-
verted by P3. At this point Pl P2 or P3 aren't needed any more and
commnication is fairly easy. In TX-0, P, was called TODAL, A fifth
stage might be an algebraic format conmverter like FORTRAN,

Programs V9 VI and VII ‘are proposed examples of the second stageo
The octal converter recognizes the eight flexo symbols 0,1,2,3,445,6
and 7 takes their order into account. Some comtrol characters are
needed, such as carriage return to signify the end of a word and
slash to allow address specifications. The space, tab, and comma
are used to give some format control, The nullify is recognlzed s0
that tape "goofs# can be fixed up. The last four are ignored by the
converter. A s stop code code mgmfles the end-of-tape condition.

The Solution

The program to do the octal conversion is Program V.

To decide what action to take on each character as it is read in,
an Action Table is set up as is shown beside the program. 4An entry
is made at the address; starting at 100, whose last 2 digits corres-

pond to the flexo code of the appropriate character. The right 18
‘bits of each entry tell where to transfer control when that character

is read in, and the left nine bits tell what the binary equivalent is



ACTION TABLE Description  ROUTINE

6M-5780 15,

105 - 0,0,000 201 start at—> éOO] = :108%2pead unépléyéd
107] = 3,0,000 210 if slash— 201 1144, *8Ta 213

110/ = 0,0,000 204 | 202 >§‘éansx2 105

113 = 4909060 210 203 | Jidd, °m=x‘5‘ a reg ﬁ
117 = 2909000 210 if ignored—> 204 108%2 dismissﬁ
123 = 5,0,000 210 | 205 :TSD e reg
124 = 1,'09000 ‘210 | 206 |14, °RSX* e reg
127 = 7,0,000 210 . <@m 207 °JMP1 (100)
133 = 6,0,000 210 if number—> blém Wy by, °CYA 167

145 = 'd,,o,,ooo 204 211 .Z?ééa eADD® 100

151} = ogo,ooo 213 212 JMP 204 __J
161 = 0,0,000 216 ar car/ret—> 213 |[lJ)J °STAZ memory
176 = 0,0,000 210 214 u% eAUXZ 125

177 = 0,0,000 .204 215 JMP 203

if stop code->216

addressg| = value,0,where to go

10S®2ghut off

‘Program V  The Flexo-Octal Converter




'ACTION TABLE

109 -
107 -
110} =
119 =
117 =
1o3 =
 123 -
127 -
1'33|‘=,
1hg -
151| ;
161 =
176 -

‘177|=

0,0,000

3,0,000

0,0,000

4,0,000

2,0,000

5,0,000

1,0,000

7,0,000

6,0,000
0,0,000
0,0,000

0,0,000

0,0,000

0,0,000

201

210

204

210
210
210
210
210
210
204
213

216

210

204

Description

start at —>

615780

ROUTINE

15a.

200| = :10S%2read unsplajed

Af slash—> 201 |;J§£13TA '213
‘ 202 DX PRSXZ 105
203 iy, °DPX° a reg 4—\
if 1gnb:eq-> 204 '10352 dismiésf
205 :TSD e reg
206 IlhiisRSXI e reg 1
<o 297 '?JMPI (100) i
| if number,;—& 210 M"CYA v10,7
211 Jéééh eADD! 100
212 JMP 204‘__,)
1if 'car/ret% 213 - JJJdd osTA2 memory
214 uﬁ?é%;,féuxz 125
215 | _JMP__ 203 _,ﬂzf

if stop code->216

address| = value,O,where to "go

 Program V. The Flexo-Octal Converter

I0S®%2shut off




6M°"5780 16 ob

when the character is a number. Quarter 3 of each entry is not used.

The I0S in 200 sets the mode of the PETR to read one contn.guous
6-bit flexo_ code (unsplayed) into the right 6 bits of the E registers
clearing the other 3 hits in that quarter.

Startlng at 203 with a DPX which clears the A reglster 5 the char-
acter is read in and placed in index register 1. The JMP then dei‘ers
control to a location specified by the appropriate Act:.on Table entry.
Note that all instructions with deferred addresses are indexable.

