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CHAPTER 8
" PULSE AND LEVEL NOTATION

8-1 INTRODUCTION

This chapter will discuss the kinds of pulse and level notation used in the following

chapters. This notation is the kind that is found on the TX-2 block schematic drawings.

There are several types of computer notation. However, certain forms of notation appear

over and over again and serve as the basis for the pulse and level notation.

First, all the physical parts of the computer are identified, i.e., the flip-flops, registers,
memories, etc. are given names. These names, wherever possible, are in the form of mnemonic
abbreviations. However, since single letters are used to name registers, the mnemonic

derivation is not always obvious.

Consider a typical build up of nemes and abbreviations. Normally the P register contains
the address of the next instruction and the Q register the address of the next operand. PK
(the P counter) distributes time levels during the instruction cycle and QK (the Q counter)
distributes time levels during the operand cycle. Now consider the PKIRCF register. The
roots of the abbreviation for this register are: PK (P counter), IR (instruction register),
and CF (configuration). A "free" translation of the abbreviation might be: "The register

in which the configuration bits are stored during the instruction cycle.”

Once the significance of the PKIRCF abbreviation is known, it is natural to guess that PKIROP
is the register in which the operation code bits (OP) are held during the instruction cycle.
Similarly, QKIROP

cycle. In this way a sizeable nomenclature is built up from a relatively small number of

is the register in which the operation bits are held during the operand
roots.

These names for the registers are in turn used as the roots in naming logical variables whose
truth values depend on the state of associated registers, flip-flops, etc. For example,

PKIR;F is the name of the logical variable which is "true" (i.e., has the logiéal value
1

"ONE") when the tirst flip-flop in the PKIR,, register is a ONE. Assuming the significance
of PKIRCF is known, it is only necessary to understand the effect of adding the subscript
1 and the superscript 1 on the PKIRCF root to form a comprehensive understanding of the full

PKIR:L abbreviation.
CFl

The truth value of a variable can be determined in the computer by measuring the voltage on
a wire whose voltage represents this variable, as described in Chapter 3. The relationship
between the variable and the voltage is indicated in the following figure by labeling the
wire with the variable and placing an arrowhead on the wire. If the arrowhead is hollow,
then ground voltage on the wire corresponds to truth value for the variable. Similarly, a

solid arrowhead indicated -3 volts on the wire corresponds to truth value for the variable.
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Still another type notation identifies the dynamic processes occurring in the computer.
These processes are usually represented physically by 0.1 microsecond wide pulses on the
wires which are labeled by this symbology. (Chapter 3 describes these dynamic processes.)
For example, the following symbology is used to identify the process of jamming the contents
of the PKIROP register into the QKIROP register and is represented by a 0.1 microsecond wide
negative pulse on the associated wire.

PKIROP —3—» QKIR op

This pulse is usually the output of a register driver. The symbol is interpreted as the RD

pulse which causes the contents of PKIR to be jammed (copied) into the QKIROP, i.e., the

OP
symbology "names” the pulse. This symbology brings up a convention which should be clari-

fied. Normally the content of a register ( ) is symbolized by

( ) |

However, what should be symbolized by

PKIROP —3—» QKIR op
is frequently simplified to

PKIR op —3—» QKIR op

The jargon used to describe the computer and its operation is based on the types of symbology

Just described.

Specifically, this chapter will discuss the notation for:
Register and Flip-Flops
Pulses
Flip-Flop Levels
Logic Net Levels
RD Logic Equations

8-2 REGISTERS AND FLIP-FLOPS

Most of the parts in the computer that are given logical identities are either flip-flops

or assemblages of flip-flops. The assemblages are generally called registers.
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8-3

Normally, the individual flip-flops never have single letter abbreviations. The mnemonics
used to identify the flip-flops gives some hint of their function and sometimes indicates

the type or subclass the flip-flop belongs to. Thus,

ST - §Eatus control flip-flop found in In-Out control units.

PI3 - instruction cycle (P) interlock (I) flip-flop. Since there are more than one
of these, the subscript indicates that this is the number three PI interlock.

EB - E register Busy interlock flip-flop. Since there is only one of these, no

subscript is required.

The identification of flip-flops within a register is quite straightforward. The data
registers such as A, B, C, D, E, etc. have ordered quarters and ordered bits within the
quarter. The order reads from right to left. Fig. 8-1 shows the E bit symbology. The i.j
flip-flop in this register, i.e., Ei.j’ is the j-th flip-flop in the i-th gquarter.

The counter registers are not quartered, so a single number ordering is sufficient. Most
counters are made up of both an alpha and beta register. These are identical registers
except the flip-flops in one are pulsed by alpha gated clock pulses and the flip-flops in

the other are pulsed by beta gated clock pulses. and PK are typical examples of

PK
a.3 B.3
flip-flops in the alpha and beta PK counter registers, respectively.

GENERAL PULSE NOTATION

There are three basic types of pulses:
1) Clock pulses.
2) Register driver pulses (gated clock pulses).
3) Gated register driver pulses (the pulse inputs that SET, CLEAR, and COMPLEMENT
£1lip-flops). '

8-3.1 CLOCK PULSES. These occur as a train of negative going pulses at 0.4 microsecond
intervals. The B (beta) train of pulses lag the @ (alpha) train of pulses by 0.2
microseconds. No identifying distinction is made between one alpha pulse and another

or between one beta pulse and another. The notation for clock pulses 1is

2 .

B

—_—

It is important to realize that the alpha implies an uninterrupted train of alpha

pulses and, similarly, that the beta implies an uninterrupted train of beta pulses.

8-3.2 REGISTER DRIVER PULSES. The pulses from any register driver occur at a specific time
and initiate a specific process. For this reason, the symbol for the register driver
pulse generally indicates, at least partially, the process initiated by the pulse.
Register driver pulses are always negative. Two common types of register driver
pulse notatioﬁ are used depending on whether the process initiated does or does not

involve an information transfer. Thus,
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———— E - is a pulse which transfers in some way the content of M

into E.

I—(—Lb E - is a pulse which SETS ( L . }, CLEARS ( Lo o )s
c
coMPLEMENTS ( L~ w ), or PERMUTES ( L® o ) the content
of E.

The following are specific examples of register driver pulses taken from the TX-2

block schematics or from the timing charts in Chapter 17:

M ——EL—.-E - copies the contents of those flip-flops in the M register
which contain ONES into the corresponding flip-flops in
the E register, i.e., initiates a ONES transfer.

"——El—n-E - initiates a ZERCS transfer.

0,1 . . . .

M—» E - is really the symbol for two register driver pulses having
the same input register driver logic, i.e., both register
driver pulses are fired off at the same time even though
they originate from different register drivers. The
pulses initiate a ZEROS-ONES transfer.

M—3—=»E - initiates a jam (ZFEROS, ONES) transfer.

Sometimes the type of input logic on the register driver producing the pulse is more
completely identified by a subscript under the arrow. The subscript serves the
additional function of hinting at the process in which the register driver pulse 1is

used. Some specific examples of this are:

C
L—EE——- E - complements E "under sign extension control”.
1
M ——gl———» E - copies the content of M into E "under permuted activity
p control". These pulses are used in the configuration
process.

Tn these examples, the words "sign extension control” and "permuted activity control”
are only meaningful when the person using the symbols has a detailed knowledge of the
sign extension process and the configuration process (in which permuted activity
takes place). These processes are discussed in detail in Chapter 13. Both sign
extension control and permuted activity control take into account the configuration
specified by the instruction. Fracture, activity, and permutation information are
decoded from the configuration (CF) bits and combined with information decoded from
the operation (OP) bits to generate configuration control levels. These levels find
their way into the sign extension and permuted activity control nets. The output
from these nets in turn find their way into the register driver logic initiating the

pulses fired off during these processes.
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Subscripting in the register abbreviations is used to indicate the specifie quarters
affected by the pulse. TFig. 8-2 shows how this notation is used in the permutation

process.

8-3.3 GATED REGISTER DRIVER PULSES. These are the pulse inputs to the flip-flops themselves.
Unlike the register driver pulses, these are positive going pulses. Usually these
pulses are not distinguished by a name or notation of their own. They can be iden-
tified by examining the logic on the block schematics that produced them. Fig. 8-3

shows two examples.
8-4 GENERAL LEVEL NOTATION

Two basic types of level notation are used: one type identifies levels associated with
flip-flops; the other type identifies levels associlated with the output of logic nets. In
the first type a superscript O or 1 is used to indicate the truth value of the variable,

e.g., PIg or PT In the second type the truth values are expressed by abbreviations with

1
3’ o
and without overbars, e.g., AEJ is an "Arithmetic Element Jump” level, while AEJ is a "not
Arithmetic Element Jump" level. (The overbar is read as "not".) Logically, the overbar

indicates the converse of the level represented by the abbreviation alone.
8-5 PULSE AND LEVEL NOTATION EXAMPLES
Typical examples of computer pulse and level notation are given below.

8-5.1 REGISTER DRIVER PULSES.
1

PKIRCF5 - N2.9 _ 1.5 - if PKIRCF contains a ONE, its contents are
transferred into N2_9 S 1.5 By means of
this pulse, the sign bit of PKIRCF is expanded
to fill ik bits in N.

PAD

L——————u- A.i,Ci - initiates a "partial add" (PAD) which effects
the i-th guarter of the A and C registers.

L—iz—a- Ny, 54 - clears the 1lst, 2nd, and 4th guarter of the N

2
register.
SELECT TOC - in the In-Out Element, O.4 microsecond levels

are pulses, hence the notation. The ND
indicates that the pulse will go only to the
specific IO unit determined by the output of

the N Decoder, i.e., NJ determines the sequence.
I0C is an abbreviation for "In-Out Control”.

SELECT hints at the function of the pulse.
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(PI2 PRIRT + PI;) —3—» XAS) - this is a somewhat unusual notation.

Basically, the truth value of the statement on
the left is copied into the XAS flip-flop.
When either one of the terms in the bracket is
true, XAS is set to ONE; if both are false,
XAS is cleared to ZERO. (See Fig. 8-L.)

PKI + 1 —» PK - 1indexes the PK counter by one, i.e., one is
added to the contents of the PK counter by the
pulse.

PK] + 1 —» PK - does not index the P counter by one, i.e., the

register driver pulse is not fired off. This
notation is used to indicate inhibitory register

driver logic.

2L L
L—————- PK - presets the P counter to the PK2 time level

state from whatever state it is in.

indicates the content of the i-th quarter of A is "all ONES".

indicates the fracture decoded from the configuration bits. There
are four fractures: f (36), fl (18,18), f2 (27,9) and f3 (9,9,9,9)-

indicates the count is "finished" in the i-th quarter of D.

indicates the sign quarters of the subwords in the Arithmetic Element.

In this case, the roman numeral indicates quarter 4 is the sign quarter.

if either an fl or f2 fracture is specified, this level will be
decoded, ‘during the operand cycle, from the contents of the QKIR

register.

is generated by the instruction word (N) parity (P) check circuit.
The subscript indicates that the parity count is taken over 38 pits.
Whether an odd or even (ev) level is generated depends on the parity

of the information in N.

is an abbreviation for an in-out-control-mixer level. The superscript
is one of several and hints at the logical function of the level. The
level is associated with the In-Out Element and is bound on the TOCM

Bus.
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02a

PK - is an alpha PX time decoder.
02
PK B - 1is a beta PK time decoder. It occurs 0.2 microsecond after PKoga.
START .
PI 1 - is an interlock level associated with the instruction cycle.

Specifically, it is one of two start interlock levels involved in
the logic for starting the PK counter.
eq JC . s
K - 1is generated when the number of the new sequence specified by the
output of the J coder is the same as the number of the current sequence

specified by the contents of the K register.

8-6 REGISTER DRIVER LOGIC EQUATIONS

Boolean algebra eguations are used to describe the way in which levels gate pulses in

register drivers.

Consider the equation:

WAIT . 220 e a 2L
a \'jI T P2 Prg + % - et - K
CLOCK PULSE LEVEL, LOGIC
RD INPUT LOGIC RD PULSE
OUTPUT

An alpha clock pulse is ANDed with assorted level logic. When this level logic is satisfied,
the clock pulse will be gated and given the name 2k PK. Note that in this equation both
the alpha pulse and the PI level are necessary conditions for generating 2L PK. The
The equality sign ( = ) indicates that when one side of the equation is true, the other side

of the equation is also satisfied.

Consider now how the above equation can be broken down into two other equations.

R i G ng o L2 o mx
ATT o o ok
o - pTT - p?3% L gt D 2* o =

Tn this case an implication sign ( D ) is used instead of an equality sign ( = ). The
fact that the left hand side of the equation is satisfied "implies" that the right hand side
is also satisfied, i.e., the fact that the left hand side of the equation is true is
sufficient to make the right hand éide also true. But, in this case the converse is not
true, i.e., the fact that the right hand side of the equation is true is not sufficient to

make the left hand side also true.
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8-7 SUMMARY
It is important to realize that the significance of a given pulse or level lies strictly in
the specific logic that produced it. The notation tries in a systematic way to hint at this

CH SE
logic. E.g., PI SEQ can be interpreted as an instruction interlock level calling for a

C
change of sequence, but the full significance of PIL B SEQ can only be determined by examining
the logic that produced the level. Similarly, the function of the level can only be

determined by examining all the logic in which the level is used.
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CHAPTER 9
COMPUTER DYNAMICS

9-1 INTRODUCTION

This chapter will develop a detailed picture of the dynamic operation of the computer. The
occurrence of events, i.e., pulse inputs to flip-flops, is determined by the occurrence of
counter time levels. Bar graphs will be used to express the dynamic picture of counter
activity. The bar graphs will show the operation and interlocking of the control counters

which generate the time levels.

Two types of dynamic pictures are of interest: one type shows in detail the counter activity
required to execute a specific instruction; the other type takes a broader view and looks at
the counter activity occurring while a sequence of instructions is executed. In the process
of developing these two kinds of pictures the chpater will answer the following types of
questions:

1) During a given instruction, what specific counters will run? When will they
start? How long will they run? What specific time states will the counters
pass through?

2) When, during the execution of the current instruction, can the next instruction
begin? What effect does the memory location of the instruction word and operand
word have on this decision?

3) Where in the current instruction are decisions made that determine whether the
computer will: (a) go on immediately to the instruction in the current sequence,
(v) wait for awhile before going on in the current sequence, (e¢) change
immediately to a different sequence, or (d) wait and then change to a different
sequence? What specific factors determine these decisions?

4) What types of decisions does the computer make if the current instruction is held
up because the execution logic requires some part of the computer that is cur-
rently busy with a previous instruction? E.g., what does the computer do if the
Arithmetic Element is tied up executing a MULtiplication at the time an ADD

instruction desires to use the Arithmetic Element?
This chapter will first classify all the operation codes according to the basic counter
activity pattern required by the execution logic of the operation code. This picture
establishes what counters are used by what operation codes and when the counters start with

reference to the running of other counters.

Next, the effect of the memory location of the instruction word and operand word on the

counter activity pattern will be discussed.

A third type picture will show the counter activity pattern for a sequence of instructions.
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With these types of general pictures established, the chapter will then discuss in detail
the logic that specifically determines the pattern of counter activity. First, the starting
logic for each counter will be discussed. Then the logic determining the synchronization

delays and change of sequence processes will be discussed.

The chapter will conclude with an example showing the pattern of counter activity for a

specific sequence of instructions.

Logical definitions and descriptive discussions of the interlock levels used in this chapter

can be found in Chapter 10.
INSTRUCTION CLASSIFICATION BY COUNTER ACTIVITY.

Tt is convenient to think of all the instructions as belonging to one of three basic classes,

depending on the use they make of the PK and QK counters. The operation codes determine the

class of instructions in that they determine the use of the counters. The use of the counters,

and the corresponding operation codes are shown in Fig. 19-1.

9-2.1 CLASS A INSTRUCTIONS. These instructions are characterized by having no operand
memory cycle, i.e., a QK cycle does not occur. A further peculiarity of this class
is that the PK cycle always terminates in PKSla, instead of PKgua. States PK25
through PKoT are called the "execute instruction”, or PKEI states. The execution
logic for the jump instructions, which for the most part make up this class, reduires
this PKEI cycle. (Note that all three classes have a memory or PKM cycle which

2 L
extends from PKOO through PK 2, and an added state PK2 D)

9-2.2 CLASS B INSTRUCTIONS. These instructions are like the Class A instructions in that
they have a PKEI cycle. They are unlike the Class A instructions in that an operand
word is obtained from memory during a QK cycle. Except for TSD, these are skip type
instructions. Thus, most Class A and B instructions involve a possible change in

the contents of the P register during the PKEI cycle.

9-2.3 CLASS C INSTRUCTIONS. This class contains the majority of instructions. In these
instructions, PK terminates in PK2 s and an operand word is obtained from memory by

a QK cycle. ’

9-2.4 SUBCLASSIFICATION OF INSTRUCTIONS. The three classes can be usefully broken down
into subclasses which bring out in greater detail the activity of the FPK, QK, FK,

XWK, AK and ASK counters. This has been done in Fig. 9-2.

Tt should be noted that all instructions, except SKM and OPR, which use XWK at Pth
and do not again use XWK, use the contents of the X register for address modification.
Also, all instructions, except FLF, FIG, SPG and SPF, which use FK use the contents
of QKIRCF for standard configuration control.
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The usual times for starting XWK and FK are Pth and QKOO, respectively.
CLASS A

Class Al (JMP, SKX, JPX, JNX). The XWK counter is not started until PKOT-

in these instructions. Note that if PKIRé'F , the execution logic for JMP
2
does not require XWK at this time. None of these instructions uses the

FK counter.

Class A2 (T08). The XWK counter is started at the usual time. PK must

wait in PK 7~ for EBO in this instruction.

Class A3 (AOP). AOP starts the AK counter in PK26. Because the instruction

6 /
uses the Arithmetic Element beginning at PK2 , PK must wait in PK25 until
the Arithmetic Element is free, i.e., the AEB condition exists. The last
AK state used depends upon the Arithmetic Element instruction specified

by the AOP.

Class AL (JOV, JPA, JNA). This class uses FK, which can be started at

PK13. FK is started by an interlock start condition, and might not start

1
immediately at PK 3. XWK is started at the usual time. PK must wait in

25

PK ™~ until the waiting condition is satisfied.

CLASS B

Class Bl (SKM). XWK is started at the usual time. SKM does not use the
P 2 L
FK counter. PK must wait in PK 5 until QK reaches QKl .

Class B2 (TSD). XWK and FK are started at the usual times. PK must wait

25 01 1
in PK ~ until QK reaches QK ~, if PI),, or QKEO, if PIE~

Class B3 (SED). XWK and FK are started at the usual times. PK must wait
25 L
in PK 7 until QK reaches QKl .

CLASS C

Class C1 (ID-, ST-, DPX, ADX, ITA, ITE, UNA, EXA, INS, COM). These are

"typical” instructions in that the PK cycle terminates in Pth; a PK and
a QK cycle occur; and XWK and FK are used and started at the usual times.
Note that QK is loosely interlocked with PKEA (dashed line). The dashed
line indicates that PK2 is the earliest time at which QK can begin. Tt
is possible that QK may not actually start until later when certain other
conditions are satisfied; e.g., QK may not have completed its cycle from

. . . 2 . . .
the previous instruction when PK~  occurs in the current instruction.
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Class C2 {SPF, SPG). XWK is started at the usual time. FK is started at

1
QK 3. FK is not used for configuration control. The length of the FK cycle
is determined by the operation code.

Cless C3 (FLF, FIG). XWK is started at the usual time. FK is started at

PK13. FK is not used for configuration control. Note that QK is interlocked
with FK and PX.

Class Clt (DSA, ADD, SUB). This Class is like Class C1l, except that the AK
counter is started at QKlu.

Class C5 (CY-, SC-, NO-, DIV, MUL, TLY). This class is like Class 4, except

that the ASK counter is used as well as the AK counter. AK mekes several
iterated subcycles. With the exception of the CYcle and SCale instructions,
the number of subecycles is determined or limited by ASK. (The operation of
the ASK counter is described in Chapters 10 and 1L.)

Class C6 (AUX, RSX, EXX). This class is like Class Cl, except that an XWK

cycle occurs in the QK cycle as well as in the PK cycle. The interlocks
set by XWK can be the crucial factor determining when the next instruction

can begin.

While Fig. 9-2 shows the general pattern of counter activity for the different classes
of instructions, the specific picture depends on a variety of conditions that will be

pointed out as the chapter develops.
9-3 EFFECT OF MEMORIES ON PK AND QK COUNTER ACTIVITY

The locations in memory of the instruction and operand words have an important effect on

computer timing. This section will examine this effect.

The two basic situations that can exist are: (1) the operand words and instruction words
are stored in the same memory, or, (2) conversely, the operand and instruction words are
stored in different memories. In the first situation no overlap can exist between the

operand and instruction cycles, while in the second situation an overlap is permitted.

9-3.1 MEMORY OVERLAP. Fig. 9-3 shows the effect of memory overlap on Class Cl instructions.
Tt should be noted that "memory overlap” refers to the overlap of the memory cycle
for the next instruction word with the memory cycle for the current operand word, and

not to the overlap of the current operand word with the current instruction word.
In Fig. 9-3(a), the instruction and operand words are stored in different memories.

For this reason, the PK cycle of the next instruction can begin before the QK cycle

of the current instruction ends. In Fig. 9-3(b), the instruction and operand words
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are stored in the same memory (or the No Overlap interlock flip-flop is set to
1
ONE (NO™)). Note that a sequence of instruction cycles are considerably more

compressed in time in Fig. 9-3(a) than in Fig. 9-3(b).

MEMORY CYCLE TTME. We shall now examine in some detail the operand and instruction
word cycles. The following general facts should be kept in mind:

T
1) Each of the four memories, i.e., S, T, and V', have a basic instruction

VFF
and operand word memory cycle time. Except for the V memories, the basic
instruction and operand memory cycles for each memory are the same. How-
ever, the memory cycles differ among the memories. TFor example, the basic
T Memory cycle is "faster” than the S Memory cycle. Fig. 9-4(a) tabulates

the basic memory cycle times for each memory.

2) The actual elapsed PK and QK time is a function of the instruction itself
as well as the memories used to store the instruction and operand words.
This is the reason for speaking of a "basic” memory cycle time. The basic
memory time is the time required to read a word out of memory and write the
same word back into memory. Time may be consumed in the PK and QK cycles
performing non-memory functions required by the execution logic of the
instruction. Note that in the case of the PK cycle, this non-memory time
always comes after the PKM cycle, i.e., after PK22. In the case of the QK
cycle, the non-memory time always comes in the middle of the QKM cycle,
resulting in an "extended" QKM cycle. This time must be added to the basic
memory time. Fig. 9-%(b) and 9-4(c) show the actual PK and QK time levels

required as a function of memories and instructions.

The PK and QK counters proceed by a sort of "hop and skip" process. E.g., once the
PK counter begins counting it hops from state to state because of the PK + 1 PK
register driver pulses. Suppose that the instruction is stored in the S Memory;

PK will hop from PKOO on up to PKO6. At PKOé, inhibitory logic will cause a

PK + 1 PK condition to exist. PK can now proceed only by skipping into a
"preset" state. In this case, a 9 PX pulse skips PK into PK09. The bold face
states on Figs. 9-4(b) and 9-4(c) indicate the "preset” states of the counter (see
Chapter 10). Skipping always occurs into these "preset" states. PK now continues

6 6 2
hopping from state to state up to PKl . It then skips from PKl to PK 2 and

L
(usually) then skips again from PK22 to PK2 .

The rules governing the skipping of counter time states are:

1) All skips are made to preset time states.

2) The skip is always in the forward direction (unless the execution of an

instruction is abandoned and a change of sequence cycle oceurs ).

3) Skips are usually to the next preset state.



These rules are not inviolable, as indicated by the dashed lines on Figs. 9-1{b) and
9-L(c).

9-3.2.1 PK CYCLES. The variations possible during PK cycles are illustrated in
Fig. 9-4{b). When an instruction word is obtained from memory, PK performs
the basic memory cycle (PKM) as it runs from ™ through PK22. The
succession of states followed is determined entirely by the memory involved.
For example, if the instruction word is obtained from the A register, then
a PKMVFF cycle is performed which is made up of PK states 00, 01, 02, 09,
10, 11, 12, 13, 1k, 15 and 22. Thus the cycle lasts for 4.k microseconds.
Different PKM cycles are required by the other memories. If deferred address
words are required by an instruction, then PK will go through similar cycles.
The last deferred address word memory cycle will be followed by one more
final PK cycle which does not use any memory and during which PKAO. This
final cycle always uses states 00, 01, 09, 10, 11, 12, 13, 14, 15 and 22.

After the instruction word memory cycle, if no deferred addresses are
required, or after the final deferred address cycle (the one which does not
use any memory), if deferred addresses are required then PK will attempt to
enter PK2 from PK22. Two situations can then occur:
1) TInterlock conditions may require that the computer abandon the
attempt to execute the instruction and instead perform a change of
sequence cycle. In this case PK will go from PK22 back to PKOO.

V. o2
(A similar situation may arise during any PKM FF cycle at PK .

In this case PK goes from % back to PKOO.)

2) On the other hend, PK may have to wait before a decision can be
made as to whether to proceed executing the current instruction or
to abandon the current instruction, i.e., perform a change of
sequence cycle. In this situation PK goes from PK22 to PK23 and
waits in this state while the delay synchronization counter (DsK)
performs a number of cycles. If, eventually, a change of sequence
cycle occurs, PK will go from PK23 back to PKOO. In this case the
instruction is not executed and is abandoned. On the other hand,
if the interlock control decides that PK need wait no longer and
no change of sequence is required, then PK will finally proceed

from PK23 to PKEM.

23

In the one case where PK can proceed from PK = to PK2h, and in the other
case where interlock conditions permit PK to proceed directly from PK22 to
PK21L without any complications, the computer finally reaches a state from
which it can proceed to execute the remainder of the instruction. Up to
this point, all decisions have been made‘without regard to the class of the
instruction. However, decisions about the succession of counter states are

hereafter strongly influenced by the class of the instruction.
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9-3.2.2 QK CYCLES. The variations possible during the QKM cycle are illustrated

1
in Fig. 9-4{c). Note that the QK cycle always terminates in QK3 .

The basic QKM cycle for the VFF memory involves states 00, 01, 02, 03, 09,
10, 11, 13, 1k, 21, 22, 23 and 31. The other memories require different
QKM cycles, which are again further modified by the requirements of the
instruction being executed. In a memory modification type instruction,
such as COM, the basic memory cycle may be "extended" by the insertion of

intermediate states. This allows the word read out of memory to be modifie

d

OAD

L
before it is written back into memory. For example, in all non-load (KR

VFF memory .

instructions involving the S and T memories, QKM is extended 0.8 microseconds
2L 0 .
by QK and QKZE. QKM can also be lengthened by the QK 3 waiting state

conditions. These can arise only when the operand word is located in the

9-3.3 EXAMPLES OF ELAPSED INSTRUCTION TIME AS A FUNCTION OF MEMORY LOCATION AND INSTRUCTION

March 1961

TYPE. Three examples will be given illustrating the elapsed time required by a

program consisting of a repetition of identical instructions.

Figs. 9-5(a) and 9-5(b) show a repetition of LOAD type instructions. In these two

cases the PK cycle time is equal to the PKM time (see Fig. 9-4(a)) plus 0.4 micro-
2

second for PK , while the QK cycle time is simply the basic QKM time.

Tn Fig. 9-5(a) the instruction words are located in the T Memory and the operand
words are located in the S Memory. In this case (PKMT + 0.4) QKMS, since

PR = bk microseconds and QKMT = 6.4 microseconds. Note that QK cycles continu-
ously, i.e., QKOO (which is the normal resting state) lasts only 0.4 microsecond.
PX, on the other hand, rests in PKOO at the end of each PK cycle waiting for QKOO to
occur. Note, also, that the first instruction time (4.8 microseconds) is shorter

than the succeeding instruction times (6.4 microseconds).

In Fig. 9-5(b) the instruction words are located in the S Memory and the operand
words are located in the T Memory. (The converse of the case shown in Fig. 9-5(a)).
In this case PKMS + 0.k QKMT, since PKMS = 6.4 microseconds and QKMT = L. micro-
seconds. Note that in this case, PX cycles continuously, while QK rests in QKOO
waiting for PKELL to occur. Each instruction, including the first one, takes 6.8

microseconds.

The saving in time realized by storing the instruction words in the T Memory and
the operand word in the S Memory, rather than vice versa, is thus approximately 0.4
microsecond per instruction. In either case, however, 6.4 microseconds is saved
when compared with the case where both instructions and operands are located in the

S Memory.

)
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Fig. 9-5(c) illustrates the case where Pl + 0.k = QKMT, i.e., where the PK and @K
cycies are the same length, by a sequence of INSert instructions. In the example,
PR = 6.4 microseconds and QKMT = 6.8 microseconds. Note that both PK and QK cycle
continuously and that each instruction takes 6.8 microseconds to execute. It can
also be deduced from Fig. 9-4 that a series of INS instructions in which the
instruction words were stored in the T Memory and the operand word were stored in

the S Memory would require 8.8 microseconds per instruction.

SEQUENCE DYNAMICS

Thus far in the chapter counter activity patterns have been established for individual
instructions (or at most for an uninterrupted succession of instructions in the same sequence).
This section will take a broader view and consider all the basic possibilities for getting
from one instruction to the next, and the next instruction in the same sequence or in another

sequence.

Fig. 9-6 shows the four basic possibilities for proceeding from one instruction to the next.
The normal situation is for the current instruction to be followed by another instruction in
the same sequence. By the end of the current PK cycle a definite decision has been made to
continue in the current sequence. As was pointed out earlier in the chapter, this does not
necessarily mean that the next PK cycle will begin as soon as the current PX cycle is

completed, i.e., PK will wait in its resting state, PKOO, until all the necessary interlock

conditions for continuing are satisfied.

The second possibility is that a decision to change sequence will be made during the current
instruction. The current instruction may or may not be completed before the change of
sequence cycle begins. TIn any event, the change of sequence cycle cannot begin until the

PK counter is in its PKO0 resting state.

The third and fourth cases result from two different basic situations. Either some inter-
lock condition has forced the PK counter to wait in PKoe or PK23, or the current instruction
has dismissed the sequence and PK is waiting in its PKOO resting state until a decision can
be made as to whether to begin another instruction in the current sequence or to change
sequence. During this waiting period a series of delay synchronization cycles are executed

which examine the interlock conditions upon which the decision is based.

In case three, a decision is eventually made to go on in the current sequence. PK will
either complete the current instruction or, if the current instruction has been completed,

begin the next instruction in the current sequence.

In case four, a decision is eventually made to change sequence. If PK is in either the
PK02 or PK23 waiting states, the current instruction will be abandoned. In this case PK
will go back to PKOO and a change of sequence cycle will occur. If the delay synchroniza-
tion cycle occurs while PK is in PKOO, the delay synchronization cycle in which the change
of sequence decision is mede will simply be followed by a change of sequence cycle, while

(0]
PK remains in PK O.
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9-5 COUNTER DYNAMICS WHEN NO CEANGE OF SEQUENCE (CSK) OR DELAY SYNCHRONIZATION CYCLE(S) (DsK)
ARE INVOLVED

This section will discuss Case 1 in Fig. 9-6 in detail, i.e., the case in which a series of
instructions in the same sequence is executed. The counter activity patterns for the
instructions themselves can have any of the forms shown on Fig. 9-2. It is necessary to
examine only the counter starting conditions for PK, QK, XWK, FK and AX to determine the
specific relative starting time of each counter for all the instruction variations. In
order to establish an exact counter activity pattern, it is necessary to know (in addition
to the counter starting conditions) the PK and QK time states used by the instruction and

the time states in PK and QK in which waiting can occur.

Fig. 9-L4 shows the PK and QK time states required as a function of instruction and memory.
Waiting can occur in PKOE, PK25 and QKOS. The conditions under which simple waiting occurs
in these states will be examined in this section. (Waiting can also occur in the OO0 resting
state of the PK and QK counters, but this is reflected in the PK and QK counter start

interlock logic.)

9-5.1 COUNTER STARTING CONDITIONS. Fig. 9-T shows the interlock start conditions for PX,
QK, XWK, FK and AK. TIn this section, the following assumptions are made:
1) The PIg . CSK& interlock condition is satisfied. PI3 and CSKA are only of

importance when a change of sequence or delay synchronization has just

previously occurred. This will not be the case in this section.

2) All the alarm and pushbutton control conditions are satisfied, i.e., i,

START;, PKS? and Png.

Fig. 9-8 shows the times at which the variocus interlocks involved in the counter
starting conditions are set and cleared. The setting and clearing times are given

as a function of instruction and counter. The time at which an interlock of interest
is set or cleared is given at the intersection of the interlock column and the

instruction row.

Even though all the interlock start conditions are satisfied, a counter will not
start a new cycle until it is in its OO resting state. Conversely, even though the
counter is in its 00 resting state, it will not start a new cycle until the interlock
start conditions are satisfied.

9-5.1.1 PISTARTI. PK begins counting when either an instruction word is called

for (PIS) and the PISTARTl conditions are satisfied or when a deferred

ST
address word is called for (PI;) and the PI ART2 conditions are satisfied.
The deferred address situation will be considered a special topic and
discussed at the end of the chapter. The primary interlocks of interest

are PIl, XB and QB.
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9-5.1.2

PIg . CSKu - The assumption in this section is that this interlock

condition is satigfied.

PI? - PI1 is set during the PK cycle in those instructions that
have an operand (QK) cyele. It is then cleared in the
QK cycle that follows. For most instructions, PIl is
cleared to ZERO in QKOO. Some of the instructions that
use the X and F memories for special purposes clear PIl
later in the QK cycle. This is done in these cases to
prevent the PK cycle from starting until the current QK

cycle is finished with the X and F memories.

V (0
XB - XB is set in the PK cycle at PK12 and, in a few

13¢
instructions, in the @K cycle at QK 3 . The X write

cycle that follows clears this interlock at XWKOEa.

XBO predicts that the X register will shortly be free.
PK cannot start until there is assurance (XBO) that the
X Memory will be free at the time that it is required

in the PK cycle.

QB - For those instructions that have an operand (QK) cycle,
QB is set at QKOO. It is then cleared in these instruc-
[0
tions at QK31

until the current QK cycle is completed unless the

1
. QB” prevents the PK cycle from starting

computer is allowed to operate in the memory overlap

0,8 5 T U. U AN
condition, i.e., NO (P~ - Q +PT‘Q +P T +P Q).

The remainder of the logic in the PISTARTl level is normally satisfied. It

is covered in detail in Chapter 10.

START
QI . This is the start interlock level for the QK counter when an
operand word is called for. The primary interlocks of interest are PIl
and FI.

Pli - This interlock is always set at PK22a in those instruc-
tions that call for an operand. (See PI? discussion
above.)

1
FI - FI is cleared in the JPA, JOV, JNA, FLF, and FLG

13 at the time the FK counter is

instructions in PK
started. It is then set during the FK cycle. FIO
prevents QK from starting if the FK counter is not
available for configuration control during ordinary

operand cycles.
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—_ o}
AEB -+ QB occurs. A similar situation occurs in QKO

The remainder of the logic in the QISTART level is normally satisfied. It

is covered in detail in Chapter 10.

9-5.1.3 START XWK. XWK is normally started at PKlua when the base address indexing
process occurs. In certain of the jump instructions that use the X Memory
for a different purpose, XWK is started at PK3la, i.e., at the end of the
PKET phase of the PK cycle. XWK is also started in the AUX, RSX and EXX
instructions during the operand (QK) cycle when the contents of an X Memory

register is being changed.

9-5.1-4 START FK. FK is normally started at QKOO as part of the configuration
control process. In SPF and SPG, where the F Memory is used for non-
configuration purposes, FK is started at QKlBa. In FLF, FLG, JOV, JPA and
JNA, where the F Memory is again used for non-configuration purposes, FK
is started at PKlsa. In this last case, FK starts because FI is cleared at
P 5%, Note that the B register must be free (EBO) before FK starts because
the execution logic of these instructions uses the E register in the same

process in which the F Memory is used.

Lo
9-5.1.5 START AK. AK is normally started at QKl in those instructions that use
the AK counter in their execution logic. TIn the AOP instruction, AK is

04
started at PK26

SIMPLE PX AND QK WAITING LOGIC. 1In addition to the normal waiting that can occur in
the 00 resting state of the PK and QK counters, waiting can occur in PKOQ, PK25 and
QKO3. The interlock logic that causes this waiting is shown on Fig. 9-9. The basic
reason for waiting is that the current cycle of the computer wants to use a part of
the computer that is not currently available. The cycle waits in the "waiting state”
until the cycle can go on. Note in these cases that there is no question of whether
the cycle will or will not go on. The only guestion is when the cycle can proceed.
PK waits in PKO2a if the selected word is located in the E register (PKMVFF : ;ﬁBKE)
and either the E register is busy (EBl) or the operand cycle associated with the
previous instruction is not completed (QBl). When the EBC ° QB condition is satis-
fied, PX proceeds to PKOga.
located in the Arithmetic Element (PKMVFF : VMDAE) and the Arithmetic Element is

2
A wait also occurs in PK if the instruction word is

still performing a previous instruction. In this case PK waits in PKO2 until
3a. QK cannot go on if the
operand is located in the Arithmetic Element and the Arithmetic Element is busy with
a previous instruction (QKMVFF . VMDAE * AEB). Waiting can also occur in PKEEQ
when non-operand type instructions (Class A) are executed. The actual waiting state
logic in this case depends on the instruction executed. (See Chapter 17 for a

discussion of the terms used in this logic in each. instruction. )
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9-6 COUNTER DYNAMICS WHEN A TRANSITION TO OR FROM A CHANGE OF SEQUENCE (CSK) OR DELAY
SYNCHRONIZATION CYCLE (DSK) IS INVOLVED.

This section will discuss in detail Cases 2, 3 and 4 shown on Fig. 9-6, i.e., the cases
where transitions to or from delay synchronization or change of sequence cycles are involved.
The interlocks that determine these transitions are PI3 and CSKM. Fig. 9-10 shows the

transition possibilities and the states of PI, and CSKLL required for the transitions to

3

occur.
By examining the conditions which set and clear PI3 and CSKA, it will be possible to

establish the conditions which cause the transitions.

9-6.1 DECISION AND WAITING LOGIC. Certain specific states in the PK cycle are called
"decision states". The following alternative types of decisions are made in these

states:

1) To immediately go on in the current sequence (or, more specifically, in
some cases to go on in the current instruction), subject only to the inter-

lock conditions just described in Section 9-5.

2) To immediately abandon the current instruction and perform a change of

sequence.

3) To wait until the conditions for making a decision to go on with instructions

in the current sequence are available.

4) To wait until the conditions for meking a decision to change sequence are

available.

If the decision to wait is made, PK will go into a "waiting state" associated with
the PK "decision state". In this case, the decision to go on in the current sequence
or to meke a change of sequence will be made during a delay synchronization cycle(s),
i.e., the decision will now be made by having the DSK counter sample the conditions

on which the decision is based.

Fig. 9-11 summarizes this PK and DSK decision logic. If the instruction word is
located in the VFF memory, PK02 becomes a decision state. Note that at PKOE, the
instruction word has not yet been placed in the N register. Thus the basic question
on which a decision must be made is whether in fact the instruction word can be read
out of memory and placed in N. This will occur if the logic for going on to PK09 is
satisfied, i.e., if the instruction word is in a register that is currently access-
ible. If this decision cannot be made immediately, CSKA is set to ONE and a delay
synchronization cycle(s) occurs. PK waits in PK02 until DSK clears CSKA to ZERO.

If at the same time, PI_ is set to ONE and PK is set back to PKOO, a change of sequence

3
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cycle will occur. The change of sedquence cycle will always clear PI3 so that it can

be followed by a PX cycle. If P13 is not set to ONE, PK will wait until the other

conditions for going on to Pk are satisfied (see Sect. 9-5).

Note in this case that the PK decision state and waiting state are the same, i.e.,
2
PKO . Also note that the current sequence cannot be abandoned until after at least

one delay synchronization cycle occurs.

