Memorandum 6M-5780

Sheet 1 of 15 Sheets

Division 6 — Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

SUBJECT: SOME EXAMPLES OF TX-2 PROGRAMMING

To: Distribution Eist

From: Ho Philip Petersonﬁz_wg&m«

Date: July 23, 1958

Approved: VA C_

Abstract: Six short programs are presented here to illustrate many
of the somewhat inscrutable features of TX-2 programming.

These programs are called:

I: A Checkerboard Pattern Generator

II: The Inchworm

III: The Memory Mirror

IV: An Autocorrelation Program

V: The Flexo-Octal Converter

VI: A Binary Read-in Routine

Distribution Lis te

Group 63 Staff

Arden; Dean (Barta)

Arnow, J,
Attridge, W,
Bagley, P. R.
Bailey, D.
Briscoe, H.
Buzzarfl, R,
Daggett, N,
Dinneen, G, P,

Frachtman, H, E.

Frick, F.

Grandy, C.

Hazelg F. P,

Heart, F,

Holmes, L.

Israel, D.

Mason; Wm.,

Pughe, E. (Servo Lab.)
Rising, H. K.

Dustin; D. E. Thomas; L. M,
Forgie, Carma Tritter, A, L.
Vance; R. R, Zraket, C. A.

1. This document has been prepared for internal use only. It has not been reviewed 2. The research reported in this document was
by Office of Security Review, Department of Defense, and therefore, is not intended supported jointly by the Department of the Army,
for public release. Further dissemination or reproduction in whole or in part of the the Department of the Navy, and the Depart-
material within this document shall not be made without the express written approval ment of the Air Force under Air Force Contract

of Lincoln Laboratory (Publications Office).

Ne AF 19 (122)-458.

6M-5780 1.

INTRODUCTORY REMARKS

The six example programs presented in this paper illustrate many of
the somewhat inscrutable features of TX-2 programming. A few assumptions,
however have been made by the author about the reader. These assumptions
are:

1) that the reader knows how to program;

2) that the reader is familiar with TX-2 nomenclatures (this
familiarity may be attained by studying "The Lincoln TX-2
Computer,® (6M-1;968); and

3) that the reader has a copy of "The TX-2 Programmer's Guide®
for reference (6M-5807).

NOTATION

The code part of each instruction is written as a group of 3 capital
letters (ADD, JMP, etc.). Any superscript numbers preceding the code
part refer to a configuration memory location, except for JPX; JNX, JMP
and SKM instructions., Superscript numbers following a code refer to an
index memory location except for SKM type instructions where this is the
number of the bit in the addressed word., Lower case numbers following a
code are main memory addresses.,

A colon means %hold control until the next instruction.® Brackets
mean "defer the address® and imply that bit 2.9 of the address is a ONE.
Lower case letters are hopefully self-explanatory.,

To the left of many instructions will be an explanatory notation
using four little lines which show the permutation involved by how they
cross; the active quarters of central machine registers by arrowheads,
and, when necessary, the fracture (or coupling or subwords) by little
cups. This configuration will be specified by the contents of the indi-
cated configuration memory word,

A number or word followed by "slash equals® defines the address of
the instruction or constant to the right of it. A word followed by
%equals slash™ is the name of the register following.

An address section with a large L prefixing it, as in 763 of Program I,
means the address of "a register containing what is indicated.®

A1l numbers in programs are octal unless atherwise indicated. Numbers
are punctuated with commas separating the meaningful portions of the whole
36 bit word. A single comma separates 9 bit (3 octal digit) quarters when
the word is dealt with in quarters., Two consecutive éommas will separate
the word into 18 bit (6 octal digit) pieces.

6M-5780 2,

I. A Checkerboard Pattern Generator
The Problem

When a core memory is being checked for operating margins, a
"bad® pattern of ONES and ZEROS is desired. (see Engineering Note
E-488). One of the worst conditions starts with a checkerboard
pattern which looks like this in each memory plane:

o ¢ o OOHKO
°© 0o o HHOOHK
6 o o HHEROOK
° e o OOHKO
® o 0o OOKHMKFO
e o o HHEOOM
°© ¢ o HHOOW
¢ o © o e o ¢ o
6 ¢ o © o 6 e ¢

6 6 o @ ¢ o ¢ o

The complement of this pattern is also a checkerboard, The addresses
increase from left to right and top to bottom beginning with address
000 at the upper left., In the case of a 2562 memory plane, it takes
8 bits to address a row or a column (16 address bits in all).

If one computes the parity of the two least significant bits of
the row address and the two least significant bits of the column 7
address, one will find that if the parity of these four Dbits is odd,
a ONE will be at that address; if even, a ZERO will be there.