If the character is a number, then control goes to 210 where the
A register is cycled left 3 places and the b:.nary equivalent of the
number is added into 4, returning control to 20L.

If the character is a slash slash, control Thounces of f" register 105
to register 201 where the number in A is stored in 213 and index
 register 2 reset to a zero. The slash then causes the number that
has been built up in A to be the hew address of the word which follows.

Tf the character is a carnage return, 213 has control and stores
the word in A away in the proper memory location. The AUX in 21k adds
a 1 to index register 2 so that the next time a carnage return appears,
the ‘word in A will be stored in the memory register following the last
oneo

_The nulll.‘_L‘y 9 space s and tab simply return control to 204 to read-
in the next character. When a stop code comes alongy ‘the IOS in 216
shut.s off the photo reader and dismisses the sequence.

' The sequence must be dlsmlssed after each character is read and
the I0S in 204 does this. The TSD in 205 empties a buffer that has
been filled by the PETR. When the buffer is filled, the sequence is
activated and the character read-in is dealt with.

Exercises To Prove To Yourself That You Really Understand

. What are the implications of throwing out the I0S in 20L and
not holding on the TSD which follows? In other words, let the TSD
dismiss the sequence after transferring the data. Work out the new
‘program and format rule,( s).

TX-2 is an allegedly nmltaasequence machine, Some lower priority
sequence may have been using the A register and mll be very upset
at f:.ndlng it disturbed. What changes will fix this up? Donﬂt for-
get 2031}

‘Is there anything fishy about the ESX in 2062



VI.

6M-5780 17

A Binary Read-In Routine ‘

The Problem

In one of its modes, the photoreader reads the six bits of a
line of tape into every sixth bit of some specified word and cycles
the word left one place. This is the “splayed” mode of the ‘photo-
reader sequence., After readlng in six lines, a full 36 bit word is
assembled. This mode would usually be used to read in binary tapes.

, The main’ problem a55001ated.w1th a binary read-in routine 13
what format to use. In general, data words are read into blocks of

'consecutlve memory registers and three prcv131ons are made; (1) to

read in more than one block, (2) to check the sum of each block thereby

detecting almost any error; (3) to specify what should happen to con-
trol after all blocks are read in.

The Solution

Program VI uses the follow1ng format for each block of binary
wordse

-n 4, last address
Word o

Word 1

Word ,
more?’§5 = sum

The first word in each block consists of two 18 it numbers (see

instructions at 3 and L) which designate the addresses of the actual
data. words which follow.

The right half of the last word is the complement of the sum of
all the other half words in the block. In other words, if all the
words in a block are added up in 18 bit pieces (1nstruct10ns at 2l
and 25) the sum must be zero (instructions at 12 and 13) or there has
been an error., If there is an error, the tape is backed up (instruc-
tion 17) and read in again. (TX-2, as you may have guessed by now,

can read paper tape in either direction and can identify the front of
the tapeog

The sign bit (h 9) of the left half of the 1ast word in a block
tells whether there are more (if L.9 is a ONE} blocks to be read in
or not (if 4.9 is a ZERO, see instruction 1l). If there are more



6M=5780 18,

00| = ' 10S%2read forward, splayed, dismiss
/l/ .
w1 RSX® 26 €
’BLOC/« . | SUB-ROUTINE
2 "aave" ZByMpt 21 ﬁ =
- TO READ 6 LINES
. 2Ray?2 = lpayl
\55r3L_J%°RSX 30 > 21] = || | RSX* 27
¢ | -
R,qp 4 ||| *sTE 07 22 TSD 30 <
: {
Vo g , 7 l
5 "aave' 2JMp* 21@-) 23 -iypxt 22
.0 ' 2 3
p(/]\s__\NN, LDE 30 ‘ ah % AUX® 30
Ohyy T Vbl °STE? last | 25 ) drauxe 30
Aw : , * . ‘
o +iNx2 5 » R26 “index’ 1gMP* 000
. C_J _ { ‘
11 "aave' 23Mp4 21 | -4 0,0,0,5
cy 12 togpx® 47 30 word read in
5C/< ,
- 13 TOINXS 17 - ~
He
e 4 a9
S(/Mlu SKZ. 8 30ﬂ
]
15 ,JMP et wmmw
%, J
& 16 I0S%2ghut off, dismiss
(;o 17 T05°2back up tape, dismiss
Op |
20

JMP

000

Program VI

A Binary Read-in Routine




61=-5780

18a.