PK2 is another decision state. Note that in this case the instruction word has
already been placed in the N register. Thus the basic decision is whether to continue
on in the current instruction or to abandon the instruction and perform a change of
sequence. If the "wait" conditions are not generated, PK will immediately go on to
PKZA. If the "leave ggquence" conditions are generated, PI3 will be set to ZERO

and PK set EEEE to PK~, i.e., the current instruction will be abandoned and a change
of sequence will occur. If the "wait" condition occurs, but the "leave sequence”
condition is not generated, CSKh will be set to ONE and PK will wait in PK23 while
the delay synchronization cycle(s) sample the "wait" and "leave sequence" conditions.
If at some time the "not wait" conditions occur, PK will go on to PKEH. On the other
hand, if the leave sequence conditions are generated, PI3 will be set and PK set

back to PKOO, i.e., the current instruction will be abandoned and a change of sequence

will occur. Note that the flag of the current sequence can be dismissed (i.e.,
lowered) during a TSD in PK22. This will occur if the IO buffer is busy or the QK
eycle of a previous TSD is going on. This decision is made independently of the
status of the hold bit on the TSD.

In PKQh all the PKIRDIS instructions (i.e., all the Class C instructions) will cause

00 .
PK to go ahead to PK . If the change sequence conditions are satisfied, PI, will

B1s

be set to ONE in PKeh. If the instruction has a PXEI cycle, i.e., is a PKIR =
instruction which terminates in PKSl, PI3 will similarly be set in PKZ)1L (so long as
it is not an IOS instruction). In this case, the instruction will be completed

before the change of sequence called for by the PI% condition occurs. The decisions

25 31

DIS
made in PK ~ and PK~~ occur only in PKIR type instructions. These instructions

DIS RE
are of two basic types: those that "dismiss" (PKIR Q) and those that "do not
DIS REG DIS RE
dismiss" (PKIR 1 ). Consider first the PKIR 1S REQ class. If the conditions
for changing sequence are satisfied in PKSl, PI, will be set to ONE and the current

3 00
PK cycle will be followed by a change of sequence cycle when PK reaches PK ~. If

the conditions for changing sequence are not satisfied, the current instruction
will simply be followed by the next instruction in the current sequence.

D E
Consider now the instructions that can dismiss (PKIR SR Q).

While the JX type
instructions are in this class, the logic requires that they be treated separately
and they will, for the moment, be ignored. TIf the conditions for dismissing are
satisfied in PK25, the flag of the current sequence will be lowered. Note that in

the case of TSD, which falls in this class, the flag may be dismissed twice during
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25 31

the instruction, once in PK22 and again in PK'7. 1In PK a decision will be made to
set CSKA to a ONE if the dismiss conditions are satisfied and no sequence requests
attention. This means that the current PX cycle will be followed by a delay synchro-
nization cycle(s). If the conditions for changing sequence are satisfied in PKal,
PI3 will be set to ONE and the curreﬁt PX cycle will be followed by & change of

sequence cycle.

In the case of the JX type instructions, CSK) is set to ONE (if it is to be set) in
PK25 instead of PKSl and the change sequence conditions are sampled only in PKEL.
Note that, except for the JX and IOS instructions, the change sequence conditions
are sampled at both PKEA and PK31 during those instructions that terminate in PK31.

00 2L 25

PK is the waiting state associated with the PK™ , PK 31

and PK™~ decision states.
i . okl

P13 is always cleared during a change of sequence cycle at CSK , i.e., the CSK

cycle is usually followed by a PK cycle. Only when a "trap" occurs on a sequence

meta bit can two CSK cycles occur in succession. See Chapters 10 and 15. All the

logic for setting and clearing P13 and CSKu has now been discussed.

The logical definitions of the factors and terms used on Fig. 9-11 are described in
detail in Chapter 10.

The starting conditions for the CSK and DSK counters will now be examined.

9-6.2 CSK AND DSK COUNTER STARTING CONDITIONS. The interlock start conditions for the DSK
and CSK counter are shown on Fig. 9-12. Note that CSK and DSK are physically the
same counter. Which interpretation is given depends on the state of CSKu- CSKE
implies a change of sequence cycle, while CSKi implies a delay synchronization cycle.
The interlocks that are set and cleared by the DSK and CSK counter are shown on
Fig. 9-13.
9-6.2.1 CSISTART. CSK begins counting when a change of sequence is called for. CSK

canmnot start counting until PK is in its PKOO resting state and CSKh is
cleared to ZERO. It is assumed that the START% pushbutton condition is

satisfied.
XWO - This interlock is set and cleared in the XWK counter cycle.
Since the change of sequence cycle uses the X Memory, the
0
CSK counter cannot start until XW .
START
XBO - (See discussion earlier under PI 1). CSK cannot start while

1 1
the X Memory is in use. XB™ covers such periods until XW .
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EB” - This interlock is set and cleared in the QK cycle, except
in the SPG instruction when it is cleared during the FK
cycle. Since the change of sequence cycle uses the E
register for temporary storage, there must be assurance that

]
the E register is free (EB ) before the CSK cycle can start.

PIl . CSKh - This interlock condition was discussed earlier in this

3

section.

9-6.2.2 DSK STARTING CONDITIONS. DSK begins counting when a delay synchronization
cycle is called for. DSK cannot start counting unless CSKH is set to ONE.
The conditions for CSKi were discussed earlier in this section. DSK will
count only if the XWK counter is in its 00 resting state and PK is in one

02 2 00
of its waiting states, i.e., PK' 7, FX 3 or PK .

9-7 DEFERRED ADDRESSING CYCLES

When the computer is ready for a new instruction, a PK cycle is used to read the instruction
out of memory. If this instruction calls for a deferred address word, PK goes through
another cycle, during which it reads out the deferred-address word from memory. If this
deferred-address word calls for still another deferred-address word, the cycle is repeated.
Finally, a deferred-address word is obtained which does not call for another deferred-
address word. PK now performs the so-called ultimate deferred-address cycle, during which
the final base address is computed and the index register specified by the instruction word

is placed in X.

This section will examine the PK counter activity pattern during the deferred addressing
process. The interlocks of primary interest are P12 and PIS. The times at which these

interlocks are set and cleared will determine the sequence of cycles.

Fig. 9-1k shows the basic deferred-address cycle and the times at which P12 and P15 are

set and cleared.

The latest time at which the instruction is strobed into N during a PK cycle is PKl:LB The
defer bit ( ) is then examined at PK13 . If a deferred address is called for ( o, 9)

PI is set to ONE Assuming the instruction is defined (PKIR ), P15 will in turn be set
to ONE in PK:L . The conditions (PI2 - PI5) for an intermediate-deferred-address cycle to

follow the current PK cycle have now been set up.

Once the instruction word memory cycle (PKM) is completed, PK is ready for an intermediate-
deferred-address cycle. During the instruction word memory cycle, the instruction word's
configuration, hold and OP code bits are placed in the PKIRCF and PKIROP registers. This
information will remain in these registers all during the succeeding intermediate and

ultimate deferred cycles.
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START
When the PI 2 conditions are satisfied, the first intermediate-deferred address cycle

will begin. These cycles will continue until a deferred address word is read out which does

not call for another deferred address word, i.e., NO
8. .0 29 _ 0

is PKl : N2 9 causes P15 to be cleared to ZERO in PKl . PI5 insures that PK will execute

. The latest time at which this occurs

next an uvltimate deferred-address cycle.

The ultimate deferred-address cycle does not involve a memory, but simply the computation
of the final deferred-address. Note that the PI; . PIO interlock condition determines that
no memory cyecle is involved. PI2 is cleared to ZERO in PKl3a. The balance of the PX cycle
is then like any normal instruction word cycle. The instruction is completed using the

address computed in the ultimate cycle and the operation called for by the original instruc-

tion word.
IN-OUT TIME CONSIDERATIONS

Earlier in the chapter the effect of the In-Out Element on the interlocking decisions was
implicitly examined. For example, the effect of levels like PIWAIT, PICH SEQ, PILV SEQ,
etc. on interlock decisions was analyzed. These levels are based on information from the
Sequence Selector. This information, in turn, reflects events that have occurred in the
In-Out Element. However, these events in the In-Out Element are generally initiated by the
central computer. The time between the event in the central computer and the interlock
condition in the central computer that reflects the chain of events in the In-Out Element

initiated by this event can be considerably more than 0.4 microsecond.

Three types of central computer pulses can initiate action affecting the In-Out Element.
These are: (1) IOI clock pulses, (2) IOS mode and select pulses, and (3) TSD data transfer
pulses. A minimum of 1.6 microseconds must elapse before the interlock levels affected by
these pulses can be sampled. The only other events occurring in the In-Out Element that
can affect the central computer are events such as MISIND alarms, EIA alarm levels generated

by switches, etc.

I0I clock pulses can be generated only at PKOl, PK12 and CSKll. The decision and waiting
states that occur at least 1.6 microseconds after these IOI clock pulses can be used to
sample the interlock conditions affected by these pulses. Note that for this reason a
decision to change sequence cannot be made in PKO2 until after at least one delay synchron-
ization cycle occurs, i.e., until at least 1.6 microseconds has elapsed since PKOl. Since
PK22 occurs at least 1.6 microseconds after PKlg, a decision to change sequence can be made
in PK22.

The I0S mode and select pulses are generated at PK26. These pulses can raise and lower
flags in the Sequence Selector directly or change the mode of the In-Out Element, so that it
in turn changes the status of flags in the Sequence Selector. The PICH SEQ interlock level
affected by these events cammot be sampled until at least 1.6 microseconds after PK26. The

. 2k
interlock condition is in fact sampled at PK31 (see Fig. 9-11). PI3 is not sampled at FK
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by an I0S (see Fig. 9-11). This sampling is inhibited until after the IOS has a chance to

change the mode of the In-Out Element, i.e., until after PK26a.

The buffer busy level (IOCM?B) is used in the "wait" and "leave sequence” logic as well as
s .. 2 . .

in the FLAG dismissing logic in FX 2. This level is affected by the TSD data transfer pulses
20

that occur in QK . For this reason decisions based on IOCMBB cannot be made until 1.6

microseconds after QKzo.

PROGRAM EXAMPLE

A specific example of the counter activity that occurs during a short program will be given.
This exemple is designed to illustrate the effect of the interlock control on computer

dynamics.

The assumption is made that the instruction word is stored in the S Memory and that the

operand is stored in the T Memory. The program will consist of the following instructions:

DSK

CsK

TSD (Hl = hold)
(CF% = dismiss requested)
(CF; = XWK at PK31)

DSK

Fig. 9-15 shows the counter activity pattern for this program.

Assume that the initial DSK cycle starts while PK is in the PKOO resting state (a result of
the previous instruction dismissing itself). Assume also that during this DSK cycle, CSKll
samples a ssPTT REQ (Kecl °, KDOO) condition. This condition at CSK causes PI3 to be
set to ONE and CSK) to be cleared to ZERO (see Fig. 9-11). This insures that a change of
sequence will follow (see Fig. 9-10(b)). Note that all the CSISTART conditions are now

satisfied. (It is assumed that XW, XB, EB and PI, were cleared to ZERO previously.)

The CSK cycle clears PI3, sets XB and starts XWK (see Fig. 9-13). XWK in turn clears XB in

START
e (see Fig. 9-8). x8° is the crucial interlock in the PT 1 level. PK starts

counting as soon as XB is cleared.

During the TSD, the PK cycle sets XB and starts XWK counting. PK also sets PIl to ONE in

PK22. All the QISTART

Note that the conditions that start QK are sufficient, in this case, to start FK counting.

conditions are now satisfied (see Fig. 9-4%) and QK begins counting.
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QK immediately clears PIl to ZERO, so that the PISTARTl condition is again satisfied. How-

ever, PK must finish the current TSD instruction before beginning the JMP instruction.

If the TSD instruction had dismissed instead of holding, PK may have had to wait in PKOO

while DSK examined the conditions for going ahead in the program. The fact that the hold
START

bit was a ONE, meant that the PI 1 conditions are Immediately generated and that PK

will go on to the next instruction in the current sequence.

The JMP instruction has no operand cycle. In the case chosen (CFl . CFl), the instruction

dismisses. Fig. 9-2 and Fig. 9-8 show that an XWK cycle starts ai PK3l5in this instruction.
PK31 in the JMP instruction sets CSKh to ONE because the PKIRE . SSATT REQ . PKIRDIS REQ
condition is satisfied at that time (see Fig. 9-11). 1 CSKh places the CSK counter in
the CSKO8 state, i.e., the DSK resting state. DSK must wait in this state until XWK com-
pletes its cycle and returns to its XWKOO resting state. At that time delay synchronization

cycles start being executed, and continue until some sequence again requests attention.
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CHAPTER 10
CONTROL ELEMENT

INTRODUCTION

This chapter will discuss the logical design of the Control Element. Chapter 6 gave brief
functional descriptions of most of the components in the Control Element and indicated how
the Control Element itself was related to the rest of the computer. While this chapter is

organized in much the same way as Chapter 6, i.e., it covers the following general topics:

Start-Stop Control
Interlocks
Interlock ILevels

Counter

Tt is unlike Chapter 6 in that it deals with these topics at the level of TX-2 Block

Schematic information.

This chapter is also complementary to Chapter 9 which discusses the dynamics of the

computer in terms of counter interlocking.

An elementary view of the needs the Control Element fills i1s given in Chapter 5, which

discusses in broad terms the general timing and control problem.
START-STOP CONTROL

10-2.1 GENERAL DESCRIPTION. The output of the Start-Stop Control is a set of levels which
enter into the interlock start level logic.

The Start-Stop Control system is divided into two subsystems: (1) a start control,
and (2) a stop control.

The start control takes into account the factors which influence whether or not
the computer rums, i.e., the state of the start-stop buttons on the console, and
the condition of the alarms and the alarm suppress buttons. (The alarms, alarm

controls, and the alarm delay counter (ADK) will be discussed in Section 10-2.5.)
The stop control takes into account the factors which influence the effective speed
of operation of the computer, i.e., the modes of operation (high speed, low speed

and low speed repeat), and the various stop buttons and switches.

The start system generates a level which is used by all the interlock start levels.

The stop system generates individual levels for each of the interlock levels.

10-4 March 1961



10-2.2

March 1961

START CONTROL. The start control system is shown in Fig. 10-1. It consists
primarily of two flip-flops that are used as a synchronizer. These flip-flops are
STARTl and STARTZ.

STARTé is a necessary condition for the generation of the interlock start levels.
Wnen the PB START pulse is generated, the STARTl flip-flop will be set to ONE if
the ADK counter is in its resting state. (ADKQO indicates that no alarm conditions
exist.) The START flip-flop is then synchronously set to ONE after the START
flip-flop is set, again providing that the ADK counter is in its ADKQ restlng
state.

The STARTl flip-flop is cleared when the PB STOP push button is actuated or when

the AL, - AUTO START condition exists. The START2 flip-flop is cleared when the
STARTl flip-flop 1s cleared or when the AL condition exists. AL indicates an alarm

condition is present. (See Sect. 10-2.5.6.)

Note that in all cases the START2 flip-flop changes state synchronously with the
& (alpha) timing pulses.

10-2.2.1 AL - AUTO START CONDITION. When the START pulse is generated (see Fig.
10-1), the STARTl flip-flop is set. At the next @ timing pulse, the
START,, flip-flop will be set. With both START flip-filops set, the
computer will operate. If both the AL and EﬁT5_§TE§T'lqvels exist, then
both the STARTl and START2 flip-flops will be cleared. In this situation
the computer will not start again until the alarms which generated AL

have been cleared and the START push button is pressed again.

10-2.2.2 AL * AUTO START CONDITION. If when both START flip-flops are set the AL
and AUTO START levels occur, only the START flip-flop will be cleared.
This stops the computer, but leaves the START flip-flop set. This
condition continues to exist until the ADK counter returns to ADKQO At
that time, the START2 flip-flop is set again. This permits the computer
to restart automatically after a delay equal to the duration of the
operation of the ADK counter cycle.

10-2.2.3 PB STOP PUSH BUTTON CONDITION. If, while the START flip-flops are set,
the PB STOP push button is actuated, the STARTl flip-flop will be cleared.
At the next Q timing pulse, the START2 flip-flop will also be cleared

and the compiuter will stop running.
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10-2.3 STOP CONTROL. The stop control system 1s shown in Fig. 10-2. It consists primarily

of two flip-flops used as a synchronizer. These flip-flops are STOPl and STOPE.
The system also includes the push button mode flip-flops, and the four flip-flops
which stop or prevent an operand (QKS), change of sequence (CSKS), instruction
(PKSl) and/or a deferred address (PKSE) cycle from starting. The condition of
these "stop" flip-flops determines which mode the computer will stop in when the

computer is running.

The STOPl flip-flop is set when the PB START push button is actuated and the ADK

counter is in its ADK.OO resting state. The STOP2
Q pulse after both the STOP% and START% conditions occur and certain other conditions
are satisfied. These other conditions are that either the computer is not in the
Low Speed Repeat (ISR) mode, or, if it is, that a Low Speed Oscillator (LSO) level
is present. STOPg clears all of the stop flip-flops, i.e., CSKS, QKS, PKS. and

1
PKs,

flip-flop is then cleared by an

o

The STOP2 flip-flop is set by an aipulse as soon as it is cleared if the computer
is in either low speed mode. STOP2 sets those stop flip-flops that have corre-

sponding stop toggle switches on the console actuated. Since the stop flip-flops
enter into the interlock start levels and inhibit these levels when they are set,
it is clear that the stop system affects the operation of the computer only when

it is in the low speed mode.
The mode of operation flip-flops are set by actuating push buttons on the console.

10-2.3.1 LOW SPEED PUSH BUTTON MODE STOP CONTROL. When the low-speed-push-button-
mode push button is actuated, the LSPB flip-flop i1s set. Note that STOP
will be set at this time if it was previously clear. If the PB START
push button is then actuated, the STOPl and START:L flip-flops will be

2

set. The following events will then be initiated by a succession of &

pulses:
05 - START2 flip-flop set
Qﬁ+l - STOP2 flip-flop cleared
O£+2 - All stop flip-flops and STOP2 cleared
an+3 - The one interlock start level which has been generated

allows the corresponding counter to start. At the same
time, all the stop flip-flops are set which have the

corresponding STOP switches set.
Thus the interlock start levels which correspond to the set STOP switches

are inhibited. The counters corresponding to the interlock start levels

cannot then be started until the START button is again actuated.
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10-2.3.2

10-2.3.3

LOW SPEED REPEAT MODE STOP CONTROL. When the low-speed-repeat-mode push
button is actuated, the LSR flip-flop is set. When the START push butten
is then pressed, the operation of the computer is identical to the Low
Speed Push Button mode, except that STOP2 will not be cleared until an
LSO level occurs and that STOP1 will not be immediately cleared by the
next & pulse. The result is that STOP2 is cleared for 0.4 microsecond
whenever an LSO level occurs and that 0.4 microsecond later all the stop
flip-flops are cleared for O.4 microsecond. Immediately afterwards those
stop flip-flops are set which correspond to set stop switches. The
computer is hence able to run only until it tries to use an inhibited
counter cycle. Since START2 remains set until the STCP push button is
actuated, the computer is essentially started every time the LSO level

occurs.

Low Speed Oscillator (1.S0). The low speed oscillator consists of

two variable delay units, LSOl and LSOQ, coupled together so as to
form an oscillator. When one unit turns itself off, it turns the
other unit on. The two units are each set to be on for approximately
the same amount of time. Although the two units as coupled together
tend to oscillate by themselves, one of the units (LSOl) is set
whenever the Low Speed Repeat push button is pressed in order to
guarantee oscillation. The output LSC level is generated once each
complete cycle by the LSO% . LSOE condition. The frequency of
oscillation can be varied over the range 0-500KC by two knobs on

the console.

HIGH SPEED MODE STOP CONTROL. The inputs to the LSR and LSPB flip-flops
are arranged so that both flip-flops cannot be set at the same time. If
both flip-flops are set when the power is turned on, the LSR flip-flop
will be cleared by the first & pulse that occurs. If one flip-flop is
set and the corresponding mode push button is pressed, both flip-flops
will end up cleared. If one flip-flop is set and the push button for the
other is pressed, then the first flip-flop is cleared and the other is
set. If one flip-flop is set, then the computer is sald to be in the
corresponding low speed mode. If neither is set, then the computer is
said to be in the high speed mode. When the computer is in the high
speed mode and the PB START push button is actuated, the STOPl and
START. flip-flops are set. The following events will then be initiated

1
by a succession of O pulses:

&p - START2 is set
anfl - STOP2 is cleared
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(01 - The stop flip-flops CSKS, QKS, PKS

2 and PKS2 are

cleared. These stop flip-flops reiain cleared and the
operation of the computer is under control of the
START2 flip-flop.
10-2.4 SYNC SYSTEM. The Sync System provides the computer operator with a means of
generating a pulse when certain specified states occur in parts of the computer.
These states are specified by the position of selection switches on the Sync
System control panel. The control panel and the computer console contain other
switches which determine what effect the output pulses from the Sync System will

have.

10-2.4.1 OUTPUT CONTROL SWITCHES. There are two sets of 31 selection switches on
the Sync System control panel. Each set gates the same set of 31 input
levels, but permits the operator to choose two different combinations
of the levels. All the input levels selected by each set are separately
"AND"ed. The two results are then "OR"ed in several ways to generate
output pulse. Thus, if the input levels are designated by Ll""’ L3l’
and the two sets of selection switches are designated by Sl,..., 831,

and Tl,..-, T31 then the logical quantities

A = (Sl + Ll) .- (S31 + L3l)
and

Ay = (T +Iy) e (T * L))

are formed.

An output pulse from the system can be used to stop the computer. Two
different switches on the computer console, SYNC STOPl and SYNC STOPQ,
determine, via two SYNC STOP flip-flops, which of the above two quantities
will stop the computer. Specifically, the guantity

1

1
SYNC STOP = SYNC STOPl Al + SYNC S‘I‘OP2 A2

is used to clear the START synchronizer and to generate a SYAL. After
such an alarm the computer can be restarted by pressing the CALACO
button.

The output pulse from the Sync System can also be used to sync test
oscilloscopes. In this case two switches, called SELECTED SYNC:L and
SELECTED SYNC2 determine directly which of the above two quantities will
generate a sync pulse. Specifically, the quantity

SELECTED SCOPE SYNC = SELECTED SYNCl ' Al

+ SELECTED SYNC2 © A
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is sent to various output BNC connectors on the main horizontal bar of
the computer frame. The sync input to a test scope can then be easily
connected so as to receive a sync pulse when specified states occur in

the computer.

One of the output BNC connectors is connected directly to the Trap
Sequence {(No. 42 (0)). An output pulse can then be used to raise the
flag of the Trap Sequence, as described in Chapter 15.

10-2.k.2 INPUT SELECTION SWITCHES. Sixteen of the thirty-one switches in each
set of selection switches gate levels received from BNC connectors of
the main horizontal bar of the computer frame. These levels are called
Bl’ B2, Cl, 02, Dl’ Dz, El’ E2, Fl’ F2, MTl’ MT2, MT3, MTh’ IOIl, and
I0I,., where the names indicate the section of the frame of the computer

2
which contain the BNC connectors.

The other fifteen inputs correspond to wired in nets which detect
coincidence between the state of a particular part of the computer and
a corresponding set of toggle switches on the Sync System control panel.
These fifteen inmputs are PK,, PK, (PKIROP), PK ., (PKIRCF), PK; (PKIRH),
P, &Ky Kop (GKIRgp), Q Ny 105 My g0 Ny ARy, MK, (AKIRG), ASK and
X2.9. For example, a colincidence net determines whether the five PK&
flip-flops agree in value with the settings of the five PK& toggle
switches. If so, then the corresponding input level to the selection

switches i1s generated.

A1l fifteen of these nets are similar, aside from the number of switches
and flip-flops involved, except for Nﬁ.lo and Mh.lo' In these two cases
the additional switches are somewhat redundant since only the "ONE" value
of the corresponding flip-flop can be detected by the coincidence net.

Note, however, that either state of X can be selected.

2.9

10-2.5 ATARMS AND ALARM INDICATORS. The general function of the various alarms was

March 1961

described in Chapter 6. In addition to the alarm flip-flop indicators, each alarm
has an associated flashing indicator, which flashes each time the corresponding
alarm condition occurs. The flashing indicators are variable delay units which
clear themselves automatically after a 70 milliseconds delay. The clearing logic
for the alarm flip-flops, as well as the logic for generating the alarm conditions,
is shown on Figs. 10-3, 10-4 and 10-5.

An alarm flip-flop (and the associated flashing indicator) is set immediately when
the corresponding alarm condition is generated. However, individual alarm
suppression switches in the console determine whether the alarm conditions affect

the operation of the computer.
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All suppressed alarms are cleared when the PB Clear Suppressed Alarms push button
is pressed. The pulse generated by the button sets a variable delay unit, CA2,
which generates a 0.4 microsecond level. This level is ANDed with the console
alarm suppress switch levels to clear the corresponding alarm flip-flops. For

example, PSAL is cleared by & - CA% * PSAL In this way all the suppressed

SUP”
alarms are cleared simultaneously.

A1l unsuppressed alarms are cleared when the Alarm Delay Counter (ADK) reaches

state ADK;O. For example, PSAL is cleared by & ° ADK,lO « PSAL The occurrence

SUP’
of any unsuppressed alarm causes the generation of the AL level. AL stops the
computer and starts ADK. When ADK reaches state ADK;l, it will not proceed to

state ADK;O unless one of the following two conditions are satisfied:

1) The AUTO START switch is turned on.
2) The PB (lear Unsuppressed Alarms push button is pressed.

The presence of the AUTO START level permits ADK to proceed through state ADK;O to
state ADKQO, whereupon the computer is promptly allowed to restart. On the other
hand, if the AUTO START switech is not turned on, so that the computer stops, and
the PB Clear Unsuppressed Alarms is pressed, then the CA1 flip-flop will be set.
The next & pulse after CA1 is set will clear both CA1 and ADKi. The computer then
proceeds as in the first case. Note that CA1 acts as a synchronizer so that ADK
will not be affected by the pulse generated from the push button except when ADK
is in state ADK;l.

10-2.5.1 MEMORY SELECTION ALARMS. (See Fig. 10-3.)

P Memory Cycle Selection Alarm (PSAL). The PSAL flip-flop is set

whenever a memory cycle is performed in which P is used as the
memory address register and the address in P does not refer to any
of the memories logically connected to the computer at the time
(PKMLEGAL). The alarm occurs at PKp9a during instruction cycles.

Q Memory Cycle Selection Alarm (QSAL). The QSAL flip-flop is set

whenever a memory cycle is performed in which Q is used as the

memory address register and the address in Q does not refer to any

of the memories logically connected to the computer at the time

(QKMLEGAL). The alarm occurs at PKp9a during deferred address
cycles and at QKp9a during operand cycles.
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10-2.5.2 IN-OUT ALARMS. (See Fig. 10-3.)

10-2.5.3

10-2.5.4

In-Out Selection Alarm (IOSAL). The IOSAL fiip-flop is set whenever

an I0S instruction is performed which tries to change the mode
(I0S 3XXXX) or select a new drive (I0S 6XXXX) of an In-Out unit
which is in the maintenance mode. The alarm occurs at PKEA& of the

I0S instruction.

In-Out Miss Indication Alarm (MISAL). The MISAL flip-flop is set
by the T1ocMISIND 1evel. The alarm indicates that some In-Out unit

has missed a line of data.

OPERATION CODE ALARM (OCSAL). (See Fig. 10-3.) The OCSAL flip-flop is
set whenever the computer attempts to execute an instruction with an
undefined operation code. The alarm can occur if an instruction word
with an undefined OP code is read out of memory or if an AOP instruction
specifies an undefined OP code in bits Né 6 _o0.1" In the first case,
the alarm is generated at PK;Sa of the PK cycle in which the OP code is
interpreted, i.e., when Plg. (PIg indicates that no deferred address
cycles remain to be performed.) In the second case, the alarm occurs

at the time the AK counter is started during the AOP, i.e., when the

content of AKIROP is being interpreted.

MEMORY PARITY ALARMS. (See Fig. 10-k.)

M Parity Alarm (MPAL). The MPAT, flip-flop is set whenever the

parity check circuit in the M register indicates that the operand

word just read out of memory into M has an even parity.

The alarm is generated 1.2 microseconds after QKllB (QKllB is the
latest time at which a strobe can occur during a QK cycle) and
hence occurs at varying QK states depending on the instruction
being executed. The IL—OMPAL logic determines the time at which

the parity is checked. Note that the alarm is not generated when

a QSAL is generated (i.e., when QKMIEGAL), nor when the V Memory

is used.

N Parity Alarm (NPAL). An NPAL is generated whenever an instruction

word or deferred address word which has an incorrect parity is read
out of memory into the N register. This alarm is generated in a
manner similar to the MPAL discussed above. However, in this case
PK;3a always occurs 1.2 microseconds after PK;lﬁ. (PKllB is the

latest strobe time.)
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F Parity Alarm (FPAL). An FPAL is generated whenever a word is

read out of the F Memory into the QKIRCF register that has an
incorrect parity. The parity check is made 0.5 microseconds after
a word is strobed into QKIRCF. Only one readout occurs during a
normal FX cycle but four readouts occur during a FLG. Note that
during SPF and SPG instructions, and when register 00 i1s selected,
the words readout are not used. In these cases the parity is not
checked.

X Parity Alarm (XPAL). The XPAL flip-flop is set whenever the

parity check circuit in the X register indicates that the X Memory

word just read out of memory into the X register has an even parity.
The alarm is generated at PK;Sa or CSKpha. This is never less than
0.8 microsecond after the word is strobed into the X register from
the X Memory. Note that, although a zero word is placed in the X
register whenever X Memory register 00 is selected, the parity of

the word is correct since XP is set.

10-2.5.5 MISCELLANEQUS ALARMS (See Fig. 10-5.) All the previous alarms have
virtually identical design, except for the individual alarm condition
logic which distinguishes them. The following alarms have few similar

features, although each has an alarm flip-flop and can stop the computer.

T Memory Selection Alarm (TSAL). This alarm is designed to protect

the circuitry in the T Memory by turning off the read-write currents
whenever the TSAL alarm flip-flop is set. This occurs whenever a
voltage transition takes place on one of the memory address MAST
lines while the read-write currents are turned on. The TSAL flip-
flop can be cleared only by a lem00E level. There is no
flashing indicator associated with this alarm and it cannot be
suppressed, but on the other hand the alarm does not stop the

computer.

Synch System Alarm (SYAL). This alarm is generated whenever the

Synch System generates a SYNCH STOP pulse. This level sets both
the SYAL alarm flip-flop and a flashing indicator. The flip-flop
can be cleared only by pressing the CLEAR UNSUPPRESSED ALARMS push
button. This alarm stops the computer, but does it directly by
clearing the STARTl flip-flop, rather than by starting the alarm
delay counter ADX.
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Mousetrap Alarm (Mousetrap). This alarm is used to detect and

remember various malfunctions of the computer. Currently it
determines whether the S Memory read-write flip-flops SRU and SRV
are cleared at a time when they should remain set during an S
Memory cycle. Such an event will generate a IiQMOUSETRAP level.
There is neither a flashing indicator nor a suppression switch
associated with the Mousetrap alarm. When the alarm is set it will
always stop the computer in the same way that a normal unsuppressed

alarm would. It is also cleared in the normal manner.

10-2.5.6 ALARM LEVEL (AL). (See Fig. 10-6.) Most of the alarm conditions which

10-2.5.7

stop the computer do so by generating the AL level. This level clears
the START2 flip-flop in the start control system and starts the alarm
delay counter ADK. It will also clear the STARTl flip-flop if the AUTO
START switch is not turned on, so that the computer will not restart by

itself when ADK returns to ADKQO.

The AL level is simply the OR of the MOUSETRAP alarm and all of the
following alarms which are not unsuppressed: PSAL, QSAL, MISAL, TOSAL,
OCSAL, MPAL, NPAL, FPAL and XPAL. The AL level can be removed only by
clearing all the set alarm flip-flops which generate it. Note that SYAL
can also stop the computer, but it doesn't use the AL level to do this.

CHIME CONTROL. Two different audible indications of an alarm condition
are generated using a two-tone chime. One tone indicates that a sup-
pressed alarm, i.e., one which does not stop the computer, has occurred.
The other tone indicates that an unsuppressed alarm, i.e., one which
stops the computer (at least momentarily), has occurred. Each of these

audible indications can be suppressed by switches on the console.

Chime on Suppressed Alarms. As shown on Fig. 10-7, this chime is

generated by the flashing indicators associated with the alarm flip-
flops. Only QSAL, PSAL, MISAL, IOSAL, OCSAL, MPAL, NPAL, FPAL and
XPAL can generate this indication, and then only when the Suppress

Chime on Unsuppressed Alarm switch is turned off.

Chime on Unsuppressed Alarms. This chime is generated when either

the ADK counter has been started or when a SYAL has been generated.
In the first case the chime level lasts as long as ADK is in state
ADKpl, which is determined by ALDl, whenever a MOUSETRAP or an
unsuppressed QSAL, PSAL, MISAL, IOSAL, OCSAL, MPAL, NPAL, FPAL or
XPAL occurs. In the second case the level is generated directly by
the flashing indicator associated with SYAL.
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10-2.5.8 ALARM DELAY COUNTER (ADK). This counter is started whenever an AL alarm

10-3 INTERLOCKS

level is generated. After it has started no other PK, QK or CSK cycle
can begin until it has returned to its resting state. The purpose of
the counter is to stop the computer, and then after the necessary
operations have been performed, to allow the computer to be started again
in a controlled manner. The counter uses variable delay units to slow

down its rate of counting to about 0.1 seconds per cycle.

The logic of the counter is illustrated in Fig. 10-8. The AL level sets
the first delay unit ALDl- ADKi is then set and the counter remains in
the ADKpl state until ALDl clears itself synchronously with an @ pulse.
During this time the CHIME ON UNSUPPRESSED ALARMS is sounded. Presumably
transient conditions, which might have caused the AL level, have by then

had a chance to disappear.

The counter next enters the ADK.ll state by setting ADKé, and also sets
the second delay unit, ALDZ- While ALD2 is set the first delay unit
recovers. During this time the computer simulates the pressing of the
STARTOVER push button, if the PASOFA switch is on, and simulates the
PRESET button, if both the PASOFA and the AUTO START switches are on.
Note that in the latter case only the Control Element exclusive of the

start-stop control is preset.

When ALD2 clears itself the counter will wait in the ADK;l state until
the CLEAR UNSUPPRESSED ATARMS button is pressed unless the AUTO START
switch is on. The CAl flip-flop is set when this button is pressed.
When either CA% or the AUTO START switch is on, ADK can proceed to state
ADK;O wherein the unsuppressed alarms which generated the AL level are
cleared, and then to state ADKPO where it remains until AL is generated

againe.

Note that CA1 and ADKé together act as a synchronizer for CLEAR UNSUP-
PRESSED ATARMS pulses.

10-3.1 GENERAL DESCRIPTION. The general function of the various interlock flip-flops was

described in Chapter 6. This chapter will discuss the specific logic that sets and

clears these interlocks.
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In certain cases two or more interlocks will have a related function. The times
at which these interlocks are set can overlap. To clarify the time relation of
the interlocks, figures will be given to show the relative times at which these

interlocks are set and cleared in terms of the basic counter cycles.
INSTRUCTION INTERLOCKS

10-3.2.1 INSTRUCTION INTERLOCKi (PIl). This interlock determines whether a PK

instruction word or QX operand word memory cycle can occur.

The logic for setting and clearing PI. is shown in Fig. 10-9. A graphic

1

illustration of the duration of PIi is shown in Fig. 10-10.

PIl is set if an instruction requires a QX cycle. It is then cleared

after the QK cycle starts, thereby indicating that the next instruction
(PK) or change of sequence (CSK) cycle can begin. (See also PI3 dis-

cussion.) PI. is always set at essentially the same time during a PK

1
cycle, but it is cleared at various times during the QK cycle that
follows. The specific time depends on the kind of operation being
0

performed. Thus PIl provides additional timing information about when

the next PK or CSK cycle is permitted to start.

PIl is set during instructions which require QK cycles either at the end
of the instruction word PX memory cycle or, if deferred address is
required, at the end of the PK ultimate cycle. The set pulse occurs at
PK?2a if the computer can proceed with the execution of the instruction,

(0
i.e., if the ’E’IwAIT level exists, or PK?3 if the computer has been forced

to wait before the decision is made to continue.

PIl is usually cleared as soon as the QK cycle begins, i.e., when QK is
in the QKQO state and the QI start level exists. However, any 1X (AUX,
RSX, EXX, ADX, DPX or SKM) or LF (SPF or SPG) operation code postpones

clearing PI. until later during the QK cycle. For example, in the case

* 6t

of ADX, PIl is not cleared until QK; . In the case of SPF and SPG,
PKIRCF is proﬁected from the effects of the next PK or CSK cycle until
the FK cycle is finished with it. In the case of SKM, NJ is protected.
In the remaining instructions PIi helps protect the Né,l input to the
X Adder until the XA output has been used. Note that although in some
cases PIl is cleared twice during a QXK cycle only the first of such

pulses has any affect on the interlock.
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10-3.2.3

INSTRUCTION INTERLOCK, (P12). PI, is set during 2 PK instruction word
memory cycle whenever deferred address cycles are required. It then
remains set, and serves to distinguish subsequent PK cycles which are
associated with the deferred addresses. It is not cleared until the
ultimate deferred address cycle (the one which does not obtain a word
from memory).

The logic that sets and clears PI, is shown in Fig. 10-11. DNote that

the term csrOT® - gsCf SEQ

venience and has no effect on the operation of the interlock. (See also

2
is present only for reasons of wiring con-

P15 discussion.)

INSTRUCTION INTERLOCKé (PI3)- This interlock determines whether a PK
instruction word memory cycle or a CSK change sequence cycle is to occur
next. The logic that sets and clears PI3 is illustrated in Fig. 10-12.
PI3 must be set before a change sequence cycle can begin. It can be

cleared during normal operation only at CSKpua of a CSK cycle.

On the other hand, there are three kinds of occasions at which PI3 can
be set:
1) One of these times is simply at CSKp7a during a change of

sequence cycle. A change of sequence always takes place to
the highest priority segquence which wants attention and usually
no flags can be set during the CSK cycle. Thus the SSCH REQ
level usually exists at CSKQYa when the CSK cycle is ending.
However, if the sequence meta bit on the program counter of the
new sequence is set, and the Trapping Sequence is trapping on
such bits (see Chapter 15), then the flag of the Trapping

FEQ ignt exist at CSKOIC.

In this case PI3 is set and the change of sequence is followed

Sequence will be raised and SSCH

by another change of sequence, this time the change of sequence

is to the Trapping Sequence.

2) The second class of timing covers the situations when PK is in
a waiting state and the delay synchronizer counter DSK is
running. In these cases DSK will stop when interlock conditions
determine either that PK can continue from where it was stopped
when DSK started or that PK must go to PKC (if it is not already
there) and a change of sequence cycle should start. There are

three such situations:
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3)

a)

b)

c)

PK can already be in PKPO while DSK is counting if an
instruction dismissed the current sequence at a time
when no sequence wanted attention. In this case DSK
cycles until some sequence wants attention (SSATT REQ)
at CSK%la. At that time, PI3 is set and a change of
sequence occurs next. Two special situations must be
taken into account. One situation is that if the
highest priority sequence which wants attention is
sequence zero (KDOO) then the change of sequence will
always occur, even though the computer is already in
sequence zero. This means that sequence zero will,
once it has been dismissed, start up again at the TSP
address when its flag is raised again. The other sit-
uation is that if the highest priority sequence which
wants atbention is the current sequence (K ° JC), then,
with the above exception about sequence zero, P13 will

not be set since no CSK cycle is required.

PK can be waiting in PKZO2 while DSK is counting if the
Arithmetic Element is busy when PK attempts to obtain
an instruction or deferred address word from it. In

this case PT, will be set if the prAE CH SEQ
exists at CSK;la. PIAE CH SEQ indicates, as we will

shortly see, that a higher priority sequence wants

level

attention and the last instruction executed did not

"hold".