The problem is to construct a program which generates this pattern
in all 65,536 bits of each memory plane. The program must fit into
the 16 toggle switch registers.

The Solution

Program I gererates the checkerboard pattern by using four SKZ
instructions to look at the two sets of least-significant address bits.
These bits are 1.1, 1.2, 1.9 and 2.1, When any one of them is a ONE,
the SKZ doesn't skip and an MKC is executed which complements bit 3.1
of the E register. After examining the four address bits; E register
bit 3.1 will be ZERO for an even parity or ONE for an odd parity.

The whole address is kept in index register 1 and the DFX at 751% puts
the address in the right half of the E register, leaving the left half
all ZEROS since configuration O is used. After computing the parity,
the left half of E is put in index register 2 and the LDE at 763%* puts
the word at 766 in E if the parity is even, or the word at 767 if it
is odd. The word in E is stored away at the address and the address
is counted down. The address was reset by the RSX in 750 to 177,777
This number is kept in the A register (377,740) which is being simu~
lated by a toggle switch register as of this writing.

#The three most significant octal digits of addresses (377 in toggle switch
addresses) will be omitted for brevity's sake.

OCTAL

02

00

10

03

10

03

10

03

10

03

02

00

00

36

00

77

11

16

7

17

17

i7

17

7

17

i1

20

30

06

05

T2

EQUIVALENT

o1

01

by

61

31

61

22

61

21

61

02

02

o1

01

00

7

377;740
37T, T4
377, Th4
377,744
377,744
37T, Thb
377, 744

377,744

377, Th4

377, Th4

377,744

377,766

000,000

377,751

377,750

400 o027

Program I

ADDRESS

377 750

751

752

753

754

755

756

757

377 760

761

762

763

T64

765

766

767

6M=5780 3.
SYMBOLIC

2RSX* | ATT,TT7 &=
2R, TR et

NERRY °DPX' e regen
SKZ2¢! e reg-
i
MKC2¢2 e reg
1
SKZ1e® ¢ reg-
|
MKC®+* e reg
SKZ*e2 e reg-
]
MKC3e?® e reg:

v

141
SKZ e reg.T

!
MKC3=! e reg |
|

:2;2%:; 2R3X2 e reéz
N nD2_ =7

1LY O1pE® Lgprd

L4 ¢’¢'°STE1 memory

=iypx? next-———J

(word) JMP restart .

(- word)

A Checkerboard Pattern Generator

- OCTAL

02
00
10
03
10
03
10
03
10
03
02
00
00
36
00

(4

11

16

17

17

17

17

7

17

17

17

11

20

30

06

05

T2

EQUIVALENT

01

01

41

61

31

61

22

61

21

61

02

02

01

01

00

77

377,740
377, T44
37T, Th4
37?;744
377, Tk
377, Th4

377, Th44

377,744

377,744
37T, T44
377,744
377,766
090,000
377,751
377,750

koo 027

Program I

ADDRESS

377 750
751
752

753

T54
755

756
757

377 760
761
762
763

764

765
766

767

6M-5780 3.
SYMBOLIC

2 1
Lz;gg RSX [477,777 €

J ¥, ODPXt e rege
SKZZ+! e reg-

|
l
MKC3*! e reg
1

SKZ1+?® ¢ reg.

|
MKC®+*! e reg

J

SKZ*+2 e reg.
MKC2+! e reg!
SKZ1+! e reg
3
MKC®+! e reg |

;>%§%<; 2RSX2 e regz
N2 Yy

[\L/°LDE2 |_word

o 1
STE® memory

-13px! next —

(word) JMP restart._—4

(- word)

A Checkerboard Pattern Generator

6M°57 80 h o

Note that the word stored away for even parity is the JMP instruc-
tion at 766 which restarts the process after the address has been
counted down through 000. If one wishes to write the pattern just
once, put ALL ZEROS in 766 and ALL ONES in 767. TX-2 will halt with
an illegal instruction alarm (ICSAL) if it tries to execute an instruc-
tion with 00 as the operation code. Putting 40 in 766 and -0 in 767
has the advantage that the checkerboard patterns in each digit plane
will be identical.

Exercises To Prove To Yourself That You Really Understand

By changing a single toggle switch, the checkerboard pattern will
be complemented. Which switch? (Hint: any one or three of four will
do.)

What would you do to put the pattern just in the lower addressed
half of memory? Upper half? Middle quarter?

Two memory planes of the 38 will not have a checkerboard pattern
in them. They are the parity bit plane and the meta bit (L.10) plane.
What program changes will put the pattern in either plane? (Note:
only an SKM can modify a meta bit.)

II.

6M-5780 S,

The Inchworm

The Problem

A classical programming exercise is to design a routine which
will move itself along through memory, carrying with it as it goes
all necessary constants for repeating this "inchworm® process. The
program for starting the inchworm on its way must fit into TX-2's
16 toggle switch storage registers, naturally.

