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ABSTRACT

The Sketchpad system uses drawing as a novel communication
medium for a computer. The system contains input, output, and
computation programs which enable it to interpret information drawn
directly on a computer display. It has been used to draw electrical,
mechenical, scientific, mathematical, and animeted drawings; it is
a general purpose system. Sketchpad has shown the most usefulness
as an aid to the understanding of processes, such as the motion of
linkages, which can be described with pictures. Sketchpad also makes
it easy to draw highly repetitive or highly accurate drawings and to
change drawings previously drawn with it. The many drawings in this
thesis were all made with Sketchpsd.

A Sketchpad user sketches directly on a computer display with a
"light pen." The light pen is used both to position parts of the
drawing on the display and to point to them to change them. A set of
push buttons controls the changes to be made such as "erase," or
"move." Except for legends, no written language is used.

Information sketched can include straight line segments and
circle arcs. Arbitrary symbols may be defined from any collection of
line segments, circle arcs, and previously defined symbols. A user
may define and use as many symbols as he wishes. Any change in the
definition of a symbol is at once.seen wherever that symbol appears.

Sketchpad stores explicit information about the topology of &
drawing. If the user moves one vertex of a polygon, both adjacent
sides will be moved. If the user moves a symbol, all lines attached
to that symbol will automatically move to stay attached to it. The
topological connections of the drawing are automatically indicated by
the user as he sketches. Since Sketchpad is able to accept topologi-
cal information from a human being in a picture language perfectly
natural to the human, it can be used as an input. program .for computation
programs which require topological data, e.g., circuit simulsators.

~ Sketchpad itself is able to move parts of the drawing around to
meet new conditions which the user may apply to them. The user
indicates conditions with the light pen and push buttons. For example,
to make two lines parallel, he successively points to the lines with
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the light pen and presses a button. The conditions themselves are
displayed on the drawing so that they may be erased or changed with
the light pen language. Any combination of conditions can be defined
as a composite condition and applied in one step.

It is easy to add entirely new types of conditions to Sketchpad's
vocabulary. Since the conditions can involve anything computable,
Sketchpad can be used for a very wide range of problems. For example,
Sketchpad has been used to find the distribution of forces in the
members of truss bridges drawn with it.

Sketchpad drawings are stored in the computer in a specially
designed "ring" structure. The ring structure features rapid pro-
cessing of topological information with no searching at all. The basic

operations used in Sketchpad for manipulating the ring structure are
described.

Thesis Supervisor: Claude E. Shannon

Title: Donner Professor of Science
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Chapter I

INTRODUCTION

The Sketchpad system makes it possible for a man and a computer
to converse rapidly through the medium of line drawings. Heretofore,
most interaction between men and computers has been slowed down by the
need to reduce all communication to written statements that Cén~be typed;
in ﬁhe past, we have been writing letters to rather than confe:riﬁg with
our camputers. For many types of communication, such as describing the
shape of a mechanical part or the connections of an electrical circuif,
typed statements can prove cumbersome. The Sketchpad system, by
eliminating typed statements (except for legends) in favor of line draw-
ings, opens up a new area of man-machine communication. .

The decision actually to implement a drawing system reflected our
feeling that knowledge of the facilities which would prove useful.
could only be obtained by actually trying them. The decision actually
to implement a drawing system did not mean, however, that brute force
techniques were to be used to computerize ordinary drafting tools; it
waslimplicit‘in the research nature of the work that simple new
facilities should be discovered which, when implemented, should be use=«
ful in a wide range of applications, preferably including some unforseen
ones. It has turned out that the properties of a computer drawing are
entirely different from a paper drawing not only because of the accuracy,
ease of drawing, and speed of erasing pro#ided by the computer, but also
primarily because of the abiliﬁy to move drawing parts around on a computer
drawing without the need to erase them. Had a working syétgm not been
developed, our thinking would hé&e been too strongly'influenced by a

lifetime of drawing on paper to discover many of the useful services

’
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that the computer can provide.

As the work has progressed, several simple and veryuwidely applicable.
facilities have been discovered andwimplemented. They provide a sub-
gicture iapability for including arbitrary symbols on a drawing, a con-
straint capébility fof'rélating the parts of a drawing in any computable

way, and a definition copying capebility for building complex relation-

ships from combinations of simple atomic constraints.* When combined
with the ability to point at picture parts given by tﬂe demonstrative
light pen language, the subpicture, constraint, and definition copying
capabilities produce a system of extraordinary power. As was hoped at
the outset, the system is useful in a wide range of applications, and un-

forseen uses are turning up.

AN INTRODUCTORY EXAMPLE

To understand what is possible with the system at present let us
consider using it to draw the hexagonal pattern of Figure 1l.1. We will
issue specific commands with a set of push buttons, turn functions on and
off with switches, indicate position information and point to existing
drawing parts with the light pen, rotate and magnify picture parts by
“turning knobs,and observe the drawing on the display system. This
equipment as provided at Lincoln Laboratory's TX-2 com;puterl is shown
in Figure 1.2. When our drawing is complete it may be inked on paper,

, 1o
as were all the drawings in the thesis, by the plotter shown in.

% Terms with specialized meanings are listed in the glossary at the

very end of this thesis.
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FIGURE 1.2. TX-2 OPERATING AREA - SKETCHPAD IN USE.
On the display can be seen part of a bridge
similar to that of Figure 9.6. The Author is holding

the Light pen. The push buttons used to control
specific drawing functions are on the box in front
of the Author. Part of the bank of toggle switches
can be seen behind the Author. The size and position
of the part of the total picture seen on the display
is obtained through the four black knobs just above
the table.
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FIGURE 1.3. PLOTTER USED WITH .SKETCHPAD

A digital and analog control system
makes the plotter draw straight lines and
circles either under direct control of
the TX-2 or off-line from punched paper
tape.
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Figure 1.3. It is our intent with this example to show what the camputer

can do to help us draw while leaving the details of how itfperformé its
functions for the chapters which follow.

If we point the light pen at the display system and press a button
called "draw", the computer will construct a straight line segmént*
which stretches like a rubber band from the initial to the presentﬂ
location of the pen as shown in Figure 1.4. Additional pre;ses of the
button will'produce additional lines until we have made six, enough for
a single hexagon. To close the figure we return the light pen to near
the end of the first line drawn where it will "lock on" to the end
exactly. A sudden flick of the pen terminates drawing, leaving the
closed irregular hexagon shown in Figure 1.5A.

To make the hexagoh regﬁlar,zwe can inscribe it in a ciréle. To
draw the circle we place the light pen where the center is to be and
.preés the buttpn‘"circie center", leaving‘ﬁéhind é centér point. Now,
choosing a boiﬁt on the ciréle (which fixeé the radius)) we press the
button "drgw" again, this time getting a circle arc¥ whése length only is
controlled“by light pen position as shown in Figure‘l.h.

Next we move the hexagon into the circle by pointing to a corner of

~the hexagon and pressing the button "move" so that the corner follows

¥The terms "circle" and "liné",may‘be used in place of "ecircle arc" and
"line segment" respectively since a full circle in Sketchpad is a circle

arc of 360 or mofe degrees and no infinite line can be drawn.
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A. SIX SIDED FIGURE B. TO BE INSCRIBED IN CIRCLE

BINO

C. BY MOVING EACH CORNER D. ON TO CIRCLE
E. MAKE SIDES EQUAL F. ERASE CIRCLE

G. CALL 7 HEXAGONS H. JOIN CORNERS

FIGURE 1.5. ILLUSTRATIVE EXAMPLE
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the light pen, stretching two rubber band line segments behind it. By
pointing to the circle and giving the termination flick we indicate that
the corner is to lie on the circle. ZEarh corner is in this way moved
onto the circie at roughly equal spacing around it as shown in Figure 1.5D.

We have indicated that the.werticés of the hexagon are to lie on the
circle, and they will remain on the circle throughout our furthér
manipulations. If we also insist that the sides of the hexagon be of
equal length, a regular hexagon will be constructed. This we can do
by pointing to one side and pressing the "copy" button, and then to
another side and giving the termination flick. The button in this case
copies a definition of equal length lines and applies it to the lines
indicated. We have said, in effect, make 3212 liné equal in length to
that line. We indicate that all six lines §re equal in length by five
such statements. The computer satisfies all existing conditions (if it
is poséible) whenever we turn on a toggle switch. This done, we have a
complete regular hexagon inséribeduin a circle. We can erase the entire
circle by pointing to any part of it and pressing the "delete" button.
The completed hexagon is shown in Figure 1.SF.

To mékezthe hexagonal pattern of figure 1.1 we wish to attach a
large number'of hexagons tbgether by their corners, and so we designate
the six cofneys of our hexagon as"attachment points by pointing to each
and pressing a button. We now file away fhe basic hexagon and begin
work on a fresh '"sheet of paper"fﬁy changing a switch setting. On the
new sheet we assemble, by pressing a button to create each hexagon as
a subpicture, six hexagons around a central seventh in afproximate
position as shown in Figure 1.5G. Subpictures may be positioned, each

~in its entirety; with the light pen, rotated orvscaled with the kndbs
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and fixed in position by the pen flick termination signal; but their

internéi shape is fixed. By pointing to the corner of ohe hexagon,
pressing a buttén,‘and then-pointing to the corner of anothér hexagon
we can fasten those corners together, because these corners have been
designated as”attachment points.' If we attach: two cofners of each outer
hexagon to the appropriate corners!of the iﬁner hexagoﬁ, the seven are
uniquely related, and the(ccmputer will reposition them as shown in
Figure 1.5H. An entire group of héxagons, bnce'assembled, caﬁ be 
treated as a symbol. The eﬁtire gfoup éan be called up on another "sheet
of paper" as a subpicture and assembled with other gfoups or with single
Jhexagqns to meke a very large pattern. Using Figure 1.5H seven times

we get the pattern of Figure 1.1. Constructing the pattern of Figure

1.1 takes less than five minutes with the Sketchpad system.

INTERFRETATION OF INTRODUCTORY EXAMPLE

In the>introducto:y example above we have seen how to draw lines
and cirqles:and how to move existing parts of the drawing around. We
used thé light pen\both to positibn parts of the drawing and to point
to_exiéfiﬁé‘parts.v>For~example, we poigted to the circle to erase it,
and while drawing‘the sixth line, we pointed to the end of the first

line drawn to closé the hexagon. We also saw in action the very

general subpicture, constraint, and definition copying capabilities

: of the system.
Subpicture:

The original hexagon might just as well have been anything
else: a picture of a transistor, a roller bearing, an air-
plane wing, a letter, or an entire figure for this report.
Any number of different symbols may be drawn, in terms- of
other simpler symbols if desired, and any symbol may be used
as often as desired.
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When we asked that the vertices of the hexagon lie on the
circle we were making use of a basic relationship between
picture parts that is built into the system. Basic rela-
tionships (atomic constraints) to make lines vertical,
horizontal, parallel, or perpendicular; to make points
lie on lines or circles; to make symbols appear upright;
vertically above one another or be of equal size; and to
relate symbols to other drawing parts such as points and
lines have been included in the system. It is so easy to
program new constraint types that the set of atomic con-
straints was expanded from five to the seventeen listed

. in Appendix A in a period of about two days; specialized
constraint types may be added as needed.

Definition Copying:

In the introductory example sbove we asked that the sides
of the hexagon be equal in length by pressing a button
while pointing to the side in question. Here we were using .
the definition copying capability of the system. Had we
defined a composite operation such as to make two lines
both parallel and equal in length, we could have applied
it just as easily. The number of operations which can be
defined from the basic constraints applied to various pic~
ture parts is almost unlimited. Useful new definitions

are drawn regularly; they are as simple as horizontal lines
and as complicated as dimension lines complete with arrow-
heads and a number which indicates the length of the line
correctly. The definition copying capability makes using
the constraint capability easy.

IMPLICATIONS OF INTRODUCTORY EXAMPLE

As we have seen in the introductory example, drawing with
the Sketchpad system is different from drawing with an ordinary pencil
and paper. Most import;nt of all, the Sketchpad drawing itself is
entirely different from the trail of carbon left on a piece of paper.
Infa;mation about how the drawing is tied together is stoped in the
computer as well as the information which gives'the drawing its particular
appearance. Since the drawing is tied together, it will keep a useful

appearance even when parts of it are moved. For example, when we moved

the corners of the hexagon onto the circle, the lines next to each corner
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were automatically moved so that the closed topology of the hexagon was

preserved. Again, since we indicated that the corners of the hexagon
were to lie on the circle they remained on the circle throughout our
further manipulations.

Tt is this sbility to store information relating the parts of a
drawing to each other that makes Sketchpad most useful. For example, the
linkage shown in Figure 1.6 was drawn with Sketchpad in just a few
minutes. Constraints were applied to the linkage to keep the length of
its various members constant. Rotationlof the short central link is
supposed to move the left end of the dotted line vertically. Since
exact information about the properties of the linkage has been stored in
Sketchpad,vit is possible to observe the motion of the entire linkage
when the short central link is rotated. The value of the nuMbervin
Figure 1.6 was constrained to indicate the length of the dotted line,
comparing the actual motion with the vertical line at the right of the
linkage. One can observe that for all positions of the linkage the
length of the dotted liné is constant, demonstrating that this is indeed
a straight line linkage. Other exampleé of moving drawings made with
Sketchpad may be found in the final chapter.

As well as storing how the various parts of the drawing are related,
Sketchpad stores the structure of the subpicture used. For example, the
storage for the hexagonal pattern of Figure 1.l indiéates that this
pattern is made of smaller patterns which are in turn made of smaller
patterns which are composed of single hexagons. If the master hexagon
is changed, the entire appearance of the hexagonal pattern will be
juchanged, The structure of the pattern will, of gourse, be the same. For
eiample, if we change the basic hexagon into a semicircle, the fish

scale pattern shown in Figure 1.7 instantly results.
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Since Sketchpad stores the structure of a drawing, a Sketchpad

drawing explicitly indicates similarity of symbols. In an electrical
drawihg, for example, all transistor éymbols are created from a sihgle
master transistor drawing. {f scme changeAto the basic transistor symbol"
is made, this change appears at once in all transistor symbols without
fﬁrfher effort. Most important of all, the cbmputef‘"kno&s" that a
"transistor" is intended at thét place in the circuit. It has no need

to interpret the collection of lines which we would easily recognize as

a transistor symbol. Since Sketéhpad stores the topology -of the draw-

ing as we saw in closing the hexagon,.one indicates both what a circuit
looks like and its electrical connections when one draws it with
Sketchpad. One can seetthat the circuit connections are stored because
moving a component automatically moves any wiring on that component

to maintain the cqrrect connections. Sketchpad circuit drawings will soon
be used;as inputs for a circuif éimulator. Having drawn a circuit one will.

find out its electrical properties.

SKETCHPAD AND THE DESIGN PROCESS

Construction of a drawing with Sketchpad is itself a model of
the design process. The locations of thé points and lines of the draw-
ing model the variaﬁles of a design, and the goemetric constraints applied
to the points and’lines o? the drawing model the design constraints
which 1imit the values of design variables. The sbility of Sketchpad
to satisfy the geometric constraints applied to the parts.of a drawing
models the ability éf a good designer to satisfy ail the designfconditions
impésed.by thejlimitations of his materials,‘cost, etc. In fact, since
designers in many fields produce nothing themselves but a drawing of a

part, design conditions may well be thought of as a@plyingitOche
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drawing of a part rather than to the part itself. If such design con-
ditions were added to Sketchpad's vocabulary of constraints the‘gcm;
puter could assist a user not only in arriving at a nice looking draw-

ing, but also in arriving at a sound design.

PRESENT USEFULNESS

At the outset of the research no one had ever drawn engineering
drawings directly on a computer display with nearly the facility now
possible, and consequently no one knew what it would be like. We have
now accumulated about‘a hundfed hours ofyexperience acﬁually making
.drawings with a working system. As is shown in the final chapter,
application of computer drawing techniques to a variety of problems has
been made. »As more and more applications have been made it has become
clear that the properties-of Sketchpad drawings make them most useful
in four broad areas: | |
ForzMaking Small Changes to Existing Drawings:

Each time a drawing is made, a description of that drawing

is stored in the computer in a form that is readily trans-
ferred to magnetic tape. Thus, as time passes, a library

of drawings will develop, parts of which may be used in other
drawings at only a fraction of the investment of time that
was put into the original drawing. Since a drawing stored

in the computer may contain explicit representation of design
conditions in its constraints, manual change of a critical
part will automatically result in appropriate changes to
related parts.

For Gaining Scientific or Engineering Understandlng of Operations That
Can Be Described Graphlcally.

The description of a drawing stored in the Sketchpad system
is more than a collection of static drawing parts, lines and
curves, etc. A drawing in the Sketchpad system may contain
explicit statements about the relations between its parts

so that as one part is changed the implications of this
change become evident throughout the drawing. It is possible,
as we saw in Figure 1.6, to give the property of fixed  length
to lines so as to study mechanical linkages, observing the
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path of some parts when others are moved.

As we saw in Figure 1.7 any change made in the definition
of a subpicture is at once reflected in the appearance of
that subpicture wherever it may occur. By making such
changes, understanding of the relationships of complex
sets of subpictures can be gained. For example, one can
study how a change in the basic element of & crystal
structure is reflected throughout the crystal.

Topological Input Device for Circuit Simulators, etc.:

Since the ring structure storage of Sketchpad reflects
the topology of any circuit or diagram, it can serve
as an input for many network or circuit simulating
programs. The additional effort required to draw a

-circuit completely from scratch with the Sketchpad system

may well be recompensed if the properties of the .circuit
are obtainable through simulation of the circuit drawn.

For Highly Repetitive Drawings:

The ability of the computer to reproduce any drawn

symbol anywhere at the press of a button, and to
recursively include subpictures within subpictures

makes it easy to produce drawings which are composed of
huge numbers of parts all similar in shape. Great interest
in doing this comes from people in such fields as memory
development and micro logic where vast numbers of elements
are to be generated at once through photographic processes.
Master drawings of the repetitive patterns necessary can be
easily drawn. Here again, the ability to change the
individual element of the repetitive structure and have

the change at once brought into all sub-elements makes

it possible to change the elements of an arrsy without
redrawing the entire array.

Those readers who are primarily interested in the application

of Sketchpad are invited to turn next to Chapter IX, page 120 for

aditional examples and conclusions.
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Chapter II

'HISTORY OF SKETCHPAD

When at the end of the summer of 1960 Jack I. Raffel told me that
there was considerablé intereét at Lincoln Laboratory in making a com-
puter "more approachable"” through adva.nc.ed use of displays, I paid
little heed, but & seed had been .planted. As work on TX~O computer at
MIT during the winter of 1960-61 brought me some familiarity with using
display and light pen, the id.éa‘ began to grow in my mind that applica-
tion of computers to meking line drawings would be exciting and might
prove fruitful. ILate in April, 1961, following up Mr. Raffel's eaflier
éuggestion, I approached Wesley A. Clark, then in charge'of computer
applications in Gr§up 51 ‘of Lincoln Laboratory, with the proposal ;:hat
I use TX-2 in an investigation of computer drawing techniques. I 6we a
great deal to Mr Clark’s initiai erithusiasm and, though I,didn'i: “know
it at ’cﬁe time, to the manjr design feai‘:u‘resl he had incorporated into
TX-2 seemingly with just such a project in mind.

During the smmnér of 1960, ‘Herschel H. Loomis had done socme preli-
minary drawing work6 on TX-2 which he was kind enough ﬁo demonstrate for
me in May, 1961, as m& first contact with TX-2. Du.rir;g the summer of
1961 I devised a curve tracing program and some of the first notions
about interlaced and twinkled displéy. La.’be in the sumer of 1961 a
project tov connect -an ink-line-on-paper plotting system, to TX-2 was re-
vived. An EAI plotter],'g‘ painted bright red, had been at Lincoln Labo=-
,i'atory for twp or three years before, but interest in the project had

faded for lack of a user. Throughout the Sketchpad effort I have
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mainfained a collateral interest in the hardware development necessary
to get the plotter working. The plotting system has}been incorporated
as & part of the overall Sketchpad system, but of course its developmeht
is only incidental to the research embodiéd in the thesis.

From the earliest stages of the project development I had had the
clbsest contact with Professor Claude E. Shannon whose penetrating
questions have served as the measuring stick by which I could judge my
progress. He agreed to supervise the drawing effort as a thesis project
in the fall of 1961. 1In the process of contacting facultj'meﬁbers to
form a thesis committee I became aware that my effort was not unique and
that I was not alone in my interest and enthusiasm for graphical com-
puter input and output. The availability of computer cdntrolled‘display
systems and particularly of light pen devices for manual input maede it
almost inevitable that computers would one day be involved in engineer-
iﬁg drawing. People at MIT had long talked of such an applicétion.

Computer application to geometric problems was not new. The APT
(éutomatically'grogrammed gool) development through which a computer is
able to cohtrol a milling machine to produce a complex metal part had
evolved many useful geometric manipulation techniques. I made contact
with the Computer Aided Design group at MIT which_wasbcdmposed partly of
the people of the MIT Electronic Systems Laboratory (fonnefly called the

' Servomechanisms Laboratory) who developed APT and partly of people in
the Mechanical Engineering Department who brought a knowledge of tﬁe
prdbléms faced by designers to the project.