PK can be waiting in PK?3 while DSK is counting if
either a TSD instruction tries to use an In-Out unit
which is not ready (IOCMBB) or because an instruction
tries to use the Arithmetic Element while it is busy
(AEI). 1In either case, PI3 will be set if the PV SE@

level exists.

The third class of time covers the situations when PK is

counting and a change of sequence condition occurs.

One of these conditions can occur at the end of the PK

are covered at PK.23 above and again involve the PI

2
memory cycle at PK? and covers the same situations which

LV SEQ

level.
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The others occur either at PK?ha or PKsla of instructions
which do not hold or which dismiss. If a sequence which
has its flag up can generate the PICH SEQ level, then PI3
is set and the PK cycle of the instruction is followed by

a CSK change of sequence cycle.

INSTRUCTION INTERLOCKﬂ (PIh)' PIM simply remembers the hold value of
the last instruction executed. The logic that sets and clears PIh is
shown in Fig. 10-1k.

Since the decision to execute an instruction is indicated &t the earliest
by the decision for PK to advance to state PK?ua, this is also the earliest
time at which the PIh flip-flop can be changed. Whatever hold value is
then placed in PIM is held until the next time a decision is made to

execute an instruction.

The PIh interlock is used in the interlock level logic to decide whether

the SSCH REQ level can contribute to sequence change decisions.

INSTRUCTTION INTERLOCK5 (PIS)- PI5 is similar to PI2 in that it is set

during a PK instruction word cycle whenever deferred address cycles are

required. The logic for setting and clearing PI_ is shown in Fig. 10-1k.

5
However, there are two kinds of deferred address cycles: (1) the deferred
address cycles which require memory words, and (2) the ultimate deferred

address cycle which does not require a memory word.

PI2 and P15 serve to distinguish the three kinds of PK cycles, as shown
in Fig. 10-15.

Initially both PI2 and PIs are zero during the instruction word cycle.

If the instruction word requires a deferred address, i.e., Né 9’ then

PI2 is set at PK;ga and P15 at PK;ha. Both interlocks remain set during
subsequent deferred address memory cycles until finally a deferred address
word 1s obtained in which No At PK; during this cycle, PI5 is
cleared. The next PK cycle is then identified as the "ultimate" cycle,

2.9°

since the PI; and PI? interlock condition exists at the beginning of the
cycle. PKA (see Chapter 11) then remains cleared throughout this PX
cycle so that no memory is selected and no memory word is read out.

During the first part of the ultimate PK cycle the sum of the base address
and the selected index register in the last deferred address is placed in
N2,l' The index bits from the original instruction word are retrieved

from QKIRCF and placed in N3.6 - 3.1
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The logic performed in the ultimate cycle after PI2 is cleared at PK;3a
is, aside from memory logic, identical to the logic which would have been
performed after PKl3O£ in the initial instruction word memory cycle if no
deferred addresses were required. This can be seen by examining the logic
performed in PK;ha through PK?Ea; nearly all of the logic will be seen
to contain a factor of PIg-

After the ultimate cycle, PK continues on with the execution of the

instruction using the final effective base address.

ARTTHMETIC ELEMENT INTERLOCKS. Registers in the Arithmetic Element can be used
either as Memory Element flip-flop storage registers or as storage registers for

the intermediate and final results of arithmetic computations. The instructions
involved in this second case can be divided into two classes: (1) the simple load
and store type instructions, and (2) the more complex add and shift type instructions.
The more complex instructions generate either the PKIROPRAE or QKIRAK levels (see
Chapter 14), and make use of a variety of Arithmetic Element interlocks.

10-3.3.1 ARITHMETIC ELEMENT BUSY INTERLOCK LEVEL (AEB). This interlock level
simply indicates whether or not the Arithmetic Element control counter
AK is in its AKQO resting state. This is shown in Fig. 10-16. When the
AEB level exists, i.e., AK is in its AKQO resting state, then it is
permissible for immediate use to be made of the flip-flop registers in
the Arithmetic Element.

Note that AEB is an interlock control level and not an interlock flip-
flop. It is discussed here instead of Section 10-4 only for convenience

in grouping together the Arithmetic Element interlock conditions.

10-3.3.2 ARITHMETIC ELEMENT PREDICT INTERLOCK FLIP-FLOP (AEP). The AEP flip-flop
optimizes the speed of the Arithmetic Element instructions by predicting
when the current use of the Arithmetic Element will end. The logic
setting and clearing this flip-flop is shown in Fig. 10-17.

The interlock is set whenever an instruction which might use both the AK
and ASK counters starts to make use of the Arithmetic Element. This occurs
at PK?6a in all ACP instructions and at QK;ha in all other instructions
which use btoth AK and ASK.

The interlock is then cleared at some time during the AK cycle of these

instructions. This time is at most 2.8 microsecond before the end of the

AK cycle, i.e., at most 2.8 microseconds before the IEB level occurs.
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ARITHMETIC ELEMENT INTERLOCK LEVEL (AEI). This interlock level is
discussed here, rather than later to keep it in the context of the two
other Arithmetic Element interlocks. AEI is generated by the logic
shown on Fig. 10-16. During AOP instructions, AEI is simply egqual to

a
AEPl, but during QKIRAESK instructions it starts with QKpl , earlier then

QK

ARITHMETIC ELEMENT INTERLOCK DURATIONS. The duration of the Arithmetic
Element interlock levels during QKIRAE instructions is illustrated in
Fig. 10-18. Since AEP is needed only to help generate AEI, it will be

ignored in the following discussions.

AFT is used in the various PK decision states of a subsequent instruction
in order to help determine whether or not the PK cycle should continue.
The PK cycle of a subsequent instruction can begin as early as 0.4 micro-
seconds after the QK cycle of a QKIRAK instruction begins. The earliest
PK decision state occurs at PKQEa. Hence the AETI level must be generated
earlier then the QK;ha time at which AEP is set. For this reason, the

AFI level is started, as indicated by the logic, with QKpla. Also, the
logic of the PK decision states is designed with a bias towards continuing
the PK cycles, rather then towards causing a change of sequence. For this
reason the AEI level ends when AEP is cleared, before the AFB level occurs.
In all cases when the new instruction tries to make use of the Arithmetic
Element before the Arithmetic Element is actually free for a new use, the
AFB level is itself used in waiting state logic to hold up the new in-
struction. However, the AFEB level itself 1s never used by a new PK cycle
until late enough in a new instruction so that it doesn't need to be

generated before QKlma'when AX is started.

The duration of the Arithmetic Element interlock levels during an AOP
instruction is illustrated in Fig. 10-19. In this case AEI 1s simply
equal to AEPl. AFB and AEI are again used to influence the same PK
decisions just described. Here, though, the levels reflect a different
situation since AOP does not require a QK cycle and AK is started directly
by PK during the execution of the AOP instruction. Both the AEB and AEI
levels begin when AK is started. This is adequate for interlocking
purposes since no subsequent PK cycle can begin until after the current
PK cycle has ended, i.e., after the two levels have been generated. The
termination of the levels is the same as in the previous case, since the
levels end in a manner which is independent of whether the operation
being performed in the Arithmetic Element was originated by an AOP or an
ordinary OP code.
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Note, however, that an AOP can call for an operation which does not
use ASK, nor even AK. This can occur since the full six bits in
N2.6 _ 2.1;3? tﬁi_éoP_fEécify the operation. Some of these, ti;sx
11XXXX « ADD - SUB * DSA, are just like the corresponding QKIR
operations which use both AK and ASK. Others, ADD + SUB + DSA, use AK
but not ASK. In these, AEP is cleared as soon as AK starts, so that AET
ends before the PK cycle ends. Finally, the 11XXXX codes are not defined
and do not actually use AK. Hence, neither AK or ASK is used and both
the interlock levels end before the PK cycle ends. In this last case,

however, an OCSAL alarm is also generated at the present time.
10-3.4 MISCELLANEOUS INTERLOCKS

10-3.4.1 E REGISTER BUSY INTERLOCK (EB). The EB interlock indicates when the E
register is busy during an operand cycle and can not yet be used for a

new purpose. The logic for setting and clearing EB is shown in Fig. 10-20.

EB is set whenever a QK operand cycle starts, since the E register is

used by all instructions which require an operand.

The interlock is then cleared as soon as the register is no longer needed
during the operand cycle. This occurs at QK?la during all store type
instructions which are not placing the operand in the VFF Memory. All
other instructions, except SPG, use the E register until QK?3O; at which
time EB is cleared. SPG alone clears EB during a non-QK state. This

situation will be understood after it is discussed in Chapter 16.

EB need be set only during operand cycles, and not during other uses of
the E register, since conflicting demands for the use of the E register
can arise only when one of these demands already is an operand cycle use

of the E register.

10-3.4.2 Q REGISTER BUSY INTERLOCK (QB). The QB interlock indicates when the Q
register is busy during an operand cycle. The logic for setting and
clearing QB is shown in Fig. 10-21, and simply shows that QB is set when
a QB cycle begins, and is cleared when it ends. As in the case with EB,
if these are conflicting demands for Q, one of them always already

involves an operand cycle.

Note that QB also indicates whether the M register is busy, since nearly
all QK cycles require the use of M until QK3Lx.

The relative durations of EB and QB are graphically illustrated in
Fig. 10-22.
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10-3.4.3 F MEMORY INTERLOCK (FI). Before any SF (FLF or FLG) or JA (JPA, JNA and
JOV) instructions can be executed, the F Memory interlock FI must be in
a cleared state. Fig. 10-23 shows the logic for setting and clearing
the FI interlock.

FI is cleared when a JA or SF type instruction is executed. This occurs
at PKl?’a either during the instruction word memory cycle if no deferred

address cycles are required or during the ultimate deferred address cycle.

The FI flip-flop is set at FK-* during an FIF or a JA type instruction.
(04
During a FLG instruction, FI is set at FK7 .

The FI interlock permits the contents of the F Memory registers to be
obtained during the execution of these instructions earlier than they

would otherwise be.

Note that FI is set during FLF and FLG in such a manner that FI can

contribute to the Q,ISTART level.

10-3.4.4 X REGISTER BUSY INTERLOCK (XB). The XB interlock serves two functions.
The first is to indicate that the X Memory is busy with a READ-WRITE
cycle. This is done by setting it whenever an X Memory READ cycle is
initiated, and then clearing it when the WRITE cycle is performed. Thus
XB is set whenever XR is set, and it is cleared during the XWK cycle.
(See Fig. 10-24.)

The second function of the interlock is to predict, by 1.6 microsecond
when the X Memory WRITE cycle will end. This prediction ability enables
a PK cycle to start that much time before the WRITE cycle ends. Thus,
XB is cleared at X'WKoza, 1.6 microsecond before XW is cleared at XWKO6a

10-3.4%.5 X WRITE REGISTER INTERLOCK (XW). This flip-flop is described more
throughly in Chapter 12 in the section on the X Memory. XW is used as
an interlock to indicate when an X Memory WRITE cycle has ended. The
flip-flop is set at XWKoza to turn on the X Memory write current and is
cleared at XWKO6a (See Fig. 10-25.)

10-4 INTERLOCK CONTROL LEVELS
10-4.1 INTRODUCTION. The general function of the various interlock levels was described

in Chapter 6. This section will examine their function in greater detail by

examining the logic that generates these interlock control levels.
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10-k.2 PK, QK AND CSK INTERLOCK START LEVELS. The following interlock start levels
determine when instruction word, deferred address word, operand word and change of
sequence counter cycles can begin. These are the basic counter cycles in the
computer and are the only such start levels which are influenced by the console
stop-start controls. The logic that generates these interlock start levels is
shown on Fig. 10-26.

STARTl) .

10-4.2.1 INSTRUCTION MEMORY CYCLE INTERLOCK START LEVEL (PI The logic

governing the start of a PK instruction word memory cycle depends on the
PISTARTl level. The fact that such a PK cycle is required is indicated
by the fact that PIg.
The logic first of all requires that the stop-start system permit such

a cycle. This is indicated by STARI% . PKS?_ + AL. Also, there must be
neither a CSK nor a DSK cycle required, i.e., the Plg . CSIéi condition
must be satisfied. The QK operand cycle, if one is reguired by the
previous instruction, must have already started and progressed to the
point where PIZL is cleared. Also, any previous use of the X Memory (or

X Adder) must be almost over (}CBO) Finally, the memory overlap conditions
must be settled. The memory selected by P from which the instruction

will be obtained must not be the same memory used by the previous QK
operand cycle, i.e., the (PSE),S +eee + P Q") condition must be
satisfied and the No Overlap switch must be off (NOO). If these overlap

conditions are not satisfied the previous QK cycle must be over (Q,BO)

The PISTARTJ. level is used by PK when it attempts to start an instruction
word memory cycle, and also by the Memory Address Selector in order to

turn on the selected memory (see Chapter 11).

START,

10-4.2.2 DEFERRED ADDRESS MEMORY CYCIE INTERLOCK START LEVEL (PI 2). The
logic governing the start of a PK deferred address word memory cycle
depends on the PISTARTZ level. The fact that such a PK cycle is required

is indicated by the fact that PI;.

The stop-start control must permit such a cycle, i.e., the START; . PKS(Z)
condition must be satisfied. The XWK cycle initiated by the previous PK
cycle must be almost finished (}CBO), and the Q register must be available

().

The PISTARTE level is used both to start PK and to turn on the selected
memory in all the intermediate deferred address cycles. However, during
the "ultimate"” cycle it is used only to start PK. In this case only the
stop-start control conditions are really relevant as start conditions.
Note that PIl during all intermediate cycles and that PIO

5 5
ultimate cycle.

during the
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START)

OPERAND MEMORY CYCLE INTERLOCK START LEVEL (QI . The logic governing
START

the start of a QK operand word memory cycle depends on the QI level.

The stop-start control must permit such a cycle, i.e., the START; . QKSO
condition must be satisfied. A QK cycle must be required (PIi), and, in
the case of SPF and SPG, the FK counter cycle must be almost over (FIl).
The QISTART level is used both to start QK and to turn on the selected
memory .

START)

CHANGE OF SEQUENCE CYCLE INTERLOCK START ILEVEL (CSI . The logic

governing the start of a CSK change of sequence cycle depends on the

CSISTART level.

The stop-start control must permit such a cycle, i.e., the START; . CSKSO
condition must be satisfied. Any QK cycle required by a previous in-
struction must have already started (PIg), and PK must be in its PO
resting state. Also, since CSK makes immediate use of the X Memory and
the E register, these must both be available, i.e., the XWO . XBO and EBO

conditions must be satisfied, respectively.

ST
The CSI ART level is used only in the starting of CSK when a change of

sequence cycle is required.

10-4.3 SEQUENCE CHANGE INTERLOCK LEVELS. These interlock levels are used in the "decision"
states of PK (see Chapter 9), and also in the DSK cycles, to determine whether the

computer should continue executing instructions in the current sequence, or change

to a new sequence.

The logic generating these sequence change interlock levels is shown on Fig. 10-27.

10-4.3.1

CHANGE SEQUENCE INTERLOCK LEVEL (PI D S&%y,

cycle of each instruction executed the decision must be made whether to

Towards the end of the PK

execute the next instruction in the current sequence. A change of sequence
is made usually when either the current instruction does not hold (PKIR%)
and some other sequence of higher priority wants attention (SSCH SEQ),
or when the current instruction dismisses (PKIR% . PKIRDIS REQ) and any
other sequence wants attention (SSATT REQ). The Sequence Selector levels
can also indicate other reasons for changing sequences, as described

earlier and in Chapter 12.
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10-4.3.2 ARTTHMETIC ELEMENT CHANGE SEQUENCE INTERLOCK LEVEL (Pl CH SEQy

If
the computer attempts to obtain an instruction, deferred address or
operand word from an Arithmetic Element flip-flop register and the
Arithmetic Element is performing a QKIRAESK type instruction, indicated
by the AEI level, then the computer is forced to wait and perhaps to
make a change of sequence.

e PIAE CH SEQ

level reflects the conditions for changing sequence. If
the last instruction executed did not hold (PIE) and some higher priority
sequence wants attention (SSCH REQ) while the Arithmetic Element is busy
(AEI), then the level is generated.

AE CH SEQ

The PI

v SEQ). level alone

10-4.3.3 LEAVE SEQUENCE INTERLOCK LEVEL (PI
is used in the PK.O2 decision state. In the PKf22'/23 decision state a more
complex situation exists for determining whether to change sequences.

Here the change will occur if, when the PIAE CH SEQ

level exists, the
computer is attempting to execute an instruction which requires the
Arithmetic Element (PKIRAE) or obtains an operand from the Arithmetic
Element (PKIRQK . XAAE). The change will also occur if the computer is
attempting to execute a TSD and either the selected IO unit is not
available (IOCMBB) or the QK cycle of a previous TSD is not finished

(qrrtSD . ggly ATT REQ,

when some other sequence wants attention (SS

WAIT)

10-4.3.4 INTERLOCK WAIT LEVEL (PI The computer can arrive in the PK22/23

decision state and be unable to change sequence (PILV SEQ) and also be
unable to continue to execute the instruction. This latter condition is
indicated by the PIWAIT level. In fact, the instruction cannot be executed
unless the PIWAI‘II level exists.

WATT LV SEQ

It can be seen that PI is similar to PI except for the absence

of the Sequence Selector flag information (see Fig. 10-27). PIwAIT
simply indicates that the computer is attempting to perform an instruction
which can not be done at the moment and that no sequence change condition

exists either.

10-k.4 MISCELLANEOUS COUNTER START INTERLOCK LEVELS. The FK, XWK, AK, ASK and DSK counters
are slaved to the PK, QK and CSK counters in the sense that their start conditions
are usually generated at particular times during PX, QK and CSK cycles and last for
only 0.4 microseconds. Hence, these counters usually must be in their resting states
and must start immediately when the start conditions are generated. FK is the only
one of these counters that uses an interlock flip-flop in its start level and even

then only in a restricted class of start situations.
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None of the start conditions for these counters directly reflect the console stop-

start controls.

ADK was discussed earlier in the chapter in Sect. 10-2.5.8.

10-h.h.1

10-k. k.2

F MEMORY COUNTER START LEVEL ( START FK). The logic governing the

START FK level logic is shown on Fig. 10-28.

Normally FK is started when the QK cycle starts during the execution of
instructions which use the F Memory in order to obtain a configuration
word. The two instructions which specify configurations (SPF and SPG)

do not start FK until QK;3Q after the new configurations have been placed
in the E register. The Arithmetic Element jump instructions (PKIRJA)

and the instructions which file configurations (PKIRSF) start FK by
clearing the FI interlock in PK;Ba and waiting for EB to be cleared. In
these cases, FK then starts as soon as it returns to FKQO. Note that the
QK cycles of FLF and FLG wait in QK?O until FI is set. Similarly, the
PKEI cycles of JOV, JPA and JNA wait in PK?SG until FI is set.

X MEMORY WRITE COUNTER START LEVEL ( START XWK). The XWK counter is
started only when a word is to be written in the X Memory. The logic

for starting the counter is shown in Fig. 10-29.

The counter is always started at PK;ha in a deferred address cycle (PI;),
and in the same state during instructions which do not make special use
of the X Memory (PKIRXM) during a PKEI cycle. These PKEI instructions
all start XWK at PK;la, unless execution of the instruction is abandoned

at PK.22/23 because a PILV SEQ level occurs.

During the QX cycle of QK instructions which change the contents of an
X Memory register, XWK is started as soon as the new word is placed in
the X register. This occurs at QK?2a for RSX and EXX and at QKSla for
AUX. DNote that in all these instructions XWK goes through an earlier
cycle started at PK;ha. This extra earlier cycle is performed so that
the X Memory register read out during the PK cycle is not left in the
cleared state in case the stop-start or alarm controls inhibit the QK
cycle of the instruction. When the QX cycle does occur the X register

(07
is cleared out again at QK;3 in preparation for the QK XWK cycle.

XWK is also started in change of sequence cycles at CSKpha in order to

store the old program counter in the X Memory.
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10-4.%.3 ARITHMETIC ELFMENT COUNTER START LEVEL ( START AK). The logic for
this level is shown in Fig. 10-30. AK is started at PK;6Q during AOP
and at QK;ha for all QKIRAK instructions.

10-k.k.  ARITHMETIC ELEMENT STEP COUNTER START LEVEL (ASK| + 1—=ASK). The
logic for this level is shown in Fig. 10-30. This counter counts only
during QKIRAESK instructions. It does not count in the usual manner
(every 0.4 microseconds) since it counts once each time AK goes through

AT,
a subcycle during QXIR SK instructions. It starts from the state it
canl
was preset to by the FRESET ASK condition, and advances to state zero

by this ASK count level.

10-4.L.5 DELAY SYNCHRONIZATION COUNTER START LEVEL (t§9§§£-> DSK). The delay
synchronization counter is started only when the computer cannot continue
executing instructions in the current sequence and no change sequence
condition exists. In these situations the DSK counter is started in
order to synchronize signals arriving in the Sequence Selector from the
In-Out Element.

CSKL can be set in any of the "decision" states of PK, but PX must be in

one of the associated waiting states before DSK can start counting. These
(01 [0 [0

wailting states are PK,O2 ) PK23 and PKQO . XWK must also be in state

zero when DSK starts counting.

The logic generating the DSK start level is shown on Fig. 10-31.

10-5 COUNTERS

10-5.1 GENERAL DESCRIPTION. The general function of the various counters was discussed

10-5.2

March 1961

in Chapter 6. In this section, the function of each counter will be discussed in

greater detail. The actual count logic for each counter will also be discussed.
The dynamic interlocking of the counters is discussed in Chapter 9.

INSTRUCTION COUNTER (PK). The count logic for the PK counter is of two types.

One type is used during the memory cycle When an instruction or deferred address
word is obtained from memory. This is the part of the PK cycle which extends from
0 22 s 1 pr23/2k . ‘

P to P . The second type of count logic is used in P and in the addi-
tionel PK states (PKEI) used in the execution of special instructions. The memory
PK count logic is shown on Fig. 10-32 and the special instruction PX count logic

is shown on Fig. 10-33.
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10-5.3

Basically, one of three types of action can occur during the PK cycle:
1) PK can count into the next state.
2) PK can skip to some "preset” state.

3) PK can "wait" in a state until a decision to go on can be made.

The PK memory cycle carries the PK counter from PKQO, when the appropriate start
condition is satisfied, through to PK?2. Skips occur from states 01, 02 or 06 to
state 09, and from states 15 or 16 to 22, depending upon the memory selected.
During the "ultimate" deferred address cycle (PKAQ) a similar sort of cycle occurs
except that no memory is selected. The starting condition used when PK is in state
zero depends upon whether an instruction cycle (PIg) or a deferred address cycle

(PI;) is to occur.

20
Only one decision state occurs during a PK memory cycle. This is at PKQ during
a V?F cycle where the AEI level is examined if the selected register is in the

Arithmetic Element.

When PK finishes the instruction and all the deferred address cycles by arriving
at PK?za with PI0 another decision must be made about whether to execute the

2 LV SEQ

instruction. At this time, the PIWAIT and PI levels are examined. PK can-

not advance to PK?u and actually go on to execute the instruction until the PIwAI

exists.

Once PK reaches state PK.QL’L the computer is committed to executing the new instruction.

This usually does not involve further use of PK. All PKIRDIS instructions send PK

back to state zero from state 24, and start a QK cycle. The PKIRDIS instructions
send PK through a PKEI cycle from state 25 through to state 31, and start a QK
cycle only if they require an operand from memory.

Some of the PKIRDIS instructions can make PK wait in state 25 if certain interlock
conditions are not satisfied. The interlock involved is usually EB, but can also
be QK, AEB or FI.

OPERAND COUNTER (QK). The count logic for the QK counter, like that of the PK
counter, is of two types. One type is used during the memory cycle while an operand
word is obtained from memory. The second type of count logic reflects the special
timing required by the execution logic of certain instructions. Unlike the PK
count logic, the two QK types of count logic overlap, i.e., the type that reflects
the instruction requirements usually occurs in the middle of the memory cycle and,

in part, at the same time as some of the memory count logic.

The memory count logic is shown on Fig. 10-34 and the instruction count logic is

shown on Fig. 10-35.
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The QK counter can skip and jump states, and wait in states, as in the case of the
PK counter. However, there are no "decision"” states in QX, and waiting can occur

only in QKQ3.

The memory count logic is primarily a function of which memory is selected. QK
. . . START . 00 QK;3
waits in state zero until the QI level is generated. From QK to the
succession of states is determined entirely by the memory selected. The counter
then enters the instruction section. The memory section of the QK cycle does not
occur until QKZl. From QK?l to QK31 the count logic is again determined by the
T
memory selected, except that QKIR“OAD type instructions can cause QK to skip states

22 and 23.

The only waiting state in QX, other than QKQO, is QKQ3 when the operand is located
in the VFF Memory. QK will wait in QK93; if an Arithmetic Element register is
selected, until the AE3 level indicates that the Arithmetic Element is available
for use.

A Jump to QK;3a from QK%la takes place if the operand is in the V Memory, since no
parity check is required. (QK;3a is used primarily to allow time for the parity

check circuits to stabilize.)

The instruction section of the QX cycle does not depend on the memory selected but
rather on the particular instruction (or class of instructions) being executed.
(See Fig. 10-35.) The instructions involved are: TSD, INS, SKM, ST-, LD-, FIF,
FLG and COM. Each of these instructions requires QK to go through a different

sequence of states in the instruction section of the QK cycle.

CHANGE SEQUENCE COUNTZR (CSK). The change of sequence counter actually functions

as two counters, as described in Chapter 5. One of these is the change of sequence
counter which uses states zero through seven. This counter is usually referred to
as the C3K counter. The other counter is the delay synchronization counter which
uses states 8 through 11. This counter is referred to as the DSK counter even
though the states are labelled CSKQSa through CSK;la- This point of view can be
better understood, as illustrated in Fig. 10-36, by considering CSK as a three

stage counter and CSKﬁ as an interlock flip-flop. The logic controlling the counter
is shown in Fig. 10-37.

When CSKi, the counter can perform a change of sequence cycle when the CSISTART

o0 gy
level occurs and CSK is in state CSK.O3 . Since the CSIS ART level inhibits the

o4
counter only when CSK is in its CSKQO resting state, the counter, when started,

. 7o
will run through to state CSK.’O7 and then back to state CSKPOG without interruption.
START

Note that the essential interlock condition in CSI for a change of sequence
. 1
cycle is PI3-
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10-5.5

10-5.6

CSKﬁ ig never set unless DSK is to perform a delay synchronization cycle. In this

case the count logic does not permit DSK to count, once CSKﬂ is set, until XWK is

in state zero and PK is in state 02, 23 or 00. The count logic again inhibits the

o

count when CSKﬁ is cleared in CSK;l , since the CSK count circuit on CSK inhibits
00

the carry from CSK, o OSK, vhen OSK] so that the next state of CSK is s,

. . . ﬁK;la K}la “KQSQ .
Hence, if CSKﬁ remains set in C3 , DSK counts from CS to CS , and if

(03 104
0SK, is cleered in skt then DSK counts from CSKS to oSO,

CSKﬁ is set in any of the PK decision states when the computer is unable to decide

whether to continue executing the instruction or to make a change of sequence.

In PKQZQ this occurs when the computer is attempting to obtain an instruction from
an Arithmetic Element flip-flop register and the AEI level is present. At least

AE CH SEQ

one DSK cycle is performed before the PI level is examined.

(o
In PK.22 ) CSKﬁ is set when the PIWAIT level is present and the PILV SEQ

level is
QL
not. PK then enters PK23 where D3K cycles occur. CSKL can not be cleared until

WATT LV SEQ

either the PI or PI level occurs.

0 DIS REQ)

Instruction which dismiss (PKIRH * PKIR cause CSKﬂ to be set during the

31a

PKEI cycle if no other sequence wants attention. This occurs at PK for most

o
of these instructions. However, it occurs at PK.25 for JPX and JNX because the

DIS REQ

(o4
PKIR level does not exist after PK.25 during these instructions. D3K then

[0
begins to cycle when PK reaches PKQO and CSKﬂ is then cleared when some sequence

wants attention (SSATT REQ).

Note that CSKﬁ is cleared and the interlock condition examined only when DSK is in
o B
state CSK.ll . Note also that when another DSK cycle is to follow the level

0
L——‘CSKh is used to generate I0 clock pulses.

STAR
X MEMORY WRITE COUNTER (XWK). The L————E—.—XWK level causes the XWK counter to
start counting by setting XWKi, as shown in Fig. 10-38. The counter will then
continue to count through to XWKO7 and then back to XWKPO.

While XWK is counting the X Memory parity compute circuit first stablizes and then

the X Memory write current is turned on and off via XW.
F MEMORY COUNTER (FK). The FK counter logic is shown on Fig. 10-39. The FX

counter will start counting, when the START FK level occurs, if it is in its
FKQO resting state and the FXK8 flip-flop is cleared.
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If the counter is not executing a FF type instruction (SPG or FLG), the counter

will cause one complete F Memory read-write cycle while it is counting through to
04

state FKQEQ and then back to FKQO .

[0
Wnen either a SPG or FLG instruction is performed, FK counts from FKQO through to
L
FKQTG and through one extra state, in which FKBl . FKQO . In the process FK

executes four complete read-write cycles.

As shown in Fig. 10-40, FK is only a 9 state counter even though it has four stages.
The special FKB flip-flop of the counter is set when the computer reaches state
FKQYQ, and then is cleared on the next & pulse while the other stages remain

cleared.
ATARM DELAY COUNTER (ADK). See Sec. 10-2.5.8 for a discussion of this counter.

ARTTHM=ETIC ELEMENT COUNTER (AX). AK differs from all the other control counters
in that it is actually a shift register and the flip-flops of the counter are used
Kie

directly to generate the AK control time levels. Thus AK is in state AKQ when

AKé 3° The logic for the counter is shown in Fig. 10-41.

04
AK is placed in state AKPO , before it is started, whenever an operation code is
placed in AKIR. This also occurs whenever a preset level or a Synch System AE
Stop condition is generated, or whenever an undefined AKIR operation code occurs

(AIC[RAOP) .

The counter is alsoc cleared at the end of the various AK instruction cycles. For
ADD, SUB and MUL this occurs at AKpga, for DIV at AK;la, and for DSA at AKp3a.

For TLY it occurs in AKp2a when ASK has reached state zero (ASK$ . ASK%). For NOA,
NOB and NAB it occurs in AKpha when ASK reaches state zero in the case where the
number being normalized is zero. If the number being normalized is not zero or if
a SH type instruction (SCA, SCB, SAB, CYA, CYB or CAB) is being performed, a dif-
Terent clearing logic is used. In all these NOR and SH type instruction the clear
pulse occurs in AKpha, but in the case of the NCR type instruction only when all
the numbers being normalized are actually normalized and in the case of the SH type
only when all the counts in D are finished.

AK starts counting from AKQOG when the START AK level occurs. It then continues
to count until either a skip or waiting state is reached or the counter returns to
AKQOG and there is no Synch System AE Stop condition. During NOR and SH type in-
struction AK simply counts through to AKQha where it remains until AX is cleared

as described above. During DSA, AK counts through to AKQ3U (and then returns to
AKpoa). In the case of ADD, SUB or MUL, AK counts until it reaches either AKQSG
or AKP9a. These instructions return AK to AKQOQ from AKpga, but the AKp3a situation

varies and will be covered below.
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DIV and TLY are more complex. Both of them stop the AK count pulses when AK is in
states AKp2a, AKp3a, AKp9a or AKlla, or when ASK% . ASK%, or when AK is in state
08a and ASK?- Note that AK is not cleared until AK reaches AK;la during a DIV,
but that during a TLY AK is cleared at Asza. Hence in the latter case none of
the logic in AK states later than Asza apply.

As will be seen in Chapter 16, AK can jump forwards or backwards in ADD, SUB, MUL

and DIV. This state jumping is covered in the PRESEL AK logic. DNote that this
o

preset logic never places AK in state AKPO .

e 050 6
In the case of ADD and SUB, AK Jumps from AKp3 to either state AK 2 or AKQ
depending on the length of the subword in the Arithmetic Element. The amount of
time allowed for carries to propagate in the carry circuits is controlled in this

manner .

During a MUL, AK waits in AKp3a until ASK?, while the multiplication is performed,
' A0 o a0 ;
and then jumps to or to do the final carry.

During a DIV, AK jumps ahead to AKQ5a or AKp6a in order to enter the subcycle in
which the divide steps are performed. This subcycle extends from AKPEG or AKp6a
through to AKpga. After the subcycle is first entered, AK jumps back to AKpsa or
AKP6a from AKQ9G until AS + AS : ASK% in AKQBQ. AKX then jumps ahead out of
the subcycle to AK;oa from Aera (and continues on to AK;la before returning to
AKPOG).

10-5.9 ARITHMETIC ELEMENT STEP COUNTER (ASK). ASK is used to control the number of times
a subcycle in AK is repeated during most of the QKIRAESK and AOP instructions.
The ASK counter logic is shown in Fig. 10-L2.
ASK is cleared when the START AK level occurs. It is then preset to some
negative number at AKpla. This value is dependent on the length of the longest
active subword in the Arithmetic Element and on whether the instruction uses single

(AKIRN) or double (AKIREN) length subwords.

An ASK count pulse is generated whenever AK performs a subcycle. These subcycles
can be only one AX state long so that AK simply waits until the ASK count is
"complete". Usually this completion of the ASK count occurs when ASK goes positive,
i.e., when ASK% becomes a zero. During some instructions, however, ASK can end

with a positive number as large as two.
. . . . e vAKpha
During NOR and SH type instructions, ASK counts while AK waits in . Note

that the content of ASK does not influence the number of AK subcycle repetitions

during SH type instructions.
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During MUL, ASK counts once in AKO2O£, and then counts each time AK goes through
the subcycle in A_Ko?’a. Thus, the subcycle is repeated one less time than the
length of the subword.

During TLY, ASK counts each time AK goes through the subeycle in AKO2a.

During DIV, ASK counts each time AK goes through the subcycle which passes through
(07 o
AKO7 . Note that this subcycle actually begins in AKO3 or AKom and goes through

to AKOBa.
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CHAPTER 11
MEMORY ELEMENT

INTRODUCTION

The primary function of the Memory Element is to store programs and data while they are not

being used.

The Memory Element consists of four separate memories. Three of these are magnetic core
memories (S, T and U). The fourth, or V Memory, is divided into two groups: a static
memory called VFF (or V_) which can be altered manually only; and a flip-flop memory

called VFF which can beTaltered by the machine. The VFF-Memory consists of several

different devices: plugboards, toggle switch registers, a shaft encoder and a real time
clock. The VFF Memory consists of the A, B, C and D registers in the Arithmetic Element
and the E register in the Exchange Element. The general structure of these memories was

discussed in Chapter k.

There are several units in the Memory Element, each designed to control some aspect of the
over-all memory cycle. The more important of these units are shown in Fig. 11-1. Since
there is more than one memory in the Memory Element, it is necessary to have a unit that
determines which memory is selected and when. Both of these questions are answered by the
Memory Address Selector. There is also the problem of determining which register in the
selected memory is selected. This is determined by the address decoder associated with

each memory. The S, T and U memories each have read-write units that control the READ and
WRITE processes in these memories. A Memory Strobe Selector is used to read out the content
of the selected register and similarly a Memory Inhibit Selector is used to write information
into the selected register. Finally, there are two parity check circuits: one on the N

Memory buffer register and the other on the M Memory buffer register.

MEMORY ADDRESS SELECTOR

The function of the Memory Address Selector is to select the proper memory during an
instruction, deferred address, or operand memory cycle. The Memory Address Selector is
made up of the Memory Address Digit Selector and the Memory Address Control. The leftmost
bits in the P and Q registers are used by the Memory Address Control; while the remaining

bits in the P and Q registers are used by the Memory Address Digit Selector.

The Memory Address Digit Selector is made up of 16 similar stages. The i1.Jjth stage is
associated with the i.jth bits in the P and Q registers. A typical stage is shown in

Fig. 11-2. The output levels (MAS) of each stage of the selector are routed to the address
decoders of the memories. There are usually four outputs from each stage, one for each of
the four memories, S, T, U and V. The exception is that not all 16 bits in the P and Q
registers are used by each memory. The S Memory uses 16 bits; the T and U memories each

use 12 bits; and the V Memory uses only 7 bits.
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There are two situations which generate MAS levels. The first situation occurs during an

instruction memory address cycle, when the contents of the P register are combined in the

Memory Address Digit Selector with a PMS(T’ U or V)

The PMS(T, Uor V)

involves the state of the PKA and DFA interlocks and the state of the leftmost bits in the

level to generate a set of MAS levels.
levels are generated by the logic shown on Fig. 11-3. This logic

P register. PKA must be set to ONE. This occurs at the start of either an instruction

cycle or an intermediate deferred address cycle. (See Fig. 11-k.) DFA must be cleared to

7ZERO. This occurs at the start of an instruction cycle. (See Fig. 11-5.) PKAl and DFAQ

3(T, U or V)

then allow a PM level to be generated.

The second situation arises during an operand address cycle or during a deferred address

cycle. Either kind of cycle will generate QMS(T’ Uor V)

levels. These levels are then
combined in the Memory Address Digit Selector with the content of the Q register to generate
a set of MAS levels. The QMS(T’ Uor V)

Fig. 11-6. This logic involves the state of the QKA, PKA and DFA interlocks and the state

levels are generated by the logic shown on

of the leftmost bits in the Q register. If an operand cycle is executed, QKA is set to
ONE at the start of the operand cycle. (See Fig. 11-T.) QKA; is one of the interlock
conditions that allows a QMS(T’ U or V) level to be generated. Only the different states
of the QKA, PKA and DFA interlocks distinguish between an operand address and a deferred
address. In a deferred address, both the PKA and DFA interlocks are set to ONE. The PKA
interlock is set when either starting an instruction cycle or executing an intermediate
deferred address cycle (see Fig. 11-4). The DFA interlock is set to ONE when a deferred

address cycle is executed (see Fig. 11-5). PKAl and DFA; is another interlock condition

that allows a QMS(T’ U or V) level to be generated.

sS(T, U or V) s(T, U or V)

Another set of levels, PKM
to tne puS(Tr Uor V)

and QKM
and QKMS(T’ U or V) levels. The former levels control the function

are formed in a manner similar

of the read-write, strobe and inhibit selectors during the execution of an instruction,
operand or deferred address cycle. Generally speaking, these levels control the occurrence
of events during the operation of the specified memories by the indicated control counter.
E.g., PKMS is used to control events during an S Memory read-write cycle that uses the PK
counter (this would be either an instruction or deferred address cycle), and QKMs is used
to control events during an S Memory read-write cycle that uses the QK counter (this would
be an operand cycle).

The logic that generates the PKMS(T’ U or V)

levels is shown in Fig. 11-8. There are two
situations which generate these levels. The first situation occurs in an instruction cycle
and requires that PKA be set to ONE and DFA be cleared to ZERO. In this case, the content
of the P register is used to select the proper memory. The second situation occurs in a
deferred address cycle and requires that both PKA and DFA be set to ONE. In this case the
contents of the Q register are used to select the proper memory.

The logic that generates the QKMS(T’ Uor V)

levels is shown in Fig. 11-9. The logic
requires that QKA be set to ONE. The contents of the Q register are used to select the

proper register.
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The Q,KMV level (and similarly the PR level) used for the V Memory is further divided into
levels for the VFF and V;F-memories. The VFF Memory level QKMVFF is formed by ANDing the

VMDFF level and the QKM level. The fo-memory level QKMJFF is formed by ANDing the VMDFF

level and the QKMV level.
STROBE SELECTOR

The Memory Strobe Selector determines whether information coming out of the selected Memory
should be strobed inta the M or N registers. The selected register depends upon whether an
instruction, operand, or deferred address cycle is being executed. Fig. 11-1 shows the

information flow paths involving the computer and the Memory Strobe Selector.

The Memory Strobe Selector is basically a double gating circuit. A typical stage for one
memory is shown in Fig. 11-10. Four such gating circuits are used, one for each memory.

The first gate routes the information coming from the memory sense amplifiers to the M and
N pulse gate inputs. Which specific strobe pulse then occurs depends on the memory selected

and whether an instruction, deferred address, or operand cycle is being executed.