The Solution

Program II solves the problem by storing in registers 001 -~ 007
the program shown. This program in OOl - 007 then forms the one in
010 = 016 which duplicates itself in 017 - 025 and so on., The pro=
gram in togs works like the ones in main memory except for a few
special setting up instructions,

The SPF instruction in 752 specifies that configuration 3 will
permute quarter 3 into quarter 1 and extend its sign into quarter 2.
The RSX in 755, 1, 10, etc. uses this oddball configuration to reset
index register 71 to a -6 from quarter 3 of registers 762, 6, 15, etc.
This trick allows the inchworm program to avoid carrying constants
per se along with it, Each "0ld" inchworm setment can simply ®fall®
into the newly formed one without Jumping around some constants.

Index register 2 contains the constant necessary for the program
to move itself into the next location., When moving from togs to
core memory, this constant is 400 023 and the RSX in 753 fixes it up.
When moving on in core memory, this constant is 000,007 and the RSX
in 764 sets it up.

The BSX in 754 resets index register 3 to snap back to togs after
the last address desired is reached., For illustrative purposes the
address constant 577,760 was chosen., Since the JPX in 763, 7, 16
etc. jumps when the index register is positive, for our purposes it
must be negative until the end is reached. Consequently L,00,000 is
added to 177,760 and that number (577,760) is set up in left half of
750, Each time an inchworm "segment® is executed, the corresponding
JFX will subtract 7 from the contents of index register 3., When con-
trol gets to the segment in 177,757 = 766, index register 3 will have
become positive and control will be transferred to togs (after a seg-
ment is written into 177,767 to 75) starting the process over again.

The routine in 755 to 763 maps itself into 000 to 007, preserving
the address parts of the instructions in 757, 760 and 763 as they go
to 003, OOL, and 007 by the action of the SKN in 757 which skips over
the ADX when bit 3.2 of a word is a ONE., These three invariant
instructions refer to fixed locations so they must not be changed
by the ADX as the other four are., Bit 3.2 was arranged to be ONE in
the invariant instructions and ZERO in the variable instructions.

OCTAL EQUIVALENT
577 T760,,400 023
362
3% 21 00 377,751
01 11 02 377,750
02 11 03 377,750
T4 11 71 377,762
%0 20 71 377,763
5% 17 62 377,744
b1 15 02 377,744
k0 30 71 000,007
41 0 771 377,756
70 06 03 377,752
k1 11 o2 377;761
01 415 02 377%744
01 30 00 000,005
00 05 00 0004001

This program

001 334RSX731 6
2 : OLDE?I" 7 —
3 SKN3°2377;744
4 : apx2 377474#
5 : °STE"* 16
6

7

s #igNxTr 2 —

s ~TIPX® 377,752

Program II

6M=5780 6o

ADDRESS SYMBOLIC
377 750 last address, ,ist const
751 config 3% set up
752 111y °*spF 377,751
753 J 1.), *RSX2 377,750
754 >3, 2RsX® 377,750
755 ¥225§E;£;34R$X713779762
756 L1 1| CLDET377,7636
757 SKN®*2¢ reg
377 760 J,Lﬂkgbg 1ADX2 e reg
761 $lyde STE7*000,007
762 s PLINXT377,756
763 :"7JPX® restart
764 || { ¢ “RSX® 377,761
765 J_LQLJU 1ADX® e reg
766 Il Ll *STE 5
377 767 J¥P 4
then forms ~ this one
010 :34R3X7E 15
11 s °LDE7* 16 &—
12 g SKN3°2377;74%
13 : ADX® 377;744
14 s STE" 25
15 s PEINKTL 41 e
16 s ~TIPX 377;759
and so cn;;;
The Inchworm

OCTAL EQUIVALENT
577 760,,400 023

362
377,751
01 11 02 377,750
02 11 03 377,750
74 11 T4 377,762
40 20 71 377,763
54 17 62 377,744
41 15 02 377,744

34 21 00

40 30 71 000,007
41 0 771 377,756
70 06 03 377,752
b1 11 o2 377,761
01 15 02 377,744
01 30 00 000,005
00 05 00 000,001

This 1‘pr'ogr‘aln
001

: °LDE"?

| [0 NN ; | £ W N

H +1JNx71 2
:"TIPX® 377,752

:24RSX7 6

7 €

SKN®* 2377, 744
: 1ADXZ 377,744

: OSTE7! 16

Program II

-

ADDRESS
377 750
751
752
753
T54
755
756
757
377 T60
761
762
763
T6M4
765
766
377 767

then forms

6M-5780 ba
SYMBOL1C

last address,,18t cotisit
config 34 set up

b1t °*SPF 377,751

1 1, 4 1, RSX® 377,750

Nt Yy

>, =RSX® 377,750
- .34 71
o, P RSXT 1377, 762

L §) L+ °LDET3TT,7634
SKN®+2e reg
]!,!:1ADX2 ereg
—
L]} |+ STET*000,007
:*1INXT1377,756