I had been surpfised that so little practical work had been done in

’ applicationAof computers to line drawing, especially since display
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systems and light péns were relatively common when my wdrk began. I can
see now, however, that I have had a unique opportunity to pursue my in-
terest. I was able to visit many sepafate laboratories for discussion
and ideas without becoming so attacﬁed to any one that I was forced into
its way of thinking. In particular, members of the Mechanical Engineer-
ing Department, notably Professor Steven:A. Coons;, who agreed to.serve
on my thesis committee, suggested mechanical design problems and appli-
cations. Members of the Electronié Systems Laboratory, notably bouglas
Ross, provided help and advice on n-component elements. The Artificial
Intelligence group, notably Professor Marvin MinSky, another committee
member, gave advice and encouragement in the niceties of picture repre-
sentation and the kind of interest aimed more at a fundamental under-
standing of the processes developed than in their praétical application.
Lincoln Laboratory provided not only advice but also technical support
including to date about 600 hours of time on the TX-éw

ﬁhatever success the Sketchpad effort has had cén in no small

measure be traced to the use of TX-2.* TX-2's 70,000 word memory, 64
index registers, flexible input—output control and liberal supply of
‘manual intervention facilities such as toggle switches, shaft encoder
knobs, and push buttons all contfibuted to the speed with which ideas
could be tried and accepted or rejected} Moréover, being an experi-
mental machine it was possible to make minor modifications to TX-2 to
mateh it better to the problem. For example, a push button register
was installed a£ my request. Now that we know what drawing on a com-
puter is like, much smaller machines canrbe used for practical aﬁplica-

tions.

% A brief description of TX-2 may be found in Appendix G.
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RESEARCH PROGRESS

Thus it was that in the fallyof 1961 work began in earnest on a
drawing system for TX-2. In the early fall I perfected my light pen
tracking programs and subroutines for displaying straight lines and pre-
senting a portion of the total picture on the display at increased magni-
fication. In early November 1961, my first light pen controlled drawing
program was working. It is significant that at this time a notion of
"strong conditions" was used to give geometric nicety to the drawing.
For example, lines could be drawn parallel or perpendiculaf to existing
linés but carried no permanent trace of the relationship other than the
accident of their position. This early effort in effect provided the
T-square and triangle capabilities of conventional drafting. Somewhat
before my first effort was working, Welden Clark of BoltjiBérahek}iénd
Newman demonstrated a similar pregram to'me on the PDP-1 computer.5

Early in December 1961 Professor Shannon visited TX-2 to see the
work I had been doing. As a result of that visit the entire effort took
new form. First, Professor Shannon suggested point blénk that I include
circle capability in the system. Second, I realized when he asked for
paper to sketch a drawing he intended to enter into the computer that
the strong conditions notion which simulated the conventional tools of
drafting was not adequate for computer drawing. As a result of inelud-
ihg circles into the Sketchpad system a richness of displayvexperience
has been‘obtained without which the research might have been rather dry.
As a result of trying to improve upon conventional drafting toois the
full new éapability of the computer-aided drafting system has come into

being.
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In December 1961, and during the first part of 1962, then, I began

working on the problems of display generation fo: cirlces outlined in’
Chapter V. The circle generating subroutine gave great difficulﬁy es?e—
cially in the detai;s of edge detection and closure. At abéuf this same
time I started work on the ring structure representatioﬁ of the drawing
outlined in Chapter III; the preliminary drawing effort of Nongber 1961
had used conventional table storage. By the first of February 1962, the
ring structure was in use, but without the generic blocks which give it
its present flexibility. Intersection programs for lines and circles
had been written and debugged, and the second géneration drawing program
could be begun. |

In making the second generation drawing program,éxplicit represen-
tation of constraints and automatic constraint satisfaction were-to bé
included. I learned of the matrix method described in Appendix F for
finding the minimum mean square error solution to linear equations ffqm

Lester D. Earnest of the MITRE Corporation and obtained a macro, SOLVE,

from Lawrence G. Roberts which did the arithmetic involved S

:Armed'with
the tools for representing énd doing arithmetic for constrairts I wert
gailly ahead with brogramming.

In the first crack at representing constraints I made two basic
errors which have subsequently been corrected. First, I provided that
the constraints be tied not only to the variablés constrained but also
to relatéd nonvariables. For example, the horizontal constraint not
only referred (as it should) to the two end points of a line, but also
(as has béen’subsequently removed) to the line itself. It was impos-

sible to make points have the same y coordinate without having a line
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between them; deletion of the line deleted the constraint as well. In
more recent work constraints refer only to variablesvso that lines need
not be present to make points have the sameAy coordinate.

The second error in constraint representation was in the numerical
computation of the relationship represented by the constrgint. At first
I insisted that for any constrained variable it be possible to compute
directly the linear equatién of best fit to the constraint. That is;
for each constraint on a &ariable the equation of a line could 5e'found,
along vhich the congtraint would be'satisfied or nearly so. Not only
was it difficult to compute the equation of suéh akline, requiring a
speciai purpose program for each type of constraint, but also my lack
of regard for the niceties of the scale factor of the computed equation
resulted in instabilities in fhe constraint satisfaction process.
Whereas for the relaxation procedure to operate properly it is neces-
sary to remove "energy" from the system at each stage, my computations
for certain cases added énergy. It was‘early summer of 1962 before
definition of the mathematical properties of constraint types in terms of
& subroutine for computing directly the errpr introduced by 8  cbn?
straint not only cured the instability troubles but also made it easy to
add new constraint types.

Along with the new caéabilities of the constraint satisfaction pro-
grams and the extensive use to be made of constraints, the seéond genera~
ﬁion drawing program included for the first time the recursive instance
expanéion wﬂich made possible instances within instances. The trials of
getting systeﬁs to work are many; one which stands out1inﬁmy'mihd was

that instances within instances roﬁated in the wrong direcﬁion when the
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outér insfance was rotated, Neither:. were the things I tried to do
always correct. For example, the initial instance expansion foﬁtine
forced each instance of a picture to be smaller than the master drawing
for that instance. I have since come to appreciate the value of having
some normelizing factorvin products so that all fixed point numbers can
“be treated as signed frggtions in the range, -1 ZuX ;ﬁl, representing
the fraction of full scale deflection on the coordinate system invques-v
tion.

In late March 1962, I discovered that points could be related to
instances thfdugh the use of two linear equations relating'the coérdi-
nates of the point to the four éoﬁponents of the instance ﬁosition.
Armed with this new information, the difficulties I had been having
with attachers on instances yielded to the same geheral format used for
other coﬁstraints. Ittbecame possible for a single instance fo havé as
many attachers as desired, each of which could serve as attachment point
for any number of instances.

The first actual programming of thelmaze-solving'high.speed con-
straint satisfaction methods.proposed much earlier began about March
1962. 1 had pot had enough experience ﬁefore that time #ith the ring
structure to face the extensive ring manipulations which would be ;e-
quired for this part of the work. The development of the ring manipula-
tion macros shown in Appendix D was started in connection with the maze
solving routines.

vBy Memorial Day 1962, the second version of Sketchpad was consid-
ered working well enough that a motion picture was made showing the

various drawing maenipulations possible. It was possible to draw line
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segments and circle arcs and’point tocthem. to: erasesthem or move thec
points on which they depend. A limited number of consﬁraints were
~available which could make lines horizontal or vertical, force points
to lie on lines or circles, and relate instances to their attachment
points. Constraint satisfaction was primarily by relaxation, but for
certain simple cases the maze solving methods would give more rapid re-
sults. It was possible to see that sketching could indeed be done on
the computer.

Not yet available were display for points or constfaints » Or any
notion of digits, texﬁ , scalars and dummy variables. It was almost im-
possible to add new constraint types to the system, and even hé.d they
been added, the recursive merging and the definition copyipg capability
were not available to apply them easily to the object picture. Sketch-
ped at this stage was a nice ‘demonstra.tion“and'toy but as yet lacked ‘th‘e
richness of detail now available. ‘ |

During the. late spring of 1962, then, enough experience had been
gained with computer drawings to realize that more capabilities wére
needéd. It was possible for me, armed with photographs of the latest
developments, to approach a great many peoplev in an effort to get new
ideas to carry the work on to a successful conclusion. Out of these ‘
discussions came the notions of copying definitions and of recursive
merging .which are, to me, the most important contri'bﬁ_tions of the
Sketchpad system. Also out of these talks came the conviction that a
generic structure would be necessary if the system were to be made‘ easy
to expand. On June 9, 1962 all this new informa.tion came to a head and

an entirely new system was begun which has grown with relatively little
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~change into the final version described here. Had I the work to do
again, I could start afresh with the sure knowledge that generic strué-
ture, separation of subroutines into general purpose ones applying to
all types of picture parts and ones specific to particular types of
picture parts, and unlimited applicability of functions (e.g. anything
should be moveable) would more than recompense the effort involved in
achieving them. I have great admiration for those people who were able
to tell me these things all along, but I, personally, had to follow the
stumbling trail described in this chapter to beccme convinced myself.
It is to be hoped that future workers can either grasp the power of
generality at once and strive for.it or have the courage to stumble
along a trail like mine until they achieve it.

Towards the end of the summer of 1962 the third and final version
offSketchpad was beginning to show remarkable power. I had the good
fortune at this time to obtain the services of Leonard M. Hentman, a
Lincoln Leboratory Staff Programmer, who added innumerable service
functions, such as magnetic tape manipulation routines, to the system.
He also cleaned up some of the messy programming left over from my
- rushed efforts at getting things working. For example, he shortened
and improved my original ring manipulation macros. Also, ‘towards the
end of the summer the plotting system began to be able to give useable
output. Hantman added plotting programs to Sketchpad through which the
figures in this paper.were made.

Computer time Segan to be spent less and less on program debugging
and more and more on applications of the system. It was possible ﬁo

provide preliminary services to other people, and so a user group was
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formed and informal instruction was given in the use of Sketchpad. :A
library tape was obtained and has ever since been collecting pictures
for possible future use. The user group experience showed that rela-
tively new users with no programming knowledge could produce simple
drawings with the system if a skilled user (myself) prepared the build-
ing blocks necessary. For example, a secretary designed and drew an
alphabet with the aid of a 10 x 10 raster of points to use as end points.
Both the raster and the alphabet are now a part of the library.

Even now, however, there are possibilities for application of the
system not yet even dreamed of. The richness of the possibilities of
the definition copying function, and the new types of constraints which
might easily be addéd to the system for special purposes suggest that
further application will bring about a new body of knowledge éf sysfeﬁ
application; For example, the bridge design examples shown at the end
of this papér-were not anticipated. :

There are, of course, limitations to the system. In the last chap-
ter are suggested the improvements, some just minor changes, but some
major additions which would change the entire character of the system.

It is to be hoped that future work will far surpass my effort.
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Chapter III

RING STRUCTURE

Th; Sketchpad system stores information about drawings in two sepa-
rate forms. One is a table of display spot coordinates designed to make
display as repid as possible; the other is a file designed to contéin
the topology of the drawing. The topological file is set up in a spe-
cially designed ring structure which will form the major subject of this
chapter. The ring structure was designed to permit rearrangement of the
data storége structure for editing pictures with a minimum of file
searching, and to permit rapid constraint satisfaction and display file
generation. The ring structure wes not intended to pack the required -
information into the smallest possible storage space. We felt ﬁhat we
could write faster running programs in less time by including some re-
dundancy in the ring structure. This was considered more important than
the ability to store huge drawings. Moreover, the. large storage capaci-
ty of the TX-2 did not force storage conservation. The particular form
of the ring structure chosen has led to some of the most interesting
features of the system simply because the changes required to keep the
ring structure consistent led to useful facilities such as recursive

merging discussed in Chapter VI.

N-COMPONENT ELEMENTS
In the drawings made by the Sketchpad system there are large popu-
lations of relatively few types of entities with very little variation

in format between entities of each type. For example, an entire
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drawing may be composed of line segments and end points, each line seg-
ment connecting exactly two end points, and each point having exactly
two coordinates. Because of this uniformity within each given type of
entity, it is possible to set up a standard storasge format for each
type of entity with standardized locations for information about the
various properties which entitles of that particular type usually have.
Each entity, therefore, is represented in the computer as an n-component
element, that is, by a block of n consecutive registers in storage each
of which contains a specific kind of information about that element.
For example, the coordinates of a point are always stored in the ith
and jth registers of its n-component element or block. Similarly, the

nth and mth

registeré of a line block always contain the addresses of
the start and end point blocks for that line as Figure 3.1 shows. Par-
ticular numerical locations for various pieces of information are shown

in Appendix C.

MNEMONICS AND CONVENTIONS

In using n-component élements it has been found useful to give
symbolic names to the various registers of each element so that the
actual numerical locations of various kinds of information need not be
remembered. Thus, for example, the coordinates of a point are stored
in the PVAIFh ‘é.nd“.PVAL+lst (for Point VAIue) registers of its n-compo-
nent element. Since all programming for Sketchpad is done in a symbolic
programming language in terms of mnemonics, it is easy to rearrange thé
internal format of any kind of n-component element by changing the nu-
merical values assigned to the mnemonic symbols used within that kind

of element. In the figures in this thesis, symbolic locations of
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FIGURE 3.1, N-COMPONENT ELEMENTS
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pieces of data within n-component elements are shown to the right of the
data. Actual register addresses are shown to the left of the data. The
position of particular pieces of data may change from figure to figure
as it becomes necessary to more fully illustrate the structure, but the
mnemonic address will indicate whichdata are being shown.

Although the use of mnemonics gives complete flexibility to the for-
mat of n-component elements, certain conventions were followed in imple-
menting Sketchpad and in the figures of this thesis.

l. The location of an n-component element is the address of
its first (lowest numbered) register;

2. The first component of the element (the contents of its
first register) is used to indicate the type of element;
and

3. All numerical information such as values of coordlnates
is located at the end (highest numbered locations) of
the element.

In the figures, higher numbered registers run down the page, making
the location of an element the address of its top register. Such element
locations are indicated by symbolic names to the left of the n-component
element or contained within components of other elements which make ref-
erence to them.

Most of the components of the n-component elements in the Sketchpad
system are pointers containing addresses of other elements. Such point-
ers indicete topological information such as the end points of a line
segment. If an n-component element is to be relocated in storage, that
is, if the information it contained is to be stored in some other regis-
ters to compact the storage structure prior to saving it On.ﬁagnetic

tape, the contents of any topological component referring to the element

which is to be relocated must be changed to refer to the new location.
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However, relocation of an element in storage should not change the ap-
pearance of the picture represented, and so numerical information such
as the coordinates of points or the size of subpictures must not be
changed. Segregation of mumerical information at the end of the n-com- -
ponent element facilitates the relocation of elements.

Gross transfers of the entire storage structure can be accomplished
by treating all topological pointers as relative to some basic address.
In Sketchpad, for example, a topological pointer to an n-component ele-
ment contains not the absolute computer address of that element, but the
location of the n-component element relative to the first address of the
storage structure area, LIST. At various times it has been necessary to
change the location of the storage area, giving LIST a different value.
The use of relative pointers proves useful for inter-machine communica-
tion also, making it possible to store a given data structure anywhere
in memory. In the illustrations, however, the relative pointing is sup-
pressed, as if LIST = O.

REVERSE INDEXING

Suppose that index register o contains the relative location of the
n-component element for a line segment and that it is desired to know
the coordinates of that line's start point (ISP). The address of the
start poiht block may be found in the LSth entry of the line block as
shown in Figure 3.1. We can pick up this address using reverse indexing
by the instruction:

LDA o LSP + LIST

load the accumulator from the LSPth entry of the block pointed to by
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index register & LIST enters in because pointers are relative. Now if
we trensfer the contents of the accumulator to index register P and per-
form the instruction:

LDA 8 PVAL + LIST

the X coordinate of the start point of the line will be placed in the
accumulsator.

Note that in these instructions we used the index register to indi-
cate which n-component element is being considered and the address por-
tion of the instructions to indicate the specific component selected.
This is called "reverse indexing" to distinguish it from "normal" index-
ing in which the index register indicates the ith entry of the table
referred to in the address portion of the instruction. The only normal
thing about "normal" indeking, however, is the widespread inclusion in
computers of an instruction which increments an index register and trans-
fers control to a specified location if the_index register has not yet
reached some specified value, usually O. The 709's TIX instruction is
typical.

A real value of the TX-2 for implementing the Sketchpad system
turned out to be its ability to reset an index register from a register
indicated by the contents of another index register (or even the prior
contents of the index register to be reget:). TX-2's accumulator is not
used in this index register processing. A special symbolism was built
into the compiler to make it easy to use double index instructions; the
instruction: |

RSX ISP + LIST
Bla 1

puts into B the address of the start point of the line pointed to by
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index register . The Sketchpad progrem consists in lérge part of such

instructions.

RING STRUCTURE

The basic n-component element structure described above has been
somewhat expanded in the impleﬁentation of Sketchpad so that all refer-
ences made to a particular n-component element or block are collected
together by a string of pointers which originates within that block.

For example; all the line segments which terminate on a particular point
may be found by following a string of pointers which starts within the
point block. This string of pointers closes\on itself; the last pointer
points back to the first. Moreover, the string points both ways to make
it easy to find both the next and the previgus member of the string in
case some changé must be made to them.

The ring structure, then, assigns two registers to each component
in the n-component element. One is used for the direct reference shown
in Figure 3.1; the éther register 1s used to string similar references
together. The basic ring consists of two kinds of register pairs, the
"hen" and "chicken." The hen pair is contained within a block which
will be referred to, for exémple, in a point block, while the chicken
pair is contained in a block making reference to another, for example,

& line block making reference to the point. The chickens which belong
to a particular hen constitute all the references made to the block con-
taining the hen. Figure 3.2 shows a typical ring; the inserting opera-
tion and ordering shown will be explsined below. Appendix C shows how

the hen and chicken blocks are arranged in different kinds of elements.
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Figure 3.3 shows the complete structure for a line segment and two end

points with the appropriate rings shown.

The mnemonic for a component is taken to be the upper (lower num-
bered) of the register pair. The ring collecting ties, of coﬁrse, are
relative to LIST but this has been suppressed in the illustrations. The
part of the upper register not occupied by the chicken pointer contains
a number which indicates how far this particular element is from the top
of the n-component element. This is the small negative number showing
in Figure 3.3. It is used to find the top of a block when a component

of it has been found as a member of a ring.

HUMAN REPRESENTATION OF RING STRUCTURE

In representing ring structures the chickens should be thought of
as beside the hens, and ﬁerhaps sl%ghtly'below them, but not directly
below them. The reason for this is that in the ring registers, régard-
less of whether in a henior a chicken, the left half of oné register
points.to another register whose right half always points-back. By
placing all suéh registers in a row, this feature is clearly displayed.
Moreover, the meaning of placing & new chicken "to the left of" an exist;
ing chicken or the hen is absolutely clear. The conventidn of going
"forward" around a ring by progressing to the right in sﬁch a representa-
tion is élear, as is the fact that putting in new chickens to the ;ggg .
of the hen puts them "last," as shown in Figure 3.2. Until this repre-
;entation was settled on, no end of confusion preveiled because there
was no adequate understanding of "first," "last,” "forward," "left of,"

or "before.”
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BASIC OPERATIONS
The basic ring structure operations are:

1. Inserting a new chicken into a ring at some specified
location in it, usually first or last.

2. Removing a chicken from a ring.

3. Putting all the chickens of one ring, in order, into
another at some specified location in it, usually
first or last.

4, Performing some auxiliary operation on each member of
a ring in either forward or reverse order.

These basic ring structure operations are implemented by short sections
of piogram defined as MACRO instructions in the compiler language. By
suitable treatment of zero and one member rings, that is of hens with
none or one chicken, as shown in Figure 3.4, the basic operation pro-
grams operate without meking special cases. As stated in the macro lan-
guage, the basic operations become trivially easy to use. For example,
PUTL=ISPx = PISx B

puts the LSP (Line Start Point) entry of the line block pointed to by
index register o into the ring whose hén is the PLS (Point Iinef entry)
of the point indicated by index register B, thus making B be the start
point of . If "x" is read as "of" and "»" is read as "into", the macroh
statement almost makes sense in English. The format and function of all
the ring manipulation macro instructions used in Sketchpad can be found

in Appendix D.

GENERATION OF NEW ELEMENTS
Subroutines are used for setting up new n-componeht elements in

free spaces in the storage structure. These subroutines place the
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distance-to-the~top numbers ‘in alternate registers as required=and

clear out the components so thaf each is an empty ring as shown in Fig-
ure 3.5. As parts of the drawing are deleted, the registers which were
used to represent them become free, indicatéd.by placipg them in the
FREES ring. Data for new n-cqmponent elements could be put into these
free registers if sufficiently long continuous blocks of free storage
were available, but Sketchpad is not at present equipped to do this.
Rather, new components are set up at the end of the storage aresa,
lengthening it, while free blocks are allowed to acéumulafe, Garbage
collection periodically compacts thé storage structure-by removal of the
free blocks and relocation of the information above them (that 1s, infor-
mation in higher numbered registers illustrated lower on the page) as
shown in Figure 3.6. Storage of a drawing on magnetic-tape can be done

much more compactly for having removed all internal free registers.

BOOBY TRAPS

Every system which is devised for programming on computers has lit-
tle problem areas which give‘humans more troﬁble thén other parts; the
ring structure organizatioﬁ and oﬁératibns are no exception. * As was
indicated above, the visualization of the ring‘as a row of elements aids
greatly in understanding of the basié o?erations. The use of relative
addressing, while giving great power for data communication, gave the
programmer considerable difficulty because the term LIST must often but
not always be added to or subtracted from the address portion éf in~
structions. It took months before all the nuances of these problems

were learned.
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By far the greatest difficulty . -concerned processes which change
the ring structure while other operations are taking place on it. For
example, there must be two.vérsions of the basic macro which permits aux-
iliary operations to be performed on all the members of a ring in turn.
One’version, IGORR (Leonard's Go Round the ring to the Right), performs
the auxiliary operation on one ring member while remembering the next
ring member so that if the auxiliary operation deletes the current ring
member the next one has already been found. Another version of the basic
macro, LGORRI (LGORR Insertablé), remembers which ring member the auxil-
iary operatiqn is being performed on so that if the auxiliary operation
puts a brand new member into the ring next to the current one, the new
one will not be overlooked.. Neither macro will function properly if both
the current and the next ring members aré deleted simultaneously by the
auxiliary function.