During instruction or deferred address cycles, a memory strobe pulse routes information
from the selected memory into the N register. The logic governing the memory strobe pulses
is shown in Fig. 11-11. The pulse which transfers ONES usually consists of two pulses, one
for each pair of quarters. The pulse which transfers ZEROES occurs in the third quarter
only. The first, second and fourth guarters of the N register are usually cleared at PK;Oa.
For the S Memory, the strobe pulses occur at PK.lOB during the READ cycle of the instruction
or deferred address cycle (i.e., when the PR level exists). They occur at P for the

T, U and V memories.

During an operand cycle, the operand strobe pulse routes information from the selected
memory into the M register. The logic governing the memory strobe pulse is shown in
Fig. 11-12. The pulse which transfers ONES usually consists of two pulses, one for each
pair of quarters. The whole M register is usually cleared at QKp9a. For the S Memory,
the strobe pulses occur at QKJ'O{3 during the READ cycle of the operand cycle. For the T,
U and V memories, these pulses occur at PK_llB during the READ cycle.

The timing of other pulses during both PK and QK cycles assumes, if there is any question,

that the last memory strobe pulse will occur in the 11PB state of both counters.

Note that the Strobe Selector does not influence memory read-outs from the VfF Memory since

there are no strobe pulses per se when this memory is selected.
INHIBIT SELECTOR

The Inhibit Selector is used to route inhibit currents to the memory cores in the selected

memory. A read-out from core memories is destructive, i.e., all the bits in the selected
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memory register are left cleared by the reading process. During the WRITE part of a read-
write cycle, inhibit currents are generated in the cores in which ZEROES are to be written.
The inhibit currents prevent the core from changing state during the writing process. As
we shall see, the Inhibit Selector effectively routes information from the buffer register
to the selected memory register in order that these inhibit currents can be generated in

the selected cores.

The Inhibit Selector consists of 38 similar stages (one for each bit). A typical stage is
shown in Fig. 11-13. There are three possible output levels in each stage, one for each of
the three memories, S, T and U. The V?F-Memory does not require a WRITE cycle, thus no
inhibit logic is necessary. The corresponding fourth position in the Inhibit Selector is

used for non-memory purposes.

There are two situations in which the Inhibit Selector generates S(T or U)i-j INH levels.
The first situation occurs during the execution of an instruction or deferred address cycle,
when the contents of the N register are written back into the selected memory register.

The inputs to the Inhibit Selector in this case are the Ni.j levels, representing the

memofmengmw,mdme%j——qémijhwh.

The Ni'j~———<>SMi'j legels are generated by the logic shown on Fig. 11-1k. The inputs in
this logic are the PKM~ levels (see Fig. 11-8) and levels from the SINH flip-flops. Note
that the SINHi.j levels shown on Fig. 11-13 are completely different from the SINHl levels
shown on Fig. 11-1k. As we have seen, the latter are used in generating the former.
Similar logic generates the TINHi.j and UINHi_j levels, using the Ni‘j———«C>TMi.. and

. J
———-<>UMi 3 level, respectively. Delay lines are used in generating the N ——SM

i.j
levels only, since the S Memory requires that the N —<>SM levels vary sequentially
(i.e., "ripple"). The delay line is designed so that the level for each successive bit is

turned on after a delay step of 0.015 microsecond.

The second situation occurs during the execution of an operand cycle when the contents of
the M register are written back into the selected memory register. In this case, the
inputs to the memory digit inhibit selector (Fig. 11-13) are the Mi 3 levels representing

the contents of the M register and the Mi j————c>SMi 3 levels.

The Mi J.————<>SMi 3 levels are generated by the logic shown on Fig. 11-15. The inputs in

this logic are QKMS levels (see Fig. 11-9) and levels from the STNHE® flip-flops. The logic
generating the Mi J.————(}SMi 3 levels is very similar to that generating the Ni j———<C>SMi 3
levels.

11-5 S MEMORY

11-5.1 ADDRESS DECODING. The MASS lines from the memory address decoder are channelled
into four decoders and associated read-write units where they produce four sets of

10 decoder lines (YU, YV, XU and XV). Each set of decoder lines contains eight
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lines decoded from three MAS lines. Every fourth MAS line is associated with
either an SR% or SR% level. These levels are the inputs to the read-write unit.
This unit generates the remaining two lines in each set of 10.

Bits MASl.8 and MAS:L.7 are also decoded'in the memory stack inhibit selector into
four selection lines. These four selection lines are amplified and split into
four outputs per selection line. This gives a total of sixteen inhibit selection

lines.

11-5.2 READ-WRITE OPERATION. The read-write units produce levels used by the current
regulators in the XU, XV, YU and YV switch core drivers. (See Fig. L4-10, Chapter L.)

These levels are generated by combining MASS levels and the SRU and SR, flip-flop

v
levels as shown in Fig. 11-17.

The S Memory read and write flip-flops, SRU and SRV, determine when the READ or
WRITE operation should take place. The READ operation takes place when both flip-
flops are set to ONES. The WRITE operation takes place when both flip-flops are
cleared to ZEROCES.

The logic for setting and clearing SRU and SR_. is shown in Figs. 11-18 and 11-19

v 38 38
respectively. Although the pulse setting SRU is generated at PKp or QKp , the
pulse doesn't actually get to the flip-flop until after the delays shown in Figs.
11-18 and 11-19.

The logic for setting and clearing the SINH flip-flop is shown in Fig. 11-20.
11-6 T MEMORY

11-6.1 ADDRESS DECODING. The MAST lines from the memory address selector are channelled
into four first level decoders as shown in Fig. 11-21. ZEach set of three MAST lines
is decoded into eight lines. The pair of eight decoder lines generated from the
MAST lines from 1.1 to 1.6 become the inputs to a second level decoder that in turn
generates 64 X selection levels. 64 Y selection levels are generated in a similar
manner from the MAST lines from 1.7 to 2.3. The X and Y levels select the core in
the T Memory itself.

11-6.2 READ-WRITE OPERATION. Actually each second level decoder has three inputs: two
coordinate selection levels and a read-write level. (See Fig. 11-21.) All three

levels must be present before an output level is generated.

Fig. 11-22 shows the read-write unit which generates the read-write level. Note
that this unit contains two read-write generators for each of the X and Y coordinates.
The inputs to this unit are the TRl and Twl levels and the 1.2 and 1.8 bits of the

T Memory address selector. If a READ operation is occurring, TR is set to ONE and
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if a WRITE operation is occurring, TW is set to ONE. Note that the MASTl o and

MASTl 8 lines are used redundantly, i.e., they are inputs to both the first level
decoders and the read-write unit. This is done so that the second level decoder
can be split in half and each half driven by one read-write generator. This scheme

uses the selection logic to reduce the load on each read-write generator.

The logic that sets and clears TR is shown in Fig. 11-23. A T Memory read pulse is
generated at PKpla and QKpla. After a time delay of 0.4 microsecond, the T Memory
read flip-flop is set by this pulse. The same pulse clears the flip-flop after a

delay of 1.6 microseconds.

The logic that sets and clears TW is shown in Fig. 11-24. The delay logic is
similar to that for TR.

The logic that sets and clears TINH is shown in Fig. 11-25. It is identical to
that for TW except for the different time delays used.

11-7 V MEMORY ADDRESS DECODING
The V Memory decoder requires two levels of decoding to select the proper V Memory.

The first level decoder is shown in Fig. 11-25. It consists of two decoders. The first
1 0

decoder decodes bits MASVl.l to MASV1.3 into eight lines plus MASV1-3 and MASVl.B' The
second decoder decodes bits MASVl.h to MASVI-? into sixteen lines plus VMDFF' VMDFF is a
decoding of bits MASVI.S to MASVl.T only.

The second level decoder is actually an "AND" circuit which combines the outputs of each
of the two first level decoders in order to produce levels which will select the proper
memory or the proper register in the proper memory. The second level decoders for the
Real Time Clock and the Shaft Encoder are shown in Fig. 11-26. The second level decoders

for the other V memories are shown in the figures illustrating those memories.

11-7.1 PLUGBOARD STORAGES A AND B. Each plugboard contains 16 registers of 37 bits each.
The Plugboard Storage A register-selection is shown in Fig. 11-27. The registers
are divided into two groups of eight registers. VMD16X selects registers 0 through

PBA

T, while VMD;Ei selects register 10 through 17. The specific register within the

group is selected by VMDXXO through VMDXX7.

Plugboard Storage B register-selection is shown in Fig. 11-28. It is similar to
that described above except that VMD%;% and VMD%%% levels are used to select the

two groups of eight registers.
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11-7.2

11-7-3

11-7.%

11-7.5

11-7.6
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TOGGLE SWITCH STORAGE. The toggle switch storage contains 24 registers of 37 bits

each. The register selection logic is shown on Fig. 11-29. The registers are

divided into three groups of eight registers. VMDégé selects registers O through
T; VMD%gg selects registers 10 through 17; and VMD%@E selects registers 20 through

27. The specific register within the group is selected by VMDXXO through VMDXXT.

Note that only registers 0-17 currently exist.

SHAFT ENCODER. The Shaft Encoder is a device which converts an analog input into
a digital electrical representation by means of a dual brush-disc device. The
output of each Ehaft Encoder represents a 9 bit binary number. Four Shaft Encoders
generate a 36 bit number. A toggle switch is used for the meta-bit.

The output of the Shaft Encoder is selected by the VMDOBO level as shown on Fig.
11-30.

REAL, TIME CLOCK. The Real Time Clock is a 36 bit counter plus a meta-bit. The
output of the Real Time Clock is selected by the VNE%%? level as shown on Fig. 11-31.

The counter is divided into four quarters. A carry occurs from one guarter to the

next with an end-around carry from the fourth quarter into the first quarter.

The inputs to the counter are a clear pulse, beta clock pulse, and 100 kilocycle
pulse.
The outputs of the counter are combined in an output mixer with the VMDgi?

from the V Memory decoder to form 36 VMDCK levels. The VMDCK 4.10 level is set by

level
a toggle switch.

INPUT MIXER. The output levels of the various VfF-memories are routed through a
central input mixer. The output of the mixer then communicates with the M and N
registers in the central computer in the same manner the Memory Element sense

amplifiers do. There is one input mixer stage for each bit, making a total of 38

such stages. A typical stage and its inputs are shown on Fig. 11-32.

VFF MEMORY. The VFF Memory consists of the A, B, C and D registers in the Arithmetic
Element and the E register in the Exchange Element. Read-out from these memory

registers is non-destructive.

When an instruction or a deferred address word is read-out, the contents of the
selected register are transferred into the N register via the E register as shown
in Fig. 11-33. Similarly, when an operand word is read-out, the contents of the
selected register are transferred into the M register via the E register as shown
in Fig. 11-3k.
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During these transfers through the E register, the original contents of the E
register are temporarily saved in the M register until they can be returned to the

E register.

The logic governing these transfers is found in the chapters on the elements in

which the transfers occur.
11-8 PARITY

The function of the Parity Count circuits is to check the validity of the read-outs from
the S, T and U memories. All the bits of the full memory word are checked by a parity
count circuit in the M or N register. This circuit is made by pyramiding stages of
individual parity circuits. A typical stage in this pyramid is shown in Fig. 11-35. 1In

a typical pyramid there are 16 such circuits.

The six bits 4.6 to 4.10, and 2.10 are not in the pyramid. Instead they are tied in as
shown in Fig. 11-36 (for the M Parity Count).

Two outpubs are generated by each parity check circuit. One is a "check parity level”
which determines the correctness of the parity of the entire word. This level is used to
generate an alarm when the parity is incorrect. The other level is a "compute parity
level™. This level determines the parity bit inhibit current when the word in the buffer
register is written back in memory. This level forces the parity of the word written in

memory to always be a correct parity.

The M and N parity circuits also contain elements which control the value of the bit
written in the 4.10 position, as specified by the Trapping Sequence. This bit is written
either as a ONE, or according to the contents of the 4.10 bit in the buffer register itself.
The logic is described in Chapter 15. The logic for INHMh.lO and INHNh.lO is given below.

The output of the larger pyramid, along with the output of another pyramid covering bits

4.6 to 4.10 and 2.10 provide the "check parity level" MngEN- The "compute parity level",

MP§¥EN, consists of the outputs of the larger pyramid and of another pyramid formed from

3 l . -
bits 4.6 to 4.9 and the INEM), 4 (or My o 0 SMB SMl) level.

The N Parity Count circuit, as shown in Fig. 11-37, is similar to the M Parity circuit
shown in Fig. 11-36 but with two incidental differences. The first difference is that the

bits of the N register are used instead of the M register. The second difference is in the

EVEN

37

and TNHN level, but here INHM is (W . ) + (el - 9B - swDt) + (DFAC - SMB - SNIV).
L.10 ’ k.10 k.10

"compute parity level", NP The secondary pyramid is also formed by bits 4.6 to 4.9
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The X Memory parity circuit shown in Fig. 11-38 uses a smaller pyramid with a base of 8
stages for the 16 bits of the X Memory word. The output of this pyramid is pyramided with
the output of the stage whose inputs are the 2.8 and 2.9 bits. The outputs of this final
pyramid are the "compute parity levels” ()CPJC.)ED and }CP;EL:g) These levels are then fed into
another parity stage with the outputs of the XP flip-flop to form the "check parity levels"

ODD EV.
(XPl9 and XP19).
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CHAPTER 12
PROGRAM ELEMENT

12-1 INTRODUCTION

Two basic operations are performed in the Program Element. One operation is the determination
of the addresses of instructions, deferred addresses and operands, and the subsequent inter-
pretation of the instruction and deferred address words after they appear in the N register.
The second operation is the change of sequence, i.e., the change of program counter in the

P register, when indicated by the Sequence Selector.

The results of interpreting an instruction are usually a set of static levels used by the
remainder of the computer. Since the Program Element can be interpreting as many as three
instructions at once, there can be that many sets of levels about instructions, as well as

another set generated about sequence selection.

This chapter begins by discussing the register pulse logic associated with each of the
registers in the Program Element. The X and F memory systems are then explained. DNext,
the decoding process, by means of which the data transferred into the Program Element is

interpreted, is discussed. Finally the sequence selection process is examined.

12-2 PROGRAM ELEMENT REGISTER DRIVER LOGIC

12-2.1 GENERAL DESCRIPTION. The following registers or flip-flops in the Program Element
are controlled by register drivers: X, P, Q, N, PKIR, QKIR, AKIR, X, X Adder carry
flip-flop (XAC), X Adder select flip-flop (XAS), and FLAG. The FLAG register is
discussed in Sect. 12-7.L. The X Adder (XA) is treated as a register even though
it does not contain any flip-flops and hence does not have any associated register
drivers. The functions of the Program Element registers and their paths of
comnunication with other registers in the computer were discussed in Chapter 2.

A block diagram of the Program Element was given in Fig. 2-4. This section will

discuss the register driver and pulse gate control of each of these registers.

12-2.2 N REGISTER REGISTER DRIVER LOGIC. This logic controls the transfer of information

from the main memory sense amplifiers and from the E register into the N register.

12-2.2.1 MEMORY TRANSFERS INTO THE N REGISTER. Fig. 12-1 illustrates how data is
transferred from the memory sense amplifiers into either the M or N
register. A word in memory may be an instruction, deferred address, or
an operand. If the word is an instruction or deferred address, it will
be transferred into the N register during a PK cycle by a memory strobe
pulse. This strobe pulse is formed from a PK time level and a memory
selection level. The memory strobe logic was discussed in Chapter 11,

but will be briefly reviewed.
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12-2.2.2

12-2.2.3

The logic for the N register strobe pulse is shown in Fig. 12-2. An
instruction or deferred address word is strobed out of the memory sense
amplifiers at PK;la. In the case of the S Memory, the strobe pulse is
routed through a delay line. Thus even though the pulse is initiated at
PK;OB, it is not finished until PK;IB.

CIEAR N REGISTER LOGIC. (See Fig. 12-3.) The N register (with the
exception of the third quarter) is cleared at PK;oa in preparation for
receiving a word from memory. The "clear" pulse is not fired unless the
selection address is legal (PKMLEGAL) or unless this cycle is the final
deferred address cycle. At other times, only quarters 2 and 1 of the N
register are cleared. For PKIRJX type instructions, the clear pulse is
fired at PK?Sa when PK need no longer wait in PK?5a. For QKIRlX type
instructions (AUX, RSX, SKX, EXX, ADX, DPX and SKM), the clear pulse is
fired at QKpla. The clear pulse is also fired at CSK.O:LCZ during a change

of sequence cycle.

The third quarter of the N register is never affected by the clear N
register pulses. All transfers into N3 are jammed. This is done in order

to reduce the amount of noise in the X Memory selection lines decoded

from the N3.6 - 3.1 bits.

E REGISTER TRANSFERS INTO THE N REGISTER. The register driver logic for
these transfers is shown in Fig. 12-4. During an instruction or deferred
address cycle using the VFF Memory, the contents of the E register are
transferred into the N register at PK;la. During the final deferred
address cycle, the final base address is copied from E into N. During
various instructions which make use of the X Memory as an operand memory,

the contents of E2 1 are transferred into N2 1° These transfers occur
2

2
at QK;BG or QK?Lu.

12-2.3 P REGISTER REGISTER DRIVER LOGIC. Information can be transferred into the P register
only from the X Adder. In addition to this single transfer path, the P register

March 1961

has a counter which can index the contents of the P register by one. Note that

count circuit does not alter the contents of P

The contents of both quarters of the X Adder (with the exception of

2.9°

XA2'9) are

Jemmed into the P register during jump type instructions or during a change of

sequence.

The logic is shown in Fig. 12-5. For these transfers to occur, the

computer must be in either an AUTO START or AL (no alarm) condition.
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The XA —3—» P pulse occurs in the following situations:
1) When PK need no longer wait in PK?Sa for EBO and the index jump condition
is satisfied (XJ).
2) During a JMP instruction at P, (This logic has a redundant term due
to wiring considerations.)
3) Whenever the Arithmetic Element jump condition (AEJ) is satisfied at P,

L) At CSKQMG when a new program counter is placed in the P register.

is copied into P, only in case 4, i.e., during a change of sequence. This

Xho g 2.9

is the only situation in which the P bit is altered, since the seguence meta-

2.9

bit must be remembered, with the program counter, when the latter is placed in P.

The indexing circuit on the P register is used to add one to the contents of the
P register each time an instruction is read out of memory and executed. This

o
indexing pulse occurs at PK.ELL . During skip type instructions (SKX, SKM and SED),

the contents of P are indexed a second time if the skip condition is satisfied.

12-2.4 Q REGISTER REGISTER DRIVER LOGIC. This logic controls the transfer of information
from the X Adder into the Q register as shown in Fig. 12-6. Q can hold the address

of either a deferred address or an operand.

The content of the X Adder is jam transferred into the Q register at the beginning

of the QK operand cycle, i.e., when the QISTART interlock level is present and QK
o

is in QKQO - This jam transfer also takes place when a deferred address cycle

begins, i.e., when the PISTARTE and PIl interlock levels are present and PK is in

2
PO,

12-2.5 K REGISTER REGISTER DRIVER LOGIC. This logic controls the jam transfer of information

from N3.6 - 3.1 into Ké.6 - 3.1 The transfer occurs during a change of sequence

at CSKp3a as shown in Fig. 12-7.

12-2.6 X REGISTER REGISTER DRIVER LOGIC. The X register is the X Memory buffer register.
The register driver logic controls the transfer of information from the X Memory,
X Adder and P register into the X register. This logic also controls the set X
parity pulse, clear X pulse and complement X pulse.

12-2.6.1 X MEMORY TRANSFERS INTO THE X REGISTER. The content of an X Memory
register is jam-transferred into the X register during either of the two

situations shown on Fig. 12-8.

The first situation occurs at PK;3a during the read-out of the X Memory
register specified by the J bits of an instruction or deferred address
word. The second situation occurs during the read-out of a new program
counter in a change of sequence. In neither situation is the content of
the X Memory register actually placed in the X register if the 00 register

is specified.
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12-2.6.2

12-2.6.3

12-2.6.4

12-2.6.5

If the selected X Memory register has the same address as the current
program cownter (i.e., if the K- T level is present), then XPS' must

also be present if the memory read-out is to occur.

XPS FLIP-FLOP LOGIC. This flip-flop inhibits the X Memory strobe pulse
into X when the register selected has the same address or the current
program counter, is not register O, and this is the first reference to
this register since the last sequence change. In this case all the cores
of the register are cleared and only "junk" (with a 50-50 chance of a
bad parity) would be strobed into X. If XPSl, then a clear pulse is
substituted for the strobe pulse.

The flip-flop is set whenever a sequence change occurs, and is cleared
the first time thereafter that the program counter register is referenced

during a PK cycle (if ever). See Fig. 12-8.

P REGISTER TRANSFERS INTO THE X REGISTER. The content of the P register
is jam-transferred into the X register in the two situations shown in
Fig. 12-9.

The first situation occurs at PKsla during the execution of a PKIRJMP
instruction, when the content of the P register is placed in the X Memory.
However, the transfer will not take place unless either the toggle switch
producing the XPALSUP level is turned on or the XPAL flip-flop is cleared

(indicating that no X parity alarm condition exists)-.

The second situation occurs during a change of sequence at CSKpAa. Again,

the transfer will not take place unless the XPAL condition is satisfied.

X ADDER TRANSFERS INTO THE X REGISTER. The content of the X Adder is
Jam-transferred into the X register by the logic shown on Fig. 12-10.

The path through the X Adder is the only one by which data can be trans-
Terred to the X Memory from the Memory Element. The XPAL condition must
be satisfied before any of these transfers can take place. These transfers

occur only during SKX, JPX, JNX, RSX, EXX and AUX instructions.

CLEAR X REGISTER AND SET X PARITY FLIP-FLOP LOGIC. The clear X register
pulse serves as a substitute for the X Memory strobe pulse. For this
reason, the clear pulse also sets the X parity flip-flop to a ONE. This

guarantees that the X register contains a number with the correct parity.

Note that the register driver logic shown on Fig. 12-11 is, aside frem
the time level gating, the inverse of the strobe pulse logic shown on
Fig. 12-8. The clear pulse occurs if either X Memory register O is
selected or if the register has the same address as the current program
counter (K°¢ J) and xpst.
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12-2.7

12-2.8

0X

12-2.6.6 COMPLEMENT X REGISTER L.OGIC. During a JPX instruction (PKIROP . PKIR ),

(o4
the X register is complemented twice; once at PK.l5 , if PIg, and again
at PK?5a, if EBO. These complement pulses are the only features which
distinguish JPX from JNX.

-

(o4
During a SKX instruction, the X register is complemented at PK_:L5 , if

PIO and PXIR differs from PKIR . The X register is then recomplemented
2 CF3 CFl
(01 o
either at PK?7 if PKIRl , or at PKSl if PKIRl
CF3 CFl

In both of the above cases, a pair of complement pulses are generated
which contribute to the computation of the desired result in the X

register. The PIg
pulses to occur only in the PKM cycle just before the PKEI cycle of the

condition permits the first of the pair of complement
instructions.

X ADDER SELECT FLIP-FLOP (XAS) LOGIC. This logic is shown in Fig. 12-13. XAS

determines whether the output of the X Adder is the sum of N2 and X (when XASl),
I

or is simply the contents of N (when xas® ).

The register driver is controlled only by the PRESET level from the Control Element.

The remainder of the logic is pulse gate logic.

XAS is set to ONE at PK;ha during PK cycles which call for an indexed base address.
This occurs during instruction cycles (when no deferred address cycle is called

D ng), or

for), or when the final deferred address cycle is reached (PKIR
during all intermediate deferred cycles (PI ). Otherwise XAS is left cleared to
ZERO. XAS is always set during JX type 1nstruct10ns at PK? in order that the

increment can be added to the index register.

During AUX, ADX and all QKIR: type instructions, XAS is set at QK 0. This pulse
is not always necessary, but guarantees that the X Adder generates the desired

(07
output. XAS is cleared at QK?l for RSX and EXX, since in these cases the sum is

not desired.

(0]
During a change of sequence cycle, XAS is set at CSK.O2 so that the X Adder output
is the program counter coming from the X Memory when any index register other than
number 00 is selected; and i1s simply N, (whlch contains the value of TSP), if

register 00 is selected.

X ADDER CARRY FLIP-FLOP (XAC) LOGIC. The logic is shown in Fig. 12-1k. After the
terms to be summed in the X Adder have been placed in X and N2 17 setting XAC to

2
ONE will "clear" the carry circuit of the X Adder. The carry logic then insures

that the X Adder output will be the correct ONE's complement sum. The pulse gate
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logic covers the situation when this is desired. The set pulse occurs at PK;ha
(07
and PK?6a during a SKX; at PK?Sa during a JX type instruction; at QKpl for all
1X . . QKQIG ox
QKIR™ type instructions; and at and Tfor AUX and ADX. In the case of
lo
the last two instructions, the pulse initiated at QK;O is required since the
contents of N2 1 are not set up until after QKpla. XAC is also set at CSKpla.
2

XAC is automatically cleared 0.4t microsecond after it is set.

While the sum of a base address in N2 1 and an index register in X is being formed
between PK-S and PK?Q, the X Adder ca;ry circuit is forced into a "set" condition.
This causes the sum of an 18 bit number and its 18 bit ONE's complement to be all
ZEROS, rather than all ONES, if this sum should be formed. The computed address of
an operand, deferred address, or next instruction then becomes the first register
of the S Memory (address 0), rather than the last register of the V Memory

(address 377 777 (octal)), when, for example, the base address is 000 OOk and the
index is TT7 773. The logic for obtaining this result simply uses the PK.']‘36 0.4
microsecond time level to set the X Adder carry circuit at the time that XAC would

ordinarily have been used to clear it.

It should also be noted that the N2 9 bit is presented as an input to the X Adder
only when no deferred address cycles are called for. When PI%, the input to the
X Adder from the N2 9 position is forced to appear as a ZERO.

OP REGISTERS REGISTER DRIVER LOGIC. The operation registers are PKIROP, QKIROP
and AKIROP. These registers are used during the process of interpreting an

operation code.

12-2.9.1 PKIROP REGISTER DRIVER LOGIC. This logic is shown on Fig. 12-15. The
contents of NL 3 - 3.7 (op bits) are Jam-transferred into PKIROP at PK;Za.
Simultaneously the content of Nh 9 (hold bit) is transferred into PKIRH.

12-2.9.2 QKIROP REGISTER DRIVER LOGIC. This logic is shown on Fig. 12-16. The
content of PKIROP is Jam-transferred into QKIROP at QKQOG when the QISTART

interlock permits the QK counter to start.

12-2.9.3 AKIROP REGISIER DRIVER LOGIC. This logic is shown on Fig. 12-17. There

are two paths over which information can be jammed into the AKIROP
register. The first path is from the N register. During an AOP instruc-

tion, the six bits in N2 6 _ p,q are Jam-transferred into AKIROP at PK?BQ

[0
(providing that AK is in AKQO at this time). The second path is from
the QKIRO register. The content of QKIR. B is jam-transferred into AKIR
3 P AK Op oP
at QK; during QKIR — type instructions.



12-2.10 CF REGISTERS REGISTER DRIVER LOGIC. The configuration registers are PKIRCF, QKIRCF
and AKIRCF. These are registers used during the process of interpreting the CF
bits in an instruction and the configuration word selected.

12-2.10.1 PKIRCF REGISTER DRIVER LOGIC. This logic is shown on Fig. 12-18. The
contents of the five CF bits Nh.8 _ ), are Jem transferred into PKIRCF

at PK;3a of the instruction word cycle.

A counting circuit is incorporated in the PKIRCF register that allows
instructions which meke use of more than one F Memory register to address
four successive F Memory registers. These instructions are SPG and FLG,

as indicated by the PKIR® class level ("FF" denotes "Four conFigurations").

The F Memory "master" pulse is generated when FK is in its resting state

fo!
(FKQ . Fra° ) and the Lg&gﬂl—‘»FK level occurs. The master pulse occurs

o a 6ol
thereafter at 0.8 microsecond intervals at FK? 5 FKF and FK (i.e.,

Q
when FKQ : FKg ) if certain further conditions are satisfied. These

further conditions are that the instruection is a SPG or FLG (PKIR )

and that either the correct check parity condition exists (FPODD)

register 00 is used (PKIRgg

, or

), or that the F parity alarms are suppressed

SUP)' This pulse is delayed 0.1 microsecond, and, if FO” (i.e.,
hex

when K%, FK

(FPAL

or FKﬁa), is used to index PKIR The master pulse

CF’
is also used in other F Memory system logic (see below).

12-2.10.2 QKIRCF REGISTER DRIVER LOGIC. There are three paths over which infor-
mation can be transferred into the QKIRCF register. These paths are

from the F Memory, E register and N register.

The F Memory strobe pulse is generated (see Fig. 12-19) by delaying

the F Memory master pulse 0.38 microsecond and gating it with

(PKIRCF - PKIR), i.e., the strobe pulse is permitted only if register
00 is not used and the instruction is not a SPF or SPG. The pulse 1s
further gated by PKIRCF5’ so that account can be taken of the difference

in polarity of the memory sense amplifier signals from the two halves
of the F Memory (see 12-4.2). 1In every existing use, this strobe pulse
is really a ONE's transfer, even though it is written as a jam transfer.
This pulse becomes a jam transfer only when the (unused) Complement

1
Mode (FC~) of operation of the F Memory is used.

The path from the E register involves only El'
during SPF and SPG instructions (PKIRLF) as part of the route from the

This path is used

Memory Element to the F Memory. (See Fig. 12-20.) The logic is
identical to the memory strobe pulse logic except for the PKIRLF‘factor.
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Here, of course, the pulse gate logic involves E rather than the memory
sense amplifiers. Note that this pulse causes only a ONE's transfer.
Note also that the input to QKIRCF is from a compute parity circuit
based upon El'

The third path is actually a pair of paths leading from the N register
into the QKIRC register. (See Fig. 12-21.) At PKp9a of the first

i
deferred address cycle (PI; : XASO) the N3 6 - 3.1 bits are stored in
QKIRCF for use later in the final deferred address cycle. Also, the
9-k

(07
are transferred into QKIR at QKpl during
3.5 CF, 4

an SKM instruction. The pulse gate logic here subtracts one from the

contents of N3.6 _

value of the two CF bits. A permutation is then formed from the right

three bits of QKIR (the rest of QKIRCF is cleared) that allows SKM to

select the desired quarter of the operand word.

The clear pulse for QKIRCF is separated into two pulses. The first

pulse clears bits QKIRCF » whereas the second pulse clears
P, 9-3
G%IRCF . The logic for the two pulses is identical except for an
2,1

additional term in the QKIR logic. This term is shown separately

Fp, 9-3

in Fig. 12-22. The remaining logic is shown for both pulses together.

The extra term in the clear pulse for bits Q,KIRCF occurs when the

9-3
takes place during an SKM.

transfer of bits N 5
: 1
)

3 into QKIR

- 3.5 CF,

The first clear QKIRCF situvation occurs by delaging the F Memory master
pulse 0.1 microsecond and, in the case of PKIRIJ type instructions

(SPF, SPG), clearing the QKIRCF register in anticipation of- the El
ONE's transfer. An additional term involving FCO can be neglected since

the circuitry is wired as if the flip-flop FC does not exist.

The second clear QKIRCF situation occurs by delaying the F Memory master
pulse 0.5 microsecond so that when register 00 is being read out

(PKIR%%), a clear QKIRCF pulse can substitute for a memory strobe pulse.

The third situation arises when QKIRCF is cleared at PKpla of the first

deferred address cycle (PI; . XASO) in anticipation of the N3 6 - 3.1

bits being placed in QKIRCF.

12-2.10.3 AKIRCF REGISTER DRIVER LOGIC. Information is transferred into AKIR
from both:the N and QKIRCF registers.

CF
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%ewﬂwmof%g register

1.y are Jjam-transferred into the AKIR
at PK?Sa during an ACP instruction. The contents of QKIR

CF
- e
transferred into AKIRCF9_8 at QKl during QKIR type instructions.
Also, under these same conditions, the extended activity levels

QKIRu-l are Jjam-transferred into AKIRCF7_A.

12-3 X MEMORY SYSTEM

12-3.1  GENERAL DESCRIPTION. The X Memory system consists of the X Memory, X buffer
register, register selector, sense amplifiers, digit drivers, read-write drivers
and J Decoder (JD). The function and structure of the X Memory system was covered

in Chapters 2 and L.

The register selector, X Memory and read-write drivers are illustrated in Fig. 12-2L.
The register selector uses the N3 6 bit and the JD levels obtained by decoding

N3 5 3.1 to determine which register (XJ) is selected in the X Memory. The read-
write drivers use the outputs of the X Read (XR) and the X Write (XW) flip-flops,
in conjunction with the state of the N3 6 bit, to control when read or write

currents should occur.

12-3.2 X MEMORY. The X Memory is a 6k register, 19-bit word magnetic core memory with
two cores per bit. It is a one-dimensional selection memory with registers
selected by the outputs of a two-stage address decoder. Each register selector
wire (see Fig. 12-24) is comnected to both the read and write drivers. The
direction and magnitude of the current in this wire depends on whether a READ or

WRITE cycle is occurring.

In order to understand the WRITE cycle, it is essential to realize that only one

T the two cores per bit may be in the "set" state at any one time. However, both
cores may be in a "cleared" state. Before a WRITE cycle is executed, both cores
must be "cleared". Fig. 12-25 illustrates the current flow during the WRITE cycle.
In any given digit column, the X register flip-flop (or the XP18 level) feeds into
the digit drivers and determines the direction of the current flow in the digit
winding. When the write driver is turned on, the current in the register winding
induces a field in one of the two digit cores of the selected register in the same
direction as the flux induced by the current in the digit winding. The core which
then switches to the "set” state remembers whether a ONE or a ZERO is written.

The other core does not switch to the "set" state since the flux induced in the
core by the current in the register winding is in opposition to that of the digit
winding. The parity digit position uses the output of the parity compute circuit
to determine the direction of current flow in the digit winding so that a word is

always written with the correct parity.
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During the READ cycle (see Fig. 12-26), a large current flows in the register
winding in a direction opposite to that that occurred during the WRITE cycle.

This read current is large enough by itself to switch all the cores of the selected
register which are in the "set" state to the "cleared" state. In the given digit
column, the change in flux resulting from the switching of a "set" core induces

a current, or really a voltage pulse, in a direction opposite to the one which
existed in the digit winding during the WRITE cycle. Thus, if the ONE core was
switched during the write operation, then a positive pulse will appear in the
figure at the lower right end of the digit winding. This pulse is fed through

the differential amplifier and appears as a negative gate level on one of the two
transistors whose emitters are pulsed by the XM —j—» X strobe pulse. This strobe
pulse then can get through to hit the ONE side of the flip-flop. After the READ
cycle, all the cores in the selected register are left in the "cleared" state in

readiness for a new WRITE cycle.

Note that at gll times a current is flowing in the digit winding in one direction
or the other. This current does not influence the state of either core in any bit
position unless a read or write current alsc exists in the digit winding. During
a WRITE cycle, the write current is large enough so that one core will switch, but
not both cores. During a READ cycle the read current is large enough to switch
whichever core is "set" by swamping out the effect of the digit current. The read-

out signal itself is observed as a voltage pulse superimposed on the digit current.

Also, since the register selector is directly connected to the N3 6 - 3.1

some register winding is always selected. In order to reduce the amount of noise

bits,

on these windings caused by selection and deselection, the content of the third
quarter of N is altered only when a new X Memory register is to be selected. Thus,
the logic for the third quarter of N is quite different from that for the other
quarters of N.

12-3.2.1 X MEMORY READ LOGIC. The logic for the X Memory read flip-flop (XR) is
shown on Fig. 12-27. XR turns on the read current in the selected
register for 0.46 microsecond. It is set no sooner than 0.2 microsecond
after the N3.6 - 3.1 bits are changed. It is turned on at PK;Ba and
CSKpla in order to actually read out the contents of the selected index
register. Tt is turned on at CSKO'Y, and at qri3% during AUX, RSX and
EXX in order to clear the selected register before a word is written in

the register.
12-3.2.2 X MEMORY WRITE LOGIC. The logic for the X Memory write flip-flop (xw)

is shown in Fig. 12-28. The write current is turned on for 1.6 micro-

seconds during XWK cycles.
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12-3.3 X ADDER. The X Adder performs an 18 bit ONE's complement full sum addition. All

carrys and partial additions are internal and do not require separate pulses.

The X Adder consists of 18 bits or stages. Alternating stages of the X Adder are
identical in construction although all stages have the same function. The last

stage of the X Adder, stage 2.9, must take into account the special nature of the
defer bit whenever N, is interpreted as the defer bit. However, it assumes the

2.9

function of just another adder stage at all other times.

A typical pair of X Adder stages is shown in Fig. 12-29. Each stage contains:
1) One or two partial add circuits
2) A carry-out circuit
3) A carry-in circuit
L) Either a force-carry circuit or an enable (or kill-carry) circuit
5) A full sum circuit

6) A selector and driver circuit for the output

The stages which contain only one partial-add circuit also contain a force-carry

circuit.

The partial-add circuit forms the partial sum of the contents of N2 1 and the
2

contents of the X register. The partial sum logic is:

P, . = N X L +N K (= N X )

. S B T I i3 7 Mg
Each stage also generates a carry-out (CYO) which essentielly forms the carry
input (CYI) to the next stage to the left. The carry logic for even numbered

stages (X4 5 5.6, 2.4, 2.2, 1.9, 1.7, 1.5, 1.3, 1.1) 5

Yo, . = XT .- . o+ovI . - (X, . AN )
1.3 i i.g i.J i.J i.9

T logic for odd numbered st
The carry logic for odd numbered stages (XAz.g, 2.7, 2.5, 2.3, 2.1, 1.8, 1.6, 1.4, 1.2)

is:

1
cvo, . = (¢ .+ ) - [ovr, L+ x L AN )]
i.3 i.J i.g i.3 i3 i.g
The two forms for the CYO logic are necessary because each stage acts as an inverter,

and alternate stages must use dual forms of the logic.

The carry-in circuit (CYI) consists of an amplifier and an inverter to provide both
polarities of the carry level. Since inversion of a level takes a significant
amount of time, the inverted carry level is used only when the delay will not have

a cumulative effect on the over-all carry time.
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In the odd-numbered stages, the carry-in circuit is tied to the enable,or kill-carry
circuit. The enable or kill-carry circuit turns off (kills) the carry circuit when
the XAC flip-flop is set. However, the XAC flip-flop clears itself 0.4 microsecond
after being set. (See Fig. 12-29.) TWhen the XAC flip-flop is cleared, the carry-

in circuit is enabled to transmit carry information.

The full sum circuit takes the outputs of the partial-add and carry-in circuits

and completes the addition process. The full sum logic for even numbered stages

The full sum logic for odd numbered stages is:

S 5T [CYIi.j - <Xi.j # Ni.j)] - L Gl gt (Xi.j = Ni.j)]

The duality of the circuits as described by these two equations is occasioned by

the inversion which takes place in each stage of the carry circuit.

The 2.9 stage of the X Adder must take into account the defer bit character of the

N, bit. (See Fig. 12-30.) The logic is identical to other similar stages in
2.9 0 1

the X Adder, except that the |————<>XA 9 and L———<>XA levels are substituted

2 2.9

for Ng 9 and Né 9’ respectively, in the adder inputs. If the N2 9 bit is a ONE

during PK cycles between PK.l3 and PK?E, this stage of the adder should receive a

ZERO in order for correct address modification to occur. At these times P12 is in
the ONE state and because of this the E—9——<>X113A.2 9 input occurs. At other times,

P12 is in the ZERO state, and because of this either the L9—~<>XA2 9 or the

|1 . . .
————<>XA2'9 input is generated, reflecting the value of N2'9-

12-4 F MEMORY SYSTEM

12-4.1

March 1961

GENERAL DESCRIPTION. The F Memory system consists of the F Memory, the QKIRCF
and PKIRCF registers, and the PKIRCW address decoder. The function and structure
of the F Memory system were covered in Chapters 2 and k.