:"7JPX® restart

] { | *RSX® 377,761
JLJd {, ADXZ e reg
144 *STE 5
JMP 1
this one
010 :34RSX7E 15
11 : °LDE7! 16 ¢—
12 : SKN®*2377,ThY
13 : LADXZ 377,744
14 : STE?! 25
15 :*IINXTY 17—
16 L ~TIPX® 377,752

and 80 ON...

The Inchworm

6M‘=5 7 80 7 °

The "flaw in the ointment™ is that register 005 will contain
400,023 + 000,007 = 400,032 after the first mapping. The STE
instruction in 005 would have a deferred (indirec2§ reference to
32 and this is clearly bad. It must be changed to a direct refer-
ence to 016, This is accomplished by the ADX in 765 which adds the
000,007, which by then is in index register 2, to the 000,007 which
remains in the right half of the E register (after the BSY in 764)
resulting in an 000,016 in the E register. The STE in 766 puts it
away into 005 and the JMP transfers control to 001 continuing the
process in core memory.

Exercises To Prove To Yourself That You Really Understand

Write a program which uses another approach to the problem of
what to put in the 16 toggle switch registers to make core memory
look as it does above.

Is it possible to use a JPX in 762 and; if so, what would the
program look like then?

IIT.

6M=5780 8.

Through the Looking Glass

The Problem

If all the registers in any block of memory registers were laid
end to end; what program would put the mirror image of this mess
back into the memory block? For example, if the block consisted of
three L-bit words, the transformation would look like thise

Fi F, F3 F Ty T, Ty
Tl T2 T 3 Th F’h F 3 FQ Fl

The Solution

Program III, which is written with floating addresses, performs
this mirroring by the use of configurations and simultaneous cycling
with only 20 instructions.

Four unusual configurations are needed and these are set up in
configuration memory locations 37, 36, 35 and 3 by the SPG instrue-
tion.

From some register containing the first and last addresses of
the memory block, the A register is set up and the "first® is put
into the address section of the IDA instruction called Ytop," and
the ®last" is put into the LDB called "bot.® The general idea is
to index through the block, taking a pair of words at a time and
exchanging and reversing them. One word comes from the top half of
the block and the other comes from the bottom half. If the block
has an odd number of wards in it, the first pair will be the middle
word used twice. If the block has an even number of words, the first
pair will be the middle two words., The last pair dealt with is al-
ways the first and last words of the block.

Index register 8 contains a positive number which counts back
from the middle of the block to the first. Index register 9 con-
tains a negative number which counts up from the middle to the last.
If there are 2n+2 or 2n+l words in the block, index 8 starts out
with +n and index 9 starts out with -n. These numbers are obtained
from the first and last addresses after only two instructions. The
first instruction is a SUB which subtracts, simultaneously, the last
from the first and the first from the last! The left half of the
A register then contains -(2n+l) for even blocks and ~(2n) for odd
blocks. The right half of A contains the complement of the left half.

starts]

top<|

bot<

again=|

a-

6M=5780

J 4 ¢ | °%spg L§90g60592009202

37 36 35 34

v 4y, °LDA |first,,last

1STA bot

NERRY

\¥E§;§g§ S4SUB a reg
M PN\ Ny
Wb LTS [saemee, e

J L), *Rsx® a reg

% 2RSX® a reg
N _ZNnN=_ =7

& °epr® rirst ¢

ST\ °°IDE® 1last

RSX? [--10
bidid,d, °TORB | 1,-1,-1,-14
dibih o7y 2,222 |

+1JNX* again —J

Lodid, L, °TeYa | -1,-1,-1,-1
bl

Ly L | °STA (top)
J ¢4 | °STB (bot)

+17NX® di>

“1JPX® top

Done, halt or something...

Program IIT Memory Mirror

9,

€N-5780
start<] {4 ¢ | ®*sPG | 600,605,200,202

3T 3¢ 35 3¢

v i1, °wba |first,;,last

3R, ST top
NN/

1 bot
[1,4 |, STA bo

% ®4SUB a reg
WEWAY N,
4, 1 %%sea | -1,--,-1,--

| [l 'RSX® a reg

S>> 2RSX® a reg
| SV ... A

top=]| é%?§%g ®6IDA® first €¢—

bot-] ST\ °°LDB® 1last

RSX! | -10

again<| [| | J 27caB L—_i,-i,-l,—ls’
L d L, 27cvs L2,2,2,2 '

*1INX' again —J

'LLLL[L&J °Teya | -1,-1,-1,-1

b

a7 - - - -
Py L...‘l{.’ CYB Li’ 1) 1.’ 1
Ly °sTA (top)

U L | °STB (bot)

t1JNX® 4
) /

d=| “'JPX® top -

Done, halt or something...