Early in the research the multiple sequence nature of the TX-2 was
utilized to provide immediate updating of the ring structure when push
button commends were given by the user. Trouble arose if the display
generation program was working in the ring structure at the instant that
it changed. It is now clear that multiple sequencing and data éhannels
must be used only to transmit information into the computer and not to
process the ring structure, a job properly left to the main computation
stream. Main computation stream r;pg’manipulation has implications on
future machine design since most of the ring manipulations can be per-
formed with index arithmetic alone without tying up the main arithmetic
element which meanwhile could be of use to someone else. Perhaps several
machines could share a single powerful arithmetic element if they did the

bulk of their processing with index arithmetic.
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GENERIC STRUCTURE, HIERARCHIES

The organization of the elements of the drawing into types has fa-
cilitated the generalization of the programs which comprise the Sketch-
pad system. The effort toward generality came relatively late in the
research effért because I did.not at first appreciate the power that a
general approach could bring. Considerable reprogramming was done, how-
ever, to include as much generality as possible. Those subroutines
which had to do with a single kind of drawing part were collected to-
gether and specifically labeled, both in the coding sheets and block
diagrams, but most importantly in the mind, as belonging to that parti-
cular kind of entity. The remainder of the program was left completely
general. |

The general part of the program will perform a few basic operations
on any drawing part, calling for help from routines specific to particﬁ-
lar types of parts when that is necessary. For example the general pro-
gram can show any part on the display system by calling the appropriate
display subroutine. Similarly, the general program is able to relocate
objects on the display, making use of specific routines only to apply a
transforﬁation to the various kinds of objects. Again, the general pro-
gram will satisfy any numerical constraints applied to the drawing by the
user, calling on specific subroutines only to compute the error intro-
duced into the system by a particular constraint.

The big power of the clear=-cut separation of the general and the
specific is that it is easy to change the details of specific parts of
the program to get quite different results or to expand the system with-

out any need to change the general parts. This was most dramatically



-50-
brought out when generality was finally achieved in the constraint dis-
play and satisfaction routines and new types of constraints were con-
structed literally at fifteen minute intervals.

In the data storage structure the separation of general and specific
is accomplished by collecting all things of one type together as chickens
which belong to a "generic" hen. The generic hen contains all the infor-
mation which mskes this type 6f thing different from all other types of .
things. Thus the data storage structure itself contains all the speci-
fic information, leaving 6nly genefal'programs-for the rest of tﬁe system.
A typical generic block is shown in Figure 3.7.

The generic blocks are further gathered together under super;generic
or generic-generic blocks according to four categories: Variables, Topo-
logicals, Constraints, and Holders, as shown in Figure 3.8. All picture
parts which have numerical information are ultimately gathered together
under the VARIABLES block by way of their own generic blocks. Ideally -
the VARTIABLES block should in some way indiéate that there was numericai
information; but the generality has not been’carried as far as this yet.
Spéce for information about the number of components of a variable (which
is unnecessary for the topological entities) could be omitted from the
generic blocks for lines and circles. At present all generic blocks
still carry space for all the information in any of them simply because
éf historical reasons. This accounts for the spaces seen in the Figure
3.7. |

For the sake of completeness the four broad categories of things,
the generic-generic blocks, are brought together under thée UNIVERSE

block, which, as a special case, is always located at the exact start of
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the storage structure, relative address 1. The UNIVERSE block belongs
to no higher block. I considered making it belong to itself so tﬁat con-
tinued upward searching through the generic structure would appear to
reach an unending string of UNIVERSE blocks, but I could find noé solid

reason for so doing. Further work may devélop one, of course.

EXPANDING - SKETCHPAD

Addition of new types of things to the Sketchpad system's ydcabulary
of~pictufe parts requires only the construction of a new generic block
(about 20 registers) and the writing of appropriate subroutines for that
thing. The subroutines miéht be easj to write, as they'usually are for
new constraints, or difficult to write, as for adding ellipse capability,
but at least a finite, well-defined task fages one to add a new ability
to the system. Before the generic‘structure was clarified, it was almost
impossible to add the instructions required to handle a new t&pe of ele-

ment.
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Chapter IV

LIGHT PEN

In Sketchpad the light pen is time shared between the functionsJOf
coordinate input for positioning picture parts on the drawing and demon-
strative input for ?ointing to existing piéture parts to make changes.
Although almost'any kind of coordinate input device could be used in-
" stead of the light pen for positioning, the demonstrative input uses
the light pen 6ptics as a sort of analog computer to remove ffém consid-
eration all but a very few picture parts which happen to féll within its
field of view, saving considerable program time. Drawing systems using
storage display devices of the Memotron type may not be practical be-

cause of the loss of this analog computation feature.

CONSTRUCTION OF LIGHT PEN

The light pen is a hand held photocell which will report to the
computer whenever a spot on the display system falls within its small
field of view. Tﬁe housing for the photocell is about the size of a
fountain pen and is manipulated much as a pen or peﬁcil, hence the name.
Many different varieties of light pens have been built, including_lérge
cumbersome ones in the days before miniaturization, to be replaced by
transistorized vefsions, and recently by fiber optic pens connected by‘
a flexible light pipe to a photocell mounted inside“the computer frame.
The particular pen used for the Sketchpad system consists of a photo- '
diode and transistor preamplifier mounted in the pen housing and con-

nected to the computer by a length of small coaxial cable, as shown in
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the photograph of Figure 4.1, and in the drawing of Figure 4.2. It is

used by Sketchped primarily because its operation is relatively inde-
pendent of the distance it is held from the computer display, since it
has a cylindrical field of view.

Since spots on the display system are intensified one after anothér_
in time sequence, whether or not each spot is seen by the pen_ié indi-
vidually reportéd Just after intensification of that spot. The.lightv
pen amplifier is designed so that the pen is sensitive only to the
bright blue flash of the first intensification of a display spot and
not to the dim yellow afterglow. The amplifier output is stroﬁed only
when a display spot has been intensified to minimize room light pickup.
Although some computers require an ihterrogation of a pen flip—flopvto
find out if a spot was seen, TX-2 uses the ihterruption of a sequencé
change to indicate this fact® Thus if a series of points are displaYed
on the scope by a set of data transfer instructiéns, and one of‘thése
points falls under the field of view of the pen, subsequent instructiqns
will be performed in the light pen sequence rather than in the display
sequence until the light pen sequence is finished. Ihus it is unneces-
sary to interrogate the pen specifically for'eaéh display spot, the '
ihterruption of sequence chanéing serving automatic notification thatké
spot was seen. For pen tracking, where a program branch is made for
every spot displayed, interruption by the pen requiresbmorevprogram in-
structions than would a specific bit testing’inéiruction;:but for the .
demonstrative use of the pen where any spot of the background display
may fall within the pen's field of viéw but ié felatively unlikely‘to

do so, the interruption is a real advantage.

* TX-2's light pen is treated as an input device separate from its
display. See Appendix G.
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PEN TRACKING

The light pen and its connecting cable report to the computer im-
mediately after any display spot has been shown which lies within the
pen's view. By displaying a cross-like pattern and noticing which
spots fall within the light pen's view, the computer can follow the
motions of the light pen around the screen. In order to follow normal
motions of a hand held light pén I have found it necéssary to redisplay
the tracking cross about 100 times per second, taking 1 millisecond per
display. When the crosé is being "dragged" across the screen at the
maximum speed I havé achieved, sucééssive crosses afe displayed about
0.2 inches apart and the maximum pen speed is thus 20 inches per_secénd
which has proven quite enough for the experiments conducted. If the.
light pen is moved faster than that, the tracking cross will.fall en-
tirely outside of its field of view and tracking will be lost. I use
the loss of tracking as the so-called termination signal for all pen
tracking operations.

Early in the system development some effort was spent trying to
reduce the computer time spent in pen tracking. It was attempted to
have the computer predict the locafion of the pen based on its past
Jocations so that a longer time might elapse between display_of track-
ing crosses. The assumptions of constani velocity,

Xo= Kep =% o) v Xy Y= (Y ;- Y ) + Xy, (4-1)

i

and constant acceleration,

X, = 3(x:t_l - X%-a) + x£-3 Y, = 3(Y£-1 - Y£_2) + Y£_3, (4-2)

where successive pen positions are denoted by subscripts, were tried.

A pictorial representation of these assumptions is shown in Figure 4.3.
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An attempt was made to combine various types of prediction according to
the speed of motion of the pen, but all such efforts met with difficult
stability problems and were interfering with more important parts of the
research. Therefore, I decided to accept the ten per cent of time lost
to tracking in order to proceed to more interesting things. Other
workérs,notably Rolland Silvers formerly of Bolt, Beranek and Newman,
report better success with predictive tracking giving numbers like 3%
loss.

Different methods of establishing the exact location of the light
pen have been tried using many different shapes of display. For example,
the displays shown in Figufe L.4 all seem to be about the same as far as
time taken to establish pen position and accuracy. As far as I know, no
one has taken into account the motion of the pen during the tracking
display period. I use the logarithmic scan with four arms.

To initially establish pen tracking the Sketchpad user must inform
the computer of an initial pen location. This has come to be known as
"inking-up" and is done by "touching" any existing line or spot on the
displey whereupon the tracking cross appears. If no picture has yet

been drawn, the letters INK are always displayed for this purpose.

DEMONSTRATIVE USE OF PEN

During the remaining 90% of the time that the light pen and display
system are free from the tracking chore, spots are very rapidly dis- |
played to exhibit the drawing being built, and thus the lines and
circles of the drawing appear. The light pen is sensitive to these

spots and reports any which fall within its field of view by the
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interruption of a sequence chﬁﬁge before another spot can be shown.

The table within the computer memory which holds the cbordinates of the
spots also contains a tag on each one as shown in Figure 4.5 so that

the picture part to which this spot belongs may be identified if the
spot should be seen by the pen.

A table of all such pictufe parts which fall within the light pen's
field of view is assembled during one complete display cycle. At the
end of a display cycle this table contains all the picture parts that
could even remotely be considered as being "aimed at." During the next
display cycle a new taﬁle is assembled which at the end of that cycle

“will replace the one then in use. Thus, two storage spaces are provided,
one for assembling a complete table of display perts seen, the other for
holding éhe complete table from the laét display cycle so thét the aim-
ing computation described below in the sections on demonstrativg lan~
guage and pseudo pen location may avoid using a partially complete table.
Note that since the display of the TX-2 is independenf of the computa-.

tions going on, the aiming computation may oécur in the hiddle of a dis-
play cycle.

Due to the relatively long time that‘a complete disﬁlay cycle for
a complicated drawing may teke, the aiming computation, by using ihforf

- mation from the previous complete display cycle, took éxcessive time to
"béccme“aware" of picture parts newly aimed at by the pen. Therefore, I
require that any display part seen by the light pen which is not yet in
the table being built for the current display.cycle be put not‘only in
that table, but also in the table for the previous display cycle if not

already there. This speeds up the process of locking onto elements of
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the drawing. Similérly, the information from a previous display cycle
may contain many previously seen drawing parts which are not currently
within the light pen's field of view, especially if the light pen has
moved an appreciable distance sincé the last completeAdisplay cycle.
One might attempt to detect large pen displacements during a display
cycle and indicate that the old light pen information is too obsolete
to use if such displacements occur. However, I have often found it
handy to slide appreciable distances along a line or curve;in which
case the light pen information is not made entirely obsolete. There-~
fore, no such obsolescense-by-displacement routine has been incorporated

into the Sketchpad system.

DEMONSTRATIVE LANGUAGE
The table of picture parts failing within the field of view of the
light pen, assembled during a complete display cycle, contains all the

picture parts which might form the object of a statement of the type:
apply function F to .

e.g. erase this line (circle, etc.). Since the one half inch diameter
field of view of the light pen is relatively large with respect to the
precision with which it may be manipulated by the user and located by
the computer, the Sketchpad systemlwiil reject any such possible demon-
étrative object which is further from the center of the light pen thanb
some small minimum distance; about 1/8 inch was found ﬁo be suitable.
Although it is easy to compute the distance from the ceﬁtér of the light

pen field to a line segment or circle arc, it is not possible to compute
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the distance from the light pen field center to a piece of text or a
complicated symbol represented as en instance;. For every kind of pic-
ture part some method must be provided for computing its distance from
the light pen center or indicating that this computation cannot be made.

The distance from an object seen by the light pen to the center of

N
/

the light pen field is used to decrease the size of the light pen field
for aiming purposeé. A light pen with two concentric fields of view, a
small inner one for demonstrative purposes, and a larger outer one for
tracking would make this computation unnecessary and would give better
discrimination between objects for which no distance computation exists.
Lack of this discrimination is now a problem. Design of such a pen is
easy, and consideration of its development for any future iarge scale
use of engineering drawing programs should be given serious considera-
tion. |

After eliminating all~poésible demonstrative objects which lie
outside the smaller effective field of view, the Sketchpad system con-
siders objects topologically related to the ones actually seen. End
points of lines and attachment points of instances are especially impor-
tant, but objects on which constraints operate, or the value of a number
as opposed to the digits which represent this value may also be consid-
ered. Such related objects may not specifically appear in the drawing
but it must be possible to reference them easily. If any such object
is sufficiently close to the center of the light pen field, it is added
to the table of possible demonstrative objects even though it may have
no display and, therefore, was not seen by the light pen.

As described above, the aiming or demonstrative program first elimi-

nates from further consideration objects which are too far from the
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center of the light pen field to reduce the effective size of the field

for aiming purposes. Nekt it brings into consideration unseen objects
related to the objects actually seen. After these two procedures the
number of objects still under consideration determines the further
course of action. If no objects remain under consideration, nothing is
being aimed ét. If one object, it is the demonstrative object and the

" it, e.g.,the pen is at a point, at (on) a

light pen is said to be "a
line, at (on) a circle, or "at" a symbol (instance). If two objects
vomain, it may be possible to compute an intersection of them. If the
intersection is sufficiently close to the pen position, the pen is "at"
the intersection. With two or mofe»objects remaining, the closest
"object is ch&gen if such a choice is meaningful; or if not, no object is
pointed at, i.e., there is no demonstrative object. |

The sbove consideration of the demonstrative program has been left
vague and general purposely to point out that the specific types of
objects being used in a drawing differ only in the details of how the
various computationsmare made. For example, although the Sketchpad
system ié not now able to do anything with curves other than circle arcs
and linébsegments, the demonstrative program requirements to add conic
sections to the system, as it stands, involve only the addition of com-
putation procedures for the distance from the pen location to the conic,
routines for computing the intersection of conies with conies, lines,
and circles, and some indication of what topologically related objects,
e.g. foci, need be considered. Figure 4.6 outlines the various regions
- within which the pen must lie to be considered "at" a line segment, a

circle arc, their end points, or their intersection. The relative sizes
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of the error tolerated in the "sufficiently close to" statements above
are indicated as well. The error tolerated is a fixed distance on the
display so that confusion because objects appear too close together can
usually be resolved by enlarging the drawing as described in Chapter V.
The organization of the demonstrative program in Sketchpad is in
the form of a set of special cases at present. That is, the program
itself tests to see whether it is dealing with a line or circle or
point or instance and uses different special subroutines accordingly.
This organization remains for historical reasons but is not to be con-
sidered ideal at all. A far better arrangement is to have within the
generic block for a type of picture part all subroutines necessary for

it.

PSEUDO PEN LOCATION

The demonstrative program computes for its own use the location on
a picture part seen by the light pen nearest the center of the pen's
field of view. It also computes the location of the intersection of
two picture parts. Thus when the demonstrative program decides which
object or intersection the light pen is at, an appropriate pseudo pen
location has also been computed. If no object has been named as demon-
strative object, the pseudo pen location is taken to be the actual pen
location. The statements "at a line," "at a circle," and "at a point"
take on true significance, for the pseudo pen location will indeed be
at these objects.

The pseudo pen location is displayed as a bright dot‘which locates

itself ordinarily at the center of the pen tracking cross. It is easy
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to tel; when the demonstrative object is a line, circle, point, or
intersection, because this bright dot locks onto the picfure bart and
becomes temporarily independent of the exact pen location. The pseudo
pen location or bright dot is used as the point of the pencil in all
drawing operétions; for example, if a point is being moved; it moves
with the pseudo pen location. As the lightvpen is moved into the areas
outlined in Figure 4.6 and the pen locks onto existing parts of the
drawing, any moving picture parts jump to their new'locations as the
pseudo pen location moves to lie on the appropriate picture part.» The
pseudb pen location at the instant'that a new line or circle is created
iévused as the coordinates of;the fixed end of that line or circle. |
With just the basic drawing creation and manipulation.functions of
draw, move, and deiete and the power of the pseudo pen location and de-
monstrative language programs, it is possible to make fairly extensive
drawings. Most of the constructions normally provided by straight edge
and compass are available .in highly accurate form. Most important, how-
ever, the pseudo pen location and demonstrative language give the means

for enterihg the topological properties of a drawing into the machine.
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Chapter V

DISPLAY GENERATION

The display system, or "scope,” on the TX-2 is a ten bit per axis
electrostatic deflection system able to display épots at a maximum rate
of about 100,000 per second. A display'inétruction permits a single
spot to be shown on the display at any one of slightly more than a mil-
lion places, requiring 20 bits of information to specify the position of
the spot. Due to the multiple sequence design of the TX-2 it is conven-
ient to permit the display system to operate at its own speed. The dis-
play will request memory cycles whenever they are required‘to traﬁsmit
more information to it, but fhe time acfually taken in displaying a spot
will not be lost, for the rest of the TX-2 may be involved with other
operations meanwhile. It has been found useful, therefore, to store the
locations of all the spots of a drawing in a large table in hemory and
to produce ghe drawing by displaying from this table. The display
system, then, sees the rest of Sketchpad as 32,000 words of core storage.
The rest of the Sketchpad is able to compute and store spot coordinates
in the display table without regard to the timing of the display system.

The display spot coordinates are stored one to a memory word. The
display subprogram displays each in turn, taking 20 microseconds each so
that some time will be left over for computation. If instead of display-
ing each spot successively, the display program displays every eighth in
a system of interlace, the flicker of the display is reduced greatly,
but lines appear to be composed of crawling dots. For large displays

made up mostly of lines such an interlace is useful. However, for



-68-
repetitive patterns of short lines, the effect may be that the entire
drawing seems to dance because of synchronization between'the interlace
and the repetitive nature of the pattern. The interlace may be turned
on or off under user control by means of a toggle switch.

Early display work‘with the display file led to the discovery by
the author and others that if the spots were displayed.at random, a
' twinkling picture resulted which is ?leasing to the eye and avoids
fl%cker entirely (see Figure 5.1). However, small detail is lost be-
cauge of the eye's inability to separate the pattern from the random
twinkle unless the pattern is gross. Twinkling, like interlace, is
under user control by a toggle switch. Twinkling is accomplished by .
scrambling the order of the display spot locations iﬁ the diépiay file.
To do this, each successive entry is exchanged with an entry taken at
random until every entry has been exchanged at least once. Needless
to say, whether a scrambled file is displayed successively or by inter;

lace makes no difference to its twinkling appearance..

MARKING OF DISPLAY FILE

Of the 36 bits available to store each display spot in thé display
file, 20 are required to give the coordinates of that spof for the dis-
play system, and the remaining 16 are used to give the address of the n-
component element which is responsible for adding that spot to the
display. Thus, all the spots in a line are tagged with the ring struc-
ture address of that line, and &ll the spots in an instance are tagged
as belonging to that instance. The tags are used to identify the parti-
cular paft £ the drawing being aimed at by the light pen for demonstra-

tive statements. See Chapter IV, Figure 4.5, p61.
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FIGURE 5.1. TWINKLING DISPIAY.

Displaying the spots of a large display in random
sequence mekes the display appear to "twinkle." This
photograph was exposed only long enough to show about
half of the spots of a twinkling display. It conveys
the impression of a twinklings display a&as well as any
still picture can. L o > o

The curves are of the equation x « X 4+ y = a
for several values of a. They were drawn by another
program rather than by Sketchpad.
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If a part of the drawing is being moved by the light pen, its dis-
play spots will be recomputed as quickly as possiblé to show it in suc-
cessive positions. The display spots for such moving parts are stored
at the end of the display file so that the display of the many non-
moving parts need not be disturbed. Moving parts are made invisible to
the light pen so that the demonstrative and pseudo pen location éomputa-
tions described in Chapter IV will not "lock on" to parts moving along

with the pen.

COORDINATE SYSTEMS

The coordinate system 6f the TX-2 display system has origin atvthe
center of the scope and requires ten bits of deflection information
located at the left of 18 bit computer subwords for each axis. Treat-:
ment of these numbers as signed fractions of full scope deflection leads
to the most natural programming because of the fixed point, signed
fraction nature of the TX-2 multiply and divide instructions. The
scope coordinate system is natural to the ability of the TX-2 to perform
arithmetic operations simultaneously on fwo 18 bit half words. It ié
not suitable for representing variables with more than two components,
nor is the precision available in 18 bits adequate for all the opera-
tions for which the Sketchpad system is epplicable.

For convenience in representing many component variables and for
more than 18 bit precision, Sketchpad uses an internal coordinate system
for drawing representation divorced from the representation required by
the display system. This internal system is called the "page" coordi-

nate system. In thinking of the drawings in Sketchpad, the page
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coordinates are considéred as fixed. A page to scope transformation
gives the ability to view on the scope any portion of the page desired,
at any degree of magnification, as if through a magnifying glass. The
magnification feature of the scope window-into-the-page makes it pos=
sible to draw the fine details of a drawing. The range of magnifica~.
tion of 2000 available makes it possible to work, in effect, on a |

T-inch square portion of a drawing about;l/h mile on a side.