As shown in Fig. 12-31, the value of the five CF bits in the N register is trans-
ferred into the PKIRCF register. The content of the PKIRCF register is used for
two purposes. Normally it is interpreted as an address in the F Memory. However
in certain instructions it has a special purpose, e g., it is used to increment

index (X Memory) registers during JX type instructions.
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12-4.2

The PKIRCF register has an indexing circuit which indexes the register during

execution of SPG and FLG instructions.

The information read out of the F Memory is transferred into the QKIRCF register.
The content of this register is decoded into activity, coupling and permutation

information. (See Sect. 12-6.)

F MEMORY. The P Memory is a 32 register, 10 bit word magnetic film memory. It is
a one-dimensional memory array. Register selection is by a two stage selector whose
inputs are the PKIRCF bits.

Each word selection line is connected to a switch core selected by the decoder.

{See Fig. 12-32.) A switch core is turned "ON" when the FR flip-flop is set. The
five PKIR., bits then select the decoded register. When the core is switched "ON"

a current is induced in the word selection line. When the core is turned off a

diode in the word selection line prevents an opposite current from flowing.

During a WRITE cycle, the content of the entire buffer including the parity bit is
written back into the F Memory. The direction of the current in the digit winding
determines whether a ONE or ZERO is written (see Fig. 12-33). A ZERO is written
if the QKIRCF bit is ZERO. The TW flip-flop controls the current in the digit
windings and permits a ONE to be written during the WRITE cycle when the QKIRCF
bit is a ONE.

While the digit current is flowing, a ONE or ZERO is written only if the magnetic
film spot is pulsed by the flux from the word selection line. If the spot contains
a ZFRO and a ONE is to be written, the digit winding produces a flux in the opposite
direction to that existing in the magnetic film spot. However, the film will not
switch unless the external field exceeds a certain threshold. This threshold is
attained when the field from the pulsed word line is added to the field induced

by the digit line. If the spot contains a ZERO and a ZERO is to be written, the
external field induced by the digit winding is in the same direction as that of the

magnetic film spot and the ZERO remains.

During a READ cycle as shown in Fig. 12-34, the digit current flows in the same
direction as in the writing of a ZERO. This occurs since the TW flip-flop is
turned off. The read is effected when the word current is turned on to aid the
digit current. This switches the ONES to ZEROS. The ZEROS remain as ZEROS and are
not read out. To minimize noise in the sense lines, the sense lines are crossed
between the two arrays. This occasions a bi-polar output. The output of either of
the two arrays must be properly interpreted. This is effected by the strobe unit
which contains a dual transistor strobe circuit. Two gate pulse amplifiers divide

the strobe pulse according to whether the first or second array is used. The PKIRCF
5

bit is used to select the proper gate pulse amplifier. Array No. 1 is selected when
this flip-flop is a ZERO, and Array No. 2 when this flip-flop is a ONE.
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Originally, a "complement" mode of operation was considered which required an extra
transistor circuit in the strobe unit on the ZERO output side. Since this feature
has been abandoned, the complement flip-flop (COMP) output is now tied to the zero
state at all times. Much of the physical circuitry for this mode is still intact

but is not used.

12-5 OPERATICN DECODING PROCESS

12-5.1

12.5.2

12-5.3

March 1961

GENERATL, DESCRIPTION. The paths along which the operation code information flows
are shown on Fig. 12-35. The general interpretation of the six OP code bits in

the instruction word was discussed in Chapters 2 and 7.

The op code bits are transferred sequentially during the instruction execution

from the N register into the PKIROP register; from the PKIROP register into the

QKIROP register; and from the QKIROP register into the AKIROP register. However,
the picture is quite different for ACOP instructions. In these instructions, the

contents of N2 are transferred directly into the AKIROP register.

6 - 2.1

The information in each of these registers is decoded through several levels.

PKIROP and its associated decoder are used principally during PK cycle operations.

However, they can also be used during QK and AK cycles. The QKIROP system is used

principally during QK and AK cycles. The AKIR system is used only during AK

02
cycles.

The fact that there are three OP registers permits three different instructions
to be executed simultaneously. An illustration of this situation is shown on
Fig. 12-36. The bar graph in the figure shows the overlapping of several counter
cycles.

OP REGISTER AVAILABILITY FOR DECODING. PKIR QKIROP and AKIROP receive their

op’
information, and hence are available for decoding at the following times. The six

(6
OP bits in the N register are transferred into PKIROP at PKl2 and are available
for decoding in the PK cycle after that time. When the QK cycle starts, the

content of PKIROP is transferred into QKIROP. During QKIRAK instructions, the

content of QKIROP is transferred into AKIROP at QK;3a. During AOP instructions,

the contents of N2 are transferred into AKIROP at PK?5Q. Thus when AKIR

6 -2.1 oP

is decoded depends on the instruction.

OP REGISTER 15T AND 2ND LEVEL DECODING. The first level decoding of each of the
three OP registers consists of a complete decoding of each pair of three bits.

This results in two sets of eight lines. E.g., the PKIR P 1st level decoder lines

@)
are:
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12-5.4

DECODED FROM DECODED FROM

PKIR 6-4 PKIR, 3-1
0X X0
PKIR PKIR
7X X7
PKIR PKIR

The second level OP decoder combines pairs of outputs from the first level decoder
to generate an OP line. E.g.,
TSD 0X

- X7
PKIR = PKIRy, -+ PKIR

Such OP lines are generated for each OP register, but only as many lines are decoded

as are actually needed.

CLASS DECODERS. The PKIROP class decoder combines the outputs of the PKIROP
register and the first and second level PKIROP decoders into levels which represent
specific classes of OP codes. These OP class lines are used in level logic, when
it is convenient to represent a class of OP codes exhibiting common properties by
a single level. QKIROP and AKIR

manner.

op class decoder levels are generated in a similar

12-5.4.1 PKIROP CLASS LEVELS. A brief description of each of these levels is

given below.

PKIRF (FLF, FLG, SPF, SPG). These OP codes require the use of the

content of a register in the F Memory as an operand.

PKIR' (SPG, FLG). These OP codes require the use of the contents

of four successive registers in the F Memory as operands.

PKIR™ (SPF, SPG). These OP codes load the F Memory with Memory

Element information.

SF
PKIR™ (FLF, FILG). These OP codes store F Memory information in

the Memory Element.

XX1X

X
PKIR M (JPX, JNX, JMP, SKX). These OP codes postpone starting

o
XWK until after PKl1+ . These are PKIRQK instructions which use an

X Memory operand cycle, i.e., the XWK operand cycle replaces the
QK operand cycle. Other instructions, such as AUX, require a QK

operand cycle.
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PKIR'C (CYA, CYB, CAB, SCA, SCB, SAB, NOA, NAB, TLY, ITA, UNA, EXA,
DSA, INS, ADD, SUB, MUL, DIV, LDA (-B, -C, -D), STA (-B, -C, -D),
JPA, JNA, JOV and AOP). These OP codes use the Arithmetic Element.

PKIRQK (OPR, JMP, JPX, JNX, JPA, JNA, JOV, SKX and the undefined OP
codes whose octal numbers are: 00, 01, 02, 03, 13, 23, 33, 45, 50
51, 52, 53, 63 and 73. These OP require no QK operand cycle.

prrrOFR AR (AOP). This level is decoded during an OPR instruction

when no deferred address cycles are requested and Ng 8 * Né 7"

PKIRIND (LDA (-B; C, D, E); STA (_B) -C, -D, _E)) SPF, SPG, FLF,

F1e, ITE, ITA, UNA, EXA, DSA, INS, SED, JPA, JNA, JOV, PCM, TSD,
CYA, CYB, CAB, SCA, SCB, SAB, NOA, NAB, TLY, ADD, SUB, MUL,

I
lJMP, XX py ang XXlxxSKX). These are OP codes in which the

“V,

base address is indexed.

PKIRIOS (1I08). This level is decoded during an OPR instruction
0

o
when N2.8 N2'7.

PKIRJX (JPX, JNX). These OP codes specify Jjump instructions which

are conditional on the X Memory-.

PKIRJA (JPA, JNA, JOV). These OP codes specify jump instructions

which are conditional on the Arithmetic Element.

PKIR™> (OPR, TSD, JMP, JPA, JNA, JOV, JPX, JNX, SED, SKM and SKX).
o
These are OP codes in which PX runs through to PKgl 5, i.e., require

a PKEI cycle. (In PKIR + instructions, PK runs through to PKEMG.)

rPIS REQ (TsD,

PKI JPX, JNX, JMP, IOS and SKX). This class level is

decoded during instructions in which a "dismiss request" is generated.
(The hold bit is not included in the level.) A "dismiss request”
occurs:
1) In a TSD.
2) In an index jump, when the jump condition is satisfied.
3) In an I0S, which has its dismiss bit set (CF:;') and which
is not raising the flag of the current sequence (T0S 50000,
with K°¢ 7).
L) In a SKX, which has its dismiss bit set and which is not

raising the flag of the current sequence (XlXXXSKX, with
Kgq J)
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PKIR™ (00, 01, 02, 03, Ok, 13, 23, 33, b5, 50, 51, 52, 53, 63,

73). This OP code class level is decoded during instructions which

are not defined. This class includes the OPR code (O4) only when

Nl

2.8"

The logic generating the PKIR., class levels is shown on Fig. 12-37.

op

12-5.k4.2 QKIROP CLASS LEVELS. A brief description of each of these levels is
given below. Note that no undefined OP codes ever appear in the QKIROP

register.

QKIRFL (FLF, FLG). These OP codes store F Memory information in

the Memory Element.

QKIRST (stA (-B, -C, -D, -E), EXA, EXX and DPX). These OP codes

perform simple -storing operations in the Memory Element. FLF and

FLG are not included.

QKIRLD (upa (-B, -C, -D, -E), FXA, EXX, RSX, AUX, ITA, UNA and the

qxrr™E type OP codes (see below)). These OP codes perform simple

loading operations using operands from the Memory Element. Note
that SPF and SPG are not included.

o
QKIRSTORE (ADX, FLF, FLG, INS, PCM, SKM, TSD and QKIRS‘ type

Epstructions). These OP codes include all those which can change

a word in the Memory Element.

LO
QKIR AD (QKIRSTORE). The QKIRLOAD OP code class level reflects
all the OP codes which do not change a word in the Memory Element
(i.e., QKIRSTORE OP codes) .

QKIRX (DPX, EXX, RSX). These are OP codes which obtain an operand

from the X Memory, but which do not use the X Adder for summing in

this process.

A
QKIR X (SCA, SCB, SAB, CYA, CYB, CAB, NOA, NAB, ADD, SUB, DSA, MUL,
DIV and TLY). These are the OP codes which use the AK counter.
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akrR*PK (sca, SCB, SAB, CYA, CYB, CAB, NOA, NAB, MUL, DIV and TLY).

These are the OP codes which use the AE step counter. DNote that
these OP codes are a subclass of the Q_KIRAK class.

QKIRA (STA, EXA and TLY). These are the OP codes which use the A

register as an operand or data register.

QKIRB (LDB, STB, INS). See QKIRA above.

QKIRC (LDC and STC). See QKIRA above.

QKIRD (LDD, STD, ADD, SUB, MUL, DIV, NOA, NAB, SCA, SCB, SAB, CYA,
CYB and CAB). See QKIRA above.

QKIRE (ITE, LDE, STE and SED). See QKIRA above.

The logic generating the QKIRO class levels is shown on Fig. 12-38.

P

12-5.4.3 AKIROD CLASS LEVELS. These levels are discussed in detail in Chapter 1k.

12-6 CONFIGURATION DECODING PROCESS

12-6.1 GENERAL DESCRIPTION. The paths along which the configuration information flows
are shown on Fig. 12-39. The CF Dbits in the instruction word are transferred

from the N register into the PKIR ., register. The content of the PKIR ., register

i ¥

is then decoded and used to selecgra word in the F Memory. The selectgd word

is strobed into the QKIRCF buffer register. The content of the QKIRCF register

is then interpreted by various decoders which specify subword forms, activities

and permutations. The general interpretation of the five CF bits in the instruction

word in terms of subword form, activity and permutation was discussed in Chapter 2.

12-6.2 SUBWORD FORM. The subword forms in the A, B, C, D and E register during PK and

QK cycles are defined by the value of the bits in QXIR as shown in Table 12-1.

CF9,8

March 1961 12-21



SUBWORD INTERPRETATION OF QKIR

TABLE 12-1

CF9,8
£,
QKIRCF9’8 FRACTURE (QKIR 1) SUBWORD FORM
00 £, 36
o1 f2 18,18
10 f3 27,9
11 fh 9,9,9,9

A graphical representation of the subword forms is shown in Fig. 12-ko. Any

combination of subwords of a given form is allowed. E.g., in the (9,9,9,9) subword

form, quarters 3 and 1 can be used simultaneously.

During AK cycles, the subword forms of the data in the Arithmetic Element are

defined by AKIR

CF9,8
information in AKIRCF9 8 is a copy of the information in QKIR
2

as shown in Table 12-2. Note that in nearly all cases, the

CF9,8"

TABLE 12-2
SUBWORD INTERPRETATION OF AKIR
CF9,8
AKIRcmg 8 FRACTURE (AJZRfi) SUBWORD FORM
- 7
-
00 £, 36
01 £, 18,18
10 f3 27,9
11 fu 9,9,9,9

12-6.3 ACTIVITY. The "activity" of each quarter in the A, B, C, D and E registers during

PK and QK cycles is determined by the value of the bits in QKIRCF7—M as shown in

Table 12-3.

TABLE 12-3
IR AcTTvITY (kTR*CTS)
(CF7 CFg CF5 CFh)
X X x O ACTl
Xx x 0 x ACT2
x 0 x x ACT3
0 x x x ACTH
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Note that

the quarter is "active" when the controlling QKIR., flip-flop is a ZERO,

and "latent" (i.e., not active) when the flip-flop is a ONE.

During AK

AKIR ) -

information in QKIR

cycles, the quarter activity of the Arithmetic Element is defined by
Note that usually the information in AKIRCF?-L is a copy of the
CF7-4"
TABLE 12-4
al
AKIR ACTIVITY (AKIR™i)
F, CF_ CF
(CF7 CFg 5 4)
x x x O ai
1
x x 0 x a2
x 0 x x a%
1
0 x x x a),

12-6.3.1

EXTENDED ACTIVITY. Subwords can be defined in which not all the quarters
of the subword are active. These are referred to as partially active
subwords. An example of a partially active subword is given in Fig. 12-41.
In this example only one quarter of an 18 bit subword is active. Activity
extension is the process by which an entire subword is made active if the
subword is partially active, i.e., activity is extended into the inactive
(latent) quarters in the subword. When the subword form has an influence
upon the execution of an instruction, as in an ADD or MUL, the partially
active subwords are usually made fully active. This is done by nets

which extend the activity of quarters of a partially active subword to

all guarters of the subword. The result is that the subwords are either

wholly active or wholly inactive.

Activity is extended in preparation for sign extension operations in the
Exchange Element. Partially active subwords have inactive quarters filled

by the sign digits of active quarters.

Fig. 12-42 illustrates sign extension for all four subword forms. In

each case the second quarter is active. TFor an £, (36) subword form, the
activity is extended through the third and fourth quarters and then
around through the first quarter. For an £, (18,18) subword form, the
activity is extended around through the first quarter. The subword
containing the third and fourth quarters are not influenced. For an f3
(27,9) subword form, the activity is extended through the third and fourth
quarters. The subword containing the first quarter is not touched. For

an f), (9,9,9,9) subword form, the activity cannot be extended since each
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subword contains only one quarter each. Therefore the three subwords

containing the first, third and fourth gquarters are not influenced.

Fig. 12-43 shows the logic generating the extended activity levels.

EXT ACT. . .. . . .
Level QKIR 1 indicates how activity can be extended into the first
quarter for various combinations of quarter activities and subword forms.
As an example,

£

REXT ACTl - QKIRACTE R QKIRfl + 5

QKT

shows that activity is extended into the first quarter when the second
quarter is active, providing the subword form is f (36) or f, (18,18).
Both these subword forms contain the active second quarter and the
inactive first quarter through which the activity is to be extended.
Subword forms f3 (27,9) and fh (9,9,9,9) do not appear since the first
quarter is not in the subword which contains the active quarter.

Level QKIREXT ACT2,1 is a combination of levels QKIREXT ACT2 and

QKIREXT ACT

This insures that the first two quarters of the E register are active

1. It specifies activity in the first and second quarters.

during the execution of an exchange index instruction.
Level QKIRALL ACT is a combination of levels QKIRACTl, QKIRACTQ, QKIRACT3 and
QKIRACTM. This level is not actually used any more, but says that the

whole word is active.

Fig. 12-b4 shows the relationship between a subword form with a specific

activity and the QKIREXT ACTj levels which are generated.

12-6.4 PERMUTATION. The permutation of the operand word in the Exchange Element is
determined by QKIRCF3—1' These flip-flops are decoded to generate QKIRPRMi levels.
The eight possible permutations are shown in Fig. 12-45. This figure also illus-

trates the connection between activity in the central computer and in the Memory
Element.

The effective permutation paths between the M register and the E register are

graphically shown in Fig. 12-45. The actual mechanics of the permutation process

in the Exchange Element are discussed in Chapter 13.
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12-6.4.1 PERMUTED ACTIVITY. The permuted activity level QKIRPRM ACTi indicates

that the i-th quarter of memory is connected to an active gquarter of the

central machine via the specified permutation path.

Fig. 12-46 shows the logic generating the various permuted activity

levels.

For a specified permuted activity level there are various possible
combinations of permutations and active quarters in the central machine.
As an example,

QKIRPRM ACTl _ QKIRACT2 . QKIRPRM 344

shows that the first quarter in memory is active when the second quarter
of the central machine is active, providing that either the QKIRPRM3
or QKIRPRM4 permutation paths are specified. Fig. 12-45 shows that these

are the only two permutation paths possible for this situation.

12-6.5 SIGN EXTENSION. In sign extension, the inactive quarters of subwords are filled

March 1961

with the sign bit of active quarters of that subword. Inactive quarters to the
left of an active quarter in the subword are first cleared, and then complemented
if the sign bit of the active quarter is a ONE. (See Fig. 12-47.)

The logic governing the clearing of quarters of E under sign extension control is,

lo_o E - QIC[REXT ACT:L . Q,KIRACTiDlO—OEi; is= 1J2:3JL"
SE -

0
SE
in this level simply says that the given quarter is itself inactive, but that the

The

E level contains OP code and time level information. The remaining logic
quarter forms part of a partially active subword.

If the sign which is being extended is negative, i.e., a ONE, then a complement

pulse must be fired. The logic for these complement pulses is given by,

%oE - QrIRTXT ACT L g phCTy 5, 2 |C—<>Ei, i=1,2,3,k4

Here the logic for %——»E is identical to that for Lg—EbE except that it occurs
0.2 microsecond later. Si specifies that Quarter i is itself inactive, but lies

to the left of an active quarter whose leftmost bit is a ONE, where both quarters
are in the same subword and there are no intervening active quarters. The logic

for the Sgs includes the quantitites A, B, C and D. (See Fig. 12-47.) These

quantities are actually the output of a carry-like sign extension net.
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For example, suppose that the f, (36) subword form is specified with quarters 2
and 4 active and E%_9 and Ei.9' Then Quarters 3 and 1 will be cleared, since they
have extended activities (see Fig. 12-43). Since Quarter 2 is active and E;'9,
quantity C is generated. This indicates that there is a negative sign to be
extended to the left out of Quarter 2, and causes quantity D to be generated. Note
that since Ei_9 and Quarter L is active, quantity A is not generated, and hence

Of the four S{s, only S

neither is Sl and S 1s generated. Thus, only Quarter

2’ 3
3 of E is complemented under sign extension control. The negative sign of Quarter
2 is extended to the left to fill Quarter 3, and the positive sign of Quarter k4 is

extended to the left to fill Quarter 1.
12-7 SEQUENCE SELECTION

12-7.1 GENERAL DESCRIPTICN. The Sequence Selector is the unit in the Program Element
which determines whether the next instruction to be executed is taken from the

current program sequence or from some new program seguence.

The components which comprise the sequence selector are:
1) The individual Sequence Selector stages
2) The Priority Patch Panel
3) The K Decoder
L) The J Coder
5) The FLAG register
6) The K°% IC et

7) The ke J et

The Priority Patch Panel fixes the relative priority relationships among the
program sequences. As its name implies, the panel is a plugboard with patch cords

which are used to provide any desired arrangement of priorities among the sequences.

The Sequence Selector stages determine which is the highest priority sequence

desiring attention. The Priority Patch Panel of course influences this decision.

The K Decoder provides the Sequence Selector with the number of the current sequence

being executed.
The J Coder encodes the thirty-three outputs of the sequence selector stages and
specifies the number of the next sequence. The encoded number can then be inserted

into N3.6 - 3.1 the J bits in the N register.

The FLAG register indicates which sequences request attention. It contains one

FLAG flip-flop for each of the 33 program seguences.

The two nets on the K register compare the number in the K register with the

output of the J Coder and the number in the J bits.

12-26 March 1961



12-7.2

12-7.3

March 1961

PRICRITY PATCH PANEL. This panel consists of a plugboard with two sets of 3 X 33
jacks. One set of jacks is associated with the priority number. The other set of

jacks is associated with the Sequence Selector stages.

The Priority Patch Panel, as shown in Fig. 12-48, is divided into four sections.
Three of the sections are each composed of eight stages which coincide with the
Sequence Selector stages. Section 3 has 9 stages instead of 8 stages due to the
startover sequence. Each stage of the Priority Patch Panel contains two sets of
three Jjacks. The upper set of jacks of each stage are intercomnected throughout

a section.

One jack from each stage is connected in parallel. The other two jacks are
connected in series. The series connections are used to transmit information
serially through a section (with the initial input tied down to represent no
information coming in). The parallel connection is used to feed information in
from outside a section simultaneously to all stages in a section. The output

from the last stage of the series connections of section represents the only piece
of information coming out of a section. These outputs are connected as shown to

ATT REQ level.

all lower priority sections and to a last OR net to generate the SS
Note that the input to the parallel connection of section 3 (the highest priority)
is also tied off to represent no information. The effect of all these connections
is that attention request information generated by any Sequence Selector stage is
transmitted through at most one full section (8 stages) before contributing to

the SSATT REQ

level. Two full sections (16 stages) is the maximum delay met before
such information gets to any other lower priority Sequence Selector stage. (This

should be compared with a maximum delay of 32 stages in a wholly serial net.)

The lower set of three jacks in each stage of each section is connected to the

corresponding Sequence Selector stage.

The priority of a given Sequence Selector stage is determined by which (upper) set
of three jacks is connected to the (lower) set of three jacks of the Sequence
Selector stage. The upper set of three Jacks may be in the same section as the
lower set of three jacks or even in another section. All these interconnections

are accomplished by patch cords and can be changed whenever the need arises.
SEQUENCE SELECTOR. The Sequence Selector consists of 33 stages. All of the stages
are identical with the exception of the first stage. The first stage corresponds

to the Startover Sequence (octal 00).

Fig. 12-L9 illustrates a typical stage of the Sequence Selector.
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CH RE
There are three levels that the Sequence Selector may generate. They are SS i REQ

(or ssCH SEQ) = ggNEXT SEQ 5 ggfTT FEQ,

The SSATT REQ level is generated by ORing the PPQTg.REQ outputs from the patch
A4

panel sections. These outputs from the patch panel are formed by cascoding within

the individual sections, the SSATT $EQ
g, h; H

These individual inputs state that either the flag of a sequence, which is not the

inputs from the Sequence Selector stages.

current sequence, is up; or that some sequence of higher priority within the same
quarter requests attention. Note that if the highest priority stage in a quarter
requests attention, it must cascade through, at most, 8 other stages before contri-
buting to the SSATT REQ level. Note also that when the current sequence is in a
"waiting" state and no instructions are being executed, then KD is disconnected

ATT REQ

from the K register and SS can indicate whether the current sequence requests

attention also.

CH REQ R R o s
The SS level indicates whether a sequence of higher priority than the current
sequence has its flag up. This level is used to determine whether a change of
sequence to a higher priority sequence can occur when the hold bit on an instruction,

being executed in the current sequence, is a ZERO. This is generated by ORing the
CH REQ

SSH

the one coming from the current sequence, can ever be on, and even this cannot

levels produced by the Sequence Selector stages. Only one of these levels,

occur unless KD is connected to K. The individual levels are generated by simply
determining whether the attention request levels, coming in from the priority panel

connections, state that a higher priority sequence requests attention. The maximum

delay met by attention request information before contributing to the SSCH REQ
level is two full sections (16 stages).
The SSH SEQ levels are generated by the individual selector stages. Only one,

at most, of these can be turned on at a given time. If one is on it indicates

that the corresponding sequence is the highest priority sequence with its flag
raised. The level is formed in a selector stage when the flag is up but no sequence
of higher priority requests attention. The current sequence, identified by the KD

level, is usually excluded.

The Startover Sequence Selector stage is similar to the others, except that it can

occupy only the highest priority position. (See Fig. 12-50.)
All the Sequence Selector stages contain logic to complete the decoding of the

N3 6 - 3.1 bits. This circuitry is called the N Decoder, even though its inputs
are N3 P and JD. The outputs go to the In-Out Element.
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12-7.4 TFLAG REGISTER. The FLAG register is composed of 33 flip-flops, one for each
sequence. Each flip-flop is set, i.e., each flag is raised, when its associated
in-out unit requests attention. This is indicated by the L}-> FLAG pulse shown
in Fig. 12-51.

Certain instructions can also affect the flag of the sequence gpecified by the
N3.6 - 3.1 bits of the instruction. An IOS instruction can raise or lower (clear)
a flag if bits N2.6 _ 2.k in the address sectiin have the value 101 or 100,
respectively. An SKX can raise a flag if PKIRCF . All the pulses which do this
are gated by ND and occur at PK?6Q. 4

Another group of pulses which are gated by KD can also lower flags. However, the
gating by KD means that only the flag of the current sequence is affected. These
pulses are called "dismiss" pulses. Whenever a change of seguence is made to
sequence 00, the Startover Sequence, the flag is lowered in order to allow pulses
from the Startover button to recognize which sequence 00 is rumning. This pulse
occurs at CSK?Ba. If the computer attempts to execute a TSD and either it is still
executing a previous TSD, or it finds the In-Out unit of the sequence is busy, then
it will lower the flag. This pulse occurs at Pnga and is called "dismiss and
wait". The other pulse of this type occurs during an ordinary "dismiss”. Here

the pulse is given at PK?Sa during instructions which request a dismiss (PKIRDIS REQ)
in sequences other than sequence 00. This last exclusion exists because the dismiss
pulse for sequence 00 was given at CSKPEa when the sequence was entered and a new
flag raising in this sequence might have occurred while sequence 00 was ruming.

| PRESET

Another level that clears the flags is the L= @SS level. This level is

generated by the start-stop control.

12-7.5 K DECODER. The K Decoder interprets the K3.6 - 3.1 bits. It generates 33 lines,
one for each of the Sequence Selector stages. These lines also go to the In-Out
units. The Ké.6 bit is used for a special purpose. K%_é . (csih - PR ) is
substituted for the %.6 input to the K Decoder. This logic says that when the
current sequence is not sequence 00, and the computer is waiting (CSKi) after an
ordinary dismiss (PKQOG), then the X Decoder is disconnected from K, i.e., KD # K.
This logic permits the Sequence Selector to request the raising of the flag of the
current sequence, after it has been dismissed.

12-7.6 J CODER. The J Coder serves the function of encoding all the SS?EXT SEQ levels

into the six bits to be inserted into the N

3.6 - 3.1 bit position of the N register.
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12-7.7 K?q Jgc NET. This net determines whether the number of the current sequence is
the same as the highest priority sequence which reguests attention. This information
is used when the wait cycle (DSK) ends because some sequence wants attention and
the possibility exists that this situation might exist because KD was disconnected
from X (KD # X).

12-7.8 ke J NET. This net determines whether the contents of K and J are equal. It is
used, for example, to determine whether IOS and SKX instructions are raising the
flag of the current sequence at the same time that they are dismissing. In these

cases the PKIRDIS REQ level is not generated.

12-30 March 1961
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13-1

CHAPTER 13
EXCHANGE ELEMENT

INTRODUCTION

During the execution of an instruction a complex series of data transfers may take place

in the Exchange Element. Both the transfers themselves and the order in which they occur
is important in determining the net effect of the transfers. This chapter will emphasize
the register driver logic for the individual transfers and mention only in passing the time
ordering of a sequence of transfers. A detailed dynamic picture of the transfers is devel-

oped in Chapter 16.

Manipulation of data in the Exchange Element involves the following register driver pulses:

o] 1 LC
, or pulses to Mh,3,2,l or EM,3,2,1
M-CeE; M—leE; M—3»E (G = 1,2,3,4)
i i’ i bR | i i
E-CeM; E—1aM; E M
- L R nae |
E —» E
i+p i
(p = 1,2,3; where 3 +1 =0, 3 +2 =1, etc.)
E. —» E
1 +p
1 .
E—» M (CYR = cycle right)
CYR
E— M (CYL = cycle left)
CYL

0 5 Lly LCh = s
» s pulses to M, .. <Ml+.1o meta bit)

In addition to the above, there are register driver pulses which transfer the contents of

registers in other elements into the E and M registers.

Normally, data transfers occur in the Exchange Element during an operand cycle. This means
that the transfer pulses are usually initiated by a QK time level. The following are

exceptions to this rule:
1) If an instruction word is read out of the VFF Memory, information will be trans-

ferred through the Exchange Element during the instruction cycle. Hence the
transfer pulses will be initiated by PK time levels.

13-2 March 1961



2)

3)

The following instructions may temporarily store data in the E register during a

PK cycle for reuse at a later time in the instruction:

108
JMP
JPX and JNX

o

Data may also be stored temporarily during deferred addressing (PK) and during
change of sequence (CSK).

During the execution of the SPF, SPG, FLF and FLG (F Memory) instructions, the

FK counter initiates several data transfers in the Exchange Element.

13-2 M REGISTER (OPERAND MEMORY BUFFER)

Data is transferred into the M register from either the E register or the Memory Element.

There are no other transfer paths into the M register.

13-2.1 OPERAND MEMORY STROBE. Fig. 13-1 shows the logic involved in strobing a word out

March 1961

of the Memory Element. The strobe logic for M and N are similar and is covered in
greater detail in Chapter 11. The data may be transferred from a given memory

sense amplifier into either the M or N register. If an instruction word is involved,
it will be placed in the N register during a PK cycle. In the case of an operand,

the word is placed in the M register during a QK cycle.

The operand strobe pulse logic is shown in Fig. 13-2. This logic consists of an
operand memory selection level and a QK time level. The operand is strobed at
QK;lB. In the case of the S Memory, the strobe pulse is routed through a "ripple"
delay line. Thus, although the pulse is initiated at QK;OB, it does not finish
strobing until QK;IB.

13-2.1.1 PARITY BIT (2.10). The parity bit is read out of memory into the M
register along with the other operand bits. However, it is not written

into memory with the other M register bits.

Before the content of the M register is written into memory, the parity
of the word in the M register is computed. The output of the compute
parity circuit is written into memory in place of the M2 10 bit. Once

the M register is cleared, the original parity bit is permanently lost.

During a normal load type instruction, the output of the check parity
circuit will be equal to the M2 10 bit if there is no read error. However,
if a bit of the word is lost during the memory strobe, a parity alarm
flip-flop (MPAL) will be set, since the check parity will not equal the
value of the Mé.lo bit in this case.
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13-2.1.2 PARITY ALARM. Normally, if the parity alarm flip-flop (MPAL) is set, the
content of the M register should not be destroyed. (The operator may
nullify the effects of this alarm by means of the parity alarm suppress

pushbutton (MPAL. . ).) However, the condition of the check parity circuit

SUP
must be ignored at certain times, e.g., just before memory strobe when M
contains all ZEROS. For this reason, a parity alarm level (MPA) is gen-
erated which controls the M register driver logic. If MPA is generated,

then no pulses are allowed to change the content of M.

This MPA circuit looks at MPAL, MPALSUP and the parity alarm inhibitory

logic involving MPS. The net effect is that MPALl . MPALSUP is a nec-
egsary but not sufficient condition for MPA. Pulses generated between

QKpla and QK;la are always allowed to change the content of M.

13-2.1.3 META BIT (4.10). This bit is read into the M register from the Memory
Element with the other operand bits. It is rewritten into memory, just
as it was read out, for all instructions except SKM. The SKM instruction
may complement, set to ONE, or clear to ZERO Mh.lo before the contents of

Mh.lO are rewritten into memory.

Fig. 13-3 shows the register driver logic for complementing, setting or

clearing the meta bit under SKM control. The state of the PKIRCF and
1

PKIRCF bits determines which modification of the meta bit will take

2
place. Note that the meta bit cannot be modified unless the memory parity
alarm level is absent, i.e., an MPA condition exists. During an SKM
instruction, the quarters of E are complemented, cleared, and set by the
same register driver logic (except for the parity alarm inhibition) that

correspondingly modifies Mh 10°

The second term in the EL;—Nm_lO register driver logic indicates that
the meta bit is cleared when the M register as a whole is cleared, except
. . . K1804 QKlSOt

in those cases where the M register is cleared at Q . The

inhibition guarantees that the meta bit will be rewritten in memory just
as it was read out unless an SKM instruction is being executed. During
most instructions, the meta bit will be cleared at QKQ9G by the following

logic:
o Xt e
ngﬁﬁ, MPA QK: D Mh.lo

It should be realized, however, that Mﬁ 10 is cleared by special circuitry

and not in the direct manner indicated by the above equation.

The operand meta bit can be transferred between the Memory Element and

the M register only.
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13-2.2 E TO M TRANSFERS. The register driver logic tabulated on Fig. 13-5 indicates the

March 1961

various conditions under which E to M transfers take place. The conditions are
determined by: the OP decoder class levels, which indicate in what instruction or
type of instruction the transfer occurs; the time levels, which determine when the
transfers occur; and the levels reflecting configuration control, sign extension

control, parity, alarm control, etc.

. Certain IOCM (In-Out Control Mixer) level logic associated with the TSD instruction

is found on Fig. 13-5. This logic is discussed in detail in Chapter 15. Fig. 13-k
summarizes the aspects of this logic that are important in the discussion that
follows. DNote that only the IOCMIN logic (which indicates a TSD is transferring
data between the In-Out Element and the central computer) is involved. Data may

be transferred in both the NORMAL and ASSEMBLY mode during a TSDe In the NORMAL
mode, data from the In-Out Element is transferred from E to M under configuration
control, while in the ASSEMBLY configuration control is not used. Instead the data
is cycled (shifted) one place to the right if an IOCM.RIGHT level is present, or to
the left if, an IOCMRIGHT level is present, during the E to M transfer.

13-2.2.1 lg—-Mﬁ 3,2,1° This clear pulse occurs whenever the parity alarm inhi-
2252
bition is absent (MPA) and any one of the following three conditions is

satisfied:

1) The instruction is a TSD in the ASSEMBLY mode.

2) The instruction is an SKM and PKIRCF is a ONE. (Note that this
3

condition is not sufficient to clear Mh.lo')

3) All instructions having an operand cycle will normally clear the
M register at QKpga, except those using the V?F Memory during
the operand cycle. Thus, TSD and SKM may clear the M register
twice during the QX cycle.

1 1
13-2.2.2 E —M AND E——» M. Conditions 1 and 2 above, which cleared M at
CYL CYR

QK;8a, also cycle E into M at QK;9Q. The only difference in the clear
and cycle logic is the parity alarm condition and the added control logic
for determining whether the shift is to the right or left. (See Fig.
13-6.)

13-2.2.3 E—ibjLD-M. There are three categories of conditions under which this

transfer takes ﬁlace:

1) Broadside Transfers. Certain types of instructions transfer the

ZEROS and ONES of all the quarters of E into the corresponding
quarters of M simultaneously. These instructions include FLF,

FLG, COM, and instructions involving the VFF Memory.
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2) Transfers Under Permuted Activity Control. In this case, the

pulses on the gates between each quarter of E and M are inde-
pendently controlled by QKIRPRM ACTi levels. The contents of E
are transferred to M under permuted activity control during all
the store type instructions at QKl3a. In the case of the INS
instruction, the ZEROS are transferred at QK;sa and the ONES are
transferred at QK;ga. Even though the store type instructions
are included, these instructions do not go through QK;9a, 50

that this condition is satisfied by only a few instructions.

If a TSD is executed in the NORMAL mode or if PKIRCF is equal
3

to ONE during an SKM instruction, the logic is satisfied and an

E to M transfer occurs under permuted activity control.

3) Transfer of ZEROS from E) to M. This is one of the Exchange

Element transfers involved in the execution of the FLF instruction.

13-3 E REGISTER

The following types of transfers into the E register can take place:

1)
2)
3)
4)
5)

Data can be transferred from the M register into the E register.

Data can be transferred from the A, B, C and D register into the E register.

Data in the IOBM (In-Out Buffer Mixer) can be transferred into the E register.
Data from the P, Q and XA registers can be transferred into the E register.
Certain bits of miscellaneous registers can be transferred into the E register for

temporary storage.

In addition to the above, the quarters of E can be independently cleared and complemented,

and the data in the quarters can be permuted.

13-3.1

M TO E TRANSFERS. The register driver logic for these transfers is shown in
Fig. 13-7. It falls into three general categories.

1) Transfers Under Permuted Activity Control. Just as store type instructions
transferred data from E to M at QK;aa, load type instructions transfer
“data from M to E at QK;sa. Note that a TSD or an SKM instruction may also
transfer data from M to E at QK;Sa.

The ADX instruction has some of the characteristics of a load type in-
struction and some of the characteristics of a store type instruction.
For this reason, it is treated separately and not lumped with the store

type instructions.
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During the execution of an ITE instruction, the ZEROS of M are transferred

into E at QK;3a, but not the ONES.

2) Broadside Transfers. A jam transfer from M to E will occur for most store

Q
type instructions at QK?la and for most load type instructions at QK?3 .

COM, SPF, SPG or a TSD in the ASSEMBLY mode causes a Jjam transfer to
occur from M to E at QKlBa.

In addition to the above, a jam transfer from M to E occurs whenever the

VFF Memory is involved.

07
Finally a jam transfer from M to E occurs at PK.ll during a deferred

address cycle.

3) "Exclusive or" Transfer between M and E Under Permuted Control. This

transfer occurs twice during an SED instruction. The second transfer has
the effect of restoring the E register to its original state because of

the logical characteristics of the "exclusive or".

13-3.2 ARITHMETIC ELEMENT TO E TRANSFERS. The register driver logic for these transfers

is shown in Fig. 13-8. Two cases exist: either the V__, Memory is or is not

T
involved in the instruction.

1) 1In the first case, if an instruction is stored in either the A, B, C or
D registers, the instruction word will be read into the E register at
PKloa. Note that if the Arithmetic Element is busy, PK will not get to
PK;Oa until the AEB condition is satisfied. If an operand is stored in
the Arithmetic Element and that element is not busy, the operand will be
read into E at QKp3a.

2) The second case includes load and store type instructions involving the
Arithmetic Element registers. In the case of INS, ITA and UNA, data is

transferred specifically from the A register to the E register.

13-3.3 IOBM TO E TRANSFERS. During the execution of a TSD in the IN mode or during the

execution of an IOS when PKIRCF is a ONE, a jam transfer occurs from the selected
1

TOBM, (In-Out Buffer Mixer) to E. The register driver logic for this transfer is
shovn in Fig. 13-9.
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13-3.4 MISCELLANEOUS USES OF E REGISTER. Fig. 13-9 also shows the register driver logic

13-3.5

involved in several miscellaneous transfers into E. The transfers occur:

1) During a deferred address cycle, when the content of QKIRCF L is placed
g~

in E3 6 , and the content of XA (X Adder register) is placed in E

- 3.1
2) During a change of sequence cycle, when the content of N3 6 -3.1 is
placed in E3.6 _ 3.15 the content of Ké.6 - 3.1 is placed in Eh.6 _ h.l;
and the content of P is stored in E2 1
2

3) During the X Memory instructions, when the content of XA is placed in

2,1

4) During a JMP instruction (if PKIR contains a ONE) when the content of

CFH

Q is placed in E Also during a JMP (if PKIRC contains a ONE), when

2,1" T
? 3

the content of P is placed in Eh 3°
>

5) During an IOS instruction (if PXIR, contains a ONE), when the content

&

of N3.6

is placed in E

- 3.1 3.6 - 3.1°

6) During a JPA, JNA or JOV instruction (if the jump conditions are satisfied),
when the content of P is placed in E2 1
2

7) During a FLF or FLG instruction, when the content of QKIRCF is placed
9-1
B gy
INTERCHANGE OF E REGISTER QUARTERS. The register driver logic for this inter-

change is shown in Fig. 13-10.