Program III Memory Mirror

Qa,

6M-5780 10.

The next instruction, SCA, shifts each half one place to the
right; leaving -n in the left half and +n in the right half of A,
Index registers 8 and 9 are then set up from the appropriate half
of A.

The basic iterative loop starts now and is executed n times.
The inner loop is executed 9 times for each of the n times through
the outer ioop. This number 9 is the number of bits in a quarter
of a TX-2 word. If the reader wishes to work through an example
with, let's say, L bit quarters, then he should go through the inner
loop four times., The index register (1) is preset to =8 however,
since the JNX jumps on zero.

The STA and STB instructions (at d-3) have deferred addresses
which they get from "top" and "bot* respectively. This is actually
inefficient timewise if n is greater than 2. Two more instructions
when setting up could have put direct references to "first" and
"last* in these STA and STB instructions. This would have cost L
memory time cycles. However, each deferred address costs one memory
cycle and so 2n-l extra memory cycles are being executed in the basic
loop. This jllustrates how one can trade space for time or vice
versa.

The two decimal numbers 8 and 9 were used to indicate general
index registers. Of course, 1 is general too.

Exercises To Prove To Yourself That You Really Understand

One need execute the inner loop only 8 times if a slightly
different correction is made afterwards. What are the new correct~
ing cycle instructions?

Configuration 35 is not really needed. What other one used by
Program III would serve just as well?

Iv.

6M=-5780 11,

50 Million Multiplications Can't Be Wrong

The Problem

In the analysis of electroencephalographic data, the autocorrela-
tion function of the data is often desired (see B. G. Farley). A
specific useful example is the following: about 50 thousand samples
are stored away in memory. Each sample is a sign and 8 bits (9 bits
in all).

We wish to find

j = 50,000
Sj°83+1, for i=0,1,°°°,1000

J=1

where Sj is the jth sampie. These 1000 numbers are proportional to
the autocorrelation function.

The Solution

Program IV computes this function in a most efficient way time~
wise, The key to the speed is to do four multiplications simultane-
ously. The data, however, must be in memory in a particular format,
namely

0 = 8, Sy, 83 8§,
1 Sy, 83, 8§, S¢
2 839 S,, S, S
3 S,, S5, S, 5
L Sy 8¢, S; Sg
5 8¢, S7, Sg S

Note that there are four of the 9 bit samples (Sj) in each
TX-2 word and that registers O, L, etc. and 1, 5, etc. will contain
eight different successive samples.

The program starts out by setting up the four special configura-
tions needed and reseting index register 8 to 2000 octal (about 1000
decimal). Index register 8 corresponds to the subscript i in the
summation above.

éM-5780 12,
start< v 44 § °%sPe | 142,140,724,600

37 3b 35 34

RSX®| 2000

c1] Vo) °IDE [0 & -
J ¢y {4 COSTE® sums

Lidd, oeet m

RSX®| 150,000

c24 4 1} °LDa® 000,%u=m_;umg

J 2*MUL®...index®..,

L,

><, ®SEXA b reg
LT 14N

JJ L) PEXA® sums

[|l{ °°ADD b reg

ﬂ%;, 37ADD b reg
I{ L, °®ADD® sums

i%, S7TADD® sums

Jdd 4 °s1A® sums

“4JPX® 2 J

“13PX® o4 -

Done, display results (the 2000 sums). ..

Program IV An Autocorrelation Program

start< v L\ | °*spa | 1h42,140,724,600

37 36 35 34

RSX®|_2000

6M~5780

cis| vy °LE [0 &
JoJ 4 PSTE® sums

LA, DX m

RSX®| 150,000

c24 L4 1 | °LDA® 000 —

m-‘=l L\Iijlij l:J:,&J 34MUL9. . .1ndex8 LI

SSEXA b reg

[Y et R N

dJ Ll PEXA® sums

[|{{ 3°ADD b reg

l%! S7ADD b reg

11 4J, 2CADD® sums

‘)%, 37ADD® sums

JJddd ©°STA® sums

~4JPX® c2 }

“1JPX® c1
Done, display results (the 2000 sums)...

Program IV An Autocorrelation Program

12a.

6M-5780 13.

The outer iterative loop then clears the i th current sum register
and puts i1 into the address section of the MUL instruction at m. Index
register 9 is set to 150,000 octal (about 50,000 decimal), Index 9
corresponds to the subscript j in the swmmation. This outer loop is
executed about a thousand times.