TRANSFORMATIONS AND SCALE FACTORS

The page coordinate system is intended for use only internally and
will always be translated into display or plotter coordinates by the
output display subroutines. Therefore, it is impractical to assign
any absolute scale‘factor to the page coordinate system itself; it is
meaningless to ask how big is the page. It 1s, however, very important
to know how big the visible representations of Sketéhpad drawings will
be, for one must make drawings in the correct sizes if one is to communi-
cate with machine shops. Dimensions indicated on the drawing must cor-
respond to the dimensions of the drawing in its final form if full-size
drawings are to be produced. The cdmputer's only concern with the
actual size of the page coordinate system is to know what decimal number
should be displayed for the value of a certain distance in page coordi-
nates. As Sketchpad now stands, the value is such that one-to-one scale
drawings can be produced on the plotter if dimensions are read in units
of thousandths of an inch.

Page coordinates, then, are dimensionless signed fractions, 36 bits
long which are considered as fixed when considering drawing representas

tions. In order to avoid the troubles of overflow, it is made difficult
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for the user to generate ﬁage coordinates with values in the most signi-
ficant six or seven bits of the 36 allowed. This is done by artificially
limiting the maximum part of the page displayed on the scope to 1/256 of
the page's linear dimension. The 29 or 30 bits of precision which pemain
are sufficient for all applications. The maximum magnification of the
display is also limited so that the "grain" of the page coordinates can-
not show on the display. The 2000-to-one scale change mentioned above
remains.

A scale factor for the display controls the size of the square
which will appear on the scope. The actual number saved is the half-
length of the side of the square, called SCSZ for SCope SiZe as shown in
Figure 5.2. Also saved are the page coordinates of the center of the
scope square. By changing these numbers the portion of the page shown«
on the scope may be changed in size and moved, but not rotated.

The shaft position encoder knobs below the scope (see Figure 1.2,
p.11) are used to control the scale factor and square positioning
numbers indicated above. Rotation of the knobs tells the prograﬁ to
change the display scale factor or the portion of the page displayed.

In order to obtain smooth operation at every degree of magnification,
unit knob rotations produce -changes in the scope size and position
numbers préportional to the existing scope size number, SCSZ. Rotation

of the scale change knob, therefore, causes exponential increase-or

decrease in SCSZ and this results in apparent linear change in the view

on the scope.
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SCOPE COORD INATES

PAGE COORDINATES

FIGURE 5.2,

COORD INATE SYSTEMS
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INSIDE OUT AND OUTSIDE IN DISPLAY

How the direction of rotation of the knobs affects the translation
of the display is important from the human factors point pf view, It is
possible to think of moving the scope window above the page or moving
the%drawing beneath the window. Since to the user the scope is physi-
caliy there, and no sense of body mot%pn goes with mqtion of the ﬁindoﬁ,
the knobs turn so that the operator thinks of moving the drawing behind
his window: rotation to the right results in picture motion to the
right or up. Similarly, rotation of another knob to the right results
in rotation of picture objects to the right as seen by the user. No
such convenient manner of thought for the scale knob has been found.
Users get used to either sense of change about equally poorly; the major
user so far (the author) still must try the knob before being sure of
which way it should be turned.

The translation knobs were primarily used to locate a portion of
the picture in the center of the scope so that it could be enlarged for
detailed examination. To make centering easier, a special function was-
provided which relocates the picture so that the immediately preceding
light pen position is centered. The knobs are now usedxfor fine posi-
tioning of the picture to make the scope display all of an area which
Jjust barely fits inside it. The light pen could perhaps be used to con-
trol scope size and positioning without reference to the knobs at all,
perhaps with a coarse and fine control. The question of what éontrols’

are best suited to humens is wide open for investigation.



COORDINATE CONVERSION AND EDGE DETECTION

The reason for having the page-scope transformation in terms of
the location of the scope center and the size of the scope is thamlthis
form makes it very easy to transform page coordinates into'scope coordi-
nates.

PAGE COORDINATE - CENTER OF SCOPE _ -
SCOPE SIZE > = SCOPE COORDINATE

The process of division will yield overflow if the point converted does
not. - lie on the scope. However, one can little afford the time that
application of this transformation to each and every spot in a line
would require. It is necessary, therefore, to compute which portion(s)
of a curve will appear on the scope, and generate ONLY those portions
for the human to see. The edge detection problem is the problem of
finding suitable end points for the portion'of a curvé which appears on
the scope.

In concept the edge detection problem is trivial. In terms of
program time for lines and circles the problem is a small fraction of
the total computational load.of the system, but in terms of‘progrém
debugging difficulty the problem was a lulu. For example, the computa-
tion of the intersection of a circle with any of the edges of the scope
is easy, but cdmputation of the intersection of a circle with all four
edges may result in as many as eight intersections, some pairs of which
may be identical, the scope corners. Now which of these intersections

are actually to be used as starts of circle arcs?
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THE SERVICE PROGRAM - LINE AND CIRCLE GENERATION

As the Sketchpad system now exists, all displéys are generated from
straight line segments, circle arcs,'and single points. The details of
generating the specific display spots for each of these types of display
is relegated to a "service" program. The service program élso contains
the actual display sub=-program for displaying the spots and retains
control over the input and output to the display file. The sér?ice_pro-
gram takes care of the transformation of coordinates from page coordi-
nates to scope coordinates and computes the portion of the line, circle,
or point to be shown, if any. Since these service funcyions have been
working correctly, further programming was not required to make refer-
ence to the details 6f scope size, position, coordinate transformetion,
or display. For éxample, the routine which displays text on the scope
uses the line and cirecle service programs to compqée each letter.

Thevindependence of the bulk of the progrem from the specifics of
display is a very valuable asset for future expansion and change to the
system. For example, when a line drawing scope capability was added to
the TX~2, only the service program needed to be changed to accommodate
it. Moreo#er other people can and do use the service subroutines in
their prégrams‘ The attitude of independent parts divided by independ-
ence of function pervades the Sketchpad system; being forced to divide
the program into several binary portions because it was, in toto, too
big to handle, I divided it in the most natural :places I could find.

The actual generation of the lines and circles for the present spot
display scope is accomplished by means of the difference equations:

1 + éy . (5-1)

X, = X,

T T Vi =Y
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for lines, and

2
R
R

for circles, where subscripts i indicate successive display spots, sub-
script ¢ indicates the circle center, and R is the radius of the circle
in Scope Units. /In implementing these difference equations in the pro-
gram the fullest poséible use is made of the coordinate arithmetic capa-
bility of the TX-2 so thét both the x and y equation computations are
performed in parallel on 18 bit subwords. Including marking the points
in the display file with the appropriate code for the ring structure
block to which they belong (two instructions), and indexing, the program
loops contain five instruétions for lines and ten for circles. About |
B/h of the total Sketchpad computation time is spent doing these 15 in-

structions!

CIRCLE CLOSURE

It is an unfortunate property of difference equation approximation
to differential equations that the tiny errors introduced by the finite
approximation may accumulate to produce gross noticeable errors. Al-
though the difference equation (5-2) listed above for circle generation
may seem more complicated than necessary, it is the small details of the
equation that make it useable. Considerable effort was required to find
an equation which produced faithful circles and could be implemented to
take advantage of the parallel 18 bit arithmetic available in the TX-2.

Other equations tried either generated logarithmic spirals due to
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mathematical inadequacies, required more than 18 bit precision to oper-
ate accurately, or required serial processing of the x and y equations,

which would consume more time.

For example, the difference equations:

X, =% ) 4% (v, - V)
17 %-1 7R Vi1 T Ve
Yy =¥ - F (x5 - %)
17911 TR Vi1 T e

produce a logarithmic spiral which grows about (= x step size) in "radi-
us" each turn. This spiral divergence is predicted theofetically and .
is unrelated to any roundoff error. It could be avoided by using the

equations:

R 1
% = ,ﬁ‘ﬁ{xi-l *g O - Yc)}
' (5-4)
= B -t (x . -x)
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R
but the term —m—=—= is so little different from unity for the usual

V1 + R

values of R that it cannot be represented in 18 bits. The simple change

from (5-3) to the equations:

7
i
~
+

(5-5)
Y= Vi
where a new position of x is used to generate the next position of y.
Equations (5-5) approximate a circle well enough and are known to close
exactly both in theory and when implemented, but because the x and y
equations aré dissimilar, they cannot make use of TX-2's ability to do
two 18 bit additions at once. Note, however, that Bquations (5-5) are

ideally suited for implementation on machines which can perform only



one addition at a time. In fact, Sketthad uses Equétions (5-5) to

generate the sine and cosine functions used for rotations.

DISPLAY PROGRAMS

The display programs for line and circle segments are simply the
line and circle drawing subroutines plus a small program which extracts
the pertinent numerical infofmation from the ring structure to locate
the line or circle segment properly. A-similar routine for drawing
- dotted lines and dotted circles wouldte,usefulé—the:sahe>manipulationa;
that apply to lines and circles could be gpplied to the dotted curves
as well. To be consistent with the existing programs the dotted line
program would use the line or circle drawing subroutine many times,
once for each dot. Although this would be somewhat inefficient in that
the values of & end 4y in (5-1) would be recomputed each time, it
could be made to work with the minimum programming difficulty. Alterna-
tively, a special dotted line subroutine could be written. This ﬁould
be éspecially eppropriate if output devices were used for which‘dotting
coﬁld be accomplished in a special way as, for example, lifting the
plotter pen periodically while it is tracing a curve.

Another variation on lines and circles would permit making lines
of various weights or with different styles of dots: center lines and
the like. These could each be put into the system as a different type
of line, or all could be treated as a éingle type with some numerical
specification of the line characteristics. For example, two scalars
might be used to indicate approximate dot frequency and the ratio of

dot length to dot period. A single scalar might specify the line weight.
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It is important that thé properties .of such a scalar would be the unit-
less properties of ratios, invariant under changes to the scale of the
drawing and the transformations of instances. The existing scalar with
the dimension of length would not serve.

Text, to put legends on a drawing, is displayed by means of special
tables which indicate the locations of line and circle segments to make
up the letters and numbers. Each piece of text appears in a single line
not more than 36 characters in length of equally spaced characters which
can be changed by typing. Digits to display the value of en indicated
scalar at any position and in any size and rotation are formed from the
same type face/;s text. It is possible fo display up to five decimal
digits with sign; binary to decimal conversion. is provided, and leading
zeros. are suppressed. Whatever transformation is applied to the magni-
fication of subpictures applies also to the value displayed by the
digits. Digits which indicated lengths when a subpicture was originally
drawn remain correct however it is used. Digits are’intended for making
size notatgons on dfawings by means of dimension lines.

The instance, as will be described more fully in Chapter VI, be-~
haves as a single entity. The display spots which represent all the
inﬁernal parts of instance muét be marked with the address‘éf'the
instance block rather than with the éddress of the actual line or circle
blocks which are the indirect cause of the spots. The instance expan-
sion program‘makes use of the line, circle, number, and:text display
programs and itself to expand the internal structure of the instance.

A mérker is used so that during expansion of an instance, display spots

retain the instance marking.
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Expansion of instances may be a most time consuming job. When
Jjust the existence of an instance is important, but not its internal
character, one can display a frame around the instance without having
its internal structufe show. The framing and expansion of instances
are individually controlled by toggle switches. The instance frame is
a square drawn around the outline of the instance, that is, the smallest
square which fits around the master of the instance in upright position.
The size and location of this square are computed whenever a drawing is
filed away, provided that no instances of the drawing exist. In fact,
the drawing is relocated so that the center of the frame is always at
the origin of the page coordinate system. This is done so that the
coordinate system of an instance will have origin at about the center
of the instance. If instances of the picture exist, the program re-
frains from relocating picture origin because to do so would slightly
relocate all instances of the picture in the other direction.

The instance expansion routine does some edge detection in a crude
way to avoid spending inordinate amounts of time deciding that each
line and circle in an instance grossly off the scope is individually
off the scope. Insténces are not expanded unless there is a fair
chance that some part of them will appear. The instance outline box
is used for this purpose: the instance is not expanded if its center is
more than 1.5 times as far from the scope edge as its box size. Since
the relatively new addition of avoiding box size recomputation and
translation of a picture if instances of it exist, it is possible to
have parts of an instance extend any distance outside their box.
Therefore, instance paits might disappear inexplicably. This has,

however, .never been observed in practice.
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A more complete treatment of the size of an instance for edge
detection which would cure the difficulties outlined above could be
made. One would compute not only the size of the smallest outlining
square each time an un-instanced drawing is filed away,'but also the
size of the smallest surrounding circle each time the drawing is filed
away, whether or not it is instanced. The smallest circle would be used
to determine whether a particular instance was worth expanding at all,
o5 if the entire circle was contained on the scope, it would indicate that
further edge detection would be entirely unnecessary. In computing the
smallest enclosing circle, needless to say, subpictures would be con-
sidered only as objects which occupy their smallest enclosing circle;
internal structure of instances would be ignored. Wheréas now only the
smallest enclosing box can be seen, in the proposed more complete treat-

ment either the smallest enclosing square or circle could be displayed.

DISPLAY OF ABSTRACTIONS

The usual picfure for human cdnsumption displays only lines, ..
circles, text, digits, and instances. However, certain very useful
abstractions are represented in the ring structure storage which give
the drawing the properties desired by the user. Fbr example, the facfv
that the start and end points of a circle arc should be eﬁuidistant
from the circle's center point is represented in storage by a constraint
.block. To meke it possible for a user to manipulate these abstractions;
each abstraction must be able to be seen on the display if desired.
}Nof only does displaying‘abstractions make it possible for thevhuman

user to know that they exist, but also displaying abstractions makes it
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- possible for him to aim at them with the light pen and, for example,
erase them. The light pen demonstrative language described in Chapter
IV is sufficient for making all changes to objects or abstractions

which can be displayed. To make Sketchpaed's light pen language univer-
sal, all objects and abstractions represented in Sketchpad's ring struc-
ture can be displayed. To avoid confusion, the display for particular
types of objects may be turned on or off selectively by toggle switches.
Thus, for example, one can turn on display of constrainfs.as well as dr
instead of the lines and circles which are normally seen.

If their selection .toggle switch is on, constraints are displayed
as shown in Figure 5+3., The central.¢ircle and letter are of fixed
size on the scope regardless of tﬁe drawing scale faétbrA and are .
located at the average location of the variables constrained. The four
arms of a constraint extend from the top; right side, bottom, and left
side of the circle to the first, second, third, and fourth variables
constrained, respectively. If fewer than four variasbles are constrained,
excess arms are omitted. In Figure 5.3 the constraints are shown ép-
plied to "dummy variables," each of which shows as & X .

Two difficulties are encountered with this representation of con-
straints: |

1. The constraiht diggrams tend to overlap one another when

:ngeometric figure has several constraints applied tq it,

2. One character is not enough to display all the symbols
and mnemonics one would like to have for his constraints.

A more desirable arrangement would let the user draw the constraint
representation diagrams in the same way he mekes other drawings; per-

mitting him to invent whatever mnemonics he could draw. It would also
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FIGURE 5. 3.
DISPLAY OF CONSTRAINTS
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be nice to be able to relocate the body of a constfaint representation
at will to avoid the unfortunate and confusing overlapping. How to
locate it without explicit instructions would, however, be a problem.
Moreover, the constraiht, having a position itself, would have to be
treated as a variable and might be used to constrain itself, compounding
an already messy business. Alternatively, instead of locating the
circle and letter at the center of the variables one could locate them
at random nearby. Any confusion of constraints could then be clarified
by recomputing the display file to get a new set of random locations.

Another abstractioﬁ.that can be displayed if desired is the value

of a set of digits. The valqe of a set of digits 1s stored as a varia-
ble separate from the digits'theméelves. Moving digits means relocating
them on the drawing or rotating them. Making fhe digits bigger means
Just that, increasing the type size. But making the value bigger changes
the pafticular digits seen and not the type size. The value of a set of
digits, a scalar, appears as a;#:connected to the digits which display
it by as many lines as there are sets of digits. and located at the.
average location of these sets, as shown in Figure S;h. Since there is
usually only one set of digits displaying the value of a scalar, thedf
is usually superimposed on it and connected to it by a zero length line
which looks like a dot. The major difficulty with this display is that
values which have no digits all lie exactly on top of one another at the

origin.

EMPTY DISPLAYS
The frames which may'be put around instances can be thought of as

abstractions of the existence as opposed to the appearance of the
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instance. Moreover, since it is possible to make an instance of a pic-
ture and then erase the lines in the master picture, it is possible to

have an instance with no appearance at_all, an empty instance. Before

instance framing was possible such empty instances were inaccessible to
the light pen and likely to be forgotten by the user because they could
not show on the display. At the present time it is possible to lose

only text; a line of text composed entirely of spaces does not show.

THE AS YET UNDREAMT OF THINGS THAT WILL BE DISPLAYED

The organization of Sketchpad displey as a set of display subrou-
tines with identical external properties makes it possible to add new
kinds of displayé to the system with the greatest ease. At the present
time the need for dottéd lines and circles, including center lines, dark
lines, etc., and the need for a ratio type unitless scalar for repre-
senting angles and proportions is clear. Conic sections would be useful.
what other kinds of things may becameiuseful for special purposes is as
yet unknown;  Sketchpad attempts to be big enough to incorporate anything

easily.
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Chapter VI

RECURSIVE FUNCTIONS

In the process of making the Sketchpad system operate, a few very
general functions were developed which make no reference at all to the
specific types of entities on which they operate. These general functions
give the Sketchpad system the ability to operate on a wide range of
problems. The motivation for making the functions as general as possible
came from the desire to get as much result as possible from the prdgrmm-A
ming effort involved. For example, the general funétion for expanding
instances makes it possible for Sketchpad to handle any fixed geometry
subpicture. The rewards that come from implementing general functions
are so great that the author has become reluctant to write any.
programs for specific jobs.

Each of the general functions implemented in “the Sketchpad system
abstracts, in some sense, some common property of pictures independent
of the specific subject matter of the pictures themselves. For example,
the instance expansion program is a representation of the fact that
pictures from many fields contain subpictures with ?elatively fixed
appearance. It is not claimed that the geﬁeral functions described in
this chapter form a compléte set, that is, abstract all the cammon
properties of pictures. There is a definite need for a general purpose
function for making topological changes to a drawing. Such a general
purpose system is necessary, for example, to put fillets and rounds on
corners, or to be able to define a vocabulary of dotted liﬁes which
could be, "unreeled," as it were, to any desired length. Nevertheless,
the power obtained from the small set of generalized functions in

'Sketchpad is one of the most important results of the research.
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In order of historical development, the recursive functions in use
in the Sketchpad system are:
1. Expansion of instances, making it possible to have
subpictures within subpictures to as many levels as
desired.
2. Recursive deletion, whereby removal of certain-
picture parts will remove other picture parts in order
to maintain consistency in the ring structure. '
3. Recursive merging, whereby combination of two
similar picture parts forces cambination of similarly
related other picture parts, making possible application
of complex definitions to an object picture.
. Recursive moving, wherein moving certain picture

parts causes the display of appropriately related picture
parts to be regenerated automatically.

PUSH DOWN LISTS

A common method of keeping track of the recursion process is to
use, a2 "push down list," a device much like a sinking table used in
cafeterias to hold dishes éo that as a dish is removed the next is
reédy. Each-of the ehtries of apusdidown list references the next, so

that if one is removed, the location of the next will be available. .A

‘peculiarity of the Sketchpad system is that these push down lists are
formed directly in the data storage structure and not separately by the
program. This guarantees that if the data storage structure fits in
memory, it may be fully recursed without risk that the push do#n in-
formation overflow the space available for it. As far as possible,
Sketchpad uses parts of the data structure otherwise .used for other
.purposes to perform the ‘push down function. .

Chapter III and Appendix C described the ring structure used for
primary picture storate in the Sketchpadvsystem and showed the relation-

ships between various kinds of blocks. In this section as little reference
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as possible will be made to the exact nature of the blocks involved,

because by avoiding reference to specific structure the functions con-
sidered may be made applicable to any specific structure. By way of
example, however, spme specific cases will be mentioned; bear in mind

that these are meant only to be illustrative.

DEPENDENT AND INDEPENDENT ELEMENTS

Certain picture elements depend in a vital way for their existence,
display, and properties on other elements. For example, a line segment
must reference two end points between which it is drawn; a set of 'digits:
must reference a scalar which indicates the value to be shown. In three
dimensions it might be that a surface is represented as connecting four
lines which in turn depend on end points. If a ﬁarticular thing depends
on something else there wiil be in the dependent thing & reference by
pointer to the thing depen@ed upon. In the ring structure used in
Sketchpad, there will be a ring with a "hen" pair in the thing depended”
on and at least one "chicken" pair in a dependent thing. For example,

a ring will connect a poinf with all lines which use it as an end point;
the chicken pairs of this ring, being in the blocks for the lines in
question, point to the point as an ehd point of the lines.

Since there may be any number of rings passing through a given
block, a particular block may depend on some other blocks and
simultaneously be depended on by others; Such a block contains both
hens and chickens. In particular, all blocks contain at least one
chicken which indicates by aireference'to a-generic‘block.the type of
thing represented. Some things are otherwise totally depended upon,
e.g. points, some things are totally dependent; e.g; lines, and some

both depend and are depended’ on, e.g. instances.
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RECURSIVE DELETING 2

Consistency is of course maintained if a single thing upon which no
other thing depends is deleted. To accomplish this, all chicken pairs
in its block are removed from their corresponding rings. The registers
which comprised a deleted block are declared "free" by their addition to
the FREES storage ring. In the Sketchpad system, 1ine segments are
entirely dependent and may be deleted without affecting anything else.
However, deleting a line may leave end points on»the drawing with no
lines attached to them. A special button is provided for removing all
such useless points from the drawing.

If a thing upon which other things depend is deleted, the dependent

things must be deleted also. For example, if a point is to be deleted,

all lines which terminate on the point must also be deleted. Otherwise,
where would these lines end? Similarly, deletion of a variable requires
deletion of all'constraints on that varigble; a constraint must have
variables to act on. Three dimensional surfaces might'bé»made fo depend
on lines which depend on points; if so, deletion of a point would require
deletion of a line which would in turn require deletion of a surface.
In Sketchpad, deleting a scalar forces deletion of all digits displaying
its value, which will force deletion of all constraints holding the
digits in position. Although the scalar-digits-constraint chain is
the longest one in Sketchpad, the programs could handle longer chains
if they existed.