There are two general circumstances in which the quarters of E are interchanged.
In one case, the interchange is a by-product of configuration control and is
indirectly under the control of the programmer. The programmer may select one of
several configurations for the same basic instruction. The interchanges in the
E register for the configuration will then take place. In the second case, the
interchange is a basic step in the instruction. During store and load type in-
structions involving the F Memory (SPF, SPG, FLF and FLG), the quarters of the E
register are interchanged in such a way as to cycle the content of the E register
either one gquarter to the right or one quarter to the left. The interchange is

initiated by the FK counter.
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13-3.6

March 1961

Several observations can be made by looking at the individual terms for directly
and inversely permuting the quarters of E. First observe that most of the in-
structions are included in the QK;IB, QK;3B and QK.l8B terms. However, while the
load and store type instructions go through QKllB and QK13B, they do not go
through QK;Bﬁ. Thus, the QK;8B term will include far fewer instructions than the
factor ANDed with QK;Bﬁ. Note that, in most configured instructions, both an

inverse and direct permutation will cccur.

CLEAR AND COMPLEMENT E REGISTER. These operations are involved in combination in
the process of sign extension (see Fig. 13-11). The logic involved in extending
the sign of an active quarter into the inactive quarters of a partially active
subword causes the inactive quarters to be cleared at QK;ha. If the sign bit of
the active quarter is a ONE, the inactive gquarters are then complemented at QK;AB.
The sign extension control term of the register driver logic includes factors which

take into account the activity and coupling involved in the instruction.

L
In the case of the COM instruction, the sign is extended at QK; B, and then the
active quarters themselves are complemented at QK;sg. During an INS or ITA
instruction, the content of the entire E register is complemented as a basic step

in the execution of the instruction.

Earlier in the chapter, it was mentioned that the content of XA is copied into
(o4
E2,l at QK;l , during the execution of X Memory type instructions (RSX, ADX, EXX
or DPX). If the sign bit in XA (x2 9) is a ONE, B 3 will be complemented at
- 2
QKlO6 as part of the sign extension logic in the E register. Effectively, the

content of the X register is extended to fill the E register.

Certain miscellaneous instructions require that the E register be cleared before

a data transfer into the E register can take place. This occurs:

1) For most instructions using QK;Oa in an operand cycle.
1
2 imi s
) As a preliminary step to N3.6 e E3.6

PKIRCFl is a ONE.

- 3.1° during an I0OS when

3) For all instructions involving the V?F Memory, except when the instruction
is placed in E.

4) As a preliminary step to placing data in E, during a deferred address
cycle.

5) As a preliminary step to placing the contents of Q in E, during a JMP

instruction when the PKIRCF bit is a ONE.
L
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13-4 ILLUSTRATIVE EXAMPLES

Some examples will be given to illustrate the use of the register driver logic tabulations
given in this chepter. These examples illustrate the configuration and sign extension
operation which is processed in the Exchange Element. In these examples, the transfers
that occur in the Exchange Flement during a configured load and a store type instruction
will be examined. Only those transfers illustrating configuration will be examined in

detail.

In the example, it is assumed that the programmer specified a configuration that caused
the third quarter to be inactive and that calls for an f2 (18,18) subword form. The

specified configuration makes use of permutation 3.

This permutation has the effect of shifting the quarters of M one quarter to the left into
the E register, during load type instructions; and the quarters of E one quarter to the
right into M, during store type instructions. In the example, it is also assumed that the
sign bit of the active quarter of the partially active subword is a ONE in the load type

instruction.

Let m, and e, represent the original contents of the quarters of the M and E registers,

respectively.

For the examples cited, the configuration bits are as follows:

QTR /L01 0100 011‘j\
Coupling: 18,18 Permutation: 3

Third Quarter:
Inactive

13-4.1 LOAD TYPE INSTRUCTIONS. The load type instruction will be examined first. Fig.
13-12(a) shows the effect of the instruction (neglecting the effects of sign
extension) on the M and E registers. At the end of the instruction, the operand
appears in M just as i1t was read out of memory. The E register contains the word

in M shifted one quarter to left, except for the third quarter of E which contains

whatever was in E, before the instruction began.

3

The sequence of transfers that accomplishes this operation is as follows:

1) TFig. 13-2 indicates that the operand is usually strobed out of memory
into M at QK;lB.
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2) Figs. 13-10 shows that at QK;lB, E is also inversely permuted. This can
be seen since the "OP" and "CF" bits are decoded to generate QKIRLD and
QKIRPRM3 levels. If we assume that this is not a SPF or SPG instruction,
then the logic on Fig. 13-10 is satisfied and all the quarters of E will
be shifted one quarter to the right at QK;lB, i.e., E will be inversely

permuted.

3) Figs. 13-7 and 13-12(c) show that a transfer will occur from M to E under
(0]
permuted activity control at QK;3 . All quarters of M are transferred,
except the second quarter. This selection occurs because of the
QKIRPRM ACT

logic that looks at both the permutation and activity required by the

2 level in the transfer logic. This level is generated by

instruction and decides in which quarters an M —w E transfer should occur.

Note that E now contains the correct data but the data is all shifted one
quarter to the right.

4) Figs. 13-10 and 13-12(d) indicate that at QK;3B (0.2 microsecond after the
M—»E transfers) a direct permutation occurs in which data is finally
shifted to the left into the desired quarters. Compare the E register in
Figs. 13-12(a) and (4).

The sign extension process which follows step 4 is described in 13-4.3.

13-4.2 STORE TYPE INSTRUCTIONS. The store type instruction will now be examined. Fig.
13-13(a) shows the effect of the instruction on the M and E register. The M register
contains the content of the E register shifted one quarter to the right, except for
the second quarter of M which contains whatever data was in it at the beginning of

the instruction.
The sequence of transfers that accomplishes the store instruction is as follows:

o’
1) If the instruction is STA, the content of A is placed in E at QK;l as
indicated on Fig. 13-8.

2) Figs. 13-13(b) and (d) are exactly the same transfers and occur at exactly
the same time as the transfers shown in Figs. 13-12(b) and (d).

3) Figs. 13-5 and 13-13(c) indicate that a transfer under permuted activity
control from E to M occurs at QK;3a. Note that at the end of this transfer,
M contains the word that is to be stored in memory. E however must still

be unscrambled by the direct permutation pulse that occurs at QKlaB.
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13-4.3

‘Thus, neglecting sign extension, the basic difference between a store and load type

instruction, as far as the Exchange Element is concerned, is the transfer pulse
{07
occurring at QK}3a. In the store case, QK13 initiates an E — M transfer. In

(o
the load case, QK;3 initiates an M—w E transfer.

SIGN EXTENSION. Fig. 13-1L shows the basic concept of sign extension as it applies

to the E register. The general rule for extending the sign is also given.

Fig. 13-15 gives a specific example of sign extension. This figure is in reality
an extension of Fig. 13-12. The E register was permuted at QK.136 on Fig. 13-12(d).
Fig. 13-15(a) shows that the third quarter of E is cleared at QK;ha. For the case

chosen, the fact that the fourth quarter of E is active (QKIRACTH) and the coupling
is f2 (fe:D ?Z) generates the QKIREXT ACT3 level. The logic for clearing E3 is

shown in Fig. 13-15(a).

At QK;hﬁ, the sign of the active fourth quarter is extended into the inactive third
quarter by the simple operation of complementing the third quarter of E. The
operation and the complement logic are shown in Fig. 13-15(b). Note that, if the
sign bit of the fourth gquarter were a ZERO (Ei.9)’ then the complement pulse would

not have occurred and the inactive third quarter would have been left with all
ZEROS in it.
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CHAPTER 1L
ARITHMETTIC ELEMENT

INTRODUCTION

The Arithmetic Element has a two-fold nature: (1) it is used in the execution of a specific
group of operation codes, (2) its A, B, C and D registers are part of the V?F Memory. Since
the V__ Memory is discussed in detail in Chapter 11, this chapter only briefly describes the

FF

VFF register driver logic affecting the A, B, C and D registers and instead emphasizes the

role of the Arithmetic Element in processing instructions.

The chapter proceeds by first classifying all the Arithmetic Element operation codes
according to the use they make (or do not make) of the AK, ASK and D counters. The execubion
logic of each operation code in the sub-classes is then discussed. The net effect is to

bring into focus the ways in which the Arithmetic Element can process data.

The logic circuits integrated into the A, B, C and D registers are next discussed. This

includes a discussion of the shift and carry circuits and the D counter circuit.

Since there are a large number of special purpose logic nets, these are then itemized and

discussed.
Finally all the Arithmetic Element register driver logic is tabulated and discussed.
ARTTHMETIC ELEMENT INSTRUCTION CLASSIFICATION

The computer currently has twenty-nine operation codes that make use of the Arithmetic
Element. It is convenient to classify these operation codes in terms of the use they make
of the AK, ASK and D counters.

Fig. 1k-1 shows the Arithmetic Element operation codes classified in this manner.

14-2.1 AK TYPE INSTRUCTIONS. The execution logic for these instructions has the following

features:

1) During the operand cycle, the Arithmetic Element register driver logic is
controlled entirely by PK or QK time levels.

2) The register transfers in the Arithmetic Element are simple, i.e., they
do not involve complex logic. For example, the only Arithmetic Element
register driver pulses involved in these instructions are those that clear,
complement, and transfer the contents of the E register into the Arithmetic
Element registers. (The complementing pulses are used only in two operation
codes, INS and ITA.)

1h4-4 March 1961
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Fig. 14-2 shows a functional block diagram of the Arithmetic Element for AK type

instructions.

The load and store type instructions involve simple register transfers between E
and the Arithmetic Element registers (or vice versa). These instructions have the

following features:

1) During an Arithmetic Element load or store type instruction, the operand
always passes through the Exchange Element. This path is followed so that
even though the operand is stored or is to be stored in one of the
Arithmetic Element registers of the VFF Memory, it still may be configured.
Thus in a IDA instruction it is possible to load A4 with the content of
Al' The initial content of A is placed in the Exchange Element, configured,

and the configured operand placed back in A.

2) TVhen a LDD instruction is executed (or for that matter any instruction

which places an operand in D), the bit placed in Di is transferred by a

9
parallel path into Yi. The Y bits are used in sign control only. The

programmer has no access to the Y bits.

Generally the procedure in the logical instructions INS, ITA and UNA involves
transferring Arithmetic Element data into the Exchange Element; logically processing
the data in the Exchange Element; and then, usually transferring the result back
into the Arithmetic Element. (In INS and ITA the execution logic for the instruction

does require certain complementing logic to occur in the Arithmetic Element.)
The Z flip-flops are not affected by any of the AK type instructions.

AK TYPE INSTRUCTIONS. The execution logic for these instructions involves quite
different Arithmetic Element features than the AK instructions. For example:

1) 1In these instructions, the Arithmetic Element is "loosely" coupled to the
central computer, i.e., once the operand is transferred into the Arithmetic
Element, the Arithmetic Element time control is turned over to the AK
counter. While the AK type instruction is being executed, the central
computer can execute any additional instructions which do not involve the
Arithmetic Element.

2) In addition to the standard register driver logic for clearing, complementing,

etc., the AK type instructions can make use of the following "multiply step”

and "partial addition" register driver logic:

1h4-5



Multiply Step Logic

6]
AL (5+1) > %
1
A D, , ——» C
1.3 i.j i.j

Partial Add Logic

D, .94, , —3—» A |
. J 1-J

3) These instructions can use the shift and carry circuits integrated into

the A and B registers.
4) These instructions can use the D register to count.

5) These instructions make functional distinctions among the Arithmetic

Element registers.

Fig. 14-3 shows a functional block diagram of the Arithmetic Element for AK type

instructions.

In all of the AK type instructions, an operand is brought from memory into the
Arithmetic Element before the instruction is executed. The fact that the operand
may be located in the A, B, C or D register of the VFF Memory is not a contradiction
of the above statements, but merely emphasizes the fact that the register hardware
may wear the VFF hat as well as the Arithmetic Element hat.

Notice that in all the AK instructions but TLY, the operand brought from the Memory
Element is placed in the D register. In the case of TLY, the operand is placed in
the A register. This means that before AK actually executes the instruction, the
only data found in non-operand registers will be that left from a previous in-

struction.

Just as the D register generally contains the instruction operand, the A register
generally "accumulates" the result of the instruction, e.g. if a series of additions

are performed, the running sum is found in A.

14-2.2.1 Z FLIP-FLOPS. The ability of A to accumulate the results of a series of
instructiors leads to the possibility of A overflowing. In the case of
addition, overflow oécurs when the accumulation exceeds the size of the
subword in which the sum or difference is accumulated. One of the
functions of the Z flip-flops is to indicate these overflows. The Z flip-
flops are also used in sign control. Only the Z flip-flops in the sign
quarters of A are used for any of these purposes. (The sign quarter is

the left most quarter of an active subword.)
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Fig. 1b-U shows how the different instructions affect and make use of Z.
7Z is cleared at the beginning of the four arithmetic instructions: ADD,
SUB, MUL and DIV. In the case of the other instructions, except SCale
and NOrmalize, Z is left in the state determined by the previous in-

struction.

In the case of the SCale and NOrmalize instructions involving A, the
content of Z may be shifted into A. (This will be discussed in greater
detail when the SCale and NOrmalize instructions are described.) Z is

used in the MULtiply and DIVide instructions for sign control. If Zi and
Yi (which remember the sign of A and D, respectively) are the same, the
product or quotient is given a positive sign; if Z and Y differ, the
product or quotient is given a negative sign. Note that Z is also used

in the DIVide instruction as an overflow indicator. (The logic for
accomplishing these two functions in the same instruction will be discussed
later in the chapter.) The other two instructions which use Z as an over-

flow indicator are ADD and SUB.

Certain instructions always leave Z in a cleared state. These instructions
are: MULtiply, which uses Z just for sign control; and SCale and NOrmalize
(involving A), which can shift the contents of Z into A. The other AK type
instructions neither make use of nor affect the Z flip-flops. These

instructions are DSA, TLY, CY-, and SCB.

14-2.3 ASK TYPE INSTRUCTIONS. The ADD, SUB and DSA instructions which make up this class

March 1961

are executed by a common basic logic. Note that the B register is not used in the

ASK instructions which use AX.
14-2.3.1 ADD AND SUB. A ONE's complement ring adder is formed in which an end
around carry occurs. E.g., suppose it is desired to perform the following

subtraction:

subtrahend

o |k

1 1
0O 0 minuend
1 1 difference

In the computer the minuend will be complemented and the terms added, i.e.,

0O 1 1 1 subtrahend
sign bits4
101 1 complemented minuend
end around ’///4 1
carry —_— ‘
sign bit L0011 difference

147



As we saw earlier in the chapter, it is possible for overflow to occur
in the addition and subtraction processes. Fig. 14-5 summarizes the
basic overflow logic for ADDition. Note that SUBtraction is simply

addition with the minuend complemented.

The key fact is that overflow can only occur when the sign of the augend

and addend are the same. The overflow rules are as follows:

1) 1If the signs of the terms are positive and the sign of the sum
is positive, overflow has not occurred.

2) If the signs of the terms are positive and the sign of the sum
is negative, overflow has occurred.

3) If the signs of the terms are negative and the sign of the sum

is negative, overflow has not occurred.

L) If the signs of the terms are negative, and the sign of the sum

is positive, overflow has occurred.
5) If the signs of the terms differ, then overflow can not occur.

Another way of saying this is: '"Overflow can occur in ADDition only
when the sign of the sum differs from the sign of both terms".

The computer logic for ADDition overflow is also shown in Fig. 14-5. %
is cleared at the beginning of the instruction. A "partial swm" of the
signs of the augend and addend is then stored in Z. Note that ONE's in
the Z flip-flops indicate that the signs of the terms are similar. A
reset Z pulse is then fired which clears Z to ZERO if the sign of the

sun is the same as the sign of the augend. Note that in the non-overflow
cases where this is true, Z already contains ZERO and thus the clear pulse

is not necessary.

14-2.3.2 DSA. This instruction is very similar to the ADD instruction except that
the complete carry required in the addition process is not executed. For
this reason no overflow problems arise. Hence the Z flip-flopsare left

unaffected by the instruction.

In DSA the logical sum of A and D is placed in A and the accumulated
logical product is placed in C. That is,
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Logical Sum (or "partial add"): A ® D —» A

Accumulated logical product (carry): C + (A * D) — C

Suppose that a DSA is executed with the following data:

Before Processing Data

D
A Operand Data

o o o
O
O = O
o O K
O

The DSA instruction leaves the D register unaltered and the A and

C with the following results:

After Processing Data

010 1 1 D
0O 0 1 1 0 A Result
0 1 0 0 1 ¢C

ASK TYPE INSTRUCTIONS. These instructions are characterized by an operation or
series of operations which (somewhere in the execution of the instruction) are
repeated a finite number of times. The usual function of the ASK counter is to
keep track of the number of iterations. Because of this iterative characteristic,
the execution of the instruction generally requires considerably more than the

usuval instruction time.

COUNT IN D TYPE INSTRUCTIONS. This subclass is made up of the MUL and DIV in-
struction. In these instructions all the Arithmetic Element registers are used as
well as the Y and Z flip-flops.

14-2.5.1 MULTIPLICATION. In this instruction, the multiplicand, which is the
operand from memory, is loaded into D. The multiplier is the data left

in A from a previous instruction.

Early in the execution of the instruction, the multiplier is transferred
from A into B and A is then cleared. vThere then begins an iteration of
"partial add - multiply step"” cycles. It is the function of the ASK
counter to see that the correct number of iterations occur. The actual

number depends on the size of the subwords used, i.e., on the fracture.



The partial add performs the following logic:

Partial Add
1.3 Tilj 1.3
A, ., ®D, 3 —~—F— A,

1.3 i i.J

The before and after statesof the Arithmetic Element registers during a
partial add might typically be as follows:

Before PAD

b [T117]
¢ [fToq]

A [oo011] [o111] B

PAD conditional on right

most bit being 1

After PAD

D Il 11 li

:

A [1100] lo111 B

The multiply step pulse processes the carries in C and shifts the running
sun in AB one bit to the right. This is done by a single pulse. The

logic involved in this operation is as follows:

Multiply Step
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The effect on the Arithmetic Element registers of following the PAD
described above with an MS (multiply step) is as follows:

After MS

p [12111]
¢ [0317]
A [ooo1] [oo11] B

This process is iterated the correct number of times and then the carries
left in C are absorbed into the A register by a carry pulse ( E%gL-»A).
Note that this complete carry is performed only once during the execution
of the MULtiply instruction. At the end of the instruction, AB contains
the product. The major half of the product (most significant bits) is in
A and the minor half of the product (least significant bits) is in B.

The fracture (f) specified in the MULtiply instruction determines the AB
subword length. The AB possibilities are shown in the table on Fig. 14-3.
For example, if an f, (18,18) fracture is specified, two independent
products will be formed if there is more than one active subword * involved.
A 36 bit product will be contained in Ah - A.3 - Bh - B3 with Ah the sign
quarter. At the same time, a 36 bit product will be formed in A, - A1 -

2

B, - B, with A, the sign quarter. However, in the case of f3 (27,9), the
9 bit subword product will not be correctly generated.* The fh (9,9,9,9)

form must be used to obtain the correct product in the right quarter.

1k-2.5.2 DIVISION. In this instruction, the divisor, which is the operand, is
loaded into D. The dividend is the data left in AB from a previous
instruction. The major half of the dividend is located in A and the
minor half of the dividend is located in B. The dividend must have the

same form as the product left by a MUL.

The C register is used to keep track of the carries involved in the

partial adds, just as in MULtiplication.
At the end of the DIVide instruction, the A register containg the signed

quotient and the B register contains the signed remainder. The sign logic

is based on the following simple algebra:

* At the moment the ASK counter can be used for only one subword length at a time. A modification

will be made so that ASK can count both for 27 and 9 bit subwords simultaneously.
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DIVIDEND QUOTIENT +  REMAINDER
DIVISCR DIVISOR

or

&
1
f=d
+
o

The sign rules are:

1) The sign of the quotient is positive if the signs of the
dividend and divisor are the same, and negative if these

signs are different.
2) The remainder always has the same sign as the dividend.
The mechanics of the DIVide instruction will be explained by examining

the example below. The example has been chosen because it produces an

overflow. Let the operand in D and data in AB be the following:

D |o10 000 o001}

s {010 o000 o0o01] [0o00 o000 o010]

If AB is positive, AB is complemented. (The signs of D and AB are
remembered by Y and 7 respectively.) Thus,

Y'[0] °[01o ooo o007 ASK = 170

z [o] &4 [101 111 110 [111 111 101

Because of the fh fracture, ASK is preset to 170. ASK now counts out

the "partial add - carry” loops as they are executed.

The first PAD pulse leaves the A register looking as follows:

A 111 111 111}

If the sign of A now differs from that of D, D is left unchanged and
AB is shifted one bit to the left by the CRY pulse. This leaves the

registers as follows:
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D [010 000 001] ASK = 171

PAD A [1711 111 111)

CRY a8 {111 111 111} ~f111 111 o011}

This process is repeated. Note that in the next iteration, the sign of
A is the same as the sign of D, therefore D is complemented. This is
done so that the PAD pulse always adds terms of unlike signs, i.e., a

subtraction always takes place. Thus,

D {101 111 110] ASK = 172
PAD A (010 000 000]
CRY ~ AB [100 000 001] [1T11 110 110]
Again the process is repeated. In the next partial add, D, is

i.g9

"carried" into A because a final "fix up" pad is executed on the basis

of the sign bit in A being ZERO (i.e., positive). Thus,

D [101 111 110] ASK = 002
A [1T11 111 111]
A 111 1131 111] [100 000 000]

A and B are now interchanged, so that the quotient is now in A and the

remainder is in B.

AB 100 000 o0o00] 111 111 111

Up to this point both Y and Z have been in the ZERO state. Several

things now occur simultaneously:
1) Since Z is ZERO, B is complemented.
2) Since Z = Y, A is not complemented.
3) Since Ai.9 is ONE, Z is set to ONE (indicating an overflow).

Thus,

z [1] 4 [Too 000 000] [000 000 000
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Note that since Z indicates an overflow, A does not contain the right
quotient. However, the right quotient can be obtained by following the

DIVide instruction with a NOrmalize instructionm.

14-2.6 COUNT IN D TYPE INSTRUCTIONS

1h-2.6.1

SCA, SCB, SAB, CYA, CYB AND CAB. SCaling and CYcling are similar type
instructions. SCaling effectively multiplies the data by a positive

or negative power of 2 while preserving the significance of the sign
bit. CYeling simply rotates the data (including the sign bit) left or
right within the subword. In both SCale and CYcle type instructions,
the sign quarters of the operand in D prescribe the number of shifts to

occur.

Fig. 1L-6 shows an example of a SCale AB instruction (SAB) in which an
£, (18,18) fracture was specified. Tt is assumed that one of the sub-
words in the operand has a negative sign and that the other subword has

a positive sign.

Two cases are illustrated in Fig. 14-6. 1In case 1, it is assumed that
overflow indicators 22 and Zh were left in a ZERO state by the previous
instruction. Case 2 assumes that the same overflow indicators were

left in the ONE state by the previous instruction, i.e., that an over-

flow occurred in these instructions.

The following events take place in the SAB instruction. The sign
quarter of the left subword in D is complemented. This occurs because
the original sign bit of the operand, now stored in Yh’ is positive
(ZERO). The sign quarter of the right subword in D is ESE complemented,
since the operand is already negative (ONE). The operand in D),
specifies the number of shifts that will occur in the data in the
associated AB subword Ah - A3 - Bh - B3. The fact that Yh is ZERO
means that the data will be shifted to the left. Similarly the operand
in D. specifies the number of shifts that will occur in the data in AB

2

subword A2 - Al - B2 - Bl. The fact that Y2 is ONE means that the data

will be shifted to the right.

First consider Case 1. Here the overflow bits in Z are both ZERO. The
logic of the SCale instruction requires that the sign bit be left un-
changed, therefore no shift into the sign bit occurs. Consider now

the left subword. If the sign bit is ZERO, shifting should fill up the
right end of the subword with ZEROS. If the sign bit is ONE, shifting
should fill up the right end of the subword with ONES. Shifting the

sign bit (AL,+ 9) into the right end (B. _) accomplishes just this result.

3.1
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1h-2.6.2

In the case of the right subword, shifting right should fill up the
left end of the subword with ZEROS, if the sign bit is ZERO and ONES if
the sign bit is 1. Shifting the sign bit (A2.9) into the left end
(A2.8) accomplishes just this result.

Now consider Case 2. Here the overflow indicators Zh and Z2 have
both been left set to ONE by the previous instruction, i.e., an over-
flow has occurred. The overflow has caused an error in the sign, there-
fore the sign must be complemented before the data is shifted. The
mechanics of the instruction are then the same as in Case 1. The ONES
in Zh and 22 are cleared to ZERO by the SAB instruction, since the

overflow is taken care of by the instruction.

Fig. 14-7 shows an example of a CYcle AB instruction (CAB) in which the
same operand, data, fracture and overflow conditions are used as were
used in the SAB example. The example illustrates the basic differences

between the two types of instructions.

In the case of CAB, the entire subword is shifted in a closed ring.

The sign bits are given no special treatment. In Case 2, in which the
overflow indicators have been set to ONE by a previous instruction,

the CAB instruction does not affect and is not affected by the state of
the Z flip-flops.

In both SCale and CYecle instruction ASK performs no useful function
during the execution of the instructions. It simply is indexed once
each time a shift occurs. The number of shifts which take place are

determined by the D counter.

NOA AND NAB. These instructions take the data left in A or AB and
multiply it by that positive or negative power of 2 required to make
the value of the data lie between 1/2 and 1. The sign gquarter of D
counts the number of shifts to the left or right required to do this.
Effectively, the number of shifts to the left required is subtracted
from the sign quarter of the operand brought from memory and placed in
D.

In this instruction ASK prevents unlimited shifting from occurring when
A or AB contains all ZEROS or all ONES.

Overflows are handled exactly as they were in the SAB instruction

previocusly describved.
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1b-2.6.3 TLY. This instruction is unique in that the operand from memory is
placed in the A register. Neither the B or C register is used in this

instruction.

In this instruction the data placed in A is completely rotated once and
left in its original position. The ASK counter is used to count the
number of shifts required to completely "cycle" the subwords. The D
counter "tallies" or counts the number of ONES that are contained in
the data. The number of ONES is added to the contents of the sign
quarter in D left from the previous instruction. The TLY instruction

has no effect on the overflow indicators.

Fig. 14-8 summarizes the use of the ASK and D counters for ASK type

instruction.

Fig. 14-9 summarizes the function of the Arithmetic Element registers

and the Y and Z flip-flops for all the AK instructions.

AE

1h-2.7 OFR AE

("AOP") VS OPR~ ARITHMETIC ELEMENT INSTRUCTIONS. All of the basic AK
instructions discussed so far can be specified by the AOP instruction. This

instruction has several characteristics:

1) The Y bits of the N register are used to specify the instruction and
its configuration. The Y bits do this by setting the state of the AKIROP
and AKIRCF registers directly with no intervening decoding.

2) 1In this instruction there is no memory operand or operand cycle. The
data in what would ordinarily be the Arithmetic Element operand register

is the data left there from a previous instruction.

3) Because the part of an Arithmetic Element instruction in which an
operand is taken from memory, configured in the Exchange Element and
then loaded into an Arithmetic Element register is absent in the ACP

instruction, the effects of configuration specification are different.
Fig. 14-10 shows a comparison of an AOP and AOP instruction.

The AOP instruction is a CYA in which only quarter 2 of an f; (36) fracture is
specified active. Similarly, the AOP instruction is used to specify a cycle A

in which quarter 2 of an fl fracture is active.

Consider first the CYA instruction. The sign bit in guarter 2 of the operand
from memory is negative. This means that after the sign is extended in the

EXT ACT
Exchange Element, quarters 1, 3 and b will contain ONES. The QKIR i levels
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generated in the Program Element and used in the Exchange Element for sign
extension are also used by the Arithmetic Element to determine which quarters

HXT ACT EXT AC
are active. For example, the fact that QKIR 3, QKIR A Th and

QKIREXT ACTl levels were generated to extend the sign into the third, fourth
and first quarter means that the a3, ah and a1 levels will be generated by
AKIRCF. This will activate the 3rd, L4th and 1st quarters of the Arithmetic
Element. Note that because of this a2ll the quarters of the Arithmetic Element
are active. Any shift that occurs because of the CYA instruction will cycle a

36 bit word in a closed ring.

In an £ (36) fracture the contents of quarter 4 of D (i.e., the sign quarter)
will determine how many shifts are to take place. Sign extension has filled
quarter 4 with ONES, however. This means that no shifts will occur in the

instruction as specified.

Now consider the AOP equivalent of the AOP instruction. Assume that the same
operand brought from memory in the AOP instruction previously discussed, is, in

the present instance, left in D from a previous instruction.

Assume that the Y bits of the N register specify an fl fracture and gquarter 2

is active. This means that AKIRCF will generate an fl level and an a2 level.

Coupling units in the Arithmetic Element connect the various quarters of A and
B on the basis of instruction, activity and fracture. In the present case, the
fact that £, and al in a ecycle A to the right instruction (assume that the sign
bit (Yh = Dh,9) is a ONE) are specified means that A3.l will be coupled to A2.9.
A, and 4, . IfA contains a ZERO

3’ L 3.1
will £i11 up with ZEROS.

However, no shifting will occur into Al,

and Dh specifies more than 9 shifts, A2

This example suggests the main differences between AOP and AOP instructions.
14-3 ARITHMETIC ELEMENT REGISTER OPERATIONS
This section will discuss the various types of register transfers that can occur in the
Arithmetic Element. The basic transfers, which are finite in number, are used to

execute all the Arithmetic Element instructions.

14-3.1 STANDARD TRANSFERS. TFig. L4-11 shows the standard register operations common to

A, B, C and D. These operations are:

09 & (B, C and D and Y)
tCp A (B, C and D)
E—LaA (B, ¢ and D and Y)
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14-3.2

The execution of certain instructions requires that the contents of A be jammed
into B (e.g., in the MULtiply instruction), or that the contents of A and B be
interchanged in a jam transfer (e.g., in the DIVide instruction). TFig. 1L4-12

shows these jam transfers.

SPECIAL LOGICAL TRANSFERS. Fig. 14-13 and 14 show two special logical transfer

circuits in the Arithmetic Element.

The transfers shown in Fig. 14-13 are initiated by a "partial add” pulse ( Lfézb-).
This pulse complements Ai.j if the corresponding Di.j bit is a ONE. This is the
"exclusive OR" transfer used to perform a partial add. At the same time, the

PAD pulse sets Ci.j to ONE, if the corresponding A and C bits are ONES. This is

a carry operation based on accumulating in C the logical product of A and D.

Note that if Ci.j were in the ONE state when a ONE was "carried" into it during

a partial addition, the logic of the arithmetic would break down. Later we shall
see that, except during DSA, Ci.j is always in the ZERO state when a ONE 1is

carried into it due to the over-all instruction logic.

The transfers shown in Fig. 1k-14 are initiated by a "Multiply Step" pulse. The
Multiply Step operation really does several things at the same time. Basically
the operation shifts the content of A and performs a partial addition of the

contents of C and A.

The example below illustrates the main features of the Multiply Step operation:

A, . (j+l) ) ci.j——-—f}———’ A,

i i.j
Before MS (After PAD) After MS (Before PAD)
OZZO
0 o 1 1 1 B, A 0O 1 0 1
i.9
~k\—Sign Bit
A ———£1~4> c
i-(5+1) i3
0 1 1 O C 0 0 1 O
0 1 1 0 A

Since both these transfers occur at the same time, the net effect is as follows:

® C, ., —» A,
i-J .

A () 13

6]
A . —— ..
1-(5+1) i3
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The following truth table shows all the possible effects of the Multiply Step

operation on the A and C register:

Before MS After MS
A(+2) i3 A3 i3
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Note that Ai-j and Ci-j are never both left in the ONE state by the Multiply

Step operation.

From the arithmetic point of view, the partial addition logic adds the contents
of A and D bitwise, leaving the carries in the C register. WNo inter-bit logic
occurs in this partial addition. The Multiply Step operation perfofms a partial
addition between the content of the C régister (i.e., the carries left in the C
register) and the content of the A register. The carries from this partial
addition are placed in the C register and the content of the A register are
shifted to the right.

14-3.3 D REGISTER COUNTER. Fig. 14-15 shows the operation of the D register counter.
As pointed out earlier, the D register is always preset to a negative number and
then counts up to a negative zero, i.e., all ONES. The counter logic says that
Di-j will not be complemented unless all the bits to the right of Di‘j (i.e.,

D, ., the rough Di'(j—l)) are ONES.

14-3.% SHIFTING OPERATION. Fig. 14-16 shows the circuitry arrangement for shifting left
and right. The A register shift circuits are shown in Fig. 1L-16 (the B register

shift circuits are similar in arrangement) .

The shift circuits must have sufficient flexibility to accommodate all the possible
fractures and instructions. To provide this flexibility, the quarters are designed
with "shift coupling units” at the ends. The shift operation involves a bit-wise

Jam transfer.

Note that the shift right circuitry has a coupling unit at the left end. This
unit determines what bit (if any) will have its content shifted into Ai-9 when
the L§HB-—A pulse is fired. There are eight possible transfer paths into Ai'9:
AK-l —— Ai'9 (K =1, 2, 3, 4) and (in AB type coupling) BK'l R Ai-9
(K =1, 2, 3, 4). Which of the eight possibilities used is determined by the
fracture and the instruction. The coupling unit contains the necessary logical

circuitry for making the decision.
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14-3.5

The shift left circuitry is similar to the shift right circuitry with one slight

variation. In some instructions, e.g., SCA, and fractures, A, is the sign bit.

i-9
For these instructions the instruction logic may not shift Ai-8 into Ai-9' For
this reason, the shift left circuitry has two Shift Left Coupling Units: one at
the right end of the quarter and the other between the Ai-S and Ai'9 bits.
CARRYING OPERATION. TFig. 14-17 shows a logical block diagram and transistor block

schematic of the A register carry scheme.

First consider the logic of the carry scheme. The right end of the carry out in
the quarter is driven by a Carry Coupling Unit. This coupling unit has a similar
function to the shift coupling unit described above. It determines what data

will be carried into (or through) the guarter. The carry inputs are the Di-9
states of each quarter and the "carry outs" (CYOi) of other appropriate guarters.

The selection logic is based on the instruction (DIV or DIV) and the fracture.

The logic can be broken down into two parts: the bitwise carry logic within a
quarter, and the logic involved in carrying between quarters.

Consider a typical stage for i # 1. The carry into this stage (CYIi-j) is
identically the same as the carry out of the previous stage (CYOi-(j-l))'

This carry circuit is used to propagate a "complete carry” through the A register.
For example, in MULtiplication a number of partial adds and multiply steps is
followed by a final complete carry. At any one stage in the execution of the
MULtiplication, the A register contains the current accumulation of partial
additions and the C register contains the current accumulation of partial

carries. In the complete carry, the carry bits in C must be correctly brought
down into the A register. The lggE-—-pulse does this.

If a carry level into the i*J stage (CYI j) is present, it will complement
Ai-j- when the‘—b A pulse is fired.

A carry out of the i-j stage will occur whenever Ci-j’ or Ai-j and a carry in
. ce .
(CYIi'J), occurs

A carry into a quarter (CYIi) will occur whenever the carry coupling logic is

satisfied. The 1.1 stage will then treat CYIi as a normal CYIi-j- is treated.

A carry out of the quarter (CYO ) will occur if either a carry into the quarter
occurs (CYI,) and the quarter contalns all ONES (A ), or if a carry out of the
i

i.9 stage occurs. Note that CYO, will not be generated unless the quarter does

i‘9
not contain all ONES (Ai). This logic allows the carry to bypass the quarter if
it is already loaded with ONES. This saves the time required to propagate the

carry through the quarter.
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14-4 ARITHMETIC ELEMENT LEVEL LOGIC

This section will discuss the interpretation of the control information found in the
AKIROP and AKIRCF registers. It will also discuss in detail some of the special level
logic nets found in the Arithmetic Element. TFor example, the logic details of the shift

and carry circuits will be examined.

1h-b.1 AKIROP AND AKIRCF REGISTERS. The Arithmetic Element receives instruction control

commands for AK type instructions from the AKIROP and AKIRCF registers. These
registers are actually located in the Program Element. Chapter 12 describes how
the AKIROP and AKIRCF registers ére set up. This chapter discusses the decoding
of these registers. Note that AK type instructions which use the Arithmetic
Element are controlled by QKIROP and QKIRCF. These two registers are also dis-

cussed in Chapter 12.

BRISRING I X AKIR ,, DECODING. The AKTR , register is decoded into AKIR%? levels by
1st level decoders. Fig. 14-18 shows the names of the decoded lines.

Fig. 14-19 shows how OP decoders in turn combine the outputs of the 1st
level decoders to generate OP code lines. For example, AKIRDIV is
generated by a net that ANDs AKIR7X and AKIRXY. Note that not all the
Arithmetic Element instructions are decoded in this way, e.g., SUB (77)

is decoded, but ADD (67) is not.

Still another set of levels is generated in the AKIROP decoding process
by class decoder nets. These class levels group the Arithmetic Element
instructions by common characteristics. For example, one level can be

used to indicate a class of instructions in which shifting takes place.

Fig. 14-20 tabulates the logic used to generate the class levels. The
significance of these levels will become apparent when the logic which
uses them is discussed. For reference purposes, a brief description of

each class level is given below:

AKIRSH - is generated when any one of the CYcle or SCale
instructions is specified. These instructions shift data
in A, B or AB as specified by the sign quarters of the
operand in D.

IRSHA

AX AND AKIRSHB - are both subclasses of AKIRSH. The

necessary condition for their generation is that shifting
occur in register A or B, respectively. Note that if

SH SHA
either CAB or SAB is specified, both AKIR , AKIR and

AKIRSHB are generated.
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AKIRCY ~ implies an instruction in which data is cycled in a closed
ring. The form of the closed ring is determined by the specific
instruction and the fracture specified. The instructions which
cycle data are the CYcle instructions and the TLY and DIV

instructions.

AKIRAB - implies an instruction in which A and B are coupled. In
certain instructions the subwords of A are extended by joining
them to the corresponding subwords in B. TIn this way an AB sub-
word is formed. This occurs in the CAB, NAB and SAB instructions,
as well as in the DIV and MUL instructions.

A+B AB
AKIR (= AKTR ) - self explanatory.

AKIRCY " AB - is an example of class levels being combined to form

a new class level. This level is generated by those instructions
which cycle data from A into B (or B into A) in a closed ring.
The instructions that do this are CAB and DIV.

- (A+
AKIRCY (4+B) - is generated by the CYA, CYB and TLY instructions.
In these instructions data is cycled in register A or in register

B, but not in AB.

AKIR2N - controls allowable shifting. Earlier in the chapter

(Fig. 14-8), we saw that ASK is used in the CYcle, SCale, NOrmalize
and TLY instruction to prevent excess shifting from occurring. In
the case of CAB, NAB and SAB, ASK limits the shifting to
(approximately) twice the subword length specified by the fracture.
AKTR is generated in these instructions to indicate the double
length shift allowed.

AKTRY (= AKIREN) - self explanatory.

AKIRNOR - is generated by the two NOrmalize instructions, i.e.,

NOA and NAB.