The inner loop computes one complete summation (fixed 1) taking
four samples at a time. After the multiplication, the A and B regis-
ters look like this:

L = P, B, Py P,
B = Ll, IJ29 L33 Lh

where P is the most significant 9 bits of the product and L is the
least significant.

To eliminate round-off errors, the sums of each whole 18 bit pro-
duct are accumulated. To put the 9 bit pieces of the product together,
the A register is exchanged with the B register in such a manner that
the result looks like this:

A = Pl Ll 99 P3 L3

B = P Iy, B L

These four 18 bit numbers are then added to the current sum which
is a 36 bit number. Notice how the sign extension feature allows a
signed 18 bit number to be added to a signed 36 bit number,

Index register 9 is counted down by L (!}) since only every fourth
register of four samples need be multiplied. This means the inner loop
is executed only about 13,000 times instead of 50,000 times.

The whole program with its 50,000,000 multiplications will take
8 minutes if the overlapped memory feature is used (i.e. if instructions
and data are in different memories),

Exercises To Prove To Yourself That You Really Understand

The data should extend to register 152,000, Why?

Write a program, using appropriate configurations (no shifting)
and the TSD instruction, which will read the samples into memory in the
desired format., This program would operate in the Epsco Datrac (an
analog-to-digital converter) sequence. Each TSD will put a signed 9 bit
number into quarter 1 of the E register. Ignore In-Out Select instruc-
tions. Nine instructions will do nicely.

Write a new inner loop to Program IV which handles data with only
one sample per word. Five instructions including the JPX will do it.
This inner loop will have to be executed the full 50 million times.

How long will it take?

V.

6M-5780 1k,

The Flexo-0Octal Converter

The Problem

In the begimming of a binary computer’s programming life, it is
difficult to communicate with the machine. A series of programs must
be written to "bootstrap" one's way into easy communication. This
bootstrap series might go like this:

First) A three (or so) word program in toggle switch storage
which would allow words to be written into memory one at a time.
Call this P1,

Second) A short routine to convert programs to binary which
have been typed on a flexo in a rigid, simple, fixed-address format.
Call this P2, Associated with P2 is a program to punch out storage
as a binary tape and a program to read in this binary tape. Pl loads
P2 into memory. P2 converts the punch-out and read-in programs. The
punch=-out program punches out P2, the read-in routine and itself.,
From now on, the read-in routine can read in P2 and the punch-out
routine; eliminating the need for Pl.

Third) A longer routine which converts programs typed in a sym-
bolic code, relative-address format. Call this P3. P2 converts P3
and punches it out, eliminating the need for P2.

Fourth) A routine to convert programs typed in a symbolic code,
floating address format (PL). PL is written in P3 format and con-
verted by P3. At this point P1, P2 or P3 aren't needed any more and
communication is fairly easy. In TX=0, PL was called TODAL. A fifth
stage might be an algebraic format converter like FORTRAN.

Programs V, VI and VII are proposed examples of the second stage.
The octal converter recognizes the eight flexo symbols 0,1,2,3,4,5,6
and 7 takes their order into account. Some control characters are
needed; such as carriage return to signify the end of a word and
slash to allow address specifications. The s ace, tab, and corma
are used to give some format control. The nullify is recognized so
that tape Mgoofs" can be fixed up. The last four are ignored by the
converter. A stop code signifies the end-of-tape condition.

The Solution

The program to do the octal conversion is Program V.,

To decide what action to take on each character as it is read in,
an Action Table is set up as is shown beside the program. An entry
is made at the address, starting at 100, whose last 2 digits corres-
pond to the flexo code of the appropriate character. The right 18
bits of each entry tell where to transfer control when that character
is read in, and the left nine bits tell what the binary equivalent is

6M~5780 15.

ACTION TABLE Description ROUTINE
109 = 0,0,000 201 start at—> 200 = :I0S%2read unsplayed
107 = 3,0,000 210 if slash— 201 |h&£?STA 213
110] = 0,0,000 204 202 D 2RSX? 105
113 = 4,0,000 210 203 |JJJy, °DPX° a regrémw
117 = 2,0,000 210 if ignored—= 204 10S%2 dismissé
123 = 5,0,000 210 205 :TSD e reg
125 = 1,0,000 210 206 |/}, °RSX* e reg
127 = 7,0,000 210 <@ 207 OJMP* (100)
133 = 6,0,000 210 if number—> 210 |yyyy,°CYA 107
145 = 0,0,000 204 211 ®ADD* 100

5 = 0,0, %
154 = 0,0,000 213 212 JMP 204 _ J
161] = 0,0,000 216 if car/ret—> 213 |JJ)J °STAZ memory