The recursiveness of deletion brings with it the difficulty that
one deletion may cause any number of deletions. It may therefore be
difficult to follow the ring structure during deletions. For example,
suppose that everything in a particular pictﬁre is to be deleted, a

facility which is provided. The program applies the delete routine to
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the first thing in the picture, say a point, and then to the next thing

in the picture, say a line which terminated on the point. The normal
macro mentioned in Chapter III for applying functions to all the members
of a ring, LGORR, cannot be used, for at the time the next ring member
is to be located, both it and the current ring member may be so much
meaningless free storage. To delete everything in a picture, Sketchpad
again and again deletes the first thing in the picture, thus chewing
avay until the picture is gone.

The push dqwn list for recursive deletion is formed with the pair of
registers which-normally indicates what type of thing a block represents.
As soon as it is found that a block must be deleted,"it is declared
"dead" by placing its TYPE pair in a genéric ring called DEADS. The first
dead thing is then examined to see if it forces other things to be de-
clared dead, which is done until no more dead things are generated by the
first dead thing. The first dead thing is then declared "free" and the
new first dead thing is examined in exactly the same way until no more
dead things exist. The IEADS ring, through registers which normally in-

dicate type, serves as the push down list.

RECURSIVE MERGING

The single most powerful tool for constructing drawings, when com-
bined with the definition copying function described in Chapter VII, is
the ability to merge picture parts recursively. The recuréive_merge
function makes it possible to make statements such as "this thing is to
be related to that thing in such and such a way." The relationship may
be treated as applying to things which it relates only indirectlyt' For
example we shall soon see how one line may be made parallel to another

even though the parallelism constraint applies only to the  locations
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of their end points. Similarly, a set of digits can be forced to dis-
play the length of a line, even though the_éonstraint invo;ved refers

to the end points of the line and the value of the digits rather than

to the line or the digits themselves. The recursive merge function makes
it meaningful to combine anything with anything else of the same type
regardless of whether the things are dependent on other things or depended
on by others.

If two things of the same type which are independent are merged,

a single thing of that type results, and all things which depended an

either of the merged things depend on the result* of the merger. For

example, if two points are merged, all lines which previously terminated
on either point now terminate on the single resulting point. In Sketch-
pad, if a thing is being moved with the light pen aﬁd the termination
flick of the pen is given while éiming at another thing of the same
type, the two things will merge. Thus, if one moves a point to another
point and terminates, the points will merge, connecting ;ll.lines which
formerly terminated on either. This makes it possible to draw closed
polygons.

If two things of the same type which do depend on other things are

merged, the things depended on by one will be forced to merge, resgectiﬁelyL

with thethings depended on by the other. The result* of merging two dependent

things depends respectively on the results* of the mergers it forcées. For

example, if two lines are merged, the resultant line must refer toionly

two end points, the results of merging the pairs of end points of the

* The "result" of a merger is a single thing of the same type

as the merged things.
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original lines. All lines which terminated on any of the four original
end points now terminate on the appropriate one of the remaining pair.
More important and useful, all constraints which applied to any of the
four original end points now apply to the appropriate one of the re-
maining pair. This makes it possible to speak of line segments as being
parallel even though (because line segments contain no numerical in-
formation to be constrained) the parallelism constraint must apply to
their end points and not to the line segments themselves. If we wish
to make two lines both parallel and equal in length, the steps oﬁtlined
in Figure 6.1 make it possible. More obscure relationships between |
dependent things may as easily be defined and applied. For example,
constraint complexes can be defined to make line segments be collinear,
to make a line be tangent‘to a~circle, or to make the values represented

by two sets of digits be equal.

INSTANCES

The most powerful tool provided in the Sketchpad system for creating
large complex drawings guickly and easily is the instance. Instances
are recursively expanded so that instances may contain other)instanées
to give an exponential growth of picture produced with respect to effort
expended. Instances may have attachment points and therefore may
connect points¢topologically much as line segments do. For example, an
instance of a resistor may connect two points both electrically and
geometfically on the drawing. An instance also has the properties of a
four camponent variable: numbers are stored in each instance block to
indicate where, how big, and in what rotation that instance is to
appear on the picture. It took some time to recoﬁcile the topological

properties of instances with their properties as variables.
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The block of registers which represents an instance is remarkably
small considering that it may generate a display of any complexity. For
the purposes of display, the instance block makes reference to a picture
by means of its chicken in a ring which ties a picture to all its
instances. The irs tance will appear on the display as a figure geometrically
similar to the picture of which it is an instance but at a locatibn,
size, and rotation indicated by the four numbers which constitute the
"value" of the instance. An important omission as this is written is
the ability to make mirror images. Right and left handed figures must
now be treated separately, whereas the instance should indicate whether

a right or left handed version of the master is to be shown.

" INSTANCES AS VARIABLES

The four numbers which specify the size, rotation, and location of
the instance are considered numerically as a four dimensional vector.
In certain computations, the value of a variable is changed "as little
as possible" if there is no need to change it further. The distanc¢
measured in the case of instances is the équare root of the 'sum of the
squares of the four components. For this reason, and for simplicity in
the use of the fixed point arithmetic of the TX-2, it is important that
the four numbers used to represent the vector be of about the same order
of magnitude. The particuiar numbers chosen are the coordinates of the
center of the instance and the actual size of the instance as it appears
on the drawing times the sine and cosine of the rotation angle involved.
In a typical drawing these four numbers have reasonably similar ranges

of variation.
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In our early work we attempted to use the position and the sine and
cosine of the rotation angle times the reduction in size from the master
picture in order to avoid the normalization of master picture size implicit
in the above paragraph. This not only prevented having instances larger
than their masters because of the fixed point arithmetic, but also made
distance in the four dimensional space meaningless. No attempt was ever
made to use the size and rotation numbers independently.

The transformations of coordinates represented by the above
paragraphs are:

EARE

Xd 1 i2 {xm ii3{
Poor = : + (6-1)
i
Yol "2 1| Yy, [Ty
- ! . — — -
- - = — —
X3 i, i xﬁ/sm 13
Better = + (6-2)
Yaf [fe ha Yol/n| | Ty

where:

Display location in page coordinates.

*arYq

xm,ym Master location in page coordinates.
Sy = Size of master picture in page coordinates.

il e ih = 4 vector in instance, - 1< ii<-+ 1.
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RECURSIVE DISPLAY OF INSTANCES

In displaying an instance of a picture, reference must be made to
the picture itself to find out what picture parts are to be shown. The
picture referred to may contain instances, however, requiring further
reference, and so on until a picture is found which contains no instances.
A recursive program performs this function. At each stage in the recursion,
any picture parts displayed must be relocated so that they will appear at
the correct position, size and rotation on the display. Thus, at each
stage of the recursion, some transformation of the form of Equation (6-2)
is applied to all picture parts before displaying them. If an instance is
enq&hntered, the transformation represented by its value must be adjoined
to the existing transformation for display of parts within it. When the
expansion of an instance withiﬁ an instance is finished, the transformation
must be restored for continuation at the higher level.

To avoid the difficulties of taking an inverse transformation, the
old transformation is saved in registers provided for that purpose in
the picture block of the picture being expanded. Thus, the current trans-
formation is stored in program registérs and is being used, whereas the
previous transformation is saved in the picture block currently being
expanded. The push down list is provided also by indicating in the
picture block being expanded the particular instance thereof which is
responsible for this expansion of the picture. The first picture to
be displayed starts with no transformation at all. Thus, if it contains
itself as an instance, one recursion is possible, saving the oid trans-
formation in the picture block and saving the address -of the instance
responsible for the ekpansion in the picture block as well. Subsequent

recursions will be prevented, however, because no instance is expanded
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if the picture of which it is an instance already belongs on the push

down list. It would be possible to expand such circular instances
further by providing some suitable termination condition such as reaching
a level too small to show on the display. However, since the instances
might get larger rather than smaller, termination conditions are far fram

simple.

ATTACHERS AND INSTANCES

Many synbols used must be integrated into the rest of the drawing
by attaching lines to the symbols at appropriate points, or by attaching
the symbols directly to each other as if by zero length lines. For
example, circuit symbols must Be wired up, geometric patterns made by
fitting shapes together, or mechanisms composed of links tied together
appropriately. An instance may have any number of tie points, and, con-
versely, a point may serve as tie for any number of instances.

An "instance-point" constraint block is used to relate an instance
to each of its tie points. An instance-point constraint is satisfied only
when the point bears the same relationship to the instance that a point
in the master picture for that instance bears to the master picture
coordinate system. Instance-point constraints are treated as a special
case when an instance is moved so that tie points always move with their
instance, and lines terminating on the tie points move as well. Each
instance-point conétraint makes reference to both the instance and its,
tie boints by means of chickens.

To use a poini as an attacher of an instance, the point ﬁust be
designated as an attacher in the masﬁer drawing of the instance. For

example, when one first draws a resistor, the ends of the resistor must
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be designated as attachers if wiring is to be attached. When an instance

is created by pressing the "instance" button, toggle switches tell what
picture the instance is to refer to. Along with the instance elemenf
are created a point. and an instance-point constraint for each attacher.
These points are bonifide points in the object picture but are not
automatically attachers of the object picture. If they are to be used
as attachers when the object picture is insténced, they must be designated:
anew. Thus of the three attachers of a transistor it is possible to
select one or two to be the attachers of é fiip-flop.

The entire internal structure of the instance is suppressed as
far as the light pen is concerned except for the attachers. Thus even m
a dense circuit drawing it is possible to connect elements with ease
because at the highest level of instance only the Qesignated attachers
will hold thé attention of the light pen program. Usually there are
only a few attachers fof each«blOCK no matter how complicated internally,

and so it is generally cbvious which one to use.

RECURSIVE MOVING

At first only variables could be moved. Moving a variable means
tolphange somehow the numbers stored: as the components of the var;able,
usually to maké thevdisplay~for the variable follow light pen motions.
A moving point, for examﬁle, will be firmly attached to the pseudo
pen position, while a moving piece of text faithfully follows light‘pen
displacements so ihat the’ part of the . text ﬁhichvms undef the pen when
the "move" button was pressed remains under the pen. ?or variables
with more than two components, moving is partly controlled by the pen

and partly by knobs. TFor example, the moving text can be made larger or
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rotated by two of the knobs.

The advent of the recursive merging and the definition copying
functions made it clear that one should be able to move anything
regardless of whether or not it is variable. To move a non-variable, & re-
‘cursive process is used to find whatever variables may be basic to the
thing being mévéd. For example, if a line is to bé moved, the énd
points on which it depends must be moved. All objects which are being
moved a;e'put in a ring whose hen is in the MOVINGS generic block. The
object actually attached to the light pen is first in the ring. Upoh-

' terminaiion only this first object in the MOVINGS ring may be merged
with other objects.

The numerical pperation of moving is accomplished by the standard
‘transfofmation.procedure. The small transformation due to light pen
'pbsitiop_change-and knob rotation since the last progrém iteration is
convertéd to the form of Equation (6-2) and placed in the standard
location. Each object in the MOVINGS ring is transformed by it. The
generic block. for each type of object,of course, contains the subroutine
to apply the transformation to such objects. The generic block for lines,
for example, indicates that no transformation need be applied to tﬁe
line becéuse it céntains no numerical values and will automatically be
moved when its end points are moved.

Moving objects must be invisible to the light pen. Since the light
- pen aims at anythingrwithin its field of view, it would otherwise aim
at a moving object and a jerky motion would result. Motion would only
happen when the pen's field of view passed beyond the object being moved.
Moreover, thefdisplay for moving objects must be recomputed'régul;rly for
the ﬁenefit of the human usér, but the unmoving background need not be

recompﬁted. The display spot coordinates for dbjectsyﬁeing reéomputed
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is placed last in the display file, above (in higher numbered registers)

the fixed background display so that it-mayvbe recomputed withouf dis-
turbing the rest of the display file. The light pen program rejects any
spots seen by the pen which come from these high display file locations.
Needless to say, the entire display fiie must be reccmputéd once to

eliminate the former traces of the newly moving objects.
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Chapter VII

BUILDING A DRAWING, THE COPY FUNCTION

As experimentation with drawing systems for the computer progressed,
the basic drawing operatiohs evoi#éd into their present form. At the ‘
outset, the very general picture and relationship defining capability éf
the copy and recursive merging functions were unknown and so considerable
power had to be built directly into the system. Now, of course, it would
be possible to use much simplef atomic operations to draw simple pictuieé

embodying}many of the notﬂQns now treated as atomic.

DRAWING VS. MOVING

An idea that was difficult for the suthor to grasp was that there
is no state of the systeﬁ that can be‘éalled "drewing ." Con§entionally,
of course, drawing is an active process which leaves a trail of‘carbbn'
on the paper. With a computer sketch, however, any line segment is
straight and can be relocated by moving one or both of its end points.
In particular, when the button "draw“ is pressed, a new line seément and
two new end points aré set up in storage, and one of the line's end -
points is left attached to the light pen so that subseqﬁent pen motions
will move the point. The state of fhe system is then no different from
its state whenever a point is being moved.

Similarly, to draw a circlé, one creates a center point when the
buitton "eircle center" is pressed, and createsvin’the ring strucﬁure a
circle block and its start and end points when the button "draw" is

pressed with a circle center defined. The end poiﬁt of the circle arc
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is left attached to the 1ight pen to move with subseqnent pen motions.
Since the start and end pdints of a circle arc should be equidistant.
from its center point, an eQual distance constraint is creatéd along
with the circle but could be subsequently deleted without deletiﬁg‘the

circle.

ATOMIC OPERATIONS

In general, when creating ﬁew points to serve as the start of line
segments and circle arcs or centers for circle arecs, an existing point
is used if the pen is aimed at one when the new point would be generated;
Thus, if one aims at the end of an existing line segment and presses
"draw" the new line segment will use the existing point rather than
setting up another point which has the same coordinates. Later motion
vof this point will move both lines attached to it; the ring structure
storage reflects the intended topology of the drawing. Similarly, if
one is moving a point and gives a termination signal while aiming at
another point, these two points will be merged, again reflecting the
intended drawing topology.

We have seen thal a constraint is set up to indicate that the start
and end points of a circle arc should be equidistant from its center
wvhenever a new circle arc is drawn. Similarly, constraints to indicate
that a point should lie on a line or circle are automatically set up if
a point is either created while the pen is pointing to the line or circle
or moved onto the line or circle. The constraints, of éourse,do not
apply to the line or circle itself but to the points on which it de-

pends. If the light pen is aimed at the intersection of line segments,
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two "point-on-line" constraints will be set up for a point created or
left there, one for each intersecting line. Three or more line seg-
ments may be forced to pass through a single point by moving that point
onto them successively to set up the appropriate constraints. Constraint
satisfaction will then move the lines so that all of them pass through
the point. In order to avoid cluttering up the ring structure with re-
dundant constraints, the point-on-line and point-on-circle constraints

are set up only if the point is not already so constrained.

GENERALIZATION OF ATOMIC OPERATIONS

The atomic operations described above make it possible to create in
the ring structure new picture components and relate them topologically.
The atomic operations are, of course, limited to creating points, lines,
circles; point-on-line and point-on-circle constraints. (The point-on-
circle constfaint is the same type as used to keep the circle's start(
and end points equidistant from its‘center.) Since implementation of
the copy function it has become possible to create any cambinatiqn of
picture parts and constraints in the ring structure. The recufsive
mergiﬁg function makes it possible to relate this set of pictufe parts
to any existing parts. For example, if a line segmeht and its two énd
points are copied into the object picture, £he action of the "draw"
button may be'éxactly duplicated in every respect. ‘Along with the copied
line, hoﬁever, one might copy as well a constraint to make the line hori-
zontal, or two constraints to make it both horiZontal and threé inches
long, or any other variation one cares to put into ﬁﬁe ring structuré

to be copied.
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When one draws a definition picture to be copied, certain portions
of it to be used in relating it to other object picture parts are desig-
nated as "attachers". Anything at all may be designated: for example,
points, lines, éircles, text, even constraints! The rules used for com-
bining points when the "draw" button is pressed are generalized so. that:

For copying a picture,ﬁthe last-designated attacher is left

moving with the light pen. The next-to-last-designated

attacher is recursively merged with whatever object the pen

is aimed at when the copying occurs, if that object is of

like type. Previously designated attachers are recursively

merged with previously designated object picture parts, if

of like type, until either the supply of designated attachers

or the supply of designated object picture parts is exhausted.

The last-designated attacher may be recursively merged with

any other object of like type when the termination flick is

given.

Normally only two designated attachers are used because it is hard to
keep track of additional ones. The order in which attachers are desig-
nated is important because it is in this order that they will be treated.
If a mistake is made in ordering the attachers, redesignation c¢f an at-
tacher puts it last in the order. As this is written there is no way

to undesignate an attacher, except by deleting it, an oversight which
should be corrected.

If the definition picture to be copied consists of a line segment
with end points as attachers and a horizontal constraint between the
end points, as shown in Figure T.1lA, pressing the "copy" button will
appear to the user exactly like pressing the "draw" button. One end
point of the line will be left behind and one will follow the light pen.
Subsequent constraint satisfaction will, however, make the line horizon-
tal.

If the definition picture consists of two line segments, fﬁeir four

end points, and a constraint on the points which makes the lines equal
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in length, with the two lines designated as attachers as shown in Figure
T.1B, copying enables the user to make any two lines equal in length.

If the pen is aimed at a line when "copy" is pushed, the first of the
two copied lines merges with it, (taking its position and‘never actually
being seen). The other copied line is left moving with the light pen
and will merge with whatever other line the pen is aimédlat wvhen termi-
nation occurs. Since merging is recursive, the copiedyequal-length con-
straint will apply to the desiréd pair of object picture lines. ~If no
lines are aimed at, of course, the qppied picture parts are seen at once
with the scale factor so reduced.that the entire copied picture fakes up
sbout 1/16 of the diSjlay area.

If the picture'fo be éopied consists Qf the erect constraint and
the full size constraint, both applying to a single dummy variable which
is the attacher, copying produces afuseful constraint complex attached
to the pen for éubsequent application to any desired instance. With
only one attacher, the instance constrained is the one the pen is aimed

at when termination occurs.

COPYING INSTANCES

As ye'saw in Chapter VI the internal structuré of an instance is
entifel& fixed. The internal struéture of a copy, however, is eﬁtirely
variable. An instance always retains its idenﬁity as ajsingle-p#rt of
. the drawing; one can only delete an entire instance. Once a definition
picture is copied, however; the copy loses all identity as a unit; indi-
vidual parts of it may be aeleted at will.

One might expect that there was intermediate ground between the

fixed-internal-structure instance and the loqse-intérna;-structure copy.
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One might wish to produce a collection of picture parts, some of which
were fixed internally and some of which were not. The entire range of
variation between the irista.nce and the cépy can be constructed by copy-
ing instances.

For example, the arrow: shown in Figure T7.1C can be copied into an
object picture to result in a fixed-internal-structure diamond arrowhead
with a flexible tail. As the definition in Figure 7.1C is set up, draw-
ing diamond-arrowheaded J.ines is Just like drawing ordinary lines. One
aims the light pen where the tail is to end, presses "copy" and moves
off with an arrowhead following the pen. The diamond arréwhead in this
case will remain horizontal. |

Copying fpré-joined instances can produce vast numbers of joined
instances very easily. Fof ex'amble the definition in Figure 7.1D, when
repetitively copied, will result in a row of joined, equal size diemonds.
In this case the instances themselves are atta.chers. Although each préss
of the "copy" button copies two new instances into the object picture,
one of tgxese is merged with the last instance in ’t;he growing row. In
the final row, therefore, each instance carries all the constraints which
were applied to either of the instances in the definition. This is why
only'one of the instances in Figure 7.1D carries the erect constraint.
Notice also that although the diamond is normally a two=-attacher instanée,
éach of the diamonds in Figure 7.1D carries only one attacher. The other
has been deleted so that each instance in the final row of diamonds ﬁll
obtain qnly one right and one left attacher, one from each of the copied

instances.
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THE MECHANICS OF COPYING

Needless to say, when a piece of ring structure is copied the
definition picture used is not destroyed; the copying procedure re-
produces its ring structure elsewhere in memory. However, the repro-
duction is not Just a duplication of the numbers in some registers. The
parts of the definition drawing to be copied may be topologically related,
and the parts of the copy must be related to each other in the same way
rather than to the parts of the master. Worse yet, some parts of the
definition may be related to things which are not being copied. Fdr
example, an instence is related to the master picture of which it is
an instance, and the copy of the instance must be related to the same
master picture, not to & copy of it.

To copy & picture, space to duplicate all the elements of the pic-
ture is allocated in the free registers at the end of the ring structure.
Fach of the new elements is tied into its appropriate generic block ring
by its TYPE component.' Fach new element is placed in this ring adjacent
to the elemént it is a copy of. That is, for each element in the master
a duplicate element is set up adjacent to it in the generic ring for
that type of element. Appropriate scaled values are given to copied
variables. The various feferences in the definition elements are then
examined to see whether'they refer to things that have been copied. If
they do, the corresponding components of the copied elements are made
to refer to the appropriate copied elements. Qn the other hand, if a
definition element refers to something which has not been copied, its
copy refers to the same element that its definition does.