AKIRADD - is generated by either the ADD or SUB instruction. Note
UB ADD
that when SUB is specified, both AKIRS and AKIR are generated,
_ADD
but that when ADD is specified only AKIR is generated.
AKIROCSAL - is used in the OCSAL alarm logic. The AKIROCSAL level

is generated when AKIR specifies an undefined Arithmetic Element

[0)3
instruction. All the Arithmetic Element instructions are in the
60's and TO's, but 63 and 73 are not defined. Note that this

level includes AK; 1 as a factor.
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A
AKTR OP - is generated whenever an undefined AOP instruction is

specified. Note that currently the defined AOP instructions are
limited to the Arithmetic Element instructions, hence the same

logic that generates AKIROCSAL also generates AKIRAOP'

1k-h.1.2 AKIRCF DECODING. The AKIR o register is decoded to generate fracture

C
(f) and activity (a) levels. Bits AXTR determine the activity,
-4
and bits AKIR,, determine the fracture. The table on Fig. 14-21
9-8

shows the AKIRCF decoding. Note that a gquarter is activated by an a}
1
level and that the ai level is in turn generated by an associated

AKIRO level.
CFJ

Fracture decoders use the a's and f's as inputs to generate Romen
numeral levels. The unsubscripted Roman numerals (RN) indicate the
sign quarter of a subword which contains at least one active gquarter.
For example, IT indicates that quarter 2 is a sign guarter and that it

is part of a subword which is at least partially active.

The subscripted Roman numerals (RNi)Vindicate that the i-th gquarter is
active under a certain special condition. This condition is that the
i-th quarter is part of a subword whose sign quarter is given by the
Roman numeral. For example, IVl indicates that quarter 1 is active and

is part of a subword which has quarter 4 as its sign quarter.

A pictorial representation of these Roman numeral levels is shown in

Fig. 1L4-21. The conditions for generating these levels are:

Roman Numeral I. The only occasion when gquarter 1 is the leftmost
quarter of a subword which contains at least one active quarter is
when quarter 1 itself is the subword. Thus, I = Il- (Wote this
same argument makes III = IIIB.) I is generated in both the f3
(21,9) and ), (9,9,9,9) fractures when dquarter 1 is active

(a])-

Roman Numeral IT. A threefold possibility exists: either the

first quarter is active and there is an T, (18,18) fracture, or
the second quarter is active and there is an f2 (18,18) or fh
(9,9,9,9) fracture.

Roman Numeral III and IV. The logic here is similar to that

1
described for T and ITI. Note that IVl+ = ah.
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ALL ZEROS (Ag), ALL ONES (Ai) LEVEL LOGIC. The logic generating the AC and Al
1

levels is shown in Fig. 14-22. These levels indicate that the quarters are
0

filled with all ZEROS (or all ONES). Ai and Ai are used in the carry and jump

logic.

SIGMA (o) LEVEL LOGIC. Ai 9 = Ai 8 implies sigma (g—). Fig. 14-23 shows the

explicit logic generating the sigma (o—) level. This level is used in the

NOrmalizing instructions to indicate that Ai = Ai 8 and that consequently the

9

normalization process is not yet finished.

SHIFT COUPLING UNITS. These units are logic nets which determine how the quarters
of A and B are coupled together during shift instructions. In (A + B) type
instructions the quarters of A are always coupled to other quarters of A, and
similarly the quarters of B are always coupled to other quarters of B. In AB

type instructions cross coupling between the registers can occur.

Fig. 14-24 shows the logic that relates the inputs and outputs of the Shift
Coupling Units shown on Fig. 14-16. Fig. 1L4-25 shows the corresponding shift

coupling logic for register B.

For the moment consider Fig. 14-24. Note that all of the shift right logic
involves inter-quarter shifting. If the instruction is an (A+B) tybe, A
will be shifted into A, ., -
i.9's
fracture. If the instruction is an AB type,

i.l's

The specific bits shifted will depend on the

B. ., will be shifted into A,
i.1l's i

Again the specific bits shifted will depend on the fracture. Regardless of

.9's

which type instruction is involved, i.e., (A+B) or (AB), certain quarters of A
will be coupled to other quarters of A by the last term in the shift coupling

logic.
The logical format for shifting in B is similar and shown in Fig. 1k-25.

Fig. 14-26 shows a specific example of shift right coupling for both an (AB) type
instruction and an (A+B) type instruction that have an £, fracture. Note that

in both instructions the same logic couples A to A3 and A2 to Al. In the (AB)
type instruction, the sign quarters of the subwords are Ah and A2, respectively.

No shift into Ah 9 or A will occur unless the instruction is a shifting

2.9
instruction which ignores the sign bit, i.e., CY + AB = CAB + DIV. Since Bu and
32 are not sign quarters, it is only necessary that the instruction be an AB

type, i.e., (CAB + NAB + SAB) + (MUL + DIV) in order that A

Bh.g and Al.l be coupled to B

3.1 be coupled to

2.9°

Note in Figs. 14-24 and 14-25 that the fractures in the column "independent of
AB/(A+B)" are always the complement of the fractures in the "AB and A+B" columns.
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The inter-quarter shift left logic shown on Fig. 1L-2k and 14-25 is similar in
format to the shift right logic with one important exception. Since in a shift
left instruction we are always shifting information into i.l, there are nc sign
bit considerations. This means that the shift is independent of whether the
instruction is or is not of the CY type and depends only on whether it is of the
(AB) or (A+B) type.

In the case of shift left, coupling units are also required between the i.8 and
i.9 bits, i.e., Egzzg—register coupling exists. If a CY type instruction is
involved, no sign bit consideration is involved and i.8 is always coupled to i.9.
If the fracture is f (36) or £, (18,18), 1.8 will always be coupled to 1.9,
since in either fracture 1.9 is not the sign bit. Similar logic is involved for
coupling into 2.9, 3.9 and 4.9 during a shift left. Note that 4.9 is always a

sign bit regardless of the fracture.

If an AB instruction is involved, Bi 9 will never be a sign quarter, therefore

B,.g is always shifted into Bi 9 on a shift left instruction.

In passing, it might be mentioned that the speed of the coupling logic nets them-

selves becomes critical if the shifting rate approaches 5 megacycles.

CARRY COUPLING UNITS. Fig. 14-27 shows the logic that relates the inputs and
outputs of the Carry Coupling Units shown on Fig. 14-17. Note that CYIi
represents a carry into the i-th quarter, while CYOi represents a carry out of

the i-th quarter.

For DIV type instructions, the carries are propagated in a ring whose constituents
are determined by the fracture. For example, suppose an f2 fracture is specified
for a DIV type instruction. The Quarter wise carry picture would then look as
shovn in Fig. 14-28(a).

In the DIVide instruction a 2's complement-like arithmetic is used. The logic of
this arithmetic requires that a 1 be added if the sign bit in D is negative.

This is shown in Fig. 14-28(b). The inter-quarter carry logic is the same for
both DIV and DIV instructions. Only the end around carry differs for these two

cases.

Note that the carry logic format shown on Fig. 1L-27 is very similar to the shift
logic format shown on Fig. 14-24k and 1Lk-25.

ARJ 1LEVEL IOGIC. AEJ is a level which indicates whether a jump is to be made,
based on the contents of the Arithmetic Element. It can be generated during a
JPA, JNA or JOV instruction. The function of AEJ for each of these instructions

is as follows:
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JPA - If some active subword contains a positive non-zero (arithmetically)
number, AEJ will be generated and cause the output of the XA (X Adder) to be

copied into P.

JNA - If some active subword contains a negative non-zero (arithmetically)
number, AEJ will be generated and cause the output of the XA to be copied
into P.

JOV -~ 1If some active subword has a Z flip-flop in the sign digit position
set to ONE, AEJ will be generated and cause the output of the XA (X Adder)

to be copied into P.

Fig. 14-29 shows the logic generating the AEJ level. Note that the presence of

any one of the terms is sufficient to generate AEJ.

As an illustrative example, the conditions for causing a jump based on the con-
tents of A2 will be discussed. If a JPA is executed, PKIRJPA will be generated.

EXT ACT
QKIR 2 indicates that the quarter 2 of the Arithmetic Element is active,

while Ag indicates that the sign bit is positive. Note that A2 9 is the sign
bit in an f, (18,18) or f), (9,9,9,9) fracture. The additional factor in the term

on Fig. 14-29 insures that the active subword contains a non-zero number. Note

that in an f2 (18,18) fracture it is sufficient that quarter one not contain all
T

ONES or all ZEROS , i.e., Al . Ai . QKIRf2; while it is sufficient in an f2

(18,18) or fh~(9’9’9’9) fracture that quarter 2 not contain all ONES or all ZEROS,

1. Ag - qxrri2t ).

i.e., A2

The logic for JNA is the same, except that A2 9 must be in the ONE state.

q

(9,9,9,9) fracture. Z, is in a sign quarter in an f, (18,18) or f, (9,9,9,9)

fracture, etc. Note that Zu is always in a sign quarter regardless of the

The JOV logic is also similar. Z. is in = sign quarter in an f_ (27,9) or f,

fracture.

L9 o amP LEVEL LOGIC. L @ AEP is used to clear to ZERO the AEP (Arithmetic
Element Predict) interlock flip-flop. (See Chapter 10.) AEPO indicates that the
Arithmetic Element will soon be available for use by another Arithmetic Element
instruction. For each Arithmetic Element instruction and configurafion an event,
before the completion of the AK cycle, is chosen to generate the l—O--"AEP level.
The AEPO level effectively predicts the maximum time required for the balance of
the AK cycle. This maximum of the maximum times is 2.8 microseconds and occurs
during an ADD instruction with an —Z fracture. During other instructions and

with other configuration the time can be less.
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Fig. 14-30 gives the anticipatory logic for generating the LEL*O AEP level. The
first term in this logic is concerned with the NOrmalize instructions. Tn these
instructions the data in the subword is shifted until the value of the data lies
between 1/2 and 1, i.e., the left-most bits in the sign quarter must be 01 or 10.
If the sign quarter contains neither all ZERCS nor all ONES, the greatest number
of shifts that can occur before the data is normalized is eight. For example,

suppose the subword contains the following data:

SIGN QUARTER
[TTr1T111310 ] XXXXXXXXX]

If a NOrmalize instruction is executed, after seven shifts the data will be

normalized, i.e., the sign quarter will look as follows:

10X XXX XXX]

The example just given was a "worst condition” case. The data to be normalized

might have been:

110XXXXXX|

In this case only one shift is required to normalize the data.

Note that if the sign quarter is quarter 1, then a Roman numeral I will be
generated, and it is necessary tc know only that this quarter does not contain
all ZEROS or all ONES to know that a maximum of seven shifts will occur before

the data is normalized.

In the case where the subword contains the following data,

SIGN QUARTER
[T111113111 | 111110XXX]|

0 0
six shifts occur before the |——0AEP level is generated. AEP then indicates
that a maximum of seven additional shifts will follow before the data is fully

normalized.

The second term in the LO—’AEP logic is concerned with the SH instructions
(i.e., CYcle and SCale). Since the D counter always counts up to zero from some
negative value in these instructions, it is always possible to know how long the
count will take to complete from an arbitrary but predetermined counter state.
LAD is used as the reference event in the count. LADi anticipates how long it
will take to complete the count in the i-th quarter of D. If a Roman numeral IT
is generated, we are interested in the LAD2 level, etc. The logic here is very

similar to that for the NCR instructions.
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The third term in the L——-OAEP logic is associated with the ADD, SUB and DSA
instructions. In this case, the balance of the AK instruction time depends only

on the reference AK state.

Tn the DIVide instruction, it is necessary to know both the state of the AK

counter and the ASK counter to predict the balance of the AX instruction time.

The fifth term is concerned with the case where the ASK counter overrides the

D counter. This is the case where some active subword contains all ZEROS or all
ONES. In the NOrmalize instructions, after a certain number of shift counts
have occurred, AEPO will indicate that there are at least no more than 6
additional shifts to occur. In the TLY instruction, after a certain number of
shifts counts have occurred, AEPO will indicate that there are exactly 6

additional shifts to occur.
The MUL term logic is similar to the DIV term logic.

Finally, in the case of an undefined AOP instruction, a finite time exists

AQP
between the generation of the AKIR level and the completion of the AK cycle.

AOP
Note that AKIR o includes an AK time level, i.e.,

e F - A ((AKIRg); . AKIR?;) + AKTRN

3
.l )

ARITHMETIC ELEMENT REGISTER DRIVER LOGIC

The remainder of the chapter will discuss the specific register driver pulses found in

the Arithmetic Element and the logic generating these pulses.

A11 of these register driver pulses are tabulated on Fig. 14-31. This figure shows the

various logic and counter time levels that are found in the register driver logic.

example, the sigma () levels are found in both the D counter register driver logic and

in the shift register driver logic.

Fig. 14-32 tabulates all the pulse gate logic. In some cases the gating logic is quite

simple, in other cases it is quite complex, e.g., the gating logic for the Z flip-flops.

Once the logic generating the register driver pulse is known and the pulse gating logic

is known a comprehensive picture of the register operation can be established.

14-5.1 Dil + 1——D  ED LOGIC. (See Fig. 14-33). Counting will occur in the

quarter of D corresponding to the sign quarter of the subword in A. The Roman
numerals indicate the sign quarters. The FDi levels indicate when the D counter

has counted up to zero. The count pulses are then inhibited by the FDi levels.
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1
In the SH type instructions (CYcle and SCale), counting is initiated at Ky, 3
1 .
Overflow control occurs at AKa 3 and then AK counts on to AKé L The major
. 1 .

portion of the counting in D then occurs in AKa L

In the TLY instruction, D counts the ONES that appear in the sign bit of A at
AKé , 88 the subword is cycled (rotated).
During the NOrmalize instructions, D counts, i.e., continues to normalize, as

long as Ai = Ai 8 This equality is indicated by the o¢° (sigma) levels.

9
Note that ASK can override the D counters by forcing AK into a new time state
even though the D counter register driver logic is not satisfied. D then.stops

counting, even though the FDi levels are not generated.

A REGISTER SHIFT RD LOGIC. (See Fig. 14-34). During a TLY instruction, shifting
to the right occurs in all the active quarters of A. The shift decision is

independent of any fracture considerations.

During a NOrmalize type instruction, the active quarters of a subword are shifted
to the right if the 7Z flip-flop in the sign quarter of the subword indicates an
overflow. Note that there are three possibilities that can cause a shift right

to occur in A.

Zi - I Quarter 1 is active and is also the sign quarter. Zi - I
indicates that quarter 1 is part of a subword in‘which an
overflow condition exists.

1 . . . . 1

Z2 . IIl Quarter 1 is active and the sign quarter is quarter 2. Z.2 . IIl
indicates that quarter 1 is part of a subword in which an over-
flow condition exists.

Zi . IVl Quarter 1 is active and the sign quarter is in quarter L,

Zi . IVl indicates that quarter 1 is part of a subword in which

an overflow condition exists.

The shift right logic for the other quarters of A during NOrmalize type instruc-
tions is similar to that just described. The shift left decision is made if
Ai.9 = A, g as indicated by the o~ (sigma) levels.

Note that if there is to be a shift right it will occur at AKé.2. At the com-
pletion of the shift right, Ai.9 % Ai.8 (see Fig. 14-43 for the NOR logic that
complements Ai. at Axé.z), therefore the o~ (sigma) levels will be zbsent and

9
no shift left will occur at .l
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The shift logic for the SHA type instructions is similar to that for the NCR type
instructions. The shift right decision is made if the operand sign bit is

negative (Yi = D1.9)’ and left if the sign bit is positive (Yg = Dg 9). Note
that FDl is used both for inhibiting the counting in D and for inhibiting the

shifting in the SH instruction.

A shift left in the active quarters of A occurs in the DIVide instruction. A
shift occurs during each iteration as ASK counts up to zero. During the count up
to zero, ASK is in the ONE state. One more shift occurs after ASK reaches the

zero state. This shift is taken care of by the ASK? term.

B REGISTER SHIFT RD LOGIC. (See Fig. 14-35). The B register shift logic for the
NAB and SHB instructions is identical to the A register shift logic for the NOR
and SHA instructions, respectively. During the MUL instruction, a shift right
occurs in all the active quarters of B at AK3.3. Similarly, during the DIV

instruction, a shift left occurs in all the active quarters of B at AKi 9°

MULTIPLY STEP RD LOGIC. (See Fig. 14-36). The Multiply Step pulses are fired

off repeatedly during the MUL instruction. The two pulses involved are:

MULT STEP Ai, Ci. This pulse is fired off in all the active quarters.
Note that this pulse effects only bits 1.1 through i.8.

{MULT STEP SIGN4=§A. Lol .
i.9 i.9
bits which are not sign bits. The logic for the MULT STEP SIGN pulses

This pulse is fired off only for those i.9

indicates that the pulse will be fired off for the 1.9 bits, only if the
sign quarter of the subword is to the left of the quarter in which the 1.9

bits are located.

COMPLEMENT C RD LOGIC. (See Fig. 14-37). This logic is not currently used. The

complement nets have, however, been partially incorporated in the computer.

CARRY RD LOGIC. (See Fig. 14-38). During a DIV instruction, a LEEE—-—pulse
will be fired off in all the active quarters of A. Note that DIV uses a twos -
complement arithmetic. The logic of this arithmetic 1eéves the carry loop open
(see Fig. 14-28(v)).

The DIV instructions involve an "end around carry”. The logic involved closes
the carry loop (see Fig. 14-28(a)). If the subword in A contains all ONES, the
loop tends to exhibit instebility in the presence of noise. That is, it can
generate a carry level by itself. For this reason, the Lgy—.—pulse is not
fired off in a quarter if the subword containing it holds all ONES. For example,
the LSBX—-Al pulse is not fired off unless: (1) either Al does not contain all
ONES; or (2) A, does not contain all ONES and there is an f, (36) or £, (18,18)
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fracture; or (3) A3 does not contain all ONES and there is an fl (36) fracture;
or (&) if A) does not contain all ONES and there is an f. (36) fracture.

PARTIAL ADD RD LOGIC. (See Fig. 14-39). The execution of the MUL instruction
involves the iteration of a "partial add - multiply step” loop. The loop looks

somewhat as follows:

Entrance

v

PAD

!
|
[___ifD

Exit

1
The PAD pulse, encountered before the loop is entered, occurs at AKB o7 while the
1 .

PAD pulses in the loop occur at AKB 3"
PAD f7l on Fig. 14-39 pertains to the MUL instruction. The logic ANDed with
PAD [7i says that the i-th PAD pulse is fired off if the rightmost bit in the
subword in B is in the ONE state and the i-th quarter is active. For example, a
partial add pulse is fired off in quarter 4 if an f, (27,9) fracture is involved

3

cr e s . ]
and the B, , bit is in the ONE state at (Al{é'3 AKE.Z)

The execution of the DIV instruction involves the iteration of a "partial add -

carry". The loop in this case looks somewhat as follows:

Entrance

A4
Kl

CRY

{

PAD

-

Exit

1 :
The PAD pulse, encountered before the loop is entered, occurs at AKé 3; while

1
the PAD pulses in the loop occur at AKE 9-

PAD [12 pertains to the DIV PAD pulse that is fired off before the loop is

entered. Note that this pulse is fired off in all active quarters.
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at AKé 1 sets up C for the first PAD pulse. The (L Ci at AKa

PAD ¢ pertains to the DIV PAD pulses that are fired off in the loop. The

early pulses in the loop are conditional on the state of the ASK counter and the
fact that the quarter is active. Notice that RNi::D ai'. The last PAD pulse

fired off is conditional not on ASK, but on the sign of the subword. This is
why the PAD ¢'s must be ANDed with the subscripted Roman numerals and not just
the activity levels. As ASK counts, PAD @ looks at ASK7, ASKl and Ai 9° Thus,

ASK COUNTER
1111110 ASK$ D PAD ¢i where i = 1,2,3,k4
1111111 ditto
0000000 ASKS D PAD ¢ vhere i = 1,&,3,4
1
. 0

NE, AS A A

0000001 ASK7 # ONE, K] # ZERO, PAD ¢1 > 1.9

PAD ‘12 also takes care of the single partial add pulse that is fired off in

1

the DSA, ADD and SUB instructions at AKB X

A,B,C AND D CLEAR RD LOGIC. (See Fig. 14-40). First consider the li.A,B,C

and D levels which cause the LO——--A,B,C and D pulses to be fired off. These
levels are triggered by QK time levels. If an operand is to be stored in the

P Memory, the selected register will first

220
be cleared at QK 2 . The A register is also cleared in the ITA and INS

220
instruction at QK . If the Arithmetic Element registers are to be loaded,

Lo
they will first be cleared at QKl .

1 .
The active quarters of A will be cleared in a MUL instruction at AKa 5" This

occurs immediately after the contents of A have been transferred into B, i.e.,

1
at AKa.l'

1
The active quarters of C will be cleared in an ADD or SUB instruction at AKa 1

1
Bg.2*
cleared in the MUL and DIV instructions at both AKX

just before the PAD pulse is fired at AX These quarters of C will also be
L andAKl . The Ii>C.
1 a.81 i

leaves C

.8

cleared in both the MUL and DIV instruction at the end of the instruction. In
the case of the DIV instruction, it also clears C at the same time the carry

occurs.
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7, PULSE GATE TOGIC AND RD LOGIC. (See Fig. 14-L1). See Fig. 1k-4 for the function

of 7 in the various instructions. Z is cleared in the sign quarter at the begin-

1

ning of the ADD, SUB and MUL instruction. This occurs at AKa 1 Note that in
Si :

the case of DIV anl_;*g___ﬁﬁL.Z pulse is fired at AKl . If the sign bit is

positive ( Ai 9), 7 is cleared to ZERO; if the sign blt is negative (Ai ;), Z
is set to ONE.

In the case of SCA, SAB, NOA and NAB, the instruction leaves 7 cleared. The

clearing occurs at MULtiplication always leaves Z cleared. In the MUL

a. 3
case, Z is cleared at AK 0.9
1

In the case of MULtiplication, Z is cleared at AKa 1 and then the sign of A is
placed in Z at AK; o° Tn the case of DIV, an overflow can occur. This is taken
care of by reading the sign of A into Z near the end of the instruction, i.e.,

1
at AKa.ll'

The rest of the Z logic 1s used in the ADD and SUB overflow logic (see Fig. 14-5).

7 is first cleared at AKa 1 The signs of D and A are compared at AK 2.3 If
they are the same, Z is set to ONE. The A register contains the addend or sub-
trahend at AKé 3 At the same time the signs are examined, the PAD pulse is

fired off. After the carry is completed, the A register contains the sum or
difference. At AKa 9 the sign of D and A are again examined. If they are the
same, 7 is cleared by the Reset Z logic. If they are different, the ONE left

in Z indicates an overflow condition.

A REGTISTER COMPLEMENT RD TOGIC. (See Fig. 1L-42). The subword will be com-
plemented at the end of the MUL and DIV instructions if Z % Y in the sign
quarter, i.e., at AKa 9 and AKl 11 respectively.

Tn the DIV instruction, A is complemented at the beginning of the instruction at
AKé 12 if the sign of the subword is positive.
A is also complemented during the INS and ITA instructions as part of the

execution logic.

Note that I_Q_,, A, complements A, through A_ .

i i.1 i.9
Tn addition to complementing the quarters of A, it is possible to complement the
Ai.9 bits individually. In SCale instructions, if an overflow from a previous
instruction exists in the sign quarter, the sign bit in A is complemented. If
the SCale instruction calls for a shift left (Y ), the sign bit is complemented
at AK If the SCale instruction calls for a shift right (Y ), the sign bit

is complemented at AK .3
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Finally, in a NOR instruction, the sign bit of A is complemented if an overflow
from a previous instruction exists in the sign quarter. This occurs at AK; o
B REGISTER COMPLEMENT RD LOGIC. (See Fig. 14-43). If a negative subword is

placed in the B register in a MUL instruction, the subword will be complemented
in the B register. This occurs just after the multiplier in the A register has

been transferred into the B register, i.e., at AK; Thus, MUL is always

2"
executed with a positive multiplier in the B register.

During a MUL instruction, the B register is also complemented at the end of the

AK cycle, i.e., at AKé , if Z is not equal to Y. This is part of the sign

9

control logic.

In a DIV instruction, the minor half of the dividend, located in the B register,

is complemented at the beginning of the instruction, i.e., at AKé if the sign

B
of the major half of the dividend located in the A register is poéitive. This is
the significance of the Lg—-Bi : RNi logic. The B register is also complemented
at the end of the instruction when it contains the remainder, if the Z flip-flop

in the sign quarter of A is in the ZERO state at AKé.ll'
The B register is also complemented in the INS instruction at QKlOa and QKzla

as part of the execution logic of that instruction.

D REGISTER COMPLEMENT RD LOGIC. (See Fig. 1h-LL). Consider first the complement
D logic used in the NOR instructions. Since D counts up to zero, the memory
operand in D is always complemented at the beginning of the NOR instruction,

i.e., at AK; The D register is then complemented at the end of the normalizing

.37

to restore the operand to its original value. The end of the normalizing occurs

when Ai 8 # Ai in the sign quarter, i.e., g— 5 hence the (RN¥ + ~ &= ) factors.

9
: 0 0

If the date to be normalized should contain all ZEROS or all ONES, ASK6 . ASK7

would indicate the end of the normalizing, i.e., ASK overrides the D counter and

the 0 condition is ignored.

The logic for complementing the D register in other instructions is basically
covered by the ¢ terms. First consider the SH type instructions, i.e., the SCale
and CYele instructions. The sign quarter of D is complemented if the sign of
that quarter is positive, i.e., the sign quarter (which is the quarter in which
the counting occurs) is always made negative. The logic shown on Fig. 1h-LL

may look peculiar for these instructions until the following facts are realized:
Ql and Q3 are used only in the logic for quarters 1 and 3, respectively; whereas
Q2 and Qh are each used in the logic for more than one quarter. Therefore, the
SH terms for quarters 1 and 3 can be included in Ql and Q3, respectively; whereas

separate terms are needed for quarters 2 and L.
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Now consider the balance of the $ logic. Remember that AKIRADD covers both the
ADD and SUB instructions. In a SUB instruction the active quarters of D are
complemented at AKé.E. At AKé_g’ the active quarters of the subword in D are
complemented in the ADD and SUB instruction, if the sign of the subword at this
time does not equal Y, i.e., Yi # Di.9' Note that in SUB D is complemented.twice;

whereas in ADD D is complemented just once.

In the DIV instruction, the data in the D register is always made opposite in
sign to the data in the A register before the partial addition occurs, i.e., D
is complemented if D, = A, at AKl . Remember that the PAD pulse is fired
i.9 i.9 a.2 1
off both at AKé 3 and AK% 9° Therefore, D is complemented at AKa 9 for the same
. . 1 .

reason. Finally, D is complemented at AK as part of the sign control logic

.11
if Yl % Di This makes the sign of D equal to its original value.

9°

In the MUL instruction the D register is complemented at AKé 5 if the subword in
1 .

D is negative, i.e., if Yl. The D register is complemented again at AKa if

9

Yi in order to restore D to its original value.

14-5.13 E——w A, B, C AND D RD CONTROL. (See Fig. 1L-L5). The only way that data can
be placed in the A, B, C and D registers in the Arithmetic Element is via the
Exchange Element, more specifically via the E register. This occurs in the

following situations:

1) During LD type instructions, when the A, B, C or D registers are

21
specified, the transfer occurs at QK .

2) 1In the execution logic of the ITA and UNA instructions, the data found
23
in E at QK 3 is transferred into the A register.

3) If a STORE instruction involving the VF Memory specifies one of the

i
Arithmetic Element registers, data is transferred from E into the

230
register at QK 3 .

As we saw earlier in the chapter the data that is transferred from Ei 9 into

D, 9 is also transferred by the same register driver pulse into Yi.
1. —_—

14-5.1% A —3 w B AND B —3—# A RD CONTROL. (See Fig. 1L-46). Note that these
transfers are of the jam type. They occur in the MUL and DIV instruction under

the following circumstance:
1) One of the first things that happens in a MUL instruction is that the

data in the active quarters of A (left from a previous instruction) is

1
transferred into the corresponding gquarters of B. This occurs at AKa 1"

March 1961 14-35



2) The execution logic of the DIV instruction generates the guotient in the
1
B register and the remainder in the A register. At AKa 10 the active
quarters of A and B are interchanged so that A contains the quotient and

B contains the remainder.
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CHAPTER 15
IN-OUT ELEMENT

15-1 INTRODUCTION

The In-Out Element provides a communication link between the external world and the
computer. Before events occurring in the external world can communicate with the
computer they must be synchronized, i.e., brought in step with the periodicity of the

computer. This synchronizing occurs in the In-Out Element.

A1l of the in-out data transmission devices, as well as certain asynchronous events such
as in-out alarms and those events initiated by certain manual controls, communicate with
the computer via the In-Out Element. However, some asynchronous events, such as most of

those initiated at the control console, communicate directly with the Control Element.
The In-Out Element must provide the necessary logic for accommodating the special oper-
ating characteristics of many different devices. It is this accommodation requirement
that makes the In-Out Element such a complex communication link.

As described in Chapter 3, the solid state circuitry used in the In-Out Element is
slower than the circuitry in the central computer. The logic reflects this, and also

the fact that level transitions and 0.4 microsecond levels are used to generate pulses.

The chapter begins with a block diagram discussion of the In-Out Element. This discussion

establishes the basic components and communication paths.

Because the in-out frame has a rather complex physical structure, the layout of the

In-Out Element is discussed in some detail.
A discussion of a typical In-Out unit and sequence switch then follows, since these
components are found in all sequences and have common characteristics regardless

in which sequence they are found.

The two In-Out OP codes, IOS and TSD, are then discussed. The logic and communication

paths these OP codes use are discussed in detail.
The chapter concludes with a logical description of the individual In-Out units.
15-2 IN-OUT ELEMENT BLOCK DIAGRAM

Fig. 15-1 shows a block diagram of the In-Out Element. The diagram indicates the

communication paths between the In-Out Element and the central computer.
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The In-Out Element includes:
1) Input-Output Devices
2) In-Out Bus

3) Sequence Switches

Since only one In-Out device can communicate with the central computer at a time, it is
possible to have all the devices use a shared In-Out Bus. An elaborate switching arrange-
ment is required to properly connect the selected In-Out device to the bus. This
switching is taken care of by the individual sequence switches associated with each

In-Out device.

Once an In-Out device is properly connected to the In-Out Bus, it can communicate with
the central computer. While it is difficult to make a sharp distinction, generally the
communication will involve transmitting either data information or control information.
Each bus between the central computer and the In-Out Element is used to transmit a

specific type of information. For example:

IOBM Bus -  This bus is used to transmit data information from the
In-Out Buffers to the E register. It is also used to
"report" the control state of the In-Out devices to the

E register.

E Bus - This bus is used to transmit date information from the

E register to the In-Out Buffers.

N Bus - This bus is used to transmit mode control information

from the N register to the In-Out devices.

TOCM Bus - This bus is used to transmit control information from
the In-Out devices to the Control Element in the central

computer.

Hi Speed Bus - This bus is used to transmit control information from

the Control Element to the In-Out Devices.

Note that these buses are "shared”" by all the sequences. In addition to these shared
buses, there are individual cables that run between each sequence switch and the Sequence
Selector in the central computer. These cables transmit the "Raise Flagd signals to the
Sequence Selector from the In-Out devices. They also transmit KDi and NDi sequence
selection levels to the sequence switches during TSD's and IOS's, respectively. (The

L
function of KD 1(0) will be discussed later.)
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15-3 PHYSICAL LAYOUT OF THE IN-OUT ELEMENT

15-3.1 GENERAL DESCRIPTION. An elaborate cabling and busing arrangement is required to
interconnect all the parts of the In-Out Element to the central computer. This
results in the In-Out system being physically complex as well as logically
complicated.

The heart of the cabling and busing arrangement is the In-Out Frame. This frame
or section is located at the far left end of the central computer structure
(facing the front). The frame contains an open wire bus structure and all the
sequence switches associated with the various In-Out devices. Flexible cables
connect the In-Out section to the central‘computer and to the individual In-Out
devices. Note that the individual In-Out devices themselves can consist of
several chassis and control panels and require extensive interconnection. An
example of this is the XEROX printer. Fig. 15-2, 15-3 and 15-4 show the cable

interconnections for all the sequences.

15-3.2 IN-OUT BUS. There are two open-wire buses running horizontally down the In-Out
section (see Fig. 15-2). The top bus has 100 wires and the bottom bus has T2
wires. Each bus has 37 positions where 10k-pin receptacles and 75-pin receptacles,
respectively, provide access to the buses for external connection. Since all 37
receptacle locations are logically identical, convenience alone determines which
sequence is assigned to which location. Signals from the central computer are
routed into the In-Out Bus at the left end of the In-Out section (1looking at the
section from the rear). Signals to the central computer are routed from the

In-Out Bus at the right end of the In-Out section.

A 10-conductor video cable is jumpered between the T bars on the In-Out section
occupied with sequence switches (see the jumper between Sequence 66 and T2
identified on Fig. 15-2). This video cable is the In-Out High-Speed Control Bus.

It also runs horizontally down the In-Out section.

In addition to the cable terminating devices found at either end of the In-Out
. . . . MEIA + MISIND
section, there are two logic nets involving IOB 9 and TOC . These

nets will be discussed later in the chapter.

15-3.3 CABLE INTERCONNECTIONS BETWEEN CENTRAL COMPUTER AND IN-OUT SECTION. These inter-
connections are shown in Figs. 15-2 and 15-4. The E cables from Section BC in
the central computer terminate in cascodes and cable drivers on the In-Out
section. The E cables consist of four 10-conductor video cables, which are used
for transmitting Ei.9 14 (36 wires). These cables connect into the 100 wire

bus .
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15-3.4

15-4 TYPICAL

15-k.1

The N cables from Section BC terminate in cascodes and cable drivers. These in

turn connect into the same 100-wire bus that the E cables connected into. The
1

2.9 - 1.1
(18 wires). Although all 18 bits appear on the bus, only bits 2.3 - 1.1 are

N cables consist of two 1l0-conductor video cable for transmitting N

currently used. Note that both ZEROS and ONES appear on the N bus since the
N cables are tied both directly and through inverting amplifiers to the N bus.

The IOCM cable to the Control Element in Section C of the central computer is
driven by cascodes and cable drivers. These amplifiers are plugged into the
100-wire bus at the right-hand end. The E, N and IOCM cables all interconnect
with the 100-wire bus.

The 75-wire bus transmits only IOBME’; 1.1 (72 wires). Information is carried
back from the IOBM bus to the E regiéter via section BC in the central computer.

This is done using eight 10-conductor IOBM video cables.

15-3.3.1 SEQUENCE SELECTION CONTROL CABLES. Each sequence switch on the In-Out
section is connected by an individual cable to the Sequence Selector
in Section D of the central computer. These cables transmit ihe KDl,
i . cas 1(0 .

ND™ and |[RAISE FLAGi signals. In addition to these, a KD (0) wire

is found in each cable.

CABLE INTERCONNECTIONS BETWEEN IN-OUT SECTION AND IN-OUT UNITS. These inter-
connections are shown on Fig. 15-4. As the figure indicates, considerable
variation occurs in the number of cables required for each sequence. Basically,
the cables are used to connect the In-Out units to the associated sequence

switches on the In-Out section.

The sequence switches themselves provide the link between the cables shown on
Fig. 15-3 and the In-Out Bus itself.

IN-OUT UNIT

GENERAL DESCRIPTION. A typical In-Out Unit consists of the following types of

devices:

1) Data Conversion Devices. For example, a photoelectric tape reader, a

paper punch, etc.

2) Control Boxes. These boxes usually contain the In-Out buffer, the

synchronizer, the control flip-flops and other special purpose circuitry.

3) Non-logical Controls. These are found in various chassis and control

panels and include such items as power supplies, motor switches, etc.
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15-4.2 CONTROL FLIP-FLOPS. These flip-flopsldetermine the logical operation of the

15-4.3
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In-Out unit. The standard In-Out control flip-flops are:

C (Connect Flip-Flop). The In-Out unit is logically connected to the

computer by setting the C flip-flop to ONE. This is done by an I0S
"connect" instruction. C:L gates the RATSE FLAG signals and, usually,
certain other signals such as those caused by the Equipment Inability
Alarm (EIA) flip-flop and the MISINDication flip-flop being set.
Almost all In-Out units have a connect flip-flop.

ST (STatus Flip-Flop). When this flip-flop is set to ONE, it is

permissible for the computer tc perform a TSD in the unit's program
sequence. The STatus flip-flop is set to ONE by the In-Out unit
generating a "completion pulse", indicating that the unit is ready

for another TSD. Almost all In-Out units have a STatus flip-flop.

EIA (Equipment Inability Alarm Flip-Flop). This flip-flop is set to

ONE as a result of some difficulty such as overheating, low paper
supply, etc., in the associated In-Out unit. Not all units have an
ETIA flip-flop.

MISIND (MISINDication Flip-Flop). This flip-flop is only found in

free-running units such as the Magnetic Tape unit. When MISIND is
set to ONE, it indicates that the unit is getting ahead of the

computer, i.e., a line of data has been missed by the computer.

M (Maintenance Circuit). This is not a flip-flop, but rather a circuit

which may include a manually operated maintenance switch. A "fail- safe"
design has been incorporated in the circuit, so that an M (Maintenance)-
level is generated when any one of several conditions occur. Thus an
M level is generated when the switch is open, the unit is not powered
or the unit is physically disconnected. The transition of this level

does not have to be synchronized.

SYNCHRONIZER. Normally when an In-Out unit has completed.its cycle, it will
generate a completion pulse. This pulse indicates that the unit is ready for the
central computer to execute another TSD. These completion pulses occur
asynchronously, since in many cases they occur as a function of the mechanical
cycle of the data conversion device itself. The central computer synchronizes
these asynchronous events by means of IOI clock pulses and a synchronizer. As

we shall see later in the chapter, the output of the synchronizer becomes the
synchronous RAISE FLAG signal that is transmitted to the central computer. The
function of the synchronizer is to insure that the In-Out buffer state will not

change until the central computer has completed its communication with the buffer.
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15-5 TYPICAL SEQUENCE SWITCH

15-5.1 GENERAL DESCRIPTION. Since a large amount of information is transmitted between

15-5.2

15-5.3

the In-Out Element and the central computer, it is important to understand how
this information is routed to its correct destination. Most of this routing
occurs in the sequence switches. The sequence switches provide a method of

multiplexing a number of In-Out units onto a "shared" bus.

One side of the sequence switch is tied to the central computer. The other side
of the sequence switch is tied to the associated In-Out unit. All the information
on the "shared" buses will appear at the input to every sequence switch. It is
then only necessary to provide a logical means for selecting the specific sequence
switch that will pass the information through to the In-Out unit. In certain
cases information will be transmitted right through the sequence switch without
any gating occurring, e.g., this occurs in the case of IOI clock pulses,

|PRESET - I0C levels, etc.

LOGICAL STRUCTURE. The sequence switches vary in complexity, depending on the
nature of the specific sequence. However, there is much that is common to all
the sequence switches. Fig. 15-5 is a block diagram of a typical sequence switch.
It shows in composite form most of the communication that is possible between the
central computer and the In-Out Element, and indicates the kinds of sequence

switch gating which can occur.

The two standard "mixing" packages that are used in the sequence switches are

the input mixers (IM) and the output distributors (OD). (The output mixers (OM)

are logically similar to the output distributors.) The logical operation of
these packages is shown in Fig. 15-6. These are level logic devices, although

a 0.4 microsecond "pulse" is often used as one of the input signals.

SEQUENCE SWITCH LOGIC. No action can take place in the sequence switch during
a TSD or IOS unless the sequence is selected by the KDi or NDi levels,
respectively. The control levels gated by KDi and NDi are shown in Fig. 15-5.
They include the control inputs transmitted to the sequence switch over the
In-Out High Speed Control Bus and the IOCM levels transmitted from the In-Out
units to the central computer. Note that in the case of the input signals, the
levels retain their identity after passing through the selection logic nets,

except that the KD's and ND's are dropped. For example:
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Corresponding

Sequence Switch Sequence Switch
, Input Output
+ +
{ MODE + SELECT - ToC |MODE + SELECT e T0C
ND
0 |O
E—’IOB ~® 10B

The IOCM levels are expressed in terms of the control logic producing them. For

example:
Corresponding
Sequence Switch Sequence Switch
Input Output
— 1 1
¥ - c' - ST ToeM

As mentioned before, certain control signals pass through the sequence switch

without being gated by KDl or NDl. These are the IOI clock pulses, and the Stop

Unit and Preset levels to the In-Out unit; and the RAISE FLAG pulses, and the
MMAIT MISIND ETA

I0C! , IOCM and IOCM levels to the alarm sequence. The reset signal

is gated Dby M so that, when the In-Out unit is in the maintenance state, the

PRESET button on the console will not disturb the unit.