-] 2

176 = 0,0,000 210 214 u22§§é AUX2 125
177 = 0,0,000 204 245 JMP 203 csg/)

if stop code—> 216

address| = value,;0,where to go

Program V The Flexo-Gctal Converter

I0S®2ghut off

ACTION TABLE

105 = 0,0,000

107] =
110] =
119 =
117) =
123 =
125 =
127 =
133 =
14¢ =

154

164) =

176

i

177|

3,0,000

0,0,000

4,0,000

2,0,000

5,0,000

1,0,000
7,0,000
6,0,000
0,0,000
0,0,000
0,0,000
0,0,000

0,0,000

201

210

204

210

210

210

210

210

210

204

213

216

210

204

Descriptlon

start at —>

6M-5780

ROUTINE

15a

200 = :10S%2read unsplayed

if slash— 201 l]jﬁglsTA 213
202 >,2RSX? 105
203 | JJJ{, °DPX° a reg 4—\
if ignored—> 204 10552 dismiss
205 : TSD e reg
206 |1)J °RSX' e reg |
< 207 °JMP* (100) 3
if number— 210 ¢4y, °CYA 107
211 Jééé; epDD' 100
212 JMP 204 __J
if car/ret— 213 JJJJ ©9STAZ memory %
. }
214 LMJUL&)°AUX2 125 f
215 JMP 203 ,,,/;

if stop code-» 216

address| = value,O,where to go

Program V

I0S52shut off

Thé Flexo-Cctal Converter

6M~5780 16,

when the character is a number. Quarter 3 of each entry is not used.

The IOS in 200 sets the mode of the PETR to read one contiguous
6-bit flexo code (unsplayed) into the right 6 bits of the E register,
clearing the other 3 bits in that quarter,

Starting at 203 with a DPX which clears the A register, the char-
acter is read in and placed in index register 1. The JMP then defers
control to a location specified by the appropriate Action Table entry.
Note that all instructions with deferred addresses are indexable.

If the character is a number, then control goes to 210 where the
A register is cycled left 3 places and the binary equivalent of the
number is added into A, returning control to 20L.

If the character is a slash, control "bounces off" register 105
to register 201 where the number in A is stored in 213 and index
register 2 reset to a zero., The slash then causes the number that
has been built up in A to be the new address of the word which follows.

If the character is a carriage return, 213 has control and stores
the word in A away in the proper memory location. The AUX in 21l adds
a 1 to index register 2 so that the next time a carriage return appears,
the word in A will be stored in the memory register following the last
one.

The nullify, space, and tab simply return control to 204 to read-
in the next character. When a stop code comes along, the IOS in 216
shuts off the photo reader and dismisses the sequence.

The sequence must be dismissed after each character is read and
the IOS in 204 does this. The TSD in 205 empties a buffer that has
been filled by the FETR. When the buffer is filled, the sequence is
activated and the character read-in is dealt with.

Exercises To Prove To Yourself That You Really Understand

What are the implications of throwing out the IOS in 20L and
not holding on the TSD which follows? In other words, let the TSD
dismiss the sequence after transferring the data. Work out the new
program and format rule(s).

The instructions in 210-11 are on rather shaky ground because
TX=2 is an allegedly multi-sequence machire. Some lower priority
sequence may have been using the A register and will be very upset
at finding it disturbed. What changes will fix this up? Dontt for-
get 203%}

Is there anything fishy about the RSX in 2067

VI.

6M‘=’ 5 7 80 17 °

A Binary Read-In Routine

The Problem

In one of its modes; the photoreader reads the six bits of a
line of tape into every sixth bit of some specified word and cycles
the word left one place. This is the "splayed® mode of the photo-
reader sequence. After reading in six lines, a full 36 bit word is
assembled. This mode would usually be used to read in binary tapes.

The main problem associated with a binary read-in routine is
what format to use. In general, data words are read into blocks of
consecutive memory registers and three provisions are made; (1) to
read in more than one block, (2) to check the sum of each block thereby
detecting almost any error, (3) to specify what should happen to con-
trol after all blocks are read in,

The Solution

Program VI uses the following format for each block of binary
words?

=n ,, last address
Word ¢

Word 1

o
o
-

Word n

more? ,, = sum

The first word in each block consists of two 18 bit numbers (see

instructions at 3 and L) which designate the addresses of the actual
data words which follow.

The right half of the last word is the complement of the sum of
all the other half words in the block. In other words, if all the
words in a block are added up in 18 bit pieces (instructions at 2
and 25) the sum must be zero (instructions at 12 and 13) or there has
been an error. If there is an error, the tape is backed up (instruc-
tion 17) and read in again. (TX-2, as you may have guessed by now,
can read paper tape in either direction and can identify the front of
the tape.)

The sign bit (L4.9) of the left half of the last word in a block
tells whether there are more (if L.9 is a ONE) blocks to be read in
or not (if 4.9 is a ZERO, see instruction 14). If there are more

6M-5780 18.

Program VI

00| = 108°2read forward, splayed, dismiss
W,
51 RSX® 26 €
8oq, -
D mave’ 2yyps oq ? SUB=ROUTINE
TO READ 6 LINES
o = 1 1
S£, 3 1_% :2RSX2 30 —3 21 44, RSXY 27
1
R"’ Y (1] sTE o7 22 TSD 30 €
4 l
IVGZE A !
5 laave' 2gypé 21«-.] 23 “igpx* 22 J
. 0 ’ 2 3
,o(//\6 YvYy :°IDE 30 l 2k ‘_% AUX® 30
Op,, T Vbl °STE? last | 25 () dLraux® 30
Ak 7 W
10 FTiINX2 5 -J K26 index 1gMpt 000
-7
11 "aave' 2yMp4 21——-} 27 0,0,0,5
Cy, 12 rorpx® 17 30 word read in
5C/< , l
13 TOINX® 17 — ™)
Ty
-
4 99
\S\(/Mlll» SKZ 30“’W
!
15 TP 1 oo
00
Ve 16 I08%2ghut off, dismiss
GO 17 10S®2back up tape, dismiss
O
20 JMP 000

A Binary Read-in Routine

6145780 18a

00) 10S52read forward, splayed, dismiss
. |
51 RSX® 26 €
BLOC/(-
S aave 2gMpt 1 SUB-ROUTINE
' TO READ 6 LINES
SEy 3 L% :2RSX2 30 —> 21 = || || *RSX* 27
L , |
pp 4 [{) *STE o7 22 TSD 30 <
“‘,}/y {
Ce __A !
5 "aave' 2JMp4 21<j 23 -1ypxt 22 J
,o(//\6 YV V :°LDE 30 I‘ 24 L_)}gﬁfwxa 30
0 7 L4l OSTE2 1ast 25 (] {llaux® 30
ATA] 1} e Mg
j
Al : o "
"”10 +t1INX2 5 J z (&26 index YJMP* 000
|
11 "aave' 23Mpt 21 27 0,0,0,5
cy, 12 *orpx® 17 30 word read in
5(:/(!
- 13 *OINX® 17 — ~
e
S, 1k SKZ4® 30 —
(/M !
0, J
& 16 10S%2ghut off, dismiss l
G, 17 10S%%back up tape, dismiss
Op ~
20 JMP 000

Program VI

A Binary Read-in Routine

6M-5780 19,

blocks; control goes to register 1 and reads in the next block, pro-
viding of course that there were no check sum errors. If there are
no more blocks, instruction 16 shuts off the PETR and dismisses the
sequence.,

Exercises To Prove To Yourself That You Really Understand

Note that there is no provision made in the tape format of
Program VI for turning on any other sequence after the last block has
been read in. There is really no necessity for a control change since
the Start-Over sequence can start up the program just read in at the
poke of a button,.

However; pay homage to the (W. A.) Clarkian philosophy of minimal
button poking and make the necessary additions of Program VI and its
format which will start the program in sequence #S at a register called
START if bit 4.8 of the last word in the last block is a ONE. If 4.8
is a ZERO; make Program VI do what it does now. This addition can
be accomplished with eleven more words (maybe fewer).,

Why are the CF bits of instruction 12 all ZEROS?

Do they need to be ZEROS in instruction 13? Why?

6M-5780 20,

VII. A Punch Out Routine

To prove to yourself that you really, really understand, write
a program to punch out storage in the block format required by the
read in routine (VI). Control it from a toggle switch register in
the following manner:

Let the left half of the toggle switch register be
the first address, and the right half, the last address
of the block to be punched out.

Let the meta bit (L.10) designate whether this is
the last block or not.

Let bit 4.9 be a ONE when the toggles are being
changed, and a ZERO when the program can look at the
register.

The author has written this program with 33 instructions. The

best solution submitted by a reader, will be published in a supple-
ment to this memo.

CONCLUDING REMARKS

The six programs in this memo illustrate many of the characteristics
of TX-2. There are other features which haven't been illustrated. For
example, conditionally saving the P and/or Q register in E after a JMP;
using multiple step deferred (indirect) addresses; using the Boolean
instructions or the skip if E is different from word instruction; using
the operate class commands ard many sequences operating simultaneously.

There will be supplements to this memo from time to time which illus-
trate features such as those mentioned in the breceding paragraph. Any
suggestions, improvements, discoveries, or remarks in general will be
appreciated by the author and probably also by his associates.

HPP /mk
Insertions:
Pages 3a
6a
Oa
12s
158

18a

6M=5780 21,

NOTES