When the complete copy has been made, the copies of all but the

last~-designated of the attachers are recursively merged with the designated
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portic;ns of the object picture. The last-designated attacher is fastened

to the light pen with the recursive moVihg function. The last-~-designated

attacher may later on merge with another picture part.
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Chapter VIII

CONSTRAINT SATISFACTION

The major feature which distinguishes a Sketchpad drawing from a
paper and pencil drawing is the user's ability to specify to Sketchpad
mathematical conditions on already drawn parts of his drawing which will
be automatically satisfied by the computer to make the drawing take the
exact shape desired., For example, to draw a square, any quadralateial
is created by sloppy light pen manipulation, closure being assured by
the pseudo light pen position and merging of points. The sides of this
quadralateral may then be specified to be equal in,length'aﬁd any angle
may be required to be a right angle. Given these conditions, the com-
puter will complefe a square. Given an additional specification, say
the length of one side, the computer will create.a square of the desired
size. | ‘

The process of fixing up a drawing to meet new conditions applied
to it after it is already partially complete is very much like the proc-
ess a designer goes through in turning a basic idea into a finished de-
sign. As new requirements on the various pafts of the design are
thought of, small changes are made to the size or other properties of
parts to meet the new conditions. By making Sketchpad able to find new
values for variables which satisfy the conditions imposed, it is hoped
that designers can be relieved of the need of much mathematical detail.
The effort expended in making the definition of constraint types as
general as possible was aimea at making design constraints as well as

geometric constraints equally easy to add to the system. To date,
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however, Sketchpad is more of a model of the design process than a
complefé designer's aid both because it is limited to two dimensions
and because little advanced application has as yet been made of it.

The work on constraint satisfaction has been successful as far as
it has been taken. The constraint definition and satisfaction programs
generalize easily to three dimensions; in fact, constraint satisfaction
for instances is even now treated as a four dimensional ﬁroblem. The
high speed maze solving technique for constraint satisfaction described
below works well where constraints have been specified unredundently.
There is much room for improvement in the relaxation process and in
making the "intelligent" generalizations that permit humens to

capitalize on symmetry and eliminate redundancy.

DEFINITION OF A CONSTRAINT TYPE

Each constraint type is entered into the system as & generic block
indicating the varioﬁs properties of that particular constraint type.
Generic blocks for constraints need not be given symbolic programming
names since virtually no reference is made to particular constraint
types in the program. The generic block tells how many‘variables are
constrained, which of these variebles may be changed in order to satisfy
the constraint, how many degrees of freedom are removed from the con-
strained variasbles, and & code letter for humen reference to this
constraint type.

Any number of variables may be related by & constraint, but the
display for constraints (éee Chapter V) will be ambiguous if more than
four variables are indicated, and so no constraints relate more than

four variables. Of these variaebles, some may be referenced only.
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The routine which satisfies the constraint by changing the values of

some of the variables is forbidden to satisfy the constraint by chang-
ing & "for reference only" variable. For example, a constraint could
be implemented which would make its first variable equal to its second
by changing the first to match the second, but not the reverse. This
kind of one-way constraint is useful because it speeds up the relaxation
procedure by forcing re-evaluation of variables in a specified order.
For example, the constraint which makes the value of a number equal to
the change in length of a bridge beam, thus indicating the force
carried by the beam, is one way. It would be pointless to have an
erronecus value of the indicator affect in any way the relaxation pro-
cedure for the bridge. Again, the constraint which relates & point to
agvinstance in such a way that the point maintainé the same relationship
to the instance that an original point in the master picture had to the
master picture, uses the original point "for reference only" to discover
Just what the correct relationship is. Thus the end terminal on a
resistor will always stay at the end of the rgsistor. It would be out
of keeping with the fixed geometry nature of instances to have the
internal details of the instance changed to meke it fit into some
awkward position.

The one-way type constraint, héwever, can lead to instabilities in
the constraint satisfaction procedure. For example, if two scalars
were each specified to be twice the value of the other, with reference
only made to the smaller,

A - 2B

(8-1)
B - 24,



~113-
both variables would grow without bound, assuming, each iteration,

values four times as big as before. If, however, a similar condition
were set up with normal two-way constraints, the values of the variables
would approach zero, a correct and stable result. Since the number of
one-way constraints is small and they are designed for and used in
special applications only, very little instability trouble of this kind
has been observed. Future users who add one-way constraints, however,

are warned to be cautious of the instabilities which may result.

NUMERICAL DEFINITION OF CONSTRAINTS

After the first stumblings of trying to define a constraint type in
terms of the equations of lines along which the constrained variables
should lie to satisfy the constraint, the numerical definition of con-
straints directly in terms of an error was devised. By using an error
definition and considering the square of the error as an energy, one not
only reflects directly the intent of the relaxation process, but also
makes it easy to write the defining subroutines for new constraint types.

The defining subroutine for & constraint type is a subroutine which
will compute, for the existing values of the variables of a particular
constraint of that type, the error introduced into the system by that
particular constraint. For example, the defining subroutine for making
points have the same x coordinate (to meke a line between them vertical)
computes the difference in their x coordinates. What could be simpler?
The computed error is a scalar which the constraint satisfaction routine
will attempt to reduce to zero by manipulation of the constrained
variables. The computation of the error mey be non-linear or time

dependent, or it msy involve parameters not a part of the drawing such
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as the setting of toggle switches, etc. The flexibility of computation

subroutines for defining constraints is tremendous.

In order to avoid overflow difficulties, the partial derivative of
the error with respect to the value of any of the components of a con-
strained variable must be less than two. In order to make the constraints
work well together, it is necessary that they be balanced, that is that
the partial derivative of error with respect to displacement be nearly
equal for all constraint‘types. I have arbitrarily tried to make the
error subroutines compute an error about proportional to the distance by
which a varisble is removed from its proper position. In other words,
many of the existing constraint computation subroutines make the partial

derivative about unity.

LINEARIZATION OF CONSTRAINTS

The method of finding the least mean squares fit to & group of
constraints described below requires that a linear equation be given for
each constraint. To find the linear equation which best approximates
the possibly non-linear constraint for the present values of the variables,
the error computed by the subroutine is noted for several slightly

different values of the varisbles. The equation,
- AE '
. - x. )= -Eo, 8-2
B, by - %50) ° ( )

where x  are the components of the variable, E is the computed error,
i

and subscript o denotes intial value, is used a&s the linear best fit.

Actually, the coefficients computed are 1/2 the values shown in equation

(8-2) to permit error to be equal to displacement without generating

overflow.
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Some constraints may remove more than one degree of freedom from

the variables constrained. For example, the constraint which locates
one thing exactly mid-way between two others removes two degrees of
freedom. Such constraints must have as many error computation sub-
routines as there are degrees of freedom lost, since each subroutine
results in a single linear equation. A subroutine which computes the
distance from a variable to its correct location without regard to the
number of degrees of freedoﬁ being removed will cause erratic results.
A correct subroutine pair for constraining one thing to lie between two
others computes both how far out of line the center thing is and, sep-
arately, 1/2 the difference in the distances from the center object to
the two outer ones (1/2 is put in to meet the maximum derivative require-

ment).

THE RELAXATION METHOD

When the one pass method of satisfying constraints to be described
later on fails, the Sketchpad system falls back on the reliable but slow
method of relaxation to reduce the errors indicated by the various com-
putation subroutines to smaller and smaller values. For simple construc-
tions such as the hexagon illustrated in Figure 1.5, page 15 the relaxation
procedure is sufficiently fast to be useful. However, for complex
systems of variables, especially directly connected instances, relaxation
is unacceptably slow. Fortunately, it is for just such directly con-
nected instances that the one pass method shows the most striking success.

The relaxation method of satisfying conditions is as follows:

Choose a variable. Re-evaluate it to reduce the total error
introduced by all constraints in the system. Choose another
variable and repeat.
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Note that since each step makes some net reduction of total error, there
will be monotonic decrease of error and thus stability is assured.
Since re-evaluating a variable will change only the error introduced by
the constraints which apply to that variable, only the changes in the
errors introduced by these constraints need be considered. Other vari-
ables and therefore the errors of cons%raints applying only to them will
remain constant. Sketchpad's ring structure mekes it easy to consider
all constraints applying to a particular variable since all such con-
straints are collected together in & ring whose "hen" is in the variable.
It is important in the relaxation method that, at each step,the very
latest computed values of all variables be used for error computations.
From the point of view of the program, this means that only one value
for each variable need be stored, each being‘updated in turn. Former
values not only may, but must be discarded. It is also important that
the change in error obtained by completely satisfying a constraint by
moving one of its variables be identical to to the change in error to be
obtained by completely satisfying it by moving another of its variables.
The error computing subroutine definition for a constraint computes the
same error for a constraint no matter which of its variables is to be
moved. My original instability troubles with constraint satisfaction

came from insufficient care in meeting this condition.

LEAST MEAN SQUARES FIT TO LINEARIZED CONSTRAINTS

In implementing the relaxation method above, it is important to be
able to find quickly a new value for & variable which reduces the total
error introduced by the constraints on that variable. In particular, the

linearized form of the constraints results in a set of linear equations
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for the variable each of which must be met as closely as possible,

Unfortunately, there may be any number of linear equations applying to

a particular varisble and these may be either independent but incomplete,
independent and complete, or redundant and overdefining. A general
arithmetic macro, SQLVE, for finding the best value for a set of equations
has been devised.

SOLVE converts the given equations into an independent set of
equations whose solution will be a point of minimum mean squared error
for the original set. It is not always possible to solve the independent
set of equations uniquely, and if it is not, SOLVE finds that solution
which results in the minimum change from the existing value of the vari-
able, The mathematical discussion pertinent to SOLVE is given in
Appendix F. I am indebted to Lawrence G. Roberts for providing me with
the basic SOLVE program,

Seen from the outside, then, the linearization program and SOLVE
make it possible for Sketchpad to find a new value for any variable to
more closely meet the conditions indicated by constraints. Repeated
application of these programs to variables, in sequence, implements the
relexation process. Application of these programs to selected variables
to detect the number and degree of independence of constraints is used

as an important part of the one pass constraint satisfaction method.

ONE PASS METHOD

Sketchpad can often find an order in which the variables of a drawing
may be re-evaluated to completely satisfy all the conditions on them in
Just one pass. For the cases in which the one pass method works,it is

far better than relaxation: it gives correct answers at once; relaxation
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may not give a correct solution in any finite time., Sketchpad can find

an order in which to re-evaluate the variables of a drawing for most of
the common geometric constructions. Ordering 1s also found easily for
the mechanical linkages illustrated in the last chapter. Ordering can-
not be found for the bridge truss problems illustrated in the last
chapter.

The way in which the one pass method works is simple in principle
and was easy to implement as soon as the nuances of the fing structure
manipulations were understood. To visualize the one pass method, con-
sider the variables of the drawing as places, and the constraints relating
variables as passages through vwhich one might pass from one variable to
another. Variables are adjacent to each other in the maze formed by the
constraints if there is a single constraint which constrains them both.
Variebles are totally unrelated if there is no path through the con-
straints by which one could pass from one to the other.

Suppose that some variable can be found which has so few constraints
applying to it that it can be re-evaluated to completely satisfy all of
them. Such a variable we shall call a "free" varisble. As soon &s &
variable is recognized as free, the constraints which apply to it are
removed from further consideration, because the free varieble can be
used to satisfy them. Removing these constraints, however, may meke ad-
Jacent variables free. Recognition of these new variables as free
removes further constraints from consideration and may make other ad-
Jacent variables free, and so on throughout the maze of constraints.

The manner in which freedom spreads is much like the method used in
Moore's algorithm7 to find the shortest path through a maze. Having

found that a collection of variasbles is free, Sketchpad will re-evaluate
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them in the reverse order, saving the first-found free variable until

last. In re-evaluating any particular free variable Sketchpad uses
only those constraints which were present when that variable was found
to be free,

In the ring structure representation of the drawing all variables
found to be free are placed in a special ring called the FREEDOMS ring.
(Note that the FREE ring is used for empty spaces in storage and has
nothing to do with freedom in the present sense.) Each variable placed
on the FREEDOMS ring has associated with it, by extra ties, those con-
straints which it will be used to satisfy. In what order varisbles
should appear in the FREEDOMS ring need only be computed when the con-
straint conditions change. For a given set of conditions the same
ordering will serve for finding many satisfactory values. For example,
as part of a linkage is moved with the light pen, the ordering first set

up for the linkage serves until the conditions change.
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Chapter IX

EXAMPLES AND CONCLUSIONS

In the first chapter we saw, as an introduction to the system, some
simple examples of Sketchpad drawings. In the body of this report we
have seen many drawings, all of which, except the drawing of the light
pen, Figure 4.2, were drawn with Sketchpad especially to be included
here. In this chapter we shall consider a wider variety of examples in
somewhat more detail. The examples in this chapter were all taken from
the library tape and thug serve to illustrate not only how the Sketchpad
system can be used, but also how it actually has been used so far.

We conclude from these examples that Sketchpad drawings can bring
invaluable understanding to a user. For drawings where motion of the
drawing, or analysis of a drawn problem is of value to the user, Sketch-~
pad excells. For highly repetitive drawings or drawings where accuracy
is required, Sketchpad is sufficiently faster than conventional tech=-
niques to be worthwhile. For drawings which merely communicate with

shops, it is probably better to use conventional paper and pencil.

PATTERNS

The instance facility outlined in Chapter I enables one to draw
any symbol and duplicate its appearance anywhere on an object drawing at
the push of a button. The symbols drawn can include other symbols and
so on to any desired depth. This makes it possible to generate huge num-
bers of identical shapes; if at each stage two of the previous symbols
are combined to double the number of basic shapes present, in twenty

steps one million objects are produced.



-121-
The hexagonal pattern we saw in Figure 1.1, p. 10, is one example

of a highly repetitive drawing. The hexagonal pattern was first drawn
in response to a request for hexagonal "graph" paper. About 900 hexa-‘
gons’were plotted on a single 30 x 30 inch plotter page. It took abéﬁt
one half hour to generate the 900 hexagons, including the time taken to
figure out how to do it. Plottinéythem takes about 25 minutes. The
drafting department estimated it would take them two days to produce a
similar pattern. |

The instance facility also made it easy to produce long lengths of
the zig-zag pattern shown in Figure 9.1. As fhe figure shows, a single
"zig" was duplicated in multiples of.fivé and three, été. Five hundred
zigs were generated in a single row. Féur such rows were plotted one
half inch apart to be used for producing a printed ciréuit delay line.
Total time taken was about 45 minutes for cohstructing the figure and
about 15 minutes to plot it.

In both the zig-zag pattern of Figure 9.1 and in the hexagonal
pattern of Figure 1.1 the various subpictures were fastened together by °
attachment points. 1In the hexagonal pattern, each corner of the basic
hexagon was:attached to the corners of adjacent hexagonsQ- The position
of any hexagon was then completely determined by the position of any
other. 1In the zig-zag pattern of Figure 9.1, however, only a single
attachment was made between adjacent zig-zags. Additional constraints
were applied to each instance to keep them erect and of the same size.

A somewhat less repetitive pattern to be used for encoding the
time in a digital clock is shown in Figure 9.2. Each cross in the fig-
ure marks the position of a hole. The holes will be placed so that a

binary coded decimal (BCD) number will indicate the time.
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FIGURE 9.1.
/16-ZAG FOR DELAY LINE

FIGURE 9.2, '
3CD ENCODER FOR CLOCK
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Sketchpad was first used in the BCD clock project to produce 60
radial lines at equal 6° spacing. To do this a single 6° wedge was pro-
duced by first trisecting a right angle to obtain a 300 wedge and then
cutting the 300 wedge into five parts. The relaxation procedure was
used in each case to make three or five sketched-in chords equal in
length. Making the 6° wedge took a brand new user less than one half
hour including instruction time. The author has constructed othef
wedges as small as 1/128 of a circle in fi?e minutes. All such wedges
become & part of the library.

The 6O wedge has three attachment points. By attaching five of
the wedges together, and then attaching three groups of five, a guadrant
is constructed. Fitting together four quadrants gives a complete circle
based entirely on the single 6o wedge. The advantage of cohstructing a
full circle compoéed of 60 wedges is that any lines drawn in the origi—
nal 6o wedge will appear 60 times around the circle with no further
effort on thé part of the user. Sixty radial lines were produced in
this way.

Using the sixty radial lines plotted for him the BCD clock designer
then marked with pencil approximately where the crosses should be placed
to obtain BCD coding. Returning to Sketchpad we put a pattern of dots
in the 6° wedge so that in the full circle, rings of dots appearéd which
could be aimed at with the light pen. It was then an easy matter to
place a croés exactly.on each of the desired ddts. Total time for
placing crosses was éO mimites, most of which was spent frying to in-

terpret the sketch.
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LINKAGES

By far the most intereéting application of Sketchpad so far has'
been drawing and moving linkages. We saw in Chapt?r I the straight line
11r;kage of Peaucellier, Figure 1.6, p.20. The ability to draw and then
move linkages opens up a new field of graphical manipulatiop thét has
never before been available. Tt is remarkable how even a.sihple linkage
can generate complex motions. For example, the linkage of Figure 9.3
) h;s only three moving parts. In this linkage a central J link is sus-
pended between two links of different lengths. As the shorter link
rotates, the longer one oscillates as can be seen in the multiple expo-
sure. The J link is not shown in Figure 9.3 sv that the motion of four
points on the upright part of the & may be seen. These are the four
curves at the. top of the figure.

To make the three bar linkage, an instance shaped like the J was
drawn and given 6 attachers, two at its joints with the other links and
four at the places whose paths were to be observed. Connecting the g
shaped subpicture onto a linkage composed of three lines with fixed
length created the picture shown. The driving link was rotated by turn-
ing a knob below the scope. Total time to construct the linkage wss five
minutes, but over an hour was spent playing with it.

Sketchpad can make linkages that one would hardly think of con-
structihg out of actual links and pins. For éxample, a Sketchpad sliding
Joint is ideal, whereas to actually build a sliding joint is relatively
difficult. Again, it is possible to make two widely separated links be
of equal length by applying an appropriate constraint, but to build such

a linkage would be impossible.



FIGURE 9.3. THREE BAR LINKAGE

The paths of four points on the
central link are traced. This is a
15 second time exposure of a moving
Sketchpad drawing.

FIGURE 9.4. CONIC DRAWING LINKAGE

As the "driving lever" is moved, the
point shown with a box around it traces
a conic section. This conic can be seen
in the time exposure.
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A linkage that would be difficult to build physically is shown in
Figure 9.4. This linkage is based on the complete quadrilateral. The
three circled points and the two lines which extend out of the top of the
picture to the right and left are fixed. Two moving lines are drawn from
the lower circled points to the intersections of the long fi:;ed lines
with the driving lever. The intersection of these two moving lines (one
"must be ext‘end.gd) has a box around it. It can be shown theoretically
that this "linkage produces a conic section which' passes through the place
labeled '.'pdint on curve" an& is tangent to the two lines marked "tangent."
Figure 9.4B shows a time exposure of the moving point in many positions.
The straight dotted lines are the paths of other, less interesting points.
At first, this linkage was drawn and working in fifteen minutes.

Since then we have rebuilt it time and again until now we can produc_e it

from scratch in about three minutes.

DIMENSIONING OF DRAWINGS |

It is important that a Sketchpad drawing be made Ain the correct size
for many applications. For example, the BCD clock pattern shown in Fig-
ure 9.2 was plotted exactly 12 inches in diameter for the actual a.pplica-—
tion. In fact, the precision of the plotter is such that its plotted
output can be used directly as a layout in many cases. But the size of
a drawing as seen on the computer display is ‘;ariable. To make it pos-
sible to have an absolute scale in drawings , & coﬁstraint is provided
which forces the value displayed by a set of digits to indicate the dis-
tance between two points on the drawing. The distance is indicated in

thousandths of an inch for "full size" plotted output.
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This distance indicating constraint is used to make the number in a
dimension line. Many othér constraints are used to make the arrowheads
at the end of the line be "paréllel" to the dimension line and to make
enough space in the liﬁe for the dimension number. In some sense the
dimension line is a complicated linkage; like a linkage it can be moved
around while retaining its properties. For example, the arrowheads staj
the same size even when the dimension line is made longer. A dimension
line with small arrowheads is a part of the library. This line is suit-
able for dimensions of the order of a few inches. A three-four-five
triangle dimensioned with this line is shown in Figure 9.5.

To produce the three-four-five triangle of Figure 9.5, three verti-
cal and four horizontalxline segments were made to be the same length.
After erasing theée'lines,‘the three éorrectly positioned corners of the
triangle weré dimensioned. Putting in a dimension line is as easy as
drawing any other line. One points to where one end is to be left,
copies the definition of the dimension line by pressing the "copy" button,
and then moves the light pén to where the other éend of the dimension
line is to be. The size of the three-four-five triangle was adjusted so
that even dimensions appeared.\:At other sizes,'of course, the ratio of
the dimensions was correct but not so easy to recognize at a glance.
Total time to produce dimensioned three-four-five triangle was three
minutes, exclusive of time taken to produce the library version 5f the
di@ension line. Thé’first dimension line took about fifteen mihutes to

construct, but that need never be repeated.
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FIGURE 9.6 N
TRUSS UNDER LOAD
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BRIDGES

One of the largest untapped fields for -application of Sketchpad is
as an input proéram for other computation programs. The ability to
place lines and circles graphicallj, when coupled with the ability to-
get accurately computed results pictorially displayed, should bring
about a revolution in computer application. With Sketchpad we have a
powerful graphical input tool. It happened that the relaxation analysis
built into Sketchpad is exactly the kind of analysis used for many engi-
neering problems. By using Skefchpad‘s relaxation procedure we were
able to demonstréte‘analysis of the force distribution in the members
of a fin connected truss. We do not élaim'that the analysis represented
in the next series of illustrations is accurate to the last significant
digit. What we do claim is that a graphical input coupled to some kind
of compﬁtatidn which is in turn gcupled to graphical output is a tfuly
powerful tool for education and design.