The specific logic used to connect the In-Out buffer to the E bus, the IOBM bus
to the In-Out buffer and the In-Out control, and the N bus to the In-Out control
will be discussed later in the chapter. However, the general features of this

logic will be pointed out at this time.

Data can be transferred to and from the In-Out buffer in three possible modes:
the NORMAL mode, the ASSEMBLY AND FORWARD mode and the ASSEMBLY AND REVERSE mode.

Once the mode transfer is determined, the sequence switch is set up accordingly.

Data is always transmitted to the In-Out unit by first clearing the unit's buffer
and then transferring ONES. For this reason, the output distributors have only
‘one output wire. Data is usually transferred from the E bus to the In-Out unit
in the form of a 0.4t microsecond ground level. The strobing is performed by a

0.4 microsecond negative (-3 volts) level.

Information is "jammed" into the E register from the IOBM bus. For this reason,
input mixers are designed with two outputs. When the gating level is at ground,
both outputs are at ground regardless of the imput. When the gating level is
negative and the input is at ground, one of the outputs will be at ground and one
‘will be negative. If the input goes negative, the output wires will both reverse
their signal levels. Hence data is visualized as represented by the negative

output wires.
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15-6 IN-OUT ELEMENT OPERATION CODES (TSD AND IOS)

15-6.1 GENERAL DESCRIPTION. Fig. 15-7 shows a simplified flow diagram of the TSD and

I0S instructions.

During the execution of a program there is constant communication back and forth
between the In-Out Element and the central computer. That this can occur in a

variety of ways will become apparent in the discussion that follows.

Suppose that an IOS is executed which logically connects the i-th sequence. This
can occur as follows. The IOS will cause the NDi level to be generated in the
Sequence Selector. The NDi level will then allow the N register to communicate
with the i-th control flip-flop via the i-th sequence switch. In this way the
information in the N register during an IOS can be used to set the state of the
i-th control flip-flops and in particular logically comnect (Cl) the i-th

sequence.

At certain specific times the Control Element will transmit TOI clock pulses to
all the synchronizers in the different In-Out units. These IOI clock pulses
"synchronize” the asynchronous events in the In-Out device that are used to
indicate the devices have completed their cycle and are ready to communicate with
the central computer. If a sequence is logically connected (Cl), the output of
its synchronizer will be transmitted to the Sequence Selector in the form of a
LBAISE _ FLAG pulse. At the same time, if an input device is involved, the
output of the synchronizer will be used to gate data from the input device into

the In-Out buffer in preparation for a TSD.

The Sequence Selector may receive "Raise Flag" signals from several sequences,
since more than one sequence can be logically connected at a time. The Sequence
Selector logic then determines which sequence has the highest priority. When
all the necessary conditions are satisfied a change of sequence will occur to the
selected sequence. At that time the KDi level will be generated. When a TSD now
occurs in the program of the current sequence, KDi will allow TSD timing control
information to connect the E register to the i-th In-Out buffer at the right
logical time, if an output In-Out device is involved. If an input device is‘
involved, the i-th In-Out buffer will be connected to the IOBM bus by the KDl
level and the TSD time control. The precise time at which the buffer content is
read into the E register will then be determined by the IOBM —3j—w E pulse

that is generated by an E register driver.

Note that the mode in which data is transmitted during the TSD is determined by
an earlier I0S. The states of the i-th control flip-flops are transmitted back
to the central computer in the form of IOCM levels. These IOCM levels set up
the necessary logic for transmitting data in the mode called for by the IOS.
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15-6.2° TSD AND TOS TIME CONTROL SIGNALS. The logic generating the TSD and IOS time
control signals shown on Fig. 15-7 is tabulated on Fig. 15-8. The logic generating
the IOI clock pulses and the |[PRESET o IOC and STOP UNIT levels is also shown on
Fig. 15-8.

The time signals originate in the Control Element of the central computer and
are transmitted over the IO High Speed Control bus to the sequence switches.

The IOI clock pulse and Stop Unit signals pass through all the sequence switches
without any gating occurring there. The [PRESET o IOC level is gated through
the sequence switches by an M (M) level that indicates the sequence is
not disabled. The rest_of the time control signals enter only those segquence

switches selected by NDl during an IOS or KDl during a TSD.

Note that normally two IOI clock pulses occur during each PK cycle. These clock
pulses are inhibited, or prevented from occurring, if the QK cycle of a previous
TSD overlaps the current TSD-PK cycle at PKOla or at PKlza. An TIOI clock pulse
will also occur at CSKlla during a delay synchronization cycle if the DSK cycle
is to be followed by another DSK cycle, i.e., if the (m) at skt

logic is satisfied. These IOI clock pulses are used to synchronize the asynchro-
nous completion pulses in the In-Out devices and, in so doing, to generate the

"Raise Flag" signals at the proper time.

Dufing an output TSD, the In-Out buffer is cleared during the operand cycle by
the %‘ IOB level at QKlSa. The data in the E register is then transferred
into the In-Out buffer by a %—0 IOU level at QK2 oot. During an input TSD,

the In-Out buffer is connected to the IOBM bus by the IOB ——Kﬁ—’ E level. The
data is then pulsed into the E register by RD logic at the E register. It should
be noted that only the E bits corresponding to In-Out buffer bits are affected
by this strobe. The other E bits are left undisturbed. During an IOS, the
control levels generated depend on which of several possible IOS instructions is
being executed, i.e., on the value of N2.6 ol If the IOS is to do anything
to an In-Out device, the bits must have the value 011 or 110. The IOS time con-

MODE_+ SELECT SELECT
trol level then generated will be L ™ € T10C. The I—_I\?)T—‘ I0C

SELECT MODE + SELECT
level, or its inverse ( T‘ IOC), gates thel 9 T0C level at

the In-Out unit in such a way as to distinguish whether a "mode" or "select”
operation is involved. Note that this gating is significant only at those In-Out
units which have subunits (currently this only includes the magnetic tape
sequence). TFor all other In-Out units no distinction is made between Nglé _ 2.8
and Nélg o8 The LI(\)T_D—’ C level is used by the "disconnect" I0S to clear
C to ZERO. Note, that, by definition,
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15-6.3

IOBT E = QIR EB

IOC—ND—O E = IOB——@—Q E
Hence,

IC———® E = QKIRTSD +EBo

ND

These levels essentially determine whether the sequence switch is to be set up

to execute an IOS or a TSD. The logic is such that the IOC —ND_——. E level

is always present, except during the QK cycle of a TSD when EBl. In the TSD
case, the IOB -——E-—OE level is generated. Thus the sequence switch is biased
towards performing an I0S rather than a TSD.

The lP—R-E—S:EE—O IOC level is initiated by the PRESET pushbutton on the console.
This level sets all the In-Out control flip-flops to a prescribed state, which in
turn, in effect, places each In-Out unit in a predetermined state. The preset
state of the In-Out unit and its associated control flip-flops will vary from
sequence to sequence, But generally EIA, C, and MISIND will be cleared. The
STatus flip-flop will be set to ONE for an output unit, and cleared to ZERO for
an input unit. Normally, the In-Out unit itself will also be stopped.

TOCM CONTROL LEVELS. As shown in Fig. 15-7, the IOCM levels are used to inform
the central computer of the state of the In-Out unit. The central computer
reaches in to command the state of the In-Out unit by means of the N bus; the
IOCM bus feeds back to the central computer the In-Out unit's actual state at

any moment.

The interpretation of the IOCM levels is, to an extent, a function of the sequence
selected. Note that if there is no sequence switch for the sequence selected by
the Sequence Selector, all the wires on the IOCM bus will float at ground. A
ground level indicates a "not" condition; for example, ground = iBEQBB = buffer
not busy. If a sequence switch is provided for fhe sequence selected, three

possibilities exist: (1) the level is tied to ground; (2) the level is tied to

- =3 volts; or (3) the level depends on the state of the In-Out control.

Fig. 15-9 tabulates the IOCM levels for all the seqQuences. The IOCM levels and

the logic that generates them are described below:

IOCM:BB (Buffer Busy). In most sequences, this level is generated by c® +

sT° (or, in some segquences, by M + c® + STO). st indicates that the In-Out
buffer is being used by the In-Out unit or that the In-Out unit is in some

transient state and should not be disturbed.
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TooM TSP (Misindication). In free-running input devices, ¢l . MISIND - M

will generate this level.

TA
IOCME (Equipment Tnability Alarm). In sequences that have an EIA flip-flop,

1
M-C - E1at generates this level.

ORMAL

N P
TOCM (note that NORMAL = Assembly). For sequences that operate in a

single mode, this level (or its negation) is prewired in the sequence switch.
NORMAL
In the sequences that can operate in more than one mode, the IOCM

level is determined by the state of the mode controcl flip-flops.

When the In-Out unit is in the NORMAL mode, data is transferred in "blocks™
during a TSD, that is, adjacent bits in the In-Out buffer correspond to a
block of adjacent bits in the E register. In the Exchange Element, the

data is under normal permuted activity control (normel configuration control,

excluding sign extension).

If a TSD is performed in the ASSEMBLY mode, the In-Out buffer data is
splayed when it is transferred into the E register. That is, if there are
six bits in the buffer word, the bits will be spread out so that they
correspond to every sixth bit in the E register. Similarly, if there are
nine bits in the buffer word, the bits will be spread out to correspond to
every fourth bit in the E register. When a TSD is performed in the ASSEMBLY

mode, the Exchange Element is not under configuration control.

RIGHT _—
IOCM (note that RIGHT = Left). This is a level used by the Exchange
A NORMAL
Element in conjunction with the TIOCM level to determine whether data

in the E register will be shifted to the left or right into the M register
during an assembly TSD. If the In-Out unit operates in the forward directiocn
(REVO), the IOCMRIGHT level is generated; conversely, if the In-Out unit
operates in the reverse direction (REVl), the o0 CET 1evel is generated.

IOCMIN (note that IN = Out). This level indicates whether the In-Out unit

is an input or output device. Note that for all sequences, except magnetic
tape, this level is prewired in the sequence switch. The IOCMIN level is
used in the Exchange Element as one of the conditions for gating IOBM into
the E register during an input TSD instruction. The level is also involved

in the E to M transfer logic.

IOCMMAINT (Maintenance). This level is generated whenever the In-Out unit's

maintenance switch is turned on, or the power is turned off. Note that the

level is not generated synchronously.
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15-6.4

+
IOCMMISIND EIA. This level is generated in the In-Out frame or section

by ORing all the ETA and MISIND levels from the In-Out units. The function
of this level will be discussed in the section describing the In-Out Alarm

Sequence.

Note that all of the above IOCM levels (or their converse) can be generated
by each and every sequence, and that all of these levels are transmitted to
the central computer at any given time only from the sequence selected by
KDi. However, the central computer may or may not make use of the levels.

IGHT
For example, during a normal TSD, no use is made of the IOCMB or
IOCMSIGHT levels.

I0S. This instruction is used to control and/or report on the state of the In-Out
system, as well as to raise and lower flags in the Sedquence Selector. It is one
of the variations of the OPR instruction. The instruction has the following

characteristics:

1) An IOS in any sequence can logically connect any other squence. For
example, an I0S in the PETR Sequence (52) can comnect ( |1 4 C) the
Lite Pen Sequence (55).

2) An IOS is always possible, i.e., the IOS is never prevented from
occurring, except when the selected In-Out unit is in the MAINTenance

state. An I0S 30,000 or 60,000 will cause an IOSAL in this case.

3) An IOS instruction is always one of three types: i.e., it either (a)
affects the controls of an In-Out unit, (b) has no effect on any In-Out
unit, but raises or lowers a flag in the Sequence Selector, or (c¢) nas
no control effect on either the In-Out Element or the central computer,
but is used for reporting.

3
15-6.4.1 108 TYPES. 1I0S is an instruction in which some of the instruction
word bits are used in a special way. TFig. 15-10 shows how the content

of the N register is interpreted during an IOS.

0
B - 2.7

indicates that an OPRIOS instruction instead of an OPR instruction
are not used at all. The hold and defer

(6]
The OP code bits 000100 (0Ob4) specify an OFR instruction. N2

is specified. Bits Nh 8 - 4.7
bits are interpreted in the usual way. The sequence selected by the
108 is decoded from the J bits. CF5 (or Ny, 8) is used as a "dismiss"

bit, i.e., if it is a ONE then the instruction reports a dismiss.
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CFl (or Nh.h) is a "report" bit. If CFl is a ONE, the state of certain
In-Out control flip-flops is reported to the E register. Fig. 15-11
tabulates the specific report made to the E register for each of the
sequences. For example, suppose that an IOS 40,000, specifying the
Datrac Sequence (50), is performed with CFi- Then the content of FS

is placed in Ei.h; the value of M - Cl . EIAl in EQ.h; the content

of C in E2.6; etc. Note that the transfer of the contents of the
control flip-flops to the E register is via the IOBM bus, and that,
when IOBM is gated into E, the E register bits take on the same state
as the corresponding IOBM bits. Here again the only E bits affected

are those that receive a report.

The Y bits are used to specify the I0S type. (Note that the decision
to dismiss or to report is independent of the IOS type.) Bits

N2 3_.1.1 are used in only two of the eight basic IOS types determined
by bits N2.6 _o”

The basic IOS types are:

TI0S 00 000, 10 000 and 70 000. If these IOS types have CF? and
CFi, they become dummy instructions in which nothing happens, i.e.,

these I0S types can be used only for reporting.

T0S 20 000. This IOS type is used to logically disconnect the

selected In-Out unit from the computer.

I0S 3X XXX. This IOS type is used to logically connect the

selected In-Out unit to the computer and to specify the operating
mode of the In-Out unit. (Bits N2_3 11
mode.) Fig. 15-12 tabulates the mode specified by the N

specify the operating

2.3 - 1.1
bits. For example, if the Punch Sequence (63) is selected and
Ni 0 then the ASSemblY flip-flop in the punch unit will be set

to ONE. If now a TSD is performed in the Punch Sequence, the data

will be transferred in the "assembly” mode.

I0S 40 000. This IOS type is used to lower the flag of the
specified sequence. It communicates directly with the Sequence

Selector and has no effect on the In-Out Element.

TOS 50 000. This IOS type is similar to TOS 40 000, except that

it raises the flag of the specified sequence.
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I0S 6X XXX. This IOS type is used to select the subunit of a
multiple unit sequence. Currently only the Magnetic-tape Sequence
uses this instruction. Fig. 15-13 tabulates the magnetic-tape
subunits selected by the N bits. Note that this IOS type does

not specify the operating mode of the selected subunit. This must
be done by an IOS 3X XXX. However, as noted earlier in the
chapter, I0S fX XXX is equivalent to 3X XXX in those segquences

which do not specify subunits.

15-6.4.2 T10S 3X XXX FLOW DIAGRAM. TFig. 15-13 shows an over-all flow diagram
for an T0S 3X XXX type instruction when the CFl report bit is a ONE.
Note that certain of the N bits are used by the Control Element in the
logic that generates the IOS timing control.

The report data is gated onto the IOBM bus by the IOC —— E level.
Note that this level occurs as soon as NDi is decoded in the Sequence
Selector, i.e., the logic that generates I0OC —— E does not include
a time level. The report data is then gated into the E register by
the IOBM—j—» E pulse at the same time that the "mode commands" are

DE + SELECT
gated into the In-Out control flip-flops by the Mo 10C

. 26
pulse, i.e., at PK .

Note also the fact that the I0C — @ E level is generated is
sufficient to logically connect ( ‘1—0 C) the sequence, i.e., C is
set independent of the content of N. Since Cl . ST1 indicates that
the In-Out buffer is not busy the STatus flip-flop is always set to
ONE for an output unit and to ZERO for an input unit whenever the unit
is logically connected. Note that it is the tramsition to C1

( <:Cl > ) that sets or clears the STatus flip-flop.

If the maintenance switch is turned on (M), and either an I0S 30 XXX

or in T0S X XXX is attempted, an IOSAL alarm will be generated at
2ho
PK .

15-6.5 TSD. This instruction transfers data between the specified In-Out buffer and
the selected Memory Element register. It is unlike the IOS instruction in the

following respects:
1) The computer must perform the TSD in the sequence associated with the

In-Out device into or out of which data is being transferred. This

sequence is determined by the content of the K register.
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2) If the In-Out unit selected for a TSD is not ready to receive or trans-
mit data, the TSD is not executed. In this case, a "dismiss and wait"
takes place. The central computer is informed of this condition by
the "buffer busy” (IOCMBB) level.

3) The activity occurring in the In-Out Element during a TSD must be

synchronized with the central computer.

15-6.5.1 TSD TRANSFER MODES. One of the fundamental considerations in a TSD is
the mode in which data is transferred. A summary of the modes for
each sequence is given in Fig. 15-14. Most of the sequences transfer
data in the NORMAL mode. The specific bits transferred in each sequence

and in each mode are given on Fig. 15-15.

A TSD in the PETR Sequence (52) can cause a data transfer in the
ASSEMBLY mode. This type of transfer is shown on Fig. 15-16. It is
used to store a "block” of six 6-bit lines on the paper tape as one
36-bit word in memory by means of six successive TSD instructions.
Basically this is accomplished by transferring the In-Out buffer word
into the E register in a splayed form and then shifting the content of
the E register one bit to the left during the transfer from E into the
M register. In this manner, a series of six TSD's packs the six lines
into one memory word. The timing of the transfers and the logic of

the packing process are shown in Fig. 15-16.

The Punch Sequence (63) is much like the PETR Sequence in that data can
be transferred in the ASSEMBLY mode. The logic involved is very
similar to that for the PETR Sequence, except that the direction of

data flow is reversed.

The Magnetic-Tape Sequence is unique in that it can transfer data in

any of the six possible modes:
1) Data can be transferred into the computer in the NORMAL mode.

2) Data can be transferred into the computer in the ASSEMBLY mode

with the tape traveling in the forward direction.

3) Data can be transferred into the computer in the ASSEMBLY mode

with the tape traveling in the reverse direction.

4) All three modes above are also possible when data is trans-

ferred out from the computer.
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15-6.5.2 TSD FLOW DIAGRAMS FOR OUTPUT DEVICE. Fig. 15-17 shows a flow diagram

15-6.5.3

for a TSD when an output device is involved.

When the input device has completed the action requested by a TSD, an
I0I clock pulse will synchronize the "completion" pulse. A RAISE FLAG
will then be generated which will set the STatus flip-flop to ONE.

The RAISE FLAG pulse will also raise the sequence's flag in the

Sequence Selector.

When the Sequence Selector causes the central computer to change to the
In-Out unit's sequence, KDi will connect the In-Out unit to the In-Out
bus for a data transfer. As soon as the K Decoder decodes the content
of the K register, the IOCM mode levels and "buffer not busy” signal

will be transmitted to the central computer.

The IOCMBB level is generated, because the STatus flip-flop was set
before the KDl level was generated. The IOCM mode levels and the mode
control flip-flops will set up the Exchange Element and the sequence

switch, respectively, for the desired mode of data transfer.

The fact that this is an output device (that is, that the IOCMIN level
is generated) means that a clear In-Out buffer pulse will be generated
at QKlBa. The data in the E register is actually gated into the
In-Out buffer by a lDl’ IOU level occurring at Ql{goa. If required,
this LD-O——O IOU level can also be used to initiate the actual data

output conversion.

The LD-O—O IOU pulse will also clear the STatus flip-flop to ZERO and,
in so doing, will generate an IOCMBB (buffer busy) signal. This level
is used to inhibit the PK counter and cause a "dismiss and wait". A
"completion” pulse from the output device will later indicate that the
TSD has been completed and that the unit is ready for another TSD by
setting the STatus flip-flop to ONE again.

TSD FLOW DIAGRAM FOR INPUT DEVICE. Fig. 15-18 shows a flow diagram
for a TSD when an input device is involved. The process illustrated
is similar to that for an output device, except that the direction of
data flow is reversed. In this case, data is transferred into the
In-Out buffer from the input device when a completion pulse occurs.
This pulse is synchronized by the IOI clock pulses to generate a RATISE
FLAG signal. This RAISE FLAG signal sets the STatus flip-flop to ONE,
thus generating an IOCMBB (buffer not busy) level.
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15-7 ALARMS

Note that the buffer is connected to the IOBM bus by the I0(B ——e E
level. There is no time level term in the logic that generates this
level. Consequently, the In-Out buffer is tied to the bus for
virtually the entire QK cycle of TSD's. The actual time gating of

the data into the E register from the bus is performed by the

IOBM —3#— E level. This gating occurs at QKlSa. At QK , a

' lDO_. TOU pulse is generated which clears the STatus flip-flop and
generates the IOCMBB level.

In a free-running device it is possible that a second word will arrive
at the input buffer before the first word has been transferred into the
computer. In this case, the second word will take the place of the
first word and the first word will be lost. The MISIND (misindication)
level will be generated in order to inform the computer and the operator
of the lost line of data.

There are three alarm situations associated with the In-Out Element:

March 1961

1)

2)

3)

An TOSAL alarm will occur during an IOS if the M (maintenance) level is present.
The logic for this alarm is shown in Fig. 15-13. Note that the alarm is

2
synchronous and can only occur at PK during an I0S instruction.

When a free-running device is being operated, it is possible for the device to
request data transfers by TSD's faster than TSD's are performed by the computer.
The magnetic tape, PETR and DATRAC units have this characteristic. Under these
conditions, the In-Out unit's MISIND flip-flop will be set. The setting of
MISIND is synchronized by the IOI clock pulses. The corresponding IOCMMISIND
level generated may then cause a MISAL alarm.

In the third situation, an IOCMEIA or IOCMMISIND

level can raise the flag of
the In-Out Alarm. The In-Out Alarm Sequence program is not unique and depends

on the particular way in which the programmer desires to handle these alarms.
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(00) STARTOVER SEQUENCE
The Startover Sequence has several unigque features:
1) Tt has top sequence priority (00).
2) The sequence is always connected (no C flip-flop).

3) The sequence switch consists of s synchronizer which synchronizes pulses from the
STARTOVER button.

Fig. 15-Start'r Seqg-1 shows a block diagram of the Startover Sequence. When the STARTOVER
| 1

pushbutton on the conscle is depressed, it initiates a L— @ SYI\Tl level through the console
control logic. This is an asynchronously generated level which is synchronized by the IOT

clock pulses. The output of the synchronizer is the I——» FLAG( 00) pulse.

As soon as it is permissible, a change of sequence into the Startover Seguence will occur. Note
that during the change of sequence to this sequence the flag of sequence 00 is lowered. Thus,
if the STARTOVER button is pressed again while a STARTOVER sequence program is operating,
another change of sequence to the STARTOVER sequence will occur as soon as the operating pro-

gram dismisses.

March 1961 15-STARTOVER (00)-1
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(41) IN-OUT ALARM SEQUENCE

A block diagram of the In-Out Alarm system appears in Fig. 15-I0 Al Seq-1. This sequence has

several unusual features:
1) It has no STatus flip-flop.

2) The IOCM:BB level is always generated as long as the sequence is connected (i.e., as

long as Cl).

3) A TSD in this sequence transfers the data shown in Fig. 15-I0 Al Seq-2 into the E
register. '

An TIOCM TSIND or IOCMEIA level from any of the sequences shown will cause the IOCMEIA * MISID
level to be generated. Note that this level can be generated only by In-Out units which can
cause an EIA or a MISIND. If the In-Out Alarm Sequence is connected {i.e., turned on by an
I0S 30 000), the synchronized IOCMEIA * MISIND level will generate the L—EéE§EL—u- FLAGul
pulse. Since the In-Out Alarm Sequence has a higher priority than nearly all the other
priorities, the computer will quickly change to this sequence. What occurs thereafter depends
on the program for the In-Out Alarm Seduence. If a TSD is included in the program, the status
of the MISIND and EIA flip-flops of all the connected sequence will be transferred to the E

register.
One peculiarity of this sequence is that, once an In-Out unit generates an alarm and raises the

flag of the In-Out Alarm Sequence, no other unit's alarm will raise the flag until the first
alarm is cleared, i.e., the EIA or MISIND flip-flop causing the alarm must be cleared to ZERO.

March 1961 15-I0 ALARMS (L41)-1
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(52) PETR

PETR is a photoelectric paper tape reader. This device uses photoelectric diodes to sense a tape
that has been punched with 7 possible holes, plus a feed hole. Only 6 of the holes are used to
store the data which is transmitted to the central computer. The seventh hole is used in the
logic that indicates the end of the tape has been reached, i.e., it is used for control purposes
only. The feed hole is used to generate the "completion” pulse that is used in the synchronizing

process.

Data Transfer Modes. Data may be transmitted from the PEIR buffer to the central computer

in either the normal or assembly modes. It requires six TSD's to pack a 36-bit word in the
central computer when the assembly mode is used. Data is never read into the PEIR buffer,

except when the tape is advanced in the forward direction.

Mechanical Tape Transport. Fig. 15-PETR-1 shows the major mechanical features of the PETR

tape transport system. The tape may be transported in either the REEL or STRIP mode. When
the STRIP mode is used the tape motion is determined entirely by the capstan. In this case
the reel is not used, i.e., the tape is not wound on the reel. The reel clutch is left

disengaged and the brake partially on.

Both capstan and reel assembly are belt driven by a single reversing drive motor as shown
on the figure. Motion of the reel and capstan is then controlled by individual reel and
capstan magnetic clutch and brake units. The direction of the drive motor is controlled by
the REV flip-flop in the PETR control box.

The drive controls, when the tape is transported in the REEL mode, are designed to prevent
the tape from accumulating slack between the reel and capstan. When the tape is running
"binward" in the steady-state REEL mode, both the capstan and reel are driven by the motor.
However, when the tape is running in the "forward" direction, the capstan clutch is dis-
engaged and the capstan brake is partially engaged. The effect of the slippage in the
capstan brake is to provide the reel with a light drag load.

Tape Transport Cycle. The basic tape transport cycle used in reading a tape into the computer
is as follows:

First, the tape is advanced in the binward (REVl) direction. During this phase, the data
on the tape is sensed, but not gated into the buffer. (See Fig. 15-PETR-2.) When the end
of the tape is reached, on octal 73 character (this is a character without a T-th hole) is
sensed. The octal 73 is ANDed with REV' to generate an End Mark (EM) level. EM is used to
gate a feed-hole transition. EM - <:Hf:> then clears the REV flip-flop to ZERO, thus
reversing the direction of the drive motor. The tape now begins running in the forward
direction. Note that if the PETR had not been logically connected, then CO + EM - <:Hf:> )
would have cleared the CLUTCH flip-flop to ZERO thus stopping the tape motion. Note also
that EM <:Hf:> is not a synchronized signal.

March 1961 15-PEIR (52)-1



Each feed hole (Hf) that the PETR senses is synchronized by an IOI clock pulse in the PETR

synchronizer. If the tape is running in the forward direction and a seventh hole is present

on the tape (Hf . REVO), then the output of the synchronizer will gate the tape data inte

the PETR buffer. The fact that PEIR is comnected (cl) means that the output of the synchro-
RAISE

nizer will also be transmitted to the Sequence Selector as a FLAG52 pulse.

Motion Control Logic. Fig. 15-PETR-2 is a block diagram of the PETR sequence switch and

control unit. Most of the logic found on this figure has been previously described. How-

ever the motion control logic is unique to the PETR and requires explanation.

The motion control logic must be able to run the tape in both the forward and reverse
direction in either the STRIP or REEL mode. In addition, the motion control logic must

take into account the inertia transient effects during tape reversals and run-stop operations.
Fig. 15-PETR-2 shows how this logic is generated. First, a level is generated, indicating
that the computer wants the tape to move. This level is called MV. Mv will not be present
(ﬁ;) when the tape is slowing down, prior to stopping or reversing direction. A second

level is generated and used when the tape is operated in the REEL mode and the tape is

traveling in the bin direction. This level is called B.

Consider now how Mv and B are generated. Whenever the state of the REV flip-flop is changed,
a term called VD% is generated. This is the output of a variable delay unit. VD% will
persist for a predetermined length of time, after which the output of the variable delay
unit will revert to VD?- The function of this level (VDi) is to stop the motion of the

tape while the drive motor is changing its direction. Assuming that the unit is connected
(Cl) and the Stop Unit level is not present, Mv will be generated as long as the CLUTCH

flip-flop is set to ONE and the VDi level is present. Whenever a transition to H; (<:ﬁ;:>)

occurs, a variable delay level called VD; is generated. This level is similar to VD% and
_will become VDg after a predetermined length of time. The primary function of VD2 is to

\apply’the bocster brakes when they are needed. Note that VD; occurs whenever VD% occurs
(that is, during reversal operations), but that VD% does not necessarily occur whenever
VD} occurs (that is, during CLUICH ———#- CLUICE or RUN — - STOP operations).

There are two situations which will generate B. If the tape has been traveling in the binward
direction for some time, the REVl . VDg condition will be satisfied. This is sufficient to
generate B. If the REV flip-flop is suddenly cleared to ZERO while the tape is traveling

in the binward direction, B will persist until the tape actually comes to a stop and reverses
direction. This happens because clearing the REV flip-flop to ZERO initiates VDi, and

REVO . VDi generates B. Here again, the VD% serves as a digital memory for the mechanical

system during the motor reversing period.

15-PEIR (52)-2 March 1961



Consider next the logic used in operating the capstan and reel clutches and brakes. In
addition to M and B, another level must be considered. This is the level initiated by the
REEL-STRIP sw;,tch on the PETR PB control panel. The S level indicates the STRIP mode, and
the S level indicates the REEL mode.

The presence of S is sufficient to disengage the reel clutch and engage the reel brake. The
actual engagement and disengagement of the capstan clutch and brake occur conversely and, in

the STRIP mode, depend only on Mv'

When the PETR is operated in the REEL mode, a slightly more complicated drive logic is used.
When the tape is transported binward, the capstan clutch will be engaged whenever M is
present. It will also be engaged durlng M while VD The logic that is engaging the capstan
clutch will always be disengaging the capstan brake. The reel clutch is engaged whenever

M is present and, similarly, the reel brake operates whenever M is not present (M ). The
reel brake booster is present only while VD Fig. 15-PETR-3 shows the time relationship of
these levels during a typical operating cycle.

MISAL Alarm. Since the PETR is a free-running input device, it has a MISIND flip-flop.
Fig. 15-PETR-2 shows that the MISIND flip-flop is cleared to ZERO whenever the device is
connected ( <Cl> ) or the PETR EBESET o 100 level is generated.

The MISIND flip-flop is set under the following circumstances: Suppose that the Raise Flag
signal has just gated data into the PETR buffer. This same Raise Flag signal will set the
STatus flip-flop to ONE. ©Note that the MISIND flip-flop cannot be set to ONE because the
STatus flip-flop is in the ZERO state when the Raise Flag signal arrives. If a TSD now
occurs, data will be gated into the E register by an IOBM —3—s E pulse at Q}{lsa. The
@» I0U pulse will then clear the STatus flip-flop at QK2 0c and the cycle may be repeated.
However, if another Raise Flag signal occurs before a TSD has read the content of the buffer
into the computer and cleared the STatus flip-flop with a lD—0> I0U pulse, the initial content
of the PETR buffer will become permanently lost. In this case, the STatus flip-flop will be
in the ONE state when the Raise Flag signal arrives. If, in addition, the STOP UNIT level
is absent (STOP UNIT), the MISIND flip-flop will be set to ONE. When this occurs the MISAL
alarm f1ip-flop in the central compuber will be set and, if the In-Out Alarm Sequence is
turned on its flag will be raised.

The reason for including the STOP UNIT level in the L]'—PMSIND logic is as follows: Suppose
that some other sequence (magnetic-tape, for example) generates a MISIND which in turn sets
the MISAL alarm and stops the computer. Even though the computer is stopped, the PETR will
continue to generate Raise Flag signals until the tape can be brought to a stop by the M
level. If the STOP UNIT level were not included in the l—» MISIND logic, it would be
impossible to determine whether the Magnetic-tape Sequence or the PETR Sequence had caused

the original MISAL alarm. The STOP UNIT level inhibits the PETR MISIND flip-flop from being
set in this case.
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(63) HI SPEED PUNCH

This is an output device which punches holes in paper tape. Six bits of information are

transferred from the central computer to the tape during each TSD.

Modes. Any of L possible modes can be selected for punching. In 7-th hole mode a T7-th
hole is punched with each line of data resulting from a TSD.

Normal or assembly mode can also be specified. In the normal mode bits 1.1 through 1.6 of
the register specified by the TSD are punched in that order on a line of tape with 1.6
going into hole 1. The line can be read as it existed in memory by viewing the tape with
the 7-th hole on the right.

In the assembly mode each line punched is made up of every 6-th bit of the 36 bit word in
memory starting with 1.6, viz. 1.6, 2.3, 2.9, 3.6, 4.3 and 4.9. After a TSD in this mode
is performed the memory word is cycled one place to the left, so that successive TSD's
referring to the same memory word record different bits of the word even though they are
taken from the same bit positions. In this way a full 36 bit word is disassembled into 6
successive lines of tape. Normal or assembly modes can be used either with or without the
T7-th hole mode.

I0S instruction bits which specify modes are as follows:
0
1.2 {
1
0
1.3
1

The bits in the punch control transmitted to the E register by an IOS report instruction

NORMAL

]

ASSEMBLY

7-th HOLE

7-th HOLE-

are as follows:

I0BM, , ———  ASSY
IOBM:IL —  7-th HOIE
.3 _ 1
Tomy, , —— .- EIA
I0BY, , — C
ToB, , —— M
IOBM2.8 —_— ST

Mechanical Punch Cycle. The TSD instruction serves to start the drive motor as well as to

initiate punching. No actual punching can occur, however, until the motor is up to speed.
This involves a delay of about 1 second. The drive motor will continue to run as long as
TSD commands are given at a rate exceeding one every 5 seconds. The motor will stop about

5 seconds after the last TSD command.

March 1961 15-HI SPEED PUNCH (63)-1



The basic mechanical cycle of the punch consists of: (1) punching the tape with the data
stored in the punch buffer, and (2) advancing the tape while the buffer is loaded with more

e o eardam 1t
data from the central computer.

IS

The punching mechanism has two built in pickups which generate "punch” and "feed" sync
signals. The punch sync generates a positive going pulse at the beginning of the punch
cycle and a negative going pulse at the end of the punch cycle. These pulses are identified
as<<START PUNCH:> and <END PUNCH:> , respectively. Similarly the feed sync generates a
positive going pulse at the beginning of the feed cycle and a negative going pulse at the
end of the feed cycle. These pulses are identified as <START FEED > and <END FEED >
respectively. Since the <START FEED:> and <<END PUNCH:> pulses are essentially coincident,
the <:END PUNCH:> pulse is used to indicate both conditions.

Punch and Feed Control Details. Fig. 15-PUNCH-1 is a block diagram of the punch sequence

switch, control box and mechanism. Fig. 15-PUNCH-2 shows the time relation of the events

that occur during the punch feed cycle.

Assume that the central computer is in the punch sequence, and the sequence is comnected,
but that the punch motor is off. Suppose now that the program calls for a punch TSD.
During the operand cycle (QK) the punch buffer will first be cleared by a LQ#D—IOB pulse
and then a LEEL-»IOU pulse will occur. This pulse does sewveral things:

1) It is used in the sequence switch to gate data from the central computer into the

punch buffer in the specified mode.

2) It clears the STatus flip-flop to ZERO. STO causes the IOCMBE level to be

generated and in so doing tells the central computer the punch buffer is now busy.
3) Tt sets the PUNCH flip-flop to ONE, indicating a punch-feed cycle is to follow.

L) It causes the MOTOR ON level to be generated. This level comes from a variable
delay unit. The LEEL..IOU’pulse starts the variable delay unit timing. After the
preset variable delay, the unit will generate a MOTOR ON level unless in the mean
time another LEEZ.. IOU pulse (or <<FEEDO:> ) pulse has reset the variable delay.
Actually two VD units are used to handle the variable delay logic.

The MOTOR ON level causes the motor to begin coming up to rated speed. The punch and feed
sync signals start occurring. However these signals have no effect until the motor is up

to rated speed (cuo).

The first <START PUNCH > sync pulse sets CODE to a ONE (assuming the PUNCH is now set to
ONE and the l-second MOTOR ON delay has ended). CODEl permits the data in the buffer to be
punched onto the tape. The <:END PUNCH:> sync pulse that follows sets the FEED flip-flop
to ONE. FEED:L causes the tape to be advanced in preparation for the next punch cycle.

15-HI SPEED PUNCH (63)-2 March 1961



The <:END PUNCH:> sync pulse also clears the CODE flip-flop to ZERO. CCEEP in turn clears
the PUNCH flip-flop to ZERO.

Finally the asynchronous <:END PUNCH:> sync pulse is synchronized in the synchronizer by an
I0I clock pulse. The output of the synchronizer is then used to set the STatus flip-flop
to a ONE. STl causes the EBE&BB level to be generated which indicates to the central
computer that the punch buffer is now not busy. The output of the synchronizer also causes

the punch raise flag signal to be generated.

Suppose now that the program calls for another punch TSD to be executed. Another L—-I?-Q—--IOU
DO

pulse is generated during the second TSD operand cycle. The L= e 10U pulse again sets the

PUNCH flip-flop to ONE and pulses the variable delay unit. Note that the unit is pulsed

before the delay has ended, i.e., the motor is still energized and operating at rated speed.

Finally the <:END FEED > sync pulse associated with the first TSD occurs. This pulse clears
the FEED flip-flop. The <START PUNCH > sync pulse again sets the CODE flip-flop to ONE.

The punch-feed cycles repeat in this manner until the program ceases to generate TSD's.
The variable delay units will then time out and the MOTOR ON level will be generated. The

drive motor will now coast to a stop.

Special Control Features. By means of the TAPE FEED switch on the punch panel, the tape

may be advanced independent of the central computer. The TAPE FEED level causes the MOTOR
ON level to be generated. After 1 second has elapsed, to allow the motor to come up to
speed, the <:END PUNCH:> sync pulse will set the FEED flip-flop to a ONE. The tape will

then be advanced.

Alarms. Alarm circuits have been provided to indicate the presence of conditions requiring
human attention. All alarms will manifest themselves by a buzzer sounding and a red light
turning on. The EIA flip-flop will also set when the next TSD occurs. If the alarm ACK-
RESET switch is now set to ACK, (acknowledge) the buzzer will be suppressed and the red
light and ETIA condition will continue as long as the switch remains in this position, even
after the cause of the alsrm is corrected. If the alarm condition is corrected and the
switch is turned to RESET, the light will go off, and the buzzer is stopped. However, the

EIA flip-flop can only be cleared by a connection process.
The most common type of alarm results from the amount of tape on the supply reel diminishing

to about 100 feet. This will cause the LOW TAPE level to be generated. However this will

not prevent further punching.
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The following conditions will generate an ALARM level which will prevent further punching:

Y
L)

2)

3)

If the tape handler falls to supply tape to the punch as reguired a switch above
the slack loop will sense this and cause an alarm. This can happen if the bulb
providing the light beam burns out. It can also happen if the tape is loaded
improperly, or if the end of the tape roll is reached and is glued securely to
the form. This alarm will inhibit further punching and manual feeding and allow
the motor to stop after 5 second delay. The feed button or a TSD can restart the

motor in this condition but it will not cause punching.

The end of the tape passing through the end of tape sensor will create the same
effect as alarm 1 described above. This prevents the very end of the tape, which

is thickened by a paper glued to it, from going into the punch and jamming it.

It is necessary to lubricate the punch after each 4 hours of running. To prevent
it from being operated for longer intervals without lubrication, a timer is
provided to shut the machine off once this period has elapsed since the last
lubrication. Only maintenance personnel are authorized to reset this timer, which

times out after 4.5 hours.
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