" Program VI A Binary Read-in Routine

00| = 10S%2read forward , splayed, diémiss
w, | - |
51 RSX® 26 <Y
8o, p  SUB-ROUTINE
-} "y ave" 2JMP4 | 21 e S
T TO READ 6 LINES -
\55; 3 L%S :2RSX® 30 - --'>} 21 = I} |J,*RSX* 27
R"’ v (| yJ sTE o7 22 ~TSD 30 €
XAp ‘ o
5 ‘aave' 2JMp4 21ﬁ N 23 -15pxt 22
Py, 6 YVUV°LDE 30 ; ok ‘_%ﬂmxa 30
(o] 2 | 1 3
Oy, T VUL °STE? last | | 25 A dLrauxe 30
Ah’ P r " ‘
10 FIJNX2 5 —J . K26 irdex 1JMP* 000
| Ve
11 "aave’ 2gmp4 21———J‘ 27 0,0,0,5
c; 12 S FogPx® AT 30 word read in
Uy e a1
1 +OINX® 17
.71, 3. J 7.-7 j
& |
S, 14 SKZ*¢® 30—~
M _ - -
15 JMP 1 e dd
& 16 I0s°%shut off, dismiss |
G, 17 | 10S%2back up tape, dismiss
O T
20 JMP 000



fM=5780 19,

blocks 3 control goes to reg:.ster 1 and reads 1n the next block, pro-
viding of course that there were no check sum errors. If there are
no more blocks, instruction 16 shuts off the PETR and dismisses the
sequence.

Exercises To Prove To Yourself That You Really Understand

Note that there is no pronsxon made in the tape format of
Program VI for turm.ng on any other sequence after the last block has
been read in. There is rea.lly no necessity for a control change since
the Start-Over sequence can start up the program-just read in at the
poke of a button.

However, pay homage to the (W. A.) Claridan philosophy of minimal
button poking and make the necessary additions of Program VI and its
format which will start the program in sequence #S at a register called
START if bit 4B of the last word in the last block is a ONE, If L.8
is a ZERO make Program VI do what it does now. This addition can
be accompllshed with eleven more WOI‘dS (maybe fewer).

Why are the CF bits of instruction 12 all ZEROS?

Do they need to be ZEROS in instruction 13? Why?



6M=5780 20,

VII. A Punch Out B.outlne

To prove to yourseli‘ that you really, reall understandg write
a program to punch out storage in the block format required by ‘the
read in routine (VI) Control it from a toggle switch register in
the following manners

Let the left half of the toggle switch register be
the first address, and the right half, the last address
of the block to be punched out.

' Let the meta bit (holo) des:Lgnate whether- this is
the last block or not.

Let bit L.9 be a ONE when the toggles are being
~ changed, and a ZERO when the program can look at the
register.

The author has written thls program with 33 :l.nsJ(;:’c"u«r:’m.onso The

‘best solution submitted by a readers will be published in a supple-
ment to- th:l.s memo,

CONCLUDING REMARKS

The six programs in this memo illustrate many of the characteristics
of TX-2. There are other features which haven't been illustrated. For
example, conditionally saving the P and/or Q reglster in E after a JMP;
using multiple step deferred (indlrect) addresses; using the Boolean
instructions or the skip if E is different from word instructions using
the operate class commands and many sequences operating simultaneously.,

There will be supplements to this memo from time to time which ;"Lllusm
trate features such as those mentioned in the preceding paragraph. Any
suggestlons o improvements, discoveries s or remarks in general will be
appreciated by the author and probably also by his associates.

HPP /mk
Insertions:
Pages 3&
ba -
Oa
12a
15a

18a



6M=»5780 21,

NOTES