In Figure 9.6 is-shéwn a truss bridge supported at each end and
loaded in the center. To draw this figure,one bay of the truss (shown
below the bridge) was first drawn with enough constraints to make it
geometrically accurate. These constréinﬁs were.then deleted and each
member was made to behave like a bridge beam. A bridge beam is con-
strained to maintain constant length, but any éhange’in length.is indi-
cated by an associated number. Under the assumption that egch bridge
beam has a cfoss-seétional area proportional to its length, ﬁhe numbers
represent the forces in the beams. The basic bridge beam definition
(consisting of two constraints and a number) may be copied and applied

to any desired line in a bridge picture. Each desired bfidge member was
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changed from a line into a full bridge beam by pointing to it and press=-
ing the "copy" ‘bu,t':_ton.

Using the bridge bay six times we construct the complete bridge.
The loading line and the one missing end member are put in separately.
The six-bay unloaded truss bridge is part of the library. It ‘took less
than ten minutes to draw completely. Applying a load wheré desired and
attaching suppo;'ts, one can observe the forces in the various memberé.
It takes about 30 seconds for new force values to be computed. The
bridge shown in Figure 9.6 has both outside lower corners fixed in posi-
tion. Normally, of course, a bridge would be fixed only at one end and
ffée to mové sideways at the other end. | g

Having drawn a basic bridge shape, one can experiment with various
loading conditions and supports to seé what the effect of .makirig minor
mod:_lfications is. For example, an arch bridge is .éhm'm in Figur;'z 9.A7
supporfed both as a three hinged arch (two supports) and as a cantilever
(four supports). For nearly identical loading conmditions the dis’_ﬁribu-

tion of forces is markedly different in these two cases.

ARTISTIC DRAWINGS

Sketchpad need. not be applied only to enginegring drgwings. : 'I‘hg

sbility to put mofion into the &rawings sﬁggests that it vfbuld be ex-

»eiting tc; try making cartoons. The capability of Sketc;hpad to store
previously drawn inforxgu;,tion oni mégnetic tape means that evéry cartoon A
component ever drawn is available for future use. If the almost identi-
cal but slightly different frames that are required for making.a rﬁdtion
picture cartdon ‘couldl. be pi'oduced semi-auvtomatically, the entire VSketch-

pad s‘ystqn‘could Justify itself economically in yet another way.
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FIGURE 9.7. CANTILEVER AND ARCH BRIDGES
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One way of cartooning is by substitution. For example, the girl
"Nefertite" shown in Figure 9.8 can bekmade to wink bjr changing ﬁh_ich
of the three types of eyes.is‘placed in poéition on her otherwise'eye-
less face. Doing this on the computer,diSplay has amused many visitors.

A second method of cartsopiné is by’métion. A stick fig@re.could
be made to pedél a bicycle by'appropriate applicatioﬁ of constraints.
Similarly, Neferiite's hair could be made to swing. ~ This is the more
usual form of cartooning seen in movies.

Aside from ifs‘economics as a teaching or amusement devige, car-
tooning can bring the insights which aré the prime value of Sketchpad
drawings. The girl seen in Figure 9.9 was traced from a photogfaph,into
the Sketchpad syste&., The photograﬁh was read ihto the computer by a
facsimile machine used in another projéct8 and shoﬁn in oufline on the
comfuter display. This éutline was then traced with wax pencil on the
display féce. Later, with Sketchpad 1n’the'canputer, the oﬁtline was
made into a Sketchpad drawing by tracing the wax line with the light
pen.

Once having. the traéing on magnetic tape many‘things can be doﬁe
with it. In particular, the eyes and mouth were erased to leave the
featureless'féce which may also be seen in Figure 9.9. Returning-to
the tracing and erasing everything except the mouth and then everything
except an eye we obtained features. In refittiné the featurés to the
blank face we discovered that, although the originﬁl girl was a sweet
looking miss, an éntirely different'character appeérs if her mouth is
made larger as in Figure 9.10. Using 5 computer to partially automate

an artistic process has brought me, a non-artist, some understanding of
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FIGURE 3.8.
WINKING GIRL AND COMPONENTS
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FIGURE 9.9,
GIRL TRACED FROM PHOTOGRAPH
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FIGURE 9.10.
GIRL WITH FEATURES CHANGED
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the effect of certain features on the appearance of a face., It is the
understanding that can be gained from computer drawings that is more

valuable than mere production of a drawing for shop use.

ELECTRICAL CIRCUIT DIAGRAMS

Electrical engineers are, of course, interested in making circﬁit
diagrams. It is not surprising that Sketchpad should be applied to
this task. Unfortunately, electrical circuits require a great many
symbols which have not yet been drawn properly with Sketchpad and are
not therefore in the library. After some time is spent working on the
basic electrical symbols it may be easier to draw circuits. So far,
however, circuit drawing has been a big flop.

The circuits of Figure 9.11 are parts of an analog switching
sCheme. You can see in the figure that the more complicated circuits
are made up of simpler symbols and circuits. Itvis very difficult,
however, to plan far enough ahead to know what composits of circuit
symbols will be useful as subpictures of tﬁe final circuit. The simple
circuits shown in Figure 9.11 were comﬁounded into a big circuit involv-
ing about 40 transistors. Including much trial and error, the time
taken by a new user (for the big circuit not shown) was ten hours. At
the end of that time the circuit was still not complete in every detail

and he decided it would be better to draw it by hand after all,

CONCLUSIONS
The circuit experience points out the most important fact about

computer drawings. It is only worthwhile to make drawings on the
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DRIVER

FIGURE 9.11.
CIRCUIT DIAGRAMS
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computer if you get something more out of the drawing than just a draw-
ing. In the repetitive patterns we saw in the first examples, precision
and ease of constructing great numbers of parts were valuable. In the
linkage examples, we were able to gain an understanding of the behavior
of a linkage as well as its appearance. In the bridge examples we got
design answers which were worth far more than the computer time put into
them, If we had had a circuit simulation program connected to Sketch-
pad so that we would have known whether the circuit we drew worked, it
would have been worth our while to use the computer to draw it. We are
as yet a long way from being able to produce routine drawings with the

computer.

FUTURE WORK

The methods outlined in this report generalize nicély to three
dimensional drawing. In fact, work has already been begun to make a
complete "Sketchpad Three" which will let the user communicate solid
objects to the computer. A forthcaming thesis by Timothy Johnson of
the Mechanical Ingineering Department will describe this work. Vhen
Johnson is finished it should be possible to aim at a particular place
in the three dimensional drawing through two dimensional, perspective
views presented on the display. Johnson is completely bypassing the
problem of converting several two dimensional drawings into a three
dimensional shape. Drawing will be directly in three dimensions from
the start. No two dimensional representation will ever be stored.

Work is also proceeding on direct conversion of photographs into

8

line drawings. Roberts reports a computer program- able to recognize
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simple objects in photographs well enough to produce three dimensional
line drawings for them. Roberts is storing his drawings in the ring
structure described in Chapter III so that his results will be compat-
ible with the three dimensional version of Sketchpad.

Much room is left in Sketchpad itself for improvements. iSome im-
provements are minor;such as including mirror image subpictures. Some
improvements should be made to suit Sketchpad to particular uses that
come up. For example, it is so interesting to study the path of pafti-
cular points on a linkage that Sketchpad should be able to store and |
later display the path of chosen points.

More major improvements of the same order and power as the existing
definition copying capability can be forseen. At present Sketchpad is
able to add defined relationships to an existihg object drawing. A
method should be devised for defining and applying changes which involve
removing some parts of the object drawing as well as adding new ones.,
Such a capability would permit one to define what rounding off a corner
means. Then, by pointing at any corner and applying that definition,
one could round off any corner. Sketchpad cannot(now do this because
rounding off a corner involves disconnecting the two lines which form
the corner from the corner point and then putting a small circular arc

between them.

HARDWARE
Sketchpad has pointed out some weaknesses in present computer
hardware. A proposal for a line drawing display which would greatly

surpass the capability of the spot display now in use is given in
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Appendix E. Such a display would not only provide flicker free display
to the user, but also.would relieve the computer of the burden it now
carries in computing successive spots in the display.

There are two conflicting demands made by Sketchpad on the light
pen. On the one hand, the pen must have a fairly large fiéld of view
for ease of tracking. On the other hand, it should have a small field
of view for aiming at objects. It should be possible to build a pen
with two concentric fields of view which would report to the computer
separately.

The‘arithmetic element of the computer is not used in doing the
ring structure processing which forms a large part of Sketchpad. On
the other hand, the index registers and their associated arithmetic are
extensively used. This suggests that several users could sharé én
arithmetic element if sufficiently powerful index arithmetic were made

available to each of then.
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Appendix A

CONSTRAINT DESCRIPTIONS

variable description
types
point ~Point bears same relation to
instance instance that (point) bears
(point) to its picture.
GENERATED AUTOMATICALLY WITH
INSTANCES
p thing Three things are collinear.
p thing Note: no distinction made about
p thing ordering of variables.

GENERATED AUTOMATICALLY WHEN
POINTS ARE CREATED ON LINES

- p thing Distance from first to second
p thing is equal to distance from first
P thing to third. (First is circle center.)

GENERATED AUTOMATICALLY WHEN
POINTS ARE CREATED ON CIRCLES

4 thing Thing is erect or on its side.
R

p thing First thing is directly above

p thing or below, or directly beside

second thing. (Horizontal or
vertical line.)

GENERATED AUTOMATICALLY FOR ANY
LINE BY HORV BUTTON

4 thing 4 thing is "parallel" to line
p thing between p things. Parallel to
p thing horizontal line means upright.

(To set angle of text.)
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variable

types

P thing
p thing
p thing
p thing

4 thing
4 thing

scalar

P thing

P thing

- scalar

4 thing

instance

p thing
p thing

p thing

4 thing

p thing
p thing.
p thing
p thing

-1h2-
description

Distance from first thing to
second is 1/3,1/2,1,2,3, times
distance from third to fourth.

First thing is 1/3,1/2,1,2,3
times size of second thing.

Value of scalar equals distance
between things in inches.

Value of scalar equals size of
thing in inches.

Instance is full size, i.e. the
same size as its master picture.

First thing is at mid point of
other two,.e.g. dimension in
dimension line is at center of

‘ line.

Thing is 1/32,1/16,1/8,1/4,1/2
or 1 inch in overall size.

Line from first to sedond would

‘be parallel or perpendicular to

line from third to fourth.
(Lines need not be there.)
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variable
types

L4 thing
p thing

p thing
p thing

scalar

(p thing)
(p thing)
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description

p thing will be next to 4 thing
with enough space for 5 digit
number, e.g. to create space in
dimension line.

Distance between things is main-
tained what it was last time meta
of tog 22 was down. USES META
OF TOG 22. e.g. for bridges and
linkages.

Value of scalar is equal to change
in distance between p things since
meta of tog 22 was down, sign con-
sidered. e.g. to display forces in
beams. USES META OF TOG 22.
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Appendix B

PUSH BUTTON CONTROLS

BUTTON NAME . BIT NUMBER FUNCTION

Draw 1.8 Create. a new straight line segment or
circle arc. End of line or arc left
attached to light pen.

Circle 1.7 Center of circle is left where pen is

center pointing. Next thing drawn will be
circle arc.

Move 2.1 Object pointed at moves with light pen.

Delete 1.3 Object pointed at removed from drawing.

Instance 2.4 Instance of picture whose number is in

toggle register 25 is created.

Copy 20 3.6 Four buttons. Copy definition picture

Copy 21 3.1 indicated in toggle registers 20 to 23.

Copy 22 2.5 respectively. These buttons can be set

Copy 23 1.9 up to create equal length lines, di-
mension lines, etc. Any four functions
can be available at once.

Stop 1.6 Leave moving object wherever it is.
Merge moving object if aiming at object
of like type. ©Same as termination
flick of the pen.

Text 4.3 Create line of text consisting only of
the letter X. Typing while a piece of
text is moving adds to the text dis-
played.

Number 3.7 Create a new set of digits and a scalar
which is its value. Digits left moving.

Hold 4.9 Following pen flick not to be taken as
termination signal. Used to set pen
aside for typing text. '

Garbage 1.1 If pen is tracking, recenter picture so
that place pen is pointing at will be
in the center. If pen not tracking, compauct
ring structure by removing garbage.



BUTTON NAME BIT NUMBER
Constraint 2.8
Horv 2.9
Designate 2.2

Tie 2.6

Fix 3.3
Unfix 2.7
IBM 4.3
Library 3.9
Library Special start
write point
Change 2.3
instance

Dismember b4
Order 4.6
Disorder .5

145~
FUNCTION

Create a new constraint of the type
numbered in toggle register 25. Dummy
variables are created. Constraint
left moving.

Apply horizontal or vertical constraint
tooline'aimed at. Choice is based on
457 cutoff. ‘
Designate object. For copying a definition
picture with three or more ties.

Object pointed at is an attacher of this
picture,

This object must not move during con-
straint satisfaction. Moving an object
with the light pen unfixes it.

All fixed and designated objects unfixed
and undesignated.

Read tape record. Number of record on
tape given in toggle 26. Typewriter
confirms successful reading or writing.

Read a record from the TX-2 library
tape. Address of record given in tog-
gle register 27. Typewriter confirms.

Write a record on library tape. Type-
writer confirms.,

Moving instance or instance pointed at
is changed to type indicated in Toggle
register 25, Can change resistor into
diode, etc.

Instance pointed at is reduced one level,
i.e., its internal structure on the next
level becomes usable.

Iines are put in better order for plot-
ting.

Lines are put in worst order for plot-
ting.
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BUTTON NAME BIT NUMBER FUNCTION
Punch L.7 Punch plotter tape for object picture.
Plot 4.8 Plot object picture.

The following dangerous functions only operate if "meta" button (4.10)

is pressed as well,

Delete L2 All constraints in object picture are
constraints deleted.

Delete 1.4 All unattached points in object picture
points are deleted. \

Delete 1.5 Entire object picture is deleted.
picture .

IBM L.3 Write IBM tape record. Typewriter

confirms.



(C) = Chicken
(HE) = Hen

TYPE OF
BLOCK

Universe

Variables

Holders

Constraints

Topos

Frees
Deads
Movings
Curpics
Freedoms
Fixeds
Desigs
Mergers
Works

Lines
Circles
Pictures

Scalars
Points

Instances

Texts
Digits
Dummies

Appendix C
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STRUCTURE OF STORAGE BLOCKS

STRUCTURE

TYPE

SPECB
}

TYPE
SPECB
DISPIAY,
HOWBIG

MovIT
SIZE

KIND

TYPE
SPECB

NAME y
DISPIAY,
HOWBIG

MovVIT
SIZE
KIND

TUPLE
VARLOC

(8) = Start of subroutine .
- = Ring part of component

(c)
(1)

(c)
(7)

(c)
(1)
(s)
(s)
()
(s)

= Spare register
{) = Data part of block

REMARKS

All these short generic blocks use the
same format. TYPE is & chicken (C)
which connects the block to its next
higher level in the generic structure,
see Figure 3.8. SPECB is the hen (H)
collecting the TYPE blocks in the next
lower level. TYPE and SPECB serve this
purpose in all blocks where they appear.
NAME contains a four letter typewriter
code name for each generic block.
Counting lines, one finds that TYPE =
0, SPECB =.2, and NAME = 4, .

Generic blocks for lines, circles ami)
picture blocks.

Display subroutine.
Fit scope around this thing.

Apply transformation to this thing (Degenerate)
Length of line, circle and picture blocks.

Put these in PPART or PICBIKS of &a picture
block. s

Generic blocks for various kinds of
variables.

Apply transformation to this thing.
Find position of thing on display.

Number components in wvector.
location of first vector component in block.



Hov

Porp
ete.
ete.

Picture

Line

TYPE

SPECB

NAME
DISPIAY
HOWBIG

MOVIT
SIZE
CONLET
KIND

COMP
NCON
CHVAR

TYPE
;ICBLKS
;PART
;WHOS
;PARTM
PATAP

PINS

PSIZE
PNAME
PSAVE

"

"
TYPE
ATATAP

BWHOS

VORD

LSP

LEP

(c)
(H)
(8)
(8)
(8)

(8)

(c)
(H)
(1)
(c)
(1)
(H)
(1)

(c)
(c)
(c)
(c)
(c)
(c)

=1h8.
Generic blocks for various constraint
types.

Degenerate. (Does nothing.)
Degenerate.

Letter to appear in display.

Error computing subroutine.
Number degrees of freedom removed.
Number of changeable variables.

(Specific picture block.)

Abstractions in picture. XIND of generic

block tells if a thing is an abstraction,

Picture parts. Lines, Circles, Instances,
Texts, and Digits in picture.

Put into SPECB of Curpics ring if this

is current picture.

Moving parts of picture.

Attachers of this picture.
Instances of this picture.

Overall size of this picture.

36 bit "name" for this picture.

Space to save transformation when recursively
expanding instances.

I

(Specific line block.)

Put into PATAP of picture if this line
is an attacher.
Which picture this thing belongs to.

Put into SPECB of Movings if this line
is moving.

Start point of line., Goes into PLS ring
of point.

End point of line.



Circle TYPE
;TATAP
BWHOS
;ORD

CSp

CEP

CIRCEN
{CVAL
1t
TYPE

ATATAP

Point

BWHOS

VORD

VFILW
;CON
PLS
TPCOTP
()
Instance TYPE
ATATAP
BHOS
;ORD

VFLW

VCON

(c)
(c)
(c)

(c)
(¢)

(c)
(c)
(c)

(1)
(1)
(H)
(H)

(c)
(c)
(c)
(H)
(H)

(Specific circle block.) -1k9-

Start point of circle arc.
End point of circle arc.
Center point of circle.

Angle of circle arc (to avoid ambiguity).
Redius of Circle (to save recomputation).

(Specific point block.)

Put in SPECB of Freedoms during maze-
solving constraint satisfaction.

Constraints which this variable will
be used to satisfy.
Constraints on this variable.

Lines and Circles on this point

Instance-point constraints which use
this point for reference only.

X coordinate of point.

Y coordinate of point.

Specific instance block. Size of
instance is half size of enclosing box.

What picture this is an instance of.

Size times cosine of rotation.
Size times sine of rotation.
X coordinate.

Y coordinate.
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Text TYPE (¢) /Particular lines of text. Size of
- text is half height of letters. Position
ATATAP (C) | of text is center of first letter in the
- line.

BWHOS (c)
VORD (¢)
VFIW (H)
VCON (H)
TVAL Size times cosine of rotation.
" Size times sine of rotation.
" X coordinate.
" Y coordinate.
TXTS Text to be shown, four letters per
" register, typewriter codes.
"
1"
"
"
11
1"

Dummy TYPE (c) (Particular dummy variable.)

ATATAP (c)
BWHOS (¢)
VORD (c)
VFIW (H)

VCON (H)

TPVAL X coordinate.
" Y coordinate.



Digits

Scalar

Constraint

|

TYPE
ATATAP
BWHOS
VORD
VFLW
;CON

NTOSHOW

TYPE
ATATAP
éWHOS
VORD
VFLH
;CON
SSHOW

SVAL |
!

TYPE

- ATATAP

i

BWHOS

(c)
(c)
(¢)
(H)
(1)
(c)

(c)
(c)
(c)
(H)
()
(H)

(c)
(cy
(c)

CVTS,VORD (C)

VARL
VAR2

VAR3

VARL

VARIATION

|
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(c) (A particular set of digits. Size of)

digits is half height of figures.

Scalar whose value is to be shown.

Size times cosine of rotation.
Size times sine of rotation.
X position.

Y position.

(A particular scalar block.)

Digits showing this scalar's value.

Value of scalar.

All constraint blocks have same format.
If fewer than four variables, block will
be shorter and VARIATION will be moved

up.

Variable used to satisfy this constraint
in msze-solving method.
First constrained variable.

Second constrained variable.

Code for variations within a constraint
type. e.g., horizontal or vertical.
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RING OPERATTION MACRO INSTRUCTIONS

The macro inétructions listed in this appendix are used to implement
the baéic ring operations listed in Chapter III. Only the format is
given here since to list the machine instructions generated would be of
value only to persons familiar with the ' TX-2 instruction code. In each
case the‘macro name is followed by dummy variables separated by non-
alphabetic symbols. The dummy variables XR and XR2 refer to index
registers which contain the address of the block which contains the ring
element being worked on. The terms N of XR or NxXR mean the Nth
element of the block pointed to by index register XR, for - examﬁle, the
ISP (line start point) register of the line block pointed to by index

register Q.
LTAKE=sNxXR

Take N of XR out of whatever ring it is in. The ring
is reclosed. If N of XR is not in a ring, LTAKE does
nothing. N of XR must not be a hen with chickens.

PUTLaNxXR-+MxXR2
PUTR=NXxXR+MxXR2

Put N of XR into the ring of which M of XR2 is a member.
N of XR is placed to the left (PUTL) or right (PUTR) of
M of XR2 M of XR2 may be either a hen or a chicken. N
of XR must not already belong to a ring.
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MOVEL=SNxXR-+MxXR2
MOVER®=NxXXR-+MxXR2

Combination of LTAKE and PUTL (PUTR). Assumes that both N of XR and M
of XR2 are in the same ring. Intended for reordering & ring.

CHGRL=NxXR+»MxXR2
CHGRRaNxXR+MxXR2

Conbination of LTAKE and PUTL (PUTR). N of XR and M of XR2 may be in
different rings.

LGORRESNxXR=XR2-»SUBR->LEXIT
LGORLSNxXR=XR2-»SUBR-+LEXIT

Go around the ring of which N of XR is the hen. Exit to subroutine
SUBR once for each ring member. The address of the top of the block
to which each ring member belongs is put in XR before starting the
subroutine. XR2 1s used as a working index register. The subroutine
may destroy the contents of both XR and XR2. The subroutine may delete
individual members of the ring provided recursive deletion does not
delete additional ring members. The subroutine must not generate new
ring members. Jump to LEXIT when finished with the ring. Go around
the ring to the right (ICORR) or left (LGORL).

LGORRIMNxXXR=XR2-+SUBR-»LEXIT
LGORLI®mNxXR=XR2-+SUBR-LEXIT

Same as LGORR except that the subroutine may generate new members in
the ring. The subroutine must not delete the current member of the
ring. New members will be visited if they are put in the ring later
in sequence.

COMBHRaNxXR-+>MxXR2

COMBHL=NXXR*MxXR2

The members of the ring whose hen is at N of XR are placed in the ring of
which M of XR2 is a member. N of XR must not be empty. The new members
are placed to the right (COMBHR) or left (COMBHL) of M of XR2. M of

XR2 may be either a hen or a chicken. N of XR is left empty.
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Appendix E

PROPOSAL FOR AN INCREMENTAL CURVE DRAWING DISPLAY

In the course of the work with Sketchpad it has become all too
clear that the spot-by-spot display now in(use too slow for comfortable
observation of reasonable size dfawings. Moreover, having the central
machine éompute and store all the spots for the @isplay is a waste of
general purpose capacity that might better be applied té other Jobs.

As a solution to these difficulties I propose that a special purpose
incremental computer be used to generate the successive spots of the
display at high speed. The central machine would provide only a mini-
mum of information aboutAéach curve to be drawn; e.g. end points of
iines; start, center ahd arc length of circle arcs.

The technology of incremental camputefs is well developed, but so
far as I know, no one has yef applied them directly to the problem of
computer displéy systems. Basically the incrementél computer works by
edding one register to another succeséively and detecting any overflows
or underflows which may be generated. Certain registers are incremented
cohditionally on the result of overflow or underfloﬁ generation.

In the system of Figure E.1l, the x and ¥y incremeht registers are
added to the~x and y remainder registers and overflows or undérflows
(dotted linés) are used to increment the beam position.of the displéy.'
A counter (not shown) is provided to limit the length of the straight
line generated. The unit would.request more information from the com-
puter after the appropriate number of additions. For drawing straight

lines on a 1024 x 1024 raster display, the increment registers should
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X REMAINDER »
:::}ZEiﬁf ----- X SCOPE
X__INCREMENT —" — |

Y__REMAINDER |
' :::EZEZ%:;-~->Y SCOPE
Y__INCREMENT

FIGURE E. 1.
DDA FOR DRAWING LINES
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contain 10 bits plus sign, 11 bits in all each; the remainder registers

should contain 10 bits with no sign; and the counter should contain 10
bits.

To understand how the system of Flgure E.l operates consider that
its x increment regisﬁér contains the largest possible positive number
and that its y increment contains one half that value. The x addition
would result in overflow neafly every iteration, whereas the y addition
would result in overflow only on alternate additions, and so a line
would be drawn up and to the right with a slope‘of 1/2‘

The usual practice in incremental computers is to be able to step
the increment registers by a single unit up or down according as over-
flow or underflow is produced in another addition. In the system of
Figure E.2, the (:)risAan adder-subtractor which can increase or de-
crease the incremént register by the amount stored in the curvature
register. The Q@ adds or subtracts if overflow or underflow is gen-
erated in the other addition. Overflow or underflow is signalled to

the Qﬁ; adder along the dotted paths in Figure E.2.

Use of the conditional adder permits a curvature to be specified
so that curves can be drawn. The system of Figure E.2 will draw straight
lines if the numbers in the curvature registers are zero, circles if the
numbers are equal and opposite in sign, ellipses if the numbers are un-
equal and unlike in sign,and hyperbolas if the numbers are like in sign.
The ellipses and hyperbolas are generated, however, with axes pafallel to
the coordinate axes of the display.

Theory and simulation show that just as in the incremental equation

used for generating circles (see Chapter V), the latest value of incre-

ment must be used if the curve is to close. Therefore, the additions
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FIGURE E.2.
DDA FOR UPRIGHT CONICS
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cannot all occur at once;.tﬁe order shown in Figure E.2 by the numbers
1-4 next to the adders makes the circles and ellipses close. 1In a serisl
device it is possiblé to do thé four additions in just two add times‘by
having only a one bit time delay between the two additions for each
coordinate, i.eﬁ,(:j justrbefore(:).

Circles can be drawn with radii from about one‘scopeNunit to a
straight line according to the numbers put in the curvature registers.
Simulation shows that if the increment and curva#ure registers contain
17 bits‘plus sign; 18 bits each in all, and the remainﬁe: contains 17
bits without sign, the largest radius ciréle that can be drawn is just
noticeably differenf from a straight line after haviné passed fully
across a 1024 x 1024 raster display. The simulation program for this
test is less than 100 instructions long and requires, of ‘course, no
multiply or divide. Simulation of larger incremental computers on small
general purpose digital camputers shoﬁld be a powerful way to get"cdmplex.
numerical answers qulckly and easily.

If the system of Figure E.2 is duplicated twice as shown in Figure
E.3, a general Conic Section drawing capability is obtained. I am
indebted to Larry M. Délfs for pointing out that tﬁe display incrementing
outputs of the two systems should be added together. The full system of
Figure E.3 can draw not only arbitrary conic secfions but a host of
interesting cycloidal curves. For drawing the simple straight lines
and circles, the two halves of the system would be loaded with identical
numbers to gain a two-fold speed advantage.

A trial‘design using 20 megacycle serial légic and 36 bit delay

lines available commercially showed that the full syStem would be able
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to generate new display points at 0.9 microseconds each for lines and
circles and slightly slower (but not half speed) for complicated conics.
This corresponds to a writing rate of about 10,000 inches per second.
Some saving in cost could be expected if longer delay lines were used
aﬁd a correspondingly slower operation speed were tolerated. It appears

possible to get similar performance from a parallel scheme.
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Appendix F

MATHEMATICS OF LEAST MEAN SQUARE FIT

The result quoted in this appendix is well known and is repeated
here only for reference.
Suppose we have P equations in N unknowns:

N
Zaijx,j:ci 1<1igP; or "AX=C. (F-1)
J=1

If P is larger than N there would in general he no exact solution. We
wish to find the values for the unknowns which minimize the sum of the

squared errors of the equations. The error in the ith equality is given

by:
N
E, =z (ai,j Xy - ci), (F=2)
J=1

and the total squared error,

P N 5
__.Zl [Z (g x,) - ci] , (F-3)

=

We wish to minimize Et ,

and set all these equal to zero. For a particular x 3 called Xy s

P N o
a.éx; Z [Z 8 J ci] . (F-h)

Since the partial of a sum is equal to the sum of the partials,

and so we taeke partials with respect to each x,j
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P X »
g’%{ =Z %[X T I ci] : (F-5)

i=1 J=1
or since
o) 2
& @7 =22 530,
P N - N
0 o)
&-Ei =Z e[z (ai,j xj) - ci] 5% [E (aij x'j) - ci]. (F-6)
i=1 J=1 J=1
Now the last part of (F-6) is a sum of terms like 815Xy oo only one of

which involves X at all, namely SIS Therefore,
P N
OF°
i=1l j=1

which, when set equal to zero gives:

P X
0 =Z [Z (a.ik 83 xj) -8 ci], (F-8)
i=1 ~j=1
or
P N P
E E 8k 215 Xj ’Z 8k €y (F-9)
im1 j=1 in

Changing the order os summation,

N P P
Z (? %1k ai:]) %57 (E &k °1>’ (F-10)
71 im o

which in matrix notation becomes:

ATax = a%c. (F-11)
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ATA is a square matrix of order N. Thus a system of any number of lin-
ear equations can be reduced to a simpler system whose solution is the
value of the variables for least square fit to the original set of equa-
tions.

If the original equations are equations in two unknowns, & plot of
(F-2) with error squared in the upward direction is a parabolic valley.
Since any vertical section of a parsbolic valley will be a parabola, and
the sum of any two parabolas in likewise a parabola, a plot of (F-3) can
at most be an eliptic paraboloid. The Equations (F-10) and (F-11) re-
sulting from the method described here represent the locus of locations
where contour lines of the eliptic paraboloid are parallel to the axes.’
The intersection of these loci, the solution of (F-11), is the lowest

point in the eliptic paraboloid, the least mean squares fit to (F-1).
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Appendix G

A BRIEF DESCRIPTION OF TX-2%

At first glance, TX-2 is an ordinary single-address, binary digital
computer with an unusually large memory. It is an experimental machine—
many of its in-out devices are not commercially available. bn closer
inspection, one finds it has some important innovations-—=at least they
were innovations at the time TX-2 was built (1956),

The distinctive features of TX-2 are:.

1. Simultaneous use of in-out machines through
interleaved programs.

2, TFlexible, "configured" data processing.
Some other virtues include:
1. Automatic memory and arithmetic overlap.

2. A "bit" sensing instruction (i.e., the operand
is one bit!).

3 Addressable arithmetic element registers.
4, Especially flexible in-out.

5. 64 index registers.

6. Indirect—i.e. deferred addressing.

7. Magnetic Tape Auxiliary Storage

IN-OUT
The phrase "simultaneous use of in-out machines" should be taken

quite literally. It does not mean simultaneous control. Each unit has

* By Alexander Vanderburgh
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its own buffer register and only one of these can be processed by TX-2
at any given instant. It is the relative spéed that is important. For
example, the in-out instruction that "fills" the display scope buffer
takes no more than 10 microseconds, but the display itself takes from
20 to 100 microseconds, i.e., up to ten times as long. While the display
is busy, the computer can compute the next datum of course, but it can
also initiate other in-out transfers. In practice, since most in-out
units are much slower than their associated programs, the computer
spends a significant percentage of the time just waiting (in "Limbo"),
even vhen several devices ‘are in use. Interleaved initiation of in-out
data transfers is partly automatic and partly program controlled. Each
in-out routine is independently coded and is operated by TX-2 according
to its "priority." Each unit has a "Flag Flip-Flop" to indicate to con-
trol that it is ready for further attention. When a unit is ready for
further attention its routine will be operated unless another unit of
higher priority also needs attention. An index register is reserved
for each in-out unit and is used as a "place-keeper" when its routine
is not being operated. The sharing among in-out routines of storage,
index memory,‘and the arithmetic element is the programmer's responsibi-

lity.

"CONFIGURED" DATA PROCESSING

The "normal" word length for TX-2 is 36 bits. For many applica-
tions 18 or 9 bits would suffice, and in some cases each piece of data
requires the same processing. Configuration control permits "fracture"

of the normal word into two 18 bit pieces, four 9 bit pieces, or one 27
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bit and one 9 bit. These "subwords" are completely independentesfor
example, there are separate overflow indicators. In addition to
"fracture" there is "activity" and "quarter permutation". Any quarter
word can be made "inactive" i.e., inoperative. The 9 bit quarters of
a datum from memory may be rearranged (permuted) before use. There
are 8 standard permutations——for example, the right half of memory
can be used with the left half of the arithmetic element. Nine bits
are required for complete configuration specification. Since only
5 bits are available for bit thin film memory is addressed by each
instruction word, a special 32 word, 9 bit thin film memory is
addressed by each instruction that processes data directly."A
complete change to any of 32 configurations is therefore possible

from instruction to instruction.

THE SMALLER VIRTUES

Overlap: TX-2 has two core memories—"S" memory, & vacuum tube
driven 65,536 word core memory, and "T" memory, a transistor driven
4096 word core memory about 20% faster. Instruction readout can be
done concurrently with the previous data readout if program and data
are in separate memories,

The use of the arithmetic element is also overlapped. Instructions
that follow a multiply or divide operation will be done during the arith-
metic time if they make no reference to the arithmetic element. The
overlap is entirely automatic and ﬁéy be ignorédvif the programmer

chooses. A careful programmer can gain speed by doing indexing after

multiply or divide and by putting program and data in separate memories.
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Bit Sensing Instruction: One instruction--SKM--uses a single bit of

any memory word as its operand. Control bits provide 32 variations of
skipping setting, clearing, and/or complementing the selected bit. This

instruction can also cycle the whole word right one place if desired.

Addressable Arithmetic Element: Seventeen bits of the TX-2 instruc-
tion word are reserved for addressing an operand. This would allow a
131,072 word memory. TX-2 has only 69,632 registers of core storage.
The toggle switch and plugboard memories, the real time clock register,

the knob register (shaft encoder), and the arithmetic element registers

use 55 of the remaining addressing capability. The arithmetic element
registers are therefore part of the memory system and can be addressed,
e.g. one can add the accumulator to itself.

Flexible In-Out: The TX-2 user must program each and every datum

transfer. The lack of complex automatic in-out controls may seem to be
a burden, but the simplicity of the system gives the programmer much
more precise and variable control than automatic systems probide, For
example, coordination of separate in-out units such as displgy and light
?en is possible. Moreover, it‘is relatively easy to attach new in-out
machines as they become available.

Index Memory and Indirect Addressing: Of the 64 index registers,

one must . devote a few to each in-out unit's program. With all 21 in-out
devices concurrently in use, each program would have two index fegisters
for normal programming use. In practice, one seldom uses more than half
a dozen in-out units, and each routine would then have 9--clearly a luxu-
ry. Indirect addressing provides a means for indexing normally nonindex-

able instructions, or for double indexing normal instructions.
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Magnetic Tape Auxiliary Storage: Each TX-2 magnetic tape unit stores

about 76 million bits, 34 times the capacity of the core memory system.
Iike a magnetic drum tﬁe tape is addressable. If can be reed in either
direction at any speed from 60 to 600 ips, and can be searched at a maxi-
mum ‘of 1200 ‘ijg\s. It is .uAsed at present primarily for program storage.
"Turn ar.oumi time"—iQe. the time required to ‘save one progrem and read-
‘i‘n a different one is seldom more than 2 minutes and often less than 30
seconds. (The." read-in .time, once the desired section of the tape"is
found, is about 12 seconds for 69,632 words.) A standard TBM 729 tape

“unit is also availsble.

SUMMARY OF VITAL STATISTICS-~TX-2-=DECEMBER 1962

qud. Length: 36 bits, plus parity bit, plus debugging tag bit

Memory: 256 x 256 core 65,536 wofds 6.0 ﬁégc cycle time
64 x 64 core 'h;096 words 4.4 pusec cycle time
;',I'og’gle switch 16 words |
Plugboard 32 words

.Auxiliary Memory: Magnetic Tape 2+ million words, 7O+ million bits per
unit (2 units in use, total of 10 planned)
Tape Speeds: ’ selectable 60~300 inches /sec , Search at 1000

inches/sec (i.e. about 1600 to 8000 36 bit words/sec)

IN~OUT EQUIPMENT
Input:
Paper Tape Reader: 400-2000 6 bit lines /sec

2 keyboards—Iincoln writer 6-bit codes
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Input:
Random number generator-——average 57.6 psec per 9 bit number
IBM Magnetic Tape (Model 729 M) |

Miscellaneous pulse inputs-—-9 channels-—push buttons or
other source

Analog inpuf-—Epsco Datrac-—nominal 11 bit sample
-27 kilocycle max. rate

2 light pens—work with either scope or both on one

Special memory registers:

Real time clock

L shaft encoder knobs, 9 bits each

592 toggle swi£ches (16 registers)

37 push 5uttons-any 6r all can be pushed at once
Output:

Paper tape punch—-300 6 bit lines/sec

2 typewriters--10 characters per second

IBM Magnetic Tape (729 M5)

Miscellaneous pulse/light/relay contacts—-9 channels
(low rates)

Xerox printer--1300 chér. sec
2 display scopes—T x'7 inch usable area; 1024k x 1024 raster
Large board pen and ink plotter—29" x 29" plotting area

15 1n/sec slew speed. Off line paper tape control
as well as direct computer control.
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L-thing A four component variable: text, digits, or instance.
Aim To place the light pen so that light from the picture

part aimed at falls on the photocell and so that the
center of the light pen field of view is sufficiently
close to the picture part.

Atomic Axiomatic, fundamental, built in. The atomic con-
straints are listed in Appendix A. The atomic
operations are each controlled by a push button
listed in Appendix B.

Attacher For instances, a particular point designated in the
master for which in the instance the light pen will
have a particular affinity. Also the related point
created in the picture containing the instance when
the instance was created.

For copying, any drawing part designated in the
definition picture. Attachers may be recursively
merged with obJject picture parts when the definition

is copied.

Balance The property of equal weight among constraints
obtained by making error in a constraint equal to
displacement.

Block A set of consecutive registers used to represent a

picture part. An n-component element.

Chicken A subordinate ring member, composed of two registers
one of which references the block containing the
hen for this ring, the other references the next
and previous chickens in the ring.

Circle A circle arc. A full circle is a circle arc 360°
or more in length.

Constraint A specific storage representation of a relationship
between variables which limits the freedom of the
variables, i.e., reduces the number of degrees of
freedom of the system. Also, constraint is some-
times used to mean a type of constraint, as in
"there are seventeen atomic constraints."

Constraint The process of moving variables so that all the
satisfaction conditions on them embodied in the constraints are

met. It is not always possible.
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Duplication in storage the ring structure of a
definition picture. A copy is not to be confused with
an instance. Any instance may be changed into a

copy by dismembering.

A master picture. Especially a picture to be used
for copying, usually containing a combination of
atomic constraints. Also the error camputation
routine associated with a constraint.

To erase. Deleted blocks become garbage.

A set of five decimal digits plus sign, leading
zeros suppressed. As a variable digits may be moved,
rotated, or made larger on the display. The
particular value displayed is that of an associated
scalar and may be changed only by moving the scalar.

The process of changing an instance into a copy by
creating in the ring structure a duplicate of the
internal structure of the instance's master and re-
moving the instance. A dismembered instance becomes -
a group of lines, etc., which may be individually
moved, deleted, etc. Dismembering peels off only one
layer of instance at a time. .

A particular two component variable used to locate
the arms of a constraint when it is first created.
Dummy variables may merge with any other kind of

variable leaving any attached constraints applying

to that variable. Display for a dummy variable is

aX. .

The number computed by the definition subroutine for
a constraint. Error is zero if the constraint is
satisfied and grows monotonically as the constrained
variables are moved.

A storage structure. A file may be in either list
form or table form. Also a collection of magnetic
tape records.

A variable which has so few constraints on it that
it may be moved to satisfy all of them. Such a
variable will be in the FREEDOMS ring.

Free storage inside the range of storage addresses
being used to represent the drawing.

A pair of registers in a block used to indicate the
first and last references made to that block by the

chickens belonging in the hen'’s ring. Also called

a key.
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A fixed geometry subpicture represented very compactly
in storage by reference to a master and indication

by four numbers of the size, rotation, and location

of the subpicture. Internal structure of an instance
is visible and may contain other instances, but since
it is identical in appearance to the master it cannot
be changed without changing the master. EX Except for
size, rotation, and location, all instances of one
master look the same. :

See hen.

A line segment. No representation for an infinite
length line exists in Sketchpad.

A topological thing connecting two points. Contains
no numerical information. Sometimes called a line.

A particular form of storage structure in which each
element stores not only the information pertinent

to it but also the address of the next element. Not
to be confused with a table.

A position in the coordinate system represented by
a pair of coordinates. Not to be confused with a
point which has a location. Also the address of a
particular piece of information in storage.

A picture which is used to define the visible
internal structure of an instance.

Comblnation of two storage blocks to identify two
picture parts, which must be of like type, permanently.
The result of a merger of variables takes on the

value of the historically older variable. In the

ring structure, merging makes one block out of two,

- reducing the other to garbage In certain cases

merging is recursive.

Changing the numerical information stored in a
varigble. Moving a point stores a new coordinate
location over the previous one. Moving an instance,
text, or digits includes size change and rotation.
Moving a scalar implies changing its value but does
not change the position of its display. Moving is
also the state a thing is in when it is attached to
the light pen; it may be stationary on the display.
Moving is not to be confused with relocating.’
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A particular form of storage in which various
properties of each .object represented are stored
in consecutive registers. Also the block of
registers representing an object.

See scalarsand digits. Number: often refers to
digits and scalars collectively. Also the binary
numbers stored for a variable.

A particular picture currently being worked on.
Especially a complicated picture of particular
interest to a user as opposed to a definition or
master picture which is to be used as a portion
of the object picture.

The older of two blocks is the one with the lowest
humbered address, illustrated higher on the page.

Since new blocks are taken from the free space in

addresses higher numbered than the drawing storage,
an older block was usually created sooner.

A storage device to collect together reiated drawing
parts. A "sheet of paper”. Also the lines, points,
instances, and constraints, etc., that are drawn

"in the picture, collectively.. Pictures are numbered

so that any one may be called to appear on the dis-
play. Within the limits of storage, as many
pictures as desired may be set up and used.

A specific representation in the ring structure used
as an end point for a line segment. Not to be
confused with location or spot. Also as a verb, to
aim at something with the light pen.

A storage register which contains the location of
another storage register rather than numerical data.
Such a register is said to point to the register
whose address it contains.

A location near the axis of the light pen which is
used as the "point of the pencil”. The pseudo pen
location lies exactly on an existing point or line
or circle or at the intersection:of lines if the pen

iis aimed at them.

Changing the address at which a particular block is
stored in memory. Not to be confused with moving.

The single thing which remains after two things
have been merged.

A set of pointers which closes on itself. In Sketch-
pad all rings point both forward and back. A ring
is composed of one hen and many chickens.
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The type of storage structure used to represent the
drawing's topology. See ring.

See constraint satisfaction.

A one component vector whose value can be dis-
played by a set of digits. For display of the
scalar itself a # is used.

One of the bright dots on the display. Not to be
confused with point or location. :

A form« of storage structure in which successive
pieces of information are stored in successive
registers in memory. Tables are the "conventional”
form of storage. See also list and rirg

structure.

The process of taking things out of the moving
state. Termination is usually done by giving a
flick of the light pen. Pressing "stop" also
terminates. Upon termination, merging may take
place.

Lines of textual material typed in and appearing in
a standard type style on the picture. Text is
treated as a four component varisble.

An attacher.

The particular information stored in the numerical
portion of a variable. E.g.,the location of a
point. Especially the value of a scalar as opposed
to the location of the set of digits displaying :
this value.

A picture part which contains numerical informetion.
Scalars, points, instances, texts, digits and.duymmy
variables are the only variables at present, ~Also
used to denote a type of variable.
